JP2015531219A - 非wlanタイミング基準を使うワイヤレスローカルエリアネットワーク発見 - Google Patents
非wlanタイミング基準を使うワイヤレスローカルエリアネットワーク発見 Download PDFInfo
- Publication number
- JP2015531219A JP2015531219A JP2015528611A JP2015528611A JP2015531219A JP 2015531219 A JP2015531219 A JP 2015531219A JP 2015528611 A JP2015528611 A JP 2015528611A JP 2015528611 A JP2015528611 A JP 2015528611A JP 2015531219 A JP2015531219 A JP 2015531219A
- Authority
- JP
- Japan
- Prior art keywords
- wlan
- beacon
- beacon transmission
- timing
- timing reference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 257
- 238000005516 engineering process Methods 0.000 claims abstract description 129
- 238000000034 method Methods 0.000 claims abstract description 84
- 238000012937 correction Methods 0.000 claims description 66
- 230000001413 cellular effect Effects 0.000 claims description 62
- 238000004891 communication Methods 0.000 claims description 62
- 230000006870 function Effects 0.000 claims description 39
- 238000004590 computer program Methods 0.000 claims description 11
- 230000002618 waking effect Effects 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 23
- 230000004913 activation Effects 0.000 description 11
- 230000011664 signaling Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 238000003491 array Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000010295 mobile communication Methods 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 241000760358 Enodes Species 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/16—Discovering, processing access restriction or access information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
ワイヤレスローカルエリアネットワーク(WLAN)の発見を支援するための方法、システム、およびデバイスについて記載する。第1の無線技術に由来するタイミング基準が、ユーザ機器(UE)によって識別される。UEのWLAN受信機が、WLAN上でビーコンをリッスンするために、ビーコン送信スケジュールに従って起動される。第1の無線技術は非WLAN無線技術であり、ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づく。第1の無線技術に由来するタイミング基準は、ワイヤレスアクセスポイント(WAP)によって識別される。WAPは、ビーコン送信スケジュールに従って、WLAN上でビーコンをブロードキャストする。
Description
相互参照
本特許出願は、本出願の譲受人に譲渡された、2012年8月22日に出願した、Meylanらによる「Passive Wi-Fi Scan Using Cellular Timing」という名称の米国仮特許出願第61/691,942号の優先権を主張する。
本特許出願は、本出願の譲受人に譲渡された、2012年8月22日に出願した、Meylanらによる「Passive Wi-Fi Scan Using Cellular Timing」という名称の米国仮特許出願第61/691,942号の優先権を主張する。
多くのモバイルデバイスは、データを送信および受信するために、ワイヤレスアクセスポイント(WAP)に接続することが可能である。WAPに接続する前に、モバイルデバイスは、モバイルデバイスの範囲内にあるWAPを発見するための探索を行い得る。WAPを発見するための従来の方法には、受動走査および能動走査がある。
受動走査(ビーコン走査としても知られる)では、モバイルデバイスは、ワイヤレスローカルエリアネットワーク(WLAN)の各チャネル上に留まり、各チャネル上でWAPからビーコンを受信するのを待てばよい。モバイルデバイスは、最小限度と最大限度との間の時間だけ、各チャネル上に留まり得る。能動走査(プローブ走査としても知られる)では、モバイルデバイスは、単一のプローブ要求を(たとえば、所与のチャネル上で)ブロードキャストし、モバイルデバイスの範囲内にあるWAPからの応答を待てばよい。
受動または能動走査を使う典型的なWAP発見処理において、モバイルデバイスは、デバイスの電力のかなりの部分を、存在しないか、もしくは結局はモバイルデバイスとの接続を確立しないWAPにプローブ要求を送信し、またはそれらのWAPからのビーコンもしくは応答をリッスンするのに費やし得る。ワイヤレス通信を送信および受信するのに使われる無線リソースは、大量の電力を消費し得るので、これらの従来の方法を使ってのWLANアクセスポイントの探索は、電力効率が悪い場合があり、モバイルデバイスの有効バッテリー寿命を短くする場合がある。
記載する特徴は概して、WLANの発見を支援するための1つまたは複数のシステム、方法、および/または装置に関する。ユーザ機器(UE)側において、UEは、第1の無線技術に由来するタイミング基準を識別することができ、WLAN上でビーコンをリッスンするために、ビーコン送信スケジュールに従ってWLAN受信機を起こすことができる。第1の無線技術は、非WLAN無線技術であってよく、ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づき得る。WAP側において、WAPは、第1の無線技術に由来するタイミング基準を識別することができ、ビーコン送信スケジュールに従って、WLANのチャネル上でビーコンをブロードキャストすることができる。
WLANの発見を支援するための方法について記載する。一構成では、ユーザ機器(UE)が、第1の無線技術に由来するタイミング基準を識別することができ、第1の無線技術は非WLAN無線技術であってよい。WLAN受信機が次いで、WLAN上でビーコンをリッスンするために、ビーコン送信スケジュールに従って起こされ得る。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づき得る。
いくつかの実施形態では、ビーコン送信スケジュールは、WLAN上でビーコン送信期間がいつ生じるかを示すことができる。
他の実施形態では、1つまたは複数のビーコン送信期間中に、第1のWLAN内の第1のWAPからビーコンが受信されてよく、WLAN内の第1のWAPとの接続を確立することができる。
いくつかの構成では、単一のビーコン送信期間中に複数のビーコンが受信され得る。複数のビーコンは、第1のWLAN内の複数のWAPから受信され得る。
いくつかの実施形態では、ビーコン送信期間の後、WLAN受信機はスリープ状態に戻され得る。
他の実施形態では、ビーコン送信期間は、WLANの動作の第1チャネル(第1の動作チャネル)に対応してよく、WLAN受信機は、WLANの動作の第2チャネル(第2の動作チャネル)に対応する第2のビーコン送信期間中、起こされていてよい。第2のビーコン送信期間は、第1のビーコン送信期間に続き得る。いくつかのケースでは、WLAN受信機は、ビーコン送信期間と第2のビーコン送信期間との間のオフセット中、起こされていてもよい。オフセットは、少なくとも、WLAN受信機を第1チャネルから第2チャネルに同調させるべき時間に基づき得る。
いくつかの構成では、ビーコン送信スケジュールは、非WLAN無線技術を含むソースから受信され得る。
他の構成では、タイミング基準は、第1のWLAN内の1つまたは複数のWAPに送信され得る。
さらに他の構成では、タイミング基準は、セルラーネットワークまたは衛星ネットワークのタイミングであってよい。
いくつかの実施形態では、WLAN受信機を経由して第1のWAPから受信されたビーコンのビーコン受信時間が記録されてよく、ビーコン受信時間およびビーコン送信スケジュールによって示されるビーコン送信時間に基づいて、ビーコンタイミング補正を計算することができ、ビーコンタイミング補正が送信され得る。
他の実施形態では、WLAN受信機を経由して第1のWAPから受信されたビーコンのビーコン受信時間が記録されてよく、ビーコン受信時間およびビーコン送信スケジュールによって示されるビーコン送信時間に基づいて、ビーコンタイミング補正を計算することができ、ビーコンタイミング補正の程度は閾値と比較されてよく、ビーコンタイミング補正の程度が閾値を超えるとき、ビーコンタイミング補正が送信され得る。
いくつかの構成では、タイミング基準は、複数の利用可能タイミング基準の中から選択され得る。
WLANの発見を支援するためのUEについても記載する。UEは、プロセッサと、プロセッサと電子的に通信しているメモリと、メモリに記憶された命令とを含み得る。命令は、第1の無線技術に由来するタイミング基準を識別するように、プロセッサによって実行可能であり得る。WLAN受信機が次いで、WLAN上でビーコンをリッスンするために、ビーコン送信スケジュールに従って起こされ得る。第1の無線技術は、非WLAN無線技術であってよい。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づき得る。
いくつかの実施形態では、ビーコン送信スケジュールは、WLAN上でビーコン送信期間がいつ生じるかを示すことができる。
他の実施形態では、命令は、1つまたは複数のビーコン送信期間中に、第1のWLAN内の第1のWAPからビーコンを受信し、WLAN内の第1のWAPとの接続を確立するように、プロセッサによって実行可能であり得る。
いくつかの構成では、命令は、単一のビーコン送信期間中に複数のビーコンを受信するように、プロセッサによって実行可能であり得る。複数のビーコンは、第1のWLAN内の複数のWAPから受信され得る。
いくつかの実施形態では、命令は、ビーコン送信期間の後、WLAN受信機をスリープ状態に戻すように、プロセッサによって実行可能であり得る。
他の実施形態では、ビーコン送信期間はWLANの動作の第1チャネルに対応してよく、命令は、WLANの動作の第2チャネルに対応する第2のビーコン送信期間中はWLAN受信機を起こしておくように、プロセッサによって実行可能であり得る。第2のビーコン送信期間は、第1のビーコン送信期間に続き得る。いくつかのケースでは、命令は、ビーコン送信期間と第2のビーコン送信期間との間のオフセット中はWLAN受信機を起こしておくようにも、プロセッサによって実行可能であり得る。オフセットは、少なくとも、WLAN受信機を第1チャネルから第2チャネルに同調させるべき時間に基づき得る。
いくつかの構成では、命令は、非WLAN無線技術を含むソースからビーコン送信スケジュールを受信するように、プロセッサによって実行可能であり得る。
他の構成では、命令は、タイミング基準を、第1のWLAN内の1つまたは複数のWAPに送信するように、プロセッサによって実行可能であり得る。
さらに他の構成では、タイミング基準は、セルラーネットワークまたは衛星ネットワークのタイミングであってよい。
いくつかの実施形態では、命令は、WLAN受信機を経由して第1のWAPから受信されたビーコンのビーコン受信時間を記録し、ビーコン受信時間およびビーコン送信スケジュールによって示されるビーコン送信時間に基づいて、ビーコンタイミング補正を計算し、ビーコンタイミング補正を送信するように、プロセッサによって実行可能であり得る。
他の実施形態では、命令は、WLAN受信機を経由して第1のWAPから受信されたビーコンのビーコン受信時間を記録し、ビーコン受信時間およびビーコン送信スケジュールによって示されるビーコン送信時間に基づいて、ビーコンタイミング補正を計算し、ビーコンタイミング補正の程度を閾値と比較し、ビーコンタイミング補正の程度が閾値を超えるとき、ビーコンタイミング補正を送信するように、プロセッサによって実行可能であり得る。
いくつかの構成では、命令は、複数の利用可能タイミング基準の中からタイミング基準を選択するように、プロセッサによって実行可能であり得る。
WLANの発見を支援するための別のUEについても記載する。一構成では、UEは、第1の無線技術に由来するタイミング基準を識別するための手段を含み得る。第1の無線技術は、非WLAN無線技術であってよい。UEは、WLAN上でビーコンをリッスンするために、ビーコン送信スケジュールに従ってWLAN受信機を起こすための手段も含み得る。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づき得る。
いくつかの実施形態では、ビーコン送信スケジュールは、WLAN上でビーコン送信期間がいつ生じるかを示すことができる。
他の実施形態では、UEは、1つまたは複数のビーコン送信期間中に第1のWLAN内の第1のWAPからビーコンを受信するための手段と、WLAN内の第1のWAPとの接続を確立するための手段とをさらに含み得る。
さらに他の実施形態では、UEは、ビーコン送信期間の後、WLAN受信機をスリープ状態に戻すための手段をさらに含み得る。
いくつかの構成では、タイミング基準は、セルラーネットワークまたは衛星ネットワークのタイミングであってよい。
WLANの発見を支援するためのコンピュータプログラム製品についても記載する。コンピュータプログラム製品は、UEによって、第1の無線技術に由来するタイミング基準を識別し、WLAN上でビーコンをリッスンするために、ビーコン送信スケジュールに従ってWLAN受信機を起こすように、プロセッサによって実行可能な命令を記憶する非一時的コンピュータ可読記録媒体を含み得る。第1の無線技術は、非WLAN無線技術であってよい。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づき得る。
いくつかの実施形態では、ビーコン送信スケジュールは、WLAN上でビーコン送信期間がいつ生じるかを示すことができる。
他の実施形態では、命令は、1つまたは複数のビーコン送信期間中に、第1のWLAN内の第1のワイヤレスアクセスポイント(WAP)からビーコンを受信し、WLAN内の第1のWAPとの接続を確立するように、プロセッサによって実行可能であり得る。
さらに他の実施形態では、命令は、ビーコン送信期間の後、WLAN受信機をスリープ状態に戻すように、プロセッサによって実行可能であり得る。
いくつかの構成では、タイミング基準は、セルラーネットワークまたは衛星ネットワークのタイミングであってよい。
WLANの発見を支援するための別の方法についても記載する。いくつかの構成では、第1の無線技術に由来するタイミング基準が識別され得る。ビーコンが次いで、ビーコン送信スケジュールに従ってWLAN上でブロードキャストされる。第1の無線技術は、非WLAN無線技術であってよい。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づき得る。
いくつかの実施形態では、タイミング基準は、非WLAN無線技術を含むソースから受信され得る。
他の実施形態では、タイミング基準は、ネットワーク時間プロトコル(NTP)に従ってバックエンドサーバから受信され得る。
いくつかの構成では、タイミング基準は、WLAN上でUEから受信され得る。
いくつかの実施形態では、ビーコン送信スケジュールは、非WLAN無線技術を含むソースから受信され得る。
いくつかのケースでは、ビーコン送信スケジュールは、非WLAN無線技術を使って1つまたは複数のUEにブロードキャストされ得る。
いくつかの実施形態では、ビーコン送信スケジュールは、WLAN上でビーコン送信期間がいつ生じるかを示すことができ、ビーコンをブロードキャストするための、ビーコン送信期間内の複数のタイムスロットのうち1つが選択され得る。ビーコンは次いで、選択されたタイムスロットに挿入され得る。複数のタイムスロットのうち1つを選択することは、メディアアクセス制御(MAC)アドレスに対してハッシュ関数を実施することを含み得る。
他の実施形態では、ビーコン送信スケジュールは、WLAN上でビーコン送信期間がいつ生じるかを示すことができ、ビーコンをブロードキャストすることは、ビーコン送信期間内のランダム時間においてビーコンをブロードキャストすることを含み得る。
いくつかの実施形態では、ビーコンタイミング補正が受信される場合があり、ビーコンは、ビーコンタイミング補正に従ってブロードキャストされ得る。
さらに他の実施形態では、タイミング基準は、セルラーネットワークまたは衛星ネットワークのタイミングであってよい。
いくつかの構成では、タイミング基準は、複数の利用可能タイミング基準の中から選択され得る。
WLANの発見を支援するためのWAPについても記載する。いくつかの構成では、WAPは、プロセッサと、プロセッサと電子的に通信しているメモリと、メモリに記憶された命令とを含み得る。命令は、第1の無線技術に由来するタイミング基準識別し、ビーコン送信スケジュールに従って、WLAN上でビーコンをブロードキャストするように、プロセッサによって実行可能であり得る。第1の無線技術は、非WLAN無線技術であってよい。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づき得る。
いくつかの実施形態では、命令は、非WLAN無線技術を含むソースからタイミング基準を受信するように、プロセッサによって実行可能であり得る。
他の実施形態では、命令は、NTPに従ってバックエンドサーバからタイミング基準を受信するように、プロセッサによって実行可能であり得る。
さらに他の実施形態では、命令は、UEから、WLAN上でタイミング基準を受信するように、プロセッサによって実行可能であり得る。
いくつかの構成では、命令は、ソースからビーコン送信スケジュールを受信するように、プロセッサによって実行可能であり得る。
説明する方法および装置の適用性のさらなる範囲は、以下の詳細な説明、請求項および図面から明らかとなろう。詳細な説明および具体的な例は、説明の趣旨および範囲内の様々な変更および修正が当業者に明らかになると思われるため、例示として与えられるものにすぎない。
以下の図面を参照すれば、本システムおよび方法の性質および利点のさらなる理解が得られ得る。添付の図面において、類似の構成要素または特徴は、同じ参照標識を有し得る。さらに、同じタイプの様々な構成要素は、参照標識の後に、複数の類似の構成要素を区別するダッシュおよび第2の標識を付けることによって、区別され得る。第1の参照標識のみが本明細書において使用される場合、その説明は、第2の参照標識とは関係なく同じ第1の参照標識を有する類似の構成要素のいずれの1つに適用可能である。
ワイヤレス通信システムにおけるWLAN発見の管理について記載する。WLANを介して通信することが可能なWAPおよびUEを有するワイヤレス通信システムにおいて、UEによるWLANの発見は、セルラーネットワークや衛星ネットワーク(たとえば、全地球測位システム(GPS))などだが、それに限定されない非WLAN無線技術に由来するタイミング基準を使うことによって、より効率的にされ得る。一例では、WAPは、タイミング基準を識別または受信し、タイミング基準を、タイミング基準に少なくとも部分的に基づくビーコン送信スケジュールに従ってWLAN上でビーコンをブロードキャストするのに使うことができる。同様に、UEは、タイミング基準を識別し、タイミング基準を、ビーコン送信スケジュールに従ってUEのWLAN受信機を起こすのに使うことができる。タイミング基準は、非WLAN無線技術に由来するので、UEは、より効率的に、およびWLAN上でビーコンをリッスンする必要があるときに先んじて、タイミング基準を獲得することが可能であってよく、そうすることによって、APがそのビーコンをブロードキャストするのをUEが期待する時間付近の比較的小さい時間ウィンドウ中にUEがWLAN受信機を起こすことを可能にし、そうすることによってUEの電力を節約する。
以下の説明は例を提供し、特許請求の範囲で述べられる範囲、適用可能性、または構成を限定するものではない。本開示の趣旨および範囲から逸脱することなく、論じられる要素の機能および構成に変更を加えることができる。様々な実施形態は、様々な手順または構成要素を、適宜、省略し、置換し、もしくは加えることができる。たとえば、説明される方法は、説明される順序とは異なる順序で実施されてよく、様々なステップが追加、省略、または組み合わされてよい。また、いくつかの実施形態に関して説明する特徴が、他の実施形態と組み合わされてよい。
最初に図1を参照すると、ブロック図は、様々な実施形態によるワイヤレス通信システム100の一例を示す。システム100は、WLAN無線技術により通信することが可能な構成要素(たとえば、WLAN155)と、非WLAN無線技術により通信することが可能な構成要素(たとえば、セルラーネットワーク130)とを含む。いくつかの構成要素は、両方の無線技術により通信することが可能である。
セルラーネットワーク130内で通信することが可能な構成要素には、基地局105(またはセル)、UE115、基地局コントローラ120、WAP140、およびコアネットワーク125がある。いくつかの実施形態では、コントローラ120はコアネットワーク125に統合されてよく、他の実施形態では、コントローラ120は基地局105に統合されてよい。WLAN155を経由して通信することが可能な構成要素には、WAP140、UE115の一部または全部、コアネットワーク125、およびアクセスネットワーク145があり得る。
UE115は、モバイルデバイス、移動局、アクセス端末(AT)、加入者ユニット、ステーション(STA)、または加入者ステーション(SS)と様々に呼ばれ得る。UE115は、セルラーフォン、ワイヤレス通信デバイス、携帯情報端末(PDA)、スマートフォン、タブレット、他のハンドヘルドデバイス、ネットブック、ノート型コンピュータ、またはどのタイプのワイヤレスもしくはモバイル通信デバイスも含み得る。UE115のうちいくつかは、セルラーネットワーク130とWLAN155の両方を経由して通信することが可能であり得る。
セルラーネットワーク130は、複数のキャリア(様々なキャリア周波数の波形信号)での動作をサポートすることができる。マルチキャリア送信機は、複数のキャリア上で同時に被変調信号を送信することができる。各変調信号は、符号分割多元接続(CDMA)信号、時分割多元接続(TDMA)信号、周波数分割多元接続(FDMA)信号、直交FDMA(OFDMA)信号、シングルキャリアFDMA(SC-FDMA)信号などであり得る。各被変調信号は、異なるキャリア上で送られてよく、制御情報(たとえば、パイロット信号)、オーバーヘッド情報、データなどを搬送し得る。セルラーネットワーク130は、ネットワークリソースを効率的に割り振ることが可能なマルチキャリアロングタームエボリューション(LTE)ネットワークであり得る。
基地局105は、それぞれの基地局アンテナを介してUE115とワイヤレス通信することができる。基地局105は、複数のキャリアを介してコントローラ120の制御下でUE115と通信するように構成され得る。基地局105の各々は、それぞれの地理的エリアに通信カバレージを提供することができる。いくつかの実施形態では、基地局105は、ノードB、eノードB、ホームノードB、および/またはホームeノードBと呼ばれ得る。各基地局105のカバレージエリアは、110-a、110-b、または110-cとして識別される。基地局のためのカバレージエリアは、セクタ(図示しないが、カバレージエリアの一部のみを構成する)に分割され得る。基地局105は、同期して(すなわち、共通タイミングに従って)または非同期に(すなわち、独自タイミングに従って)動作し得る。システム100は、様々なタイプの基地局105(たとえば、マクロ基地局、マイクロ基地局、フェムト基地局、および/またはピコ基地局)を含むことができる。
UE115が基地局105の範囲内にあるとき、UE115および基地局105は、送信135を使って通信することができる。送信135は、UE115から基地局105へのアップリンクおよび/または逆方向リンク送信、ならびに/あるいは基地局105からUE115へのダウンリンクおよび/または順方向リンク送信を含み得る。
WAP140は、UE115のうち、WLAN155を介して通信することが可能なものを、アクセスネットワーク145にワイヤレスにアクセスさせる。アクセスネットワーク145は、コアネットワーク125に接続され、そうすることによってコアネットワーク125へのアクセスを提供することができ、またはいくつかの実施形態では、WAP140が、コアネットワーク125に直接アクセスしてよい。いくつかの例では、複数のWAP140が、同じアクセスネットワーク145またはコアネットワーク125へのアクセスを提供し得る。追加または代替として、異なるWAP140が、異なるアクセスネットワークもしくはコアネットワークへの(またはより全般的には、他のタイプのパケットデータネットワークへの)アクセスを提供し得る。
WAP140は、それぞれのWAPアンテナを介してUE115とワイヤレスに通信することができ、複数のキャリアにおける動作をサポートすることができる。いくつかの実施形態では、WAP140は、米国電気電子技術者協会によって整備されるIEEE802.11規格のバージョン、および/またはWLANに関連した別の無線技術を使ってUE115と通信することができる。WAP140の各々は、それぞれの地理的エリアに通信カバレージを提供することができる。各WAP140のカバレージエリアは、150-a、150-b、または150-cとして識別される。
UE115がWAP140の範囲内にあるとき、UE115およびWAP140は、送信160を使って通信することができる。送信160は、UE115からWAP140への送信、および/またはWAP140からUE115への送信を含み得る。
WAP140-aなど、いくつかのWAP140は、セルラーネットワーク130の構成要素と通信することもできる。たとえば、WAP140-aは、送信135により基地局105と、および送信160によりUE115-aと通信するように示されている。WAP140-bなど、他のWAP140は、セルラーネットワーク130を介して通信しなくてもよい。
基地局カバレージエリア110は、セルラーネットワーク130にわたって実質的に均一であるように示され、WAPカバレージエリア150は、WLAN155にわたって実質的に均一であるように示されているが、異なるカバレージエリア110および異なるカバレージエリア150のサイズは、異なる基地局105およびWAP140の送信電力、異なる基地局105およびWAP140に関連付けられたアンテナのサイズおよびタイプ、異なる基地局105およびWAP140の場所の地理的特性を含むいくつかの要因、ならびに他の要因に基づいて変わり得る。いくつかの例では、異なる基地局105および/またはWAP140のカバレージエリアは重なり得る。カバレージエリア110、150のサイズおよび形状は、明快のためにすべてのUE115について一般化されているが、異なるUE115の視点から見たカバレージエリア110、150のサイズおよび形状は変わり得ることをさらに理解されたい。
各UE115は、UE115の範囲内の1つまたは複数の基地局105またはWAP140と関連付くことが可能であり得る。図1に示すように、UE115がシステム100の内側および外側に移動されたとき、異なる基地局105またはWAP140が、UE115の範囲内にあり得る。たとえば、UE115-aは、基地局105のカバレージエリア110-c内およびWAP140のカバレージエリア150-a内にあり得る。ただし、UE115-aがシステム100の内側または外側に移動されたとき、UE115-aは、ときとして、異なる基地局105および/またはWAP140のカバレージエリア内にある場合も、どの基地局105またはWAP140のカバレージエリア内にもない場合もある。UE115は、UE115にカバレージを提供する基地局105またはWAP140と関連付いても関連付かなくてもよい。代替的に、UE115は、2つ以上の基地局105および/またはWAP140と同時に関連付いてもよい。
WLAN無線技術と非WLAN無線技術の両方により通信することが可能なUE115にとって、異なる無線技術を用いる通信を発見および確立するのに必要とされる時間および電力は、大きく変わり得る。たとえば、UE115が、セルラーネットワーク130との通信を発見および確立するのに必要とされる時間および電力は、WLAN155との通信を発見および確立するのに必要とされる時間および電力よりも数段小さくなり得る。これは、セルラーシステムの本質的な設計、およびセルラーシステムによる効率的セル探索のサポート、セルラーネットワーク構成要素の間に存在する厳密な同期、ならびにUEが未知の識別情報のWLANビーコンを走査する必要性、およびWLAN155との通信と同期し、その通信を確立する前のタイミングに起因する。従来の形の受動および能動ビーコン走査は、時間および電力集約型である。WLAN無線技術など、いくつかの無線技術による通信の発見および確立は、したがって、ユーザの経験によっては、およびしばしば、最も顕著にはユーザのUE115の待機電力(バッテリー寿命)の減少によっては、望ましくない場合がある。
ここで図2を参照すると、ブロック図は、様々な実施形態による、WLANの発見を支援し、WLANのより効率的な発見を可能にすることができるデバイス200を示す。デバイス200は、図1を参照して記載したWAP140、基地局105、および/またはUE115の1つまたは複数の態様の例であり得る。デバイス200はプロセッサでもあり得る。デバイス200は、受信機モジュール205、WLAN発見モジュール210、および/または送信機モジュール215を含むことができる。これらの構成要素の各々は、互いに通信している可能性がある。
デバイス200の構成要素は、適用可能な機能のいくつかまたはすべてをハードウェアで実施するように適合された、1つまたは複数の特定用途向け集積回路(ASIC)により個別にまたは集合的に実装され得る。代替的に、それらの機能は、1つまたは複数の他の処理ユニット(またはコア)によって、1つまたは複数の集積回路上で実施され得る。他の実施形態では、当技術分野で知られている任意の方法でプログラムされ得る、他のタイプの集積回路(たとえば、構造化/プラットフォームASIC、フィールドプログラマブルゲートアレイ(FPGA)、および他のセミカスタムIC)が使用され得る。各ユニットの機能は、1つまたは複数の汎用プロセッサまたは特定用途向けプロセッサによって実行されるようにフォーマットされたメモリ内で具体化された命令により、全体的にまたは部分的に実施することもできる。
いくつかの実施形態では、デバイス200は、図1に示すWAP140のうちの1つなど、WAPの例であり得る。そのような実施形態の例において、WLAN発見モジュール210は、非WLAN無線技術(第1の無線技術)に由来するタイミング基準を識別することができる。タイミング基準を識別した後、WLAN発見モジュール210は、ビーコン送信スケジュールに従ってWLAN上でビーコンをブロードキャストしてよい。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づいてよく、ビーコン送信期間または送信時間がWLANにおいていつ生じるかを示すことができる。ビーコン送信スケジュールは、(たとえば、製造または購入時に)デバイス200に静的にプログラムすることができる。代替的に、ビーコン送信スケジュールは、デバイス200によってローカルに生成されても、図1に示す基地局105、コントローラ120、コアネットワーク125、またはアクセスネットワーク145のうち1つなど、別のソースからデバイス200によって受信されてもよい。WLAN(第2の無線技術)は、図1に示すWLAN155のうち1つであってよい。
ビーコンは、送信機モジュール215を介してブロードキャストすることができ、最終的には、図1のUE115など、1つまたは複数のUEによって受信され得る。このようにして、WLAN無線技術および非WLAN無線技術により通信することが可能なUEは、非WLAN無線技術を、1つまたは複数のUE115にも提供されるタイミング基準を受信するのに利用することができ、そうすることによって、UE115が、いくつかのケースでは、WAP140またはWLAN155に依存しないタイミング基準を受信し、いくつかのケースでは、UE115がWAP140の範囲内に入る前にタイミング基準を受信するのを可能にする。タイミング基準に基づくビーコン送信スケジュールとともに使われるとき、UE115は、WAPのビーコンが、いつ、または近似的にいつブロードキャストされるか判断することができる。UE115は、WAPのビーコンを受動的に走査する時間ウィンドウを狭めてよい。こうすることによって、受動スキャンの効率を上げ、UE115に対して時間および電力の節約を可能にすることができる。
他の実施形態では、デバイス200は、モバイルデバイス115のうちの1つなど、UEの例であり得る。これらの実施形態の例において、WLAN発見モジュール210は、受信機モジュール205を介して、非WLAN無線技術(第1の無線技術)に由来するタイミング基準を識別することができる。WLAN発見モジュール210は次いで、ビーコン送信スケジュールに従って、受信機モジュール205のWLAN受信機を起こして、図1に示すWLAN155のうちの1つなどのWLAN上でビーコンをリッスンすればよい。ビーコン送信スケジュールは、(たとえば、製造または購入時に)UE115に静的にプログラムされてもよく、図1に示す基地局105のうちの1つなどのソースから動的に受信されてもよい。
さらに他の実施形態では、デバイス200は、図1に示す基地局105またはネットワークコントローラ120など、ネットワークシステムまたは装置の例であり得る。そのような実施形態の例において、WLAN発見モジュール210は、1つまたは複数のWAP140および1つまたは複数のUE115によって使用するための共通タイミング基準を識別することができる。タイミング基準は、送信機モジュール215を介してWAP140およびUE115にブロードキャストまたは他のやり方で送信することができ、図1に示すセルラーネットワーク130など、非WLAN無線技術を使ってブロードキャストまたは他のやり方で送信することができる。ネットワークシステムまたは装置は、いくつかの実施形態では、1つまたは複数のWAP140および1つまたは複数のUE115に、ビーコン送信スケジュールをブロードキャストし、または他のやり方で送信することもできる。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づき得る。このようにして、ネットワークシステムまたは装置は、UE115が、UEがWAPのビーコンを受動的に走査する時間ウィンドウを狭めることを可能にし得る。任意選択で、ネットワークシステムまたは装置は、受信機モジュール205を、タイミング基準を識別し、またはビーコン送信スケジュールを判断するのを支援する情報を受信するのに利用することができる。
ここで図3に移ると、ブロック図は、様々な実施形態による、WLAN発見を支援するための、WAPなどのデバイス300を示す。デバイス300は、図1を参照して記載したWAP140または図2を参照して記載したデバイス200の例であり得る。デバイス300はプロセッサでもあり得る。デバイス300は、受信機モジュール205、WLAN発見モジュール210-a、および/または送信機モジュール215を含むことができる。これらの構成要素の各々は、互いに通信している可能性がある。
デバイス300の構成要素は、適用可能な機能のいくつかまたはすべてをハードウェアで実施するように適合された、1つまたは複数の特定用途向け集積回路(ASIC)により個別にまたは集合的に実装され得る。代替的に、それらの機能は、1つまたは複数の他の処理ユニット(またはコア)によって、1つまたは複数の集積回路上で実施され得る。他の実施形態では、当技術分野で知られている任意の方法でプログラムされ得る、他のタイプの集積回路(たとえば、構造化/プラットフォームASIC、フィールドプログラマブルゲートアレイ(FPGA)、および他のセミカスタムIC)が使用され得る。各ユニットの機能は、1つまたは複数の汎用プロセッサまたは特定用途向けプロセッサによって実行されるようにフォーマットされたメモリ内で具体化された命令により、全体的にまたは部分的に実施することもできる。
WLAN発見モジュール210-aは、タイミング基準識別モジュール305およびビーコンブロードキャストモジュール310を含み得る。タイミング基準識別モジュール305は、非WLAN無線技術(たとえば、セルラーネットワークまたは衛星ネットワーク)に由来するタイミング基準を識別することができる。いくつかのケースでは、タイミング基準は、受信機モジュール205を介して受信されるタイミング情報、信号またはメッセージであっても、それらを含んでもよい。情報、信号またはメッセージは、明示的または暗黙的タイミング基準を提供し得る。後者のケースにおいて、および例として、使用可能タイミング情報は、計算、解釈または導出することができる。LTE実施形態では、タイミング基準は、スーパーフレーム番号(SFN)と組み合わされたスーパーフレーム境界(すなわち、あるタイプのセルラータイミング)など、シグナリングフレームのタイミングであってよい。タイミング基準はまた、およびいくつかのケースでは、バックエンドサーバから、またはWLAN上のUE115から受信することができる。バックエンドサーバから受信されるとき、タイミング基準は、いくつかのケースでは、ネットワーク時間プロトコル(NTP)に従って受信され得る。
タイミング基準は、受信機モジュール205を介して受信されるとき、タイミング基準のソース(たとえば、eNB105または衛星)が受けなかった伝播遅延とともに受信され得る。タイミング基準はまた、タイミング基準を受信する他のWAPおよび/またはUE115が受ける伝播遅延とは異なる伝播遅延とともに受信され得る。その結果、タイミング基準識別モジュール305は、いくつかの実施形態では、受信したタイミング基準を、タイミング基準のソース(たとえば、eNB105または衛星)に同期させることができる。同期は、たとえば、タイミング基準のソースとWAPの構成要素(たとえば、受信機モジュール205)との間の伝播遅延の量だけタイミング基準を早めることを含み得る。
伝播遅延は、たとえば、LTEランダムアクセスチャネル応答から、より詳細には、LTEランダムアクセスチャネル応答のタイミング前進(Timing Advance)情報要素から取得することができる。他の実施形態では、およびさらなる例として、伝播遅延は、受信機モジュール205の物理層によって推定することができる。
他の実施形態では、WAPは、タイミング基準のソースとの同期に先立ち、代わりに、ビーコンの送信を、タイミング基準のローカル受信時間に同期させることができる。これらの実施形態は、WAPによってサービスされるUE115が、それらのタイミング基準受信時間がWAPのタイミング基準受信時間に近づくように、WAPに物理的に近いときに有用であり得る。
複数のタイミング基準が、(たとえば、eNB1、eNB2およびeNB3から)WAPにとって利用可能なとき、WAPは、たとえば、どのタイミング基準ソースが、受信パイロット電力またはパイロット品質(たとえば、信号対雑音比)に関して最も強い信号を提供するかに基づいて、同期するべきタイミング基準を選択してよい。あるいは、WAPは、セル識別情報など、ソース識別子のランクに従ってタイミング基準ソースを選択してよい。WAPは次いで、たとえば、最も低いランクのソースと同期してよい。
いくつかのケースでは、タイミング基準は、1つもしくは複数のイベントが生じると、特定の時点において、または定期的だが頻繁でない時点で受信され、またはサンプリングされ得る。タイミング基準が受信され、またはサンプリングされるイベントは、電源オンまたはブートイベントを含み得る。他のケースでは、タイミング基準は、継続的に、または頻繁な間隔で受信され、またはサンプリングされ得る。それにもかかわらず、タイミング基準は、デバイス300のローカルクロック、カウンタまたは他のローカルタイミング要素をセットまたは調整するのに使うことができる。
ビーコンブロードキャストモジュール310は、タイミング基準識別モジュール305によって識別されたタイミング基準、またはタイミング基準に基づくタイミング情報を受信することができ、ビーコン送信スケジュールに従ってWLAN上でビーコンをブロードキャストすればよい。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づいてよく、ビーコン送信期間または送信時間がWLANにおいていつ生じるかを示すことができる。たとえば、タイミング基準が、SFNと組み合わされたスーパーフレーム境界のタイミングであるLTE実施形態では、ビーコン送信期間の開始は、SFNの開始と関係し得る(たとえば、ビーコン送信期間は、20を法とするSFNがゼロに等しくなるたびに始まり得る)。
ビーコン送信スケジュールは、(たとえば、製造または購入時に)デバイス300に静的にプログラムすることができる。代替的に、ビーコン送信スケジュールは、デバイス300によってローカルに生成されても、図1に示す基地局105、コアネットワーク125、またはアクセスネットワーク145のうちの1つなど、別のソースからデバイス300によって受信されてもよい。ソースは、いくつかのケースでは、非WLAN無線技術を含むソースであってよい。一実施形態では、ビーコン送信スケジュールは、受信機モジュール205を介して受信され得る。ビーコンは、送信機モジュール215を介して送信することができ、いくつかの実施形態では、図1に示すWLAN155のうちの1つなどのWLANを介して送信することができる。
デバイス300が、WLANの複数の動作チャネル上でデータを送信することが可能なとき、ビーコン送信スケジュールは、WLANの動作チャネルのうちどの1つまたは複数についても、ビーコン送信期間を定義することができる。いくつかのケースでは、ビーコン送信スケジュールは、各チャネルのビーコン送信期間を、他のチャネルのビーコン送信期間からオフセットすればよい。異なる動作チャネルのビーコン送信期間をオフセットするが、ビーコン送信期間を、時間が隣接し、またはほぼ隣接するように保つことによって、UEは、異なるチャネルに対応する複数のビーコンを連続して受信することが可能であってよく、ビーコン重複は避けることができ、UEのWLAN受信機の起動は、より良好な省電力をもたらすように(たとえば、UEのバッテリー寿命を延長するように)管理され得る。オフセットの量は、少なくとも、WAPのWLAN送信機またはUEのWLAN受信機を、第1チャネルから第2チャネルに同調させるべき時間に基づいて選択されてよい。
ビーコンブロードキャストモジュール310は任意選択で、スロット選択モジュール315を含み得る。スロット選択モジュール315は、2つのWAPが、それのビーコンを実質的に同じ時間にブロードキャストする機会を減らすのに使うことができる。WAPが、それらのビーコンを同時にブロードキャストすると、ビーコンは衝突する場合があり、UEは、ビーコンを復号することができない場合がある。重複を避けるために、互いと近接している2つ以上のWAPは、それらのビーコンを、同じタイミング基準、ビーコン送信スケジュールおよびビーコン送信期間に基づいて、ただしビーコン送信期間内の異なるタイムスロット中にブロードキャストするように構成されてよい。スロット選択モジュール315は、ビーコン送信期間内の複数のタイムスロットのうち1つを選択して、ビーコンをブロードキャストすればよい。いくつかの例において、スロット選択モジュール315は、デバイス300のメディアアクセス制御(MAC)アドレスに対してハッシュ関数を実施してよく、ハッシュ化MACアドレスに基づいてタイムスロットを選択すればよい。タイムスロットの数が大きいほど、任意の2つのデバイスのMACアドレスが、異なるタイムスロットにハッシュし、時間差ビーコンを提供する可能性が大きくなり得る。ただし、タイムスロットの数が比較的少ないと、異なるWAPのビーコンが次々と送られる可能性が高まり得る。
いくつかのケースでは、ビーコン送信スケジュールは、送信機モジュール215を経由して送信することもできる。ビーコン送信スケジュールは、いくつかのケースでは、WLAN上でブロードキャストすることができる。他のケースでは、ビーコン送信スケジュールは、タイミング基準が由来する非WLAN無線技術などの非WLAN無線技術を使って、1つまたは複数のUEにブロードキャストすることができる。いくつかの実施形態では、ビーコン送信スケジュールは、セルラーネットワークの制御チャネルを介してブロードキャストされる情報要素(IE)、たとえばLTEまたは広域移動通信システム(GSM(登録商標))セルラーネットワークのブロードキャスト制御チャネル(BCCH)を介してブロードキャストされるシステムIEに挿入することができる。
いくつかの実施形態では、デバイス300は、単一の無線技術(たとえば、WLAN無線技術)に従って動作する構成要素を含んでよく、非WLAN無線技術に由来するタイミング基準は、WLAN無線技術による受信および/または識別に適した形に変換され得る。他の実施形態では、デバイスは、図4を参照してより詳しく記載するように、第1および第2の無線技術に従って動作する構成要素を含み得る。
ここで図4に移ると、ブロック図は、様々な実施形態による、WLAN発見を支援するための、WAPなどのデバイス400を示す。デバイス400は、図1を参照して記載したWAP140および/または図2および/または図3を参照して記載したデバイス200、300の例であり得る。デバイス400はプロセッサでもあり得る。デバイス400は、受信機モジュール205、WLAN発見モジュール210-b、および/または送信機モジュール215を含むことができる。これらの構成要素の各々は、互いに通信している可能性がある。
デバイス400の構成要素は、適用可能な機能のいくつかまたはすべてをハードウェアで実施するように適合された、1つまたは複数の特定用途向け集積回路(ASIC)により個別にまたは集合的に実装され得る。代替的に、それらの機能は、1つまたは複数の他の処理ユニット(またはコア)によって、1つまたは複数の集積回路上で実施され得る。他の実施形態では、当技術分野で知られている任意の方法でプログラムされ得る、他のタイプの集積回路(たとえば、構造化/プラットフォームASIC、フィールドプログラマブルゲートアレイ(FPGA)、および他のセミカスタムIC)が使用され得る。各ユニットの機能は、1つまたは複数の汎用プロセッサまたは特定用途向けプロセッサによって実行されるようにフォーマットされたメモリ内で具体化された命令により、全体的にまたは部分的に実施することもできる。
WLAN発見モジュール210-bは、第1の無線技術モジュール405および第2の無線技術モジュール410を含み得る。第1の無線技術モジュール405は、セルラーネットワークまたは衛星ネットワークなどの非WLAN無線技術に従って動作する構成要素(たとえば、GPS)を含み得る。いくつかのケースでは、第1の無線技術モジュール405は、フェムトセルの構成要素の一部または全部を含み得る。第2の無線技術モジュール410は、WLAN無線技術に従って動作する構成要素を含み得る。
第1の無線技術モジュール405は、セルラーネットワークまたは衛星ネットワークなどの非WLAN無線技術に由来するタイミング基準を識別するタイミング基準識別モジュール305-aを含み得る。タイミング基準識別モジュール305-aは、いくつかのケースでは、図3に示すタイミング基準識別モジュール305と同様に構成されてよい。第2の無線技術モジュール410は、ビーコン送信スケジュールに従ってWLAN上でビーコンをブロードキャストするビーコンブロードキャストモジュール310-aを含み得る。ビーコン送信スケジュールは、タイミング基準識別モジュール305-aによって識別されたタイミング基準に少なくとも部分的に基づき得る。ビーコン送信モジュール310-aは、いくつかのケースでは、図3に示すビーコン送信モジュール310と同様に構成されてよい。
いくつかの実施形態では、第1および第2の無線技術モジュール405、410は、シグナリングメッセージを生成し、交換することができる。シグナリングメッセージは、たとえば、第1の無線技術モジュール405によって識別されたタイミング基準を第2の無線技術モジュール410に提供するように、またはタイミング基準に少なくとも部分的に基づいて、第1および第2の無線技術モジュール405、410を同期させるように生成され、交換され得る。
ここで図5に移ると、ブロック図は、様々な実施形態による、WLAN発見を支援するための、WAPなどのデバイス500を示す。デバイス500は、図1を参照して記載したWAP140または図2を参照して記載したデバイス200の例であってよく、いくつかのケースでは、図3または図4を参照して記載したものと同様の構成要素を有し得る。デバイス500はプロセッサでもあり得る。デバイス500は、受信機モジュール205、WLAN発見モジュール210-c、および/または送信機モジュール215を含むことができる。これらの構成要素の各々は、互いに通信している可能性がある。
デバイス500の構成要素は、適用可能な機能のいくつかまたはすべてをハードウェアで実施するように適合された、1つまたは複数の特定用途向け集積回路(ASIC)により個別にまたは集合的に実装され得る。代替的に、それらの機能は、1つまたは複数の他の処理ユニット(またはコア)によって、1つまたは複数の集積回路上で実施され得る。他の実施形態では、当技術分野で知られている任意の方法でプログラムされ得る、他のタイプの集積回路(たとえば、構造化/プラットフォームASIC、フィールドプログラマブルゲートアレイ(FPGA)、および他のセミカスタムIC)が使用され得る。各ユニットの機能は、1つまたは複数の汎用プロセッサまたは特定用途向けプロセッサによって実行されるようにフォーマットされたメモリ内で具体化された命令により、全体的にまたは部分的に実施することもできる。
WLAN発見モジュール210-cは、タイミング基準識別モジュール305-b、ビーコンブロードキャストモジュール310-b、およびタイミング補正識別モジュール505を含み得る。タイミング基準識別モジュール305-bは、セルラーネットワークまたは衛星ネットワークなどの非WLAN無線技術に由来するタイミング基準を識別することができ、いくつかのケースでは、図3に示すタイミング基準識別モジュール305または図4に示すタイミング基準識別モジュール305-aと同様に構成されてよい。ビーコンブロードキャストモジュール310-bは、ビーコン送信スケジュールに従って、WLAN上でビーコンをブロードキャストすることができる。ビーコン送信スケジュールは、タイミング基準識別モジュール305-bによって識別されたタイミング基準に少なくとも部分的に基づき得る。ビーコン送信モジュール310-bは、いくつかのケースでは、図3に示すビーコン送信モジュール310または図4に示すビーコン送信モジュール310-aと同様に構成されてよい。
タイミング補正識別モジュール505は、図1に示すUE115、基地局105または他のデバイスのうち1つなど、UE、基地局または他のデバイスからビーコンタイミング補正を受信することができる。ビーコンタイミング補正は、たとえば、i)ビーコンタイミング基準およびビーコン送信スケジュールによって示されるビーコン送信時間と、ii)1つまたは複数のUE115によって記録された1つまたは複数のビーコン受信時間(たとえば、平均受信時間)との間のタイミング差を示し得る。ビーコンタイミング補正は、いくつかのケースでは、メッセージ中で受信することができ、このメッセージは受信機モジュール205によって受信することができる。タイミング補正識別モジュール505は、識別されたビーコンタイミング補正をビーコンブロードキャストモジュール310-bに与えてよく、モジュール310-bは、ビーコンタイミング補正に従って(たとえば、ビーコン送信時間を早め、または遅らせることによって)ビーコンをブロードキャストしてよい。ビーコンタイミング補正に従ってビーコンをブロードキャストすることによって、デバイス500は、タイミング基準におけるスキューもしくは他のタイミング不規則性、またはデバイス500の回路構成もしくはプロセスに固有の遅延を考慮に入れることができる。
ここで図6に移ると、ブロック図は、様々な実施形態による、WLAN発見を支援するための、UEなどのデバイス600を示す。デバイス600は、図1を参照して記載したUE115または図2を参照して記載したデバイス200の例であり得る。デバイス600は、図3、図4、および/または図5のデバイス300、400、および/または500を参照して記載した構成要素と同様の構成要素も含み得る。デバイス600はプロセッサでもあり得る。デバイス600-bは、受信機モジュール205-a、WLAN発見モジュール210-d、および/または送信機モジュール215を含むことができる。これらの構成要素の各々は、互いに通信している可能性がある。
デバイス600の構成要素は、適用可能な機能のいくつかまたはすべてをハードウェアで実施するように適合された、1つまたは複数の特定用途向け集積回路(ASIC)により個別にまたは集合的に実装され得る。代替的に、それらの機能は、1つまたは複数の他の処理ユニット(またはコア)によって、1つまたは複数の集積回路上で実施され得る。他の実施形態では、当技術分野で知られている任意の方法でプログラムされ得る、他のタイプの集積回路(たとえば、構造化/プラットフォームASIC、フィールドプログラマブルゲートアレイ(FPGA)、および他のセミカスタムIC)が使用され得る。各ユニットの機能は、1つまたは複数の汎用プロセッサまたは特定用途向けプロセッサによって実行されるようにフォーマットされたメモリ内で具体化された命令により、全体的にまたは部分的に実施することもできる。
WLAN発見モジュール210-dは、タイミング基準識別モジュール305-c、WLAN起動モジュール610、およびWLAN接続モジュール620を含み得る。タイミング基準識別モジュール305-cは、非WLAN無線技術(たとえば、セルラーネットワークまたは衛星ネットワーク)に由来するタイミング基準を識別することができる。いくつかのケースでは、タイミング基準は、受信機モジュール205-aを介して受信されるタイミング情報、信号またはメッセージであっても、それらを含んでもよい。情報、信号またはメッセージは、明示的または暗黙的タイミング基準を提供し得る。後者のケースにおいて、および例として、使用可能タイミング情報は、計算、解釈または導出される必要があり得る。LTE実施形態では、タイミング基準は、SFNと組み合わされたスーパーフレーム境界(すなわち、あるタイプのセルラータイミング)など、シグナリングフレームのタイミングであってよい。
タイミング基準は、受信機モジュール205-aを介して受信されるとき、タイミング基準のソース(たとえば、eNB105または衛星)が受けなかった伝播遅延とともに受信され得る。タイミング基準はまた、タイミング基準を受信する他のUE115および/またはWAPが受ける伝播遅延とは異なる伝播遅延とともに受信され得る。その結果、タイミング基準識別モジュール305-cは、いくつかの実施形態では、受信したタイミング基準を、タイミング基準のソース(たとえば、eNB105または衛星)に同期させることができる。同期は、たとえば、そのソースとWAPの構成要素(たとえば、受信機モジュール205-a)との間の伝播遅延の量だけタイミング基準を早めることを含み得る。
伝播遅延は、たとえば、LTEランダムアクセスチャネル応答から、より詳細には、LTEランダムアクセスチャネル応答のタイミング前進情報要素から取得することができる。他の実施形態では、およびさらなる例として、伝播遅延は、受信機モジュール205-aの物理層によって推定することができる。
他の実施形態では、UE115は、タイミング基準のソースとの同期に先立ち、代わりに、ビーコンの受信を、タイミング基準のローカル受信時間に同期させることができる。これらの実施形態は、UE115が、そのタイミング基準受信時間がWAPのタイミング基準受信時間に近づくように、WAPに物理的に近いときに有用であり得る。
複数のタイミング基準が、(たとえば、eNB1、eNB2およびeNB3から)UE115にとって利用可能なとき、UE115は、たとえば、どのタイミング基準ソースが、受信パイロット電力またはパイロット品質(たとえば、信号対雑音比)に関して最も強い信号を提供するかに基づいて、同期するべきタイミング基準を選択してよい。あるいは、UEは、セル識別情報など、ソース識別子のランクに従ってタイミング基準ソースを選択してよい。UE115は次いで、たとえば、最も低いランクのソースと同期してよい。
いくつかのケースでは、タイミング基準は、1つもしくは複数のイベントが生じると、特定の時点において、または定期的だが頻繁でない時点で受信され、またはサンプリングされ得る。タイミング基準が受信され、またはサンプリングされるイベントは、電源オンもしくはブートイベント、または範囲内のWAPを走査する必要性を含み得る。他のケースでは、タイミング基準は、継続的に、または頻繁な間隔で受信され、またはサンプリングされ得る。それにもかかわらず、タイミング基準は、デバイス600のローカルクロック、カウンタまたは他のローカルタイミング要素をセットまたは調整するのに使うことができる。いくつかのケースでは、タイミング基準は、送信機モジュール215を介して1つまたは複数のWAP(たとえば、第1または複数のWLAN内のWAP)に送信されてよい。
WLAN起動モジュール610は、タイミング基準識別モジュール305-cによって識別されたタイミング基準、またはタイミング基準に基づくタイミング情報を受信することができ、ビーコン送信スケジュールに従って、受信機モジュール205-aのWLAN受信機615を起こすことができる。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づいてよく、ビーコン送信期間がWLANにおいていつ生じるかを示すことができる。たとえば、タイミング基準が、SFNと組み合わされたスーパーフレーム境界のタイミングであるLTE実施形態では、ビーコン送信期間の開始は、SFNの開始と関係し得る(たとえば、ビーコン送信期間は、20を法とするSFNがゼロに等しくなるたびに始まり得る)。
ビーコン送信スケジュールは、(たとえば、製造または購入時に)デバイス600に静的にプログラムすることができる。代替的に、ビーコン送信スケジュールは、図1に示す基地局105、コアネットワーク125、またはアクセスネットワーク145のうち1つなど、別のソースからデバイス600によって受信されてよい。ソースは、いくつかのケースでは、非WLAN無線技術を含むソースであってよい。いくつかのケースでは、ビーコン送信スケジュールは、受信機モジュール205-aを介して受信され得る。
WLAN起動モジュール610は、WAPビーコンをリッスンするために、受信機モジュール205-aの一部または全部を起こすことができるが、通常、WLAN受信機615の少なくとも一部を起こせばよい。WLAN起動モジュール610は、ビーコン送信スケジュールによって定義された1つまたは複数のビーコン送信期間の後、WLAN受信機615をスリープ状態に戻してよい。いくつかのケースでは、WLAN受信機615をスリープ状態に戻すことは、タイマによって管理され得る。例として、タイマの持続時間は、UE115によってセットされてもよく、受信機モジュール205-aを介して受信される情報に基づいてもよい。
起きている間、WLAN受信機615は、1つまたは複数のWAPから1つまたは複数のビーコンを受信することができる。いくつかのケースでは、WLAN受信機615は、1つまたは複数のビーコン送信期間中に、第1のWLAN内の第1のWAPからビーコンを受信することができる。WLAN接続モジュール620は次いで、第1のWAPとの接続を(たとえば、受信機モジュール205-aおよび送信機モジュール215を介したシグナリングまたは通信により)確立することができる。他のケースでは、WLAN受信機615は、第1のWLAN内の複数のWAPからビーコンを受信することもでき、複数のWLAN内のWAPからビーコンを受信することもできる。ビーコンは、1つまたは複数のビーコン送信期間中に受信することができ、いくつかのケースでは、単一のビーコン送信期間の異なるスロット中に受信することができる。これらのケースにおいて、WLAN接続モジュール620は、(たとえば、選好または信号強度に基づいて)WAPのうちどれに接続するべきか判断することができ、WAPのうち選択された1つとの接続を確立することができる。
他の実施形態では、UE115は、WAPからビーコンを受信すると、UE115の他のモジュールにビーコンを配信し、ビーコンが対応するWAPもしくはWLANの存在をサービングネットワークに対して示し、またはビーコンが対応するWAPもしくはWLANの存在を、WAPもしくはWLANの識別情報を位置特定に使うことができる上位層のモジュール(たとえば、ソフトウェアモジュール)に対して示すことができる。
例として、WLANが複数の動作チャネルを有するとき、およびWLANのある動作チャネルに対応するビーコン送信期間(たとえば、動作の第1チャネルに対応する第1のビーコン送信期間)の後に、WLANの別の動作チャネル用のビーコン送信期間(たとえば、動作の第2チャネルに対応する第2のビーコン送信期間)が続くとき、WLAN受信機615は、複数のビーコン送信期間は起こされていてよい。第2のビーコン送信期間が、第1のビーコン送信期間から所定のオフセット時間だけオフセットされ、ビーコン送信期間が、時間が隣接し、またはほぼ隣接するとき、WLAN受信機615は、WLANの第1および動作の第2チャネルの各々に関するビーコンをリッスンするために効率的やり方で起こされてよく、そうすることによって、電力が節約され、バッテリー動作型UEのバッテリー寿命が延長される。たとえば、オフセットが5ミリ秒(5ms)のとき、WLAN受信機615は、動作の第1チャネルに関連したビーコンをリッスンするために、時間t=0msにおいて起こされ、動作の第2チャネルに関連したビーコンをリッスンするために、時間t=10msまで起こされていてよい。
デバイス600のいくつかの実施形態では、タイミング基準識別モジュール305-cおよびタイミング基準ブロードキャストモジュール625は、セルラーネットワークや衛星ネットワークなどの非WLAN無線技術(第1の無線技術)に従って操作することができ、WLAN起動モジュール610およびWLAN接続モジュール620は、WLAN無線技術(第2の無線技術)に従って操作することができる。
ここで図7に移ると、ブロック図は、様々な実施形態による、WLAN発見を支援するための、UEなどのデバイス700を示す。デバイス700は、図1を参照して記載したUE115または図2を参照して記載したデバイス200の例であってよく、いくつかのケースでは、図2、図3、図4、図5、および/または図6のデバイス300、400、500、および/または600を参照して記載したものと同様の構成要素を有し得る。デバイス700はプロセッサでもあり得る。デバイス700は、受信機モジュール205-b、WLAN発見モジュール210-e、および/または送信機モジュール215を含むことができる。これらの構成要素の各々は、互いに通信している可能性がある。
デバイス700の構成要素は、適用可能な機能のいくつかまたはすべてをハードウェアで実施するように適合された、1つまたは複数の特定用途向け集積回路(ASIC)により個別にまたは集合的に実装され得る。代替的に、それらの機能は、1つまたは複数の他の処理ユニット(またはコア)によって、1つまたは複数の集積回路上で実施され得る。他の実施形態では、当技術分野で知られている任意の方法でプログラムされ得る、他のタイプの集積回路(たとえば、構造化/プラットフォームASIC、フィールドプログラマブルゲートアレイ(FPGA)、および他のセミカスタムIC)が使用され得る。各ユニットの機能は、1つまたは複数の汎用プロセッサまたは特定用途向けプロセッサによって実行されるようにフォーマットされたメモリ内で具体化された命令により、全体的にまたは部分的に実施することもできる。
WLAN発見モジュール210-eは、タイミング基準識別モジュール305-d、WLAN起動モジュール610-a、WLAN接続モジュール620-a、およびタイミング補正識別モジュール505-aを含み得る。タイミング基準識別モジュール305-d、WLAN起動モジュール610-a、およびWLAN接続モジュール620-aは、いくつかのケースでは、図6に示すタイミング基準識別モジュール305-c、WLAN起動モジュール610、およびWLAN接続モジュール620のそれぞれと同様に構成されてよい。
タイミング補正識別モジュール505-aは、第1のWAPからWLAN受信機615-aを介して受信されたビーコンのビーコン受信時間を記録することができる。タイミング補正モジュール505-aは次いで、ビーコン受信時間およびビーコン送信スケジュールによって示されるビーコン送信時間に基づいてビーコンタイミング補正を計算することができる。いくつかのケースでは、ビーコンタイミング補正は、ビーコン受信時間と、ビーコン送信スケジュールによって示されるビーコン送信時間の差であり得る。タイミング補正識別モジュール505-aは次いで、送信機モジュール215を介してビーコンタイミング補正を送信してよい。代替的に、タイミング補正識別モジュール505-aは、ビーコンタイミング補正の程度を閾値と比較し、ビーコンタイミング補正の程度が閾値を超えたとき、ビーコンタイミング補正を送信するだけでよい。ビーコンタイミング補正は、いくつかのケースでは、メッセージ中で送信することができ、このメッセージは送信機モジュール215によって送信することができる。ビーコンタイミング補正は最終的に、ビーコンを送信したWAPによって受信され、WAPによって受信されたタイミング基準におけるスキューもしくは他のタイミング不規則性、またはWAPの回路構成またはプロセスに固有の遅延を考慮に入れるのに使われ得る。
図8および図9は、図2、図3、図4、図5、図6、および/または図7に示す受信機モジュール205および送信機モジュール215の実施形態を示す。より詳細には、図8は、セルラー受信機805、衛星受信機810、WLAN受信機815、およびワイヤードネットワーク受信機820(たとえば、インターネット接続)のうち1つまたは複数を含む受信機モジュール205-cを示す。受信機モジュール205-cは、図2、図3、図4、図5、図6、および/または図7のうちいずれかで記載した受信機モジュール205の例であり得る。
様々な受信機805、810、815、820は、たとえば、タイミング基準、ビーコンタイミング補正、またはそれらに関するメッセージを受信するのに使うことができる。セルラー受信機805、衛星受信機810またはWLAN受信機815は、他のワイヤレス通信に使うこともでき、ワイヤードネットワーク受信機820は、他のワイヤード通信に使うことができる。
セルラーネットワーク構成要素の厳密な同期により、放射フレームタイミングやスーパーフレームタイミングなどのフレームタイミングを含む、セルラーネットワークからセルラー受信機805を介して受信され得るいくつかのタイミング基準がある。衛星ネットワーク(たとえば、GPS)によって使われる同期は、タイミング基準も提供し得る。タイミング基準は、WLAN受信機815またはワイヤードネットワーク受信機820を介して(たとえば、ネットワークタイミングプロトコル(NTP)によって)取得することもできる。ただし、WLANおよびワイヤードネットワークにおいて使われるプロトコルおよび送信チャネルの性質は、タイミング基準が与えられ得る精度を低下させる傾向があり得る。ただし、いくつかのケースでは、タイミング基準が、非WLAN無線技術に由来するものである場合、これらのネットワークのうち1つを介してタイミング基準を提供することが有用であり得る。メッセージ、たとえばビーコン送信スケジュールを示すメッセージは、受信機805、810、815、820のうちどれを介して受信されてもよい。
図9は、送信機モジュール215-aを示す。送信機モジュール215-aは、図2、図3、図4、図5、図6、および/または図7のうちいずれかを参照して記載した送信機モジュール215の例であり得る。送信機モジュール215-aは、セルラー送信機905、WLAN送信機910、およびワイヤードネットワーク送信機915(たとえば、インターネット接続)のうち1つまたは複数を含み得る。様々な送信機905、910、915は、たとえば、(WAPのケースでは)ネットワークの存在を示すビーコンをブロードキャストするのにも、タイミング基準またはビーコン送信スケジュールをブロードキャストするのにも使うことができる。
次に図10を参照すると、ブロック図は、様々な実施形態による、ネットワーク発見を支援するためのワイヤレス通信システム1000を示す。システム1000は、図1を参照しながら説明したシステム100の部分の一例である可能性がある。ノードB105-a(あるタイプの基地局105)および無線ネットワークコントローラ(RNC)120-a(あるタイプの基地局コントローラ120)は、ワイヤレス通信システム1000の一部であり得る。図示した例では、システムは、ユニバーサルモバイル通信システム(UMTS)地上無線アクセスネットワーク(UTRAN)1010を含み得る。UTRAN1010とは、UMTS無線アクセスネットワークを作り上げるノードB105-a(または基地局)およびRNC120-a(または基地局コントローラ)についての総称である。これは、リアルタイム回路交換トラフィックタイプと、IPベースのパケット交換トラフィックタイプの両方を搬送することができる3G通信ネットワークである可能性がある。UTRAN1010は、エアインターフェースアクセス方法をUE115-bに提供することができ、UE115-bは、図1に示すUE115のうち1つ、または図2、図6もしくは図7に示すデバイス200、600、700のうちの1つの例であり得る。UTRAN1010は、フェムトセルなどのセルラーデバイスにエアインターフェースアクセス方法を提供することもでき、このフェムトセルは、いくつかのケースでは、WAP140-cと統合することができる。WAP140-cは、図1に示すWAP140のうち1つ、または図2、図3、図4もしくは図5に示すデバイス200、300、400、500のうち1つの例であり得る。UTRAN1010によって、UE115-aとコアネットワーク125-aとの間の接続性が提供され得る。UTRAN1010は、複数のUE115-bにデータパケットを移送することができる。
UTRAN1010は、いくつかのインターフェースによって他の機能エンティティの内部にまたは外部に接続され得る。UTRAN1010は、RNC120-aによってサポートされる外部インターフェースを介してコアネットワーク125-aと通信している場合がある。さらに、RNC120-aは、ノードB105-aと呼ばれる1組の基地局を管理することができる。RNC120-aは、互いと通信中でもあり得る。UTRAN1010は、RNC120-aが相互接続されている可能性があるので、コアネットワーク125-aから大部分は自律的であり得る。ノードB105-aは、UE115-bとワイヤレス通信中であってよい。システムは、図1のアクセスネットワーク145などの追加ネットワーク(図示せず)、企業イントラネット、インターネット、または従来の公衆交換電話網にさらに接続されてよく、各UE115-bとそのような外部ネットワークとの間でデータパケットをトランスポートすることができる。
各RNC120-aは、複数の役割を果たすことができる。第1に、RNC120-aは、新規UE115-b、またはノードB105-aを使おうとするサービスの承認を制御することができる。第2に、ノードB105-a、または基地局の観点から、RNC120-aは、制御側RNC120-aであり得る。承認を制御することにより、UE115-bが、ネットワークが利用可能である所まで無線リソース(帯域幅および信号/ノイズ比)を割り振られる可能性が高まり得る。RNC120-aは、UE115-bの制御プレーン通信を終了させることができる。たとえば、UE115-bとノードB105-aとの間の無線接続は、UE115-bが待機状態である間に高電力状態に入ることができる。UE115-bは、UE115-bとインターネットなどのネットワークのサーバとの間のオープンなトランスポート層ソケットのカウントが閾値を満足すると判断すると、休眠手順を開始することができる。RNC120-aは、UE115-bとノードB105-aとの間の無線接続を終了することによって、休眠手順を実行することができる。ノードB105-aおよびRNC120-aは、WAP140-cに組み込まれたセルラーデバイスに、同じ機能性を提供することができる。
エアインターフェースでは、UMTSは、WCDMA(登録商標)として知られる広帯域拡散スペクトルモバイルエアインターフェースをしばしば使用する。WCDMA(登録商標)は、別個のユーザへの直接シーケンス符号分割多元接続シグナリング方法(またはCDMA)を使用する。WCDMA(登録商標)は、モバイル通信の第3世代規格である。GSM(登録商標) (Global System for Mobile Communications)/GPRSから発展したWCDMA(登録商標)は、第2世代規格であり、データ能力が限られた音声通信に向いている。WCDMA(登録商標)の第1の商業展開は、WCDMA(登録商標)リリース99と呼ばれる規格のバージョンに基づく。
コアネットワーク125-aは、WAP140-cと通信するためのサーバ1005を含み得る。このようにして、サーバ1005とWAP140-cは、タイミング情報および他の信号を交換することができる(たとえば、サーバ1005は、タイミング基準、ビーコン送信スケジュールもしくはビーコンタイミング補正をWAP140-cに提供することができ、またはWAP140-cは、サーバ1005にビーコン送信スケジュールを提供することができる)。サーバ1005とWAP140-cとの間の接続は、いくつかの例において、ワイヤレスネットワーク接続(たとえば、WLANを介して提供される接続)またはワイヤードネットワーク接続をであってもよく、それらを含んでもよく、いくつかのケースでは、インターネット接続であっても、それを含んでもよい。WAP140-cが、セルラーデバイスに統合され、または関連付けられている場合、タイミング情報および他の信号は、ノードB105-aのうち1つまたは複数と、WAP140-cに統合され、または関連付けられたセルラーデバイスとの間で交換することもできる。
WAPがそのビーコンをいつブロードキャストするかを示すタイミング情報が、コアネットワーク125-aまたはUTRAN1010によって受信されると(後者のケースでは、WAP140-cがセルラーデバイスに統合され、または関連付けられていると仮定する)、タイミング情報は、UE115-bにブロードキャストされてよく、そうすることによって、UE115-bは、WAPビーコンのより効率的な受動スキャンを実施することが可能になる。タイミング基準または他のタイミング情報は、UTRAN1010によって生成され、UE115-bにブロードキャストされてもよい。
ここで図11を参照すると、ブロック図は、様々な実施形態による、WLAN発見を支援するための通信システム1100を示す。システム1100は、図1に示すシステム100または図10に示すシステム1000の態様の例であり得る。システム1100は基地局105-bを含んでよく、基地局105-bは、図1および/または図10の基地局105(またはeノードB)のうち1つであり得る。基地局105-bは、アンテナ1145と、トランシーバモジュール1150と、メモリ1170と、プロセッサモジュール1165とを含むことができ、その各々は、(たとえば、1つまたは複数のバスを介して)互いに直接または間接的に通信していることがある。トランシーバモジュール1150は、アンテナ1145を介して、マルチモードモバイルデバイスであり得るUE115-cと双方向に通信するように構成され得る。トランシーバモジュール1150(および/または基地局105-bの他の構成要素)はまた、1つまたは複数のネットワークと双方向に通信するように構成され得る。場合によっては、基地局105-bは、ネットワーク通信モジュール1175を通してコアネットワーク125-bと通信し得る。基地局105-bは、eノードB基地局、ホームeノードB基地局、ノードB基地局、および/またはホームノードB基地局の一例であり得る。コントローラ(図示せず)は、基地局105-bに、場合によっては、たとえばeノードB基地局と統合されてよい。
基地局105-bは、基地局105-mおよび基地局105-nなど、他の基地局105と通信することもできる。基地局105の各々は、異なる無線アクセス技術など、異なるワイヤレス通信技術を使って、UE115-cと通信することができる。場合によっては、基地局105-bは、基地局通信モジュール1115を使用して、105-mおよび/または105-nなど、他の基地局と通信することができる。いくつかの実施形態では、基地局105-bは、コアネットワーク125-bを通して、他の基地局と通信することができる。
メモリ1170は、ランダムアクセスメモリ(RAM)および読み取り専用メモリ(ROM)を含み得る。メモリ1170は、実行されると、プロセッサモジュール1165に、様々な機能を実施させるように構成された命令を含むコンピュータ可読コンピュータ実行可能ソフトウェアコード1171を記憶することができる。あるいは、ソフトウェア1171は、プロセッサモジュール1165によって直接実行可能ではなくてもよいが、たとえばコンパイルされ実行されるときに、本明細書に記載する機能をコンピュータに実施させるように構成されてもよい。
プロセッサモジュール1165は、インテリジェントハードウェアデバイス、たとえば、Intel(登録商標)社またはAMD(登録商標)によって作られるような中央処理装置(CPU)、マイクロコントローラ、特定用途向け集積回路(ASIC)などを含み得る。プロセッサモジュール1165は、マイクロフォンを介してオーディオを受信し、そのオーディオを、受信したオーディオを表す(たとえば、長さ30msの)パケットに変換し、そのオーディオパケットをトランシーバモジュール1150に供給し、ユーザが話しているかどうかの指示を与えるように構成された音声エンコーダ(図示せず)を含み得る。代替的に、エンコーダは、トランシーバモジュール1150にパケットを供給するのみでもよく、パケットの供給または保留/抑制自体が、ユーザが話しているかどうかの指示を供給する。
トランシーバモジュール1150は、パケットを変調し、変調されたパケットを送信のためにアンテナ1145に供給し、アンテナ1145から受信されたパケットを復調するように構成されたモデムを含み得る。基地局105-bのいくつかの例は単一のアンテナ1145を含み得るが、基地局105-bは、好ましくは、キャリアアグリゲーションをサポートし得る複数のリンクのための複数のアンテナ1145を含む。たとえば、モバイルデバイス115-aとのマクロ通信をサポートするために1つまたは複数のリンクが使用され得る。
図11のシステムによると、基地局105-bは通信管理モジュール1130をさらに含み得る。通信管理モジュール1130は、他の基地局105との通信を管理し得る。例として、通信管理モジュール1130は、バスを介して基地局105-bの他の構成要素の一部または全部と通信している、基地局105-bの構成要素であり得る。代替的に、通信管理モジュール1130の機能性は、トランシーバモジュール1150の構成要素として、コンピュータプログラム製品として、および/またはプロセッサモジュール1165の1つもしくは複数のコントローラ要素として実装され得る。
いくつかの実施形態では、WLAN発見モジュール210-fは、トランシーバモジュール1150、アンテナ1145および基地局105-bの他の可能構成要素と連携して、UE115-cに/から、他の基地局105-m/105-nに、またはコアネットワーク125-bにタイミング情報を送信または受信することができる。たとえば、いくつかの実施形態では、トランシーバモジュール1150は、アンテナ1145と連携して、基地局105-bの他の可能構成要素とともに、タイミング基準またはビーコン送信スケジュールをUE115-cに送信またはブロードキャストすることができる。タイミング基準およびビーコン送信スケジュールは、UE115-cが、UE115-cによるWAPビーコンの受信を、WAPビーコン送信と同期させるのを可能にすることができ、そうすることによって、WLANを介して送信される未知のタイミングのビーコンをUE115-cによって受動的または能動的に走査するのに使われる時間および電力が削減される。基地局105-bは、いくつかのケースでは、たとえば、LTEワイヤレス通信技術における制御チャネル(たとえば、BCCH)を使って、UE115-cにタイミング情報を通信することができる。同様に、基地局105-bは、ビーコンタイミング補正などのタイミング情報を、UE115-cから受信することができる。
いくつかの実施形態では、WLAN発見モジュール210-fは、トランシーバモジュール1150、アンテナ1145および基地局105-bの他の可能構成要素と連携して、WAP140のセルラーデバイスに/からタイミング情報(たとえば、タイミング基準、ビーコン送信スケジュールまたはビーコンタイミング補正)を送信または受信することができ、このWAPは、図1に示すWAP140のうち1つ、または図2、図3、図4もしくは図5に示すデバイス200、300、400、500のうち1つであり得る。
ここで図12に移ると、ブロック図1200は、様々な実施形態による、WLAN発見を支援するためのUE115-dを示す。UE115-dは、パーソナルコンピュータ(たとえば、ラップトップコンピュータ、ネットブックコンピュータ、タブレットコンピュータなど)、セルラー電話、PDA、デジタルビデオレコーダ(DVR)、インターネットアプライアンス、ゲームコンソール、電子リーダーなど、様々な構成のいずれかを有し得る。UE115-dは、モバイル動作を可能にするために、小型バッテリーなどの内部電源(図示せず)を有し得る。いくつかの実施形態では、UE115-dは、図1および/または図10に示すUE115のうち1つ、あるいは図6または図7に示すデバイス600、700のうちの1つの例であり得る。UE115-dはマルチモードモバイルデバイスであり得る。
UE115dは、アンテナ1240、トランシーバモジュール1250、メモリ1280、およびプロセッサモジュール1270を含むことができ、これらは各々、直接または間接的に、互いと(たとえば1つまたは複数のバスを介して)通信していてよい。トランシーバモジュール1250は、上記で説明したように、アンテナ1240および/または1つもしくは複数のワイヤードもしくはワイヤレスリンクを介して、1つまたは複数のネットワークと双方向に通信するように構成され得る。たとえば、トランシーバモジュール1250は、図1、図10、および/または図11の基地局105と双方向に通信するように構成され得る。送受信機モジュール1250は、パケットを変調し、変調されたパケットを送信のためにアンテナ1240に与え、アンテナ1240から受信されたパケットを復調するように構成された、モデムを含み得る。UE115-dは単一のアンテナを含み得るが、UE115-dは通常、複数のリンクのための複数のアンテナ1240を含む。
メモリ1280は、ランダムアクセスメモリ(RAM)および読み取り専用メモリ(ROM)を含み得る。メモリ1280は、実行されると、プロセッサモジュール1270に、様々な機能を実施させるように構成された命令を含むコンピュータ可読コンピュータ実行可能ソフトウェアコード1285を記憶することができる。代替的に、ソフトウェアコード1285は、プロセッサモジュール1270によって直接的に実行可能でないことがあるが、(たとえば、コンパイルされ実行されると)コンピュータに本明細書で説明する機能を実施させるように構成され得る。
プロセッサモジュール1270は、インテリジェントハードウェアデバイス、たとえば、Intel(登録商標)社またはAMD(登録商標)によって作られるような中央処理装置(CPU)、マイクロコントローラ、特定用途向け集積回路(ASIC)などを含み得る。プロセッサモジュール1270は、マイクロフォンを介してオーディオを受信し、そのオーディオを、受信したオーディオを表す(たとえば、長さ30msの)パケットに変換し、そのオーディオパケットをトランシーバモジュール1250に供給し、ユーザが話しているかどうかの指示を与えるように構成された音声エンコーダ(図示せず)を含み得る。代替的に、エンコーダは、トランシーバモジュール1250にパケットを供給するのみでもよく、パケットの供給または保留/抑制自体が、ユーザが話しているかどうかの指示を供給する。
図12のアーキテクチャによると、UE115-dは通信管理モジュール1260をさらに含み得る。通信管理モジュール1260は、他のUE115との通信を管理し得る。例として、通信管理モジュール1260は、バスを介してUE115-dの他の構成要素の一部またはすべてと通信しているUE115-dの構成要素であり得る。代替的に、通信管理モジュール1260の機能性は、トランシーバモジュール1250の構成要素として、コンピュータプログラム製品として、および/またはプロセッサモジュール1270の1つもしくは複数のコントローラ要素として実装され得る。
いくつかの実施形態では、ハンドオーバモジュール1225が、ある基地局から別の基地局への、UE115-dの再選択およびハンドオーバ手順を実施するのに使用され得る。たとえば、ハンドオーバモジュール1225は、シグナリングキャリアから別のシグナリングキャリアへの、トラフィックキャリアから別のトラフィックキャリアへの、およびシグナリングキャリアとトラフィックキャリアとの間のUE115-dのハンドオーバ手順を実施することができる。
いくつかの実施形態では、WLAN発見モジュール210-gは、トランシーバモジュール1250、アンテナ1240およびUE115-dの他の可能構成要素と連携して、タイミング基準やビーコン送信スケジュールなどのタイミング情報を、図1、図10、および/または図11の基地局105から受信することができる。タイミング情報は、UE115-dおよびWLAN発見モジュール210-gが、WAPがそのビーコンをいつ送信する予定であるか判断するのを支援することができ、そうすることによって、WLAN発見モジュール210-gは、WAPビーコンの効率的な受動走査を実装し、比較的短い走査ウィンドウにわたってトランシーバモジュール1250内のWLAN受信機を起こすことができ、そうすることによって、UEの電力モジュール1265(たとえば、バッテリー)によって提供される電力をそれほど使わない。
いくつかのケースでは、WLAN発見モジュール210-gは、トランシーバモジュール1250のWLAN受信機を介してアクセスポイントビーコンを受信し、ビーコンについてのビーコン受信時間を記録することができる。WLAN発見モジュール210-gは次いで、i)ビーコン受信時間、およびii)WLAN発見モジュール210-gによって受信されたビーコン送信スケジュールによって示されるビーコン送信時間に基づいて、ビーコンタイミング補正を計算することができる。いくつかのケースでは、ビーコンタイミング補正は、ビーコン受信時間と、ビーコン送信スケジュールによって示されるビーコン送信時間との間の単純なタイミング差であり得る。
ビーコンタイミング補正は、ビーコンを送信したWAPに報告する(たとえば、トランシーバモジュール1250およびアンテナ1240を介して送信する)ことができる。このようにして、ビーコンタイミング補正は、WAPによって、WAPのビーコンのタイミングおよび/または、WAPのビーコンをいつブロードキャストするかを示すタイミング情報を調整するのに使うことができる。いくつかのケースでは、ビーコンタイミング補正の程度は、閾値と比較され、次いで、ビーコンタイミング補正の程度が閾値を超えているとき、WAPに報告されるだけでよい。
基地局115-dの構成要素は、図6または図7に示すデバイス600、700に関して上記で説明した他の態様を実装するように構成され得るので、これらの態様については、簡潔のためにここでは繰り返さないことがある。
図13は、WLANの発見を支援するための方法1300の例を示すフローチャートである。明快のために、方法1300については、図1、図10、図11もしくは図12に示すUE115のうち1つ、または図2、図6もしくは図7に示すデバイス200、600、700のうち1つを参照して以下で説明する。一実装形態では、WAN発見モジュール210は、UE115の機能要素を制御するための1つまたは複数のコードのセットを実行して、以下で説明する機能を実施することができる。
ブロック1305で、非WLAN無線技術に由来するタイミング基準(第1の無線技術)が、UE115によって受信され得る。ブロック1310で、UEのWLAN受信機(第2の無線技術)は、WLAN上でビーコンをリッスンするために、ビーコン送信スケジュールに従って呼び起こされ得る。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づき得る。
方法1300は、WLANを発見するための効率的やり方を提供することができ、UE115は、非WLAN無線技術を使って、およびUE115がWLAN上でビーコンをリッスンする必要がないうちに、WAPを発見するためのタイミング基準を受信することができる。これにより、UE115が、より短い期間にわたってUEのWLAN受信機を起こすことが可能になり、そうすることによって、電力およびビーコン走査時間を節約することができる。方法1300は一実装形態にすぎず、方法1300の動作は、他の実装形態が可能であるように並べ替えられ、または場合によっては変更され得ることに留意されたい。
図14は、図13に示す方法1300のより詳細な実装形態の一例1400を示すフローチャートである。明快のために、方法1400については、図1、図10、図11もしくは図12に示すUE115のうち1つ、または図2、図6もしくは図7に示すデバイス200、600、700のうち1つを参照して以下で説明する。一実装形態では、WAN発見モジュール210は、UE115の機能要素を制御するための1つまたは複数のコードのセットを実行して、以下で説明する機能を実施することができる。
ブロック1405で、タイミング基準がUE115によって受信され得る。タイミング基準は、たとえば、セルラーまたは衛星ネットワークに由来し得る。ブロック1410で、UEのWLAN受信機が、ビーコン送信スケジュールに従って、WLAN上でビーコンをリッスンするために起こされ得る。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づき得る。
ブロック1415で、ビーコンを第1のWAPから受信することができ、第1のWAPは、いくつかのケースでは、図1に示すWAP140のうち1つであってよい。ブロック1420で、ビーコンタイミング補正が計算され、第1のWAPに報告され得る。ブロック1425で、ビーコン送信期間の後、UE115のWLAN受信機がスリープ状態に戻され得る。いくつかのケースでは、スリープ状態に戻ることは、タイマが満了すると起こり得る。ブロック1430で、UE115は、第1のWAP140との接続を確立することができる。
方法1400は、WLANを発見するための効率的やり方を提供することができ、UE115は、セルラーまたは衛星ネットワークを使って、UE115がWLAN上でビーコンをリッスンする必要がないうちに、WLAN上のWAPを発見するためのタイミング基準を受信することができる。これにより、UE115が、より短い期間にわたってUE115のWLAN受信機を起こすことが可能になり、そうすることによって、電力およびビーコン走査時間を節約することができる。方法1400は一実装形態にすぎず、方法1400の動作は、他の実装形態が可能であるように並べ替えられ、または場合によっては変更され得ることに留意されたい。
図15は、WLANの発見を支援するための方法1500の一例を示すフローチャートである。明快のために、方法1500については、図1に示すWAP140のうち1つまたは図2、図3、図4もしくは図5に示すデバイス200、300、400、もしくは500のうち1つを参照して以下で説明する。一実装形態では、WAN発見モジュール210は、WAPの機能要素を制御するための1つまたは複数のコードのセットを実行して、以下で説明する機能を実施することができる。
ブロック1505で、WAP140が、非WLAN無線技術に由来するタイミング基準(第1の無線技術)を識別する。一例では、タイミング基準は、フレームタイミングなど、セルラーネットワークのタイミングであってよい。他の例では、タイミング基準は、衛星ネットワークのタイミングまたはネットワークプロトコルタイミング(NTP)であってよい。非WLAN無線技術は、いくつかのケースでは、セルラーネットワークまたは衛星ネットワークであってよい。ブロック1510で、WAP140は、ビーコン送信スケジュールに従って、WLAN(第2の無線技術)上でビーコンをブロードキャストする。ビーコン送信スケジュールは、タイミング基準に少なくとも部分的に基づき得る。
したがって、方法1500は、WLANを発見するための効率的やり方を提供することができ、WLAN無線技術によりビーコンをブロードキャストするためのタイミング基準を提供するのに、非WLAN無線技術が使われる。方法1500は一実装形態にすぎず、方法1500の動作は、他の実装形態が可能であるように並べ替えられ、または場合によっては変更され得ることに留意されたい。
図16は、図15に示す方法1500のより詳細な実装形態の一例1600を示すフローチャートである。明快のために、方法1600については、図1に示すWAP140のうち1つまたは図2、図3、図4もしくは図5に示すデバイス200、300、400、もしくは500のうち1つを参照して以下で説明する。一実装形態では、WAN発見モジュール210は、WAPの機能要素を制御するための1つまたは複数のコードのセットを実行して、以下で説明する機能を実施することができる。
ブロック1605で、タイミング基準が識別され得る。タイミング基準は、たとえば、セルラーまたは衛星ネットワークに由来し得る。LTE環境において、および例として、タイミング基準は、SFNと組み合わされたスーパーフレーム境界のタイミングであってよい。
ブロック1610で、タイミング基準に基づくビーコン送信スケジュールが、セルラーまたは衛星ネットワークを介して、図1、図10、および/または図12に示すUE115のうち1つまたは複数など、1つまたは複数のUE、あるいは図2、図6、または図7に示すデバイス200、600、または700のうちいずれかにブロードキャストされ得る。タイミング基準が、SFNと組み合わされたスーパーフレーム境界のタイミングであるLTE実施形態では、ビーコン送信期間の開始は、SFNの開始と関係し得る(たとえば、ビーコン送信期間は、20を法とするSFNがゼロに等しくなるたびに始まり得る)。
複数のWAPが、WLANの同じ動作チャネルを介してビーコンおよびデータを送ることが可能なときに、ビーコン送信スケジュールが、ビーコン送信期間(またはビーコン送信ウィンドウ)を定義する場合、および各WAPが、そのビーコンをビーコン送信期間内のランダムまたは擬似ランダム時間にブロードキャストする場合、ビーコン重複は避けることができる。本開示では、「ランダム」時間が、「擬似ランダム」時間(たとえば、十分にランダムなシード値に基づく時間)を含むように定義される。これらのケースにおいて、ビーコン送信期間のサイズは、ある地理的エリアにおけるビーコン送信の推定回数に基づいてセットすることができる。図17のコンテキストにおいて説明するように、ビーコン重複は、ビーコン送信期間の異なるスロット中に異なるWAPのビーコンを送信することによって避けることもできる。
ブロック1615で、UE115のうち1つまたは複数から発したビーコンタイミング補正が受信され得る。ビーコンタイミング補正は、1)UEのうちの1つまたは複数のビーコン受信時間(たとえば、単一のビーコン受信時間または複数のビーコン受信時間の平均)と、2)ビーコン送信スケジュールによって示されるビーコン送信時間との間の差を識別することができる。ビーコンタイミング補正は、WAPによって、タイミング基準のWAPによるコピーにおけるスキューもしくは他のタイミング不規則性、またはWAPの回路構成もしくはプロセスに固有の遅延を考慮に入れるのに使うことができる。
したがって、方法1600は、WLANを発見するための効率的やり方を提供することができ、セルラーまたは衛星ネットワークは、WLANを介してビーコンをブロードキャストするためのタイミング基準およびビーコン送信スケジュールを提供するのに使うことができる。方法1600は一実装形態にすぎず、方法1600の動作は、他の実装形態が可能であるように並べ替えられ、または場合によっては変更され得ることに留意されたい。
図17は、図15に示す方法1500のより詳細な実装形態の別の例1700を示すフローチャートである。明快のために、方法1700については、図1に示すWAP140のうち1つまたは図2、図3、図4もしくは図5に示すデバイス200、300、400、もしくは500のうち1つを参照して以下で説明する。一実装形態では、WAN発見モジュール210は、WAPの機能要素を制御するための1つまたは複数のコードのセットを実行して、以下で説明する機能を実施することができる。
ブロック1705で、セルラーネットワークに由来するタイミング基準が識別され得る。いくつかの例において、タイミング基準は、セルラーコアネットワークの一部であってよいバックエンドサーバを介してeノードBから受信され得る。他の例では、タイミング基準は、ブートアップ手順中にバックエンドサーバから受信され得る。これらの例において、タイミング基準は、ネットワーク時間プロトコル(NTP)に従って受信され得る。さらに他の例では、タイミング基準は、WLANを介してUEから受信され得る。後者の事例において、UEは、セルラーコアネットワークのある種のモバイル基地局(または基地局プロキシ)として機能し得る。
ブロック1710で、WAPのメディアアクセス制御(MAC)アドレスに対してハッシュ関数が実施されてよく、ブロック1715で、ビーコン送信スケジュールのビーコン送信期間内のタイムスロットが、ハッシュ化MACアドレスに基づいて選択され得る。図3のコンテキストにおいて記載したように、これにより、WAPが、それらのビーコンを同時にブロードキャストする可能性を削減することができ、その結果、UEは、それらのビーコンを解読することができないままにされ得る。
ブロック1720で、選択されたタイムスロットにビーコンを挿入することができ、ブロック1725で、ビーコンは、タイミング基準に、および選択されたタイミングスロットに少なくとも部分的に基づいて、ビーコン送信スケジュールに従ってUEにブロードキャストされ得る。
したがって、方法1700は、WLANを発見するための効率的やり方を提供することができ、セルラーネットワークは、WLANを介してビーコンをブロードキャストするためのタイミング基準を提供するのに使うことができる。方法1700は一実装形態にすぎず、方法1700の動作は、他の実装形態が可能であるように並べ替えられ、または場合によっては変更され得ることに留意されたい。
添付の図面に関して上に記載された詳細な説明は、例示的な実施形態について説明しており、実装され得るまたは特許請求の範囲内に入る実施形態のみを表すものではない。本明細書全体にわたって使われる「例示的」という用語は、「一例、実例、または例示として役立つ」ことを意味し、「好ましい」または「他の実施形態よりも有利な」を意味するものではない。発明を実施するための形態は、説明した技法の理解をもたらす目的で、具体的な詳細を含む。しかしながら、これらの技法は、これらの具体的な詳細なしに実施され得る。場合によっては、説明した実施形態の概念を曖昧にするのを回避するために、周知の構造およびデバイスがブロック図の形式で示されている。
本明細書で説明する技法は、CDMA、TDMA、FDMA、OFDMA、SC-FDMA、WLANおよび他のシステムのような、様々なワイヤレス通信ネットワークシステムに使用され得る。「システム」および「ネットワーク」という用語は、しばしば互換的に使用される。CDMAシステムは、CDMA2000、Universal Terrestrial Radio Access(UTRA)などの無線技術を実装することができる。CDMA2000は、IS-2000、IS-95、およびIS-856規格をカバーする。IS-2000のリリース0およびAは、一般にはCDMA2000 1X、1Xなどと呼ばれる。IS-856(TIA-856)は、一般には、CDMA2000 1xEV-DO、High Rate Packet Data(HRPD)などと呼ばれる。UTRAは、Wideband CDMA(WCDMA(登録商標))およびCDMAの他の変形形態を含む。TDMAシステムは、Global System for Mobile Communications(GSM(登録商標))などの無線技術を実装し得る。OFDMAシステムは、Ultra Mobile Broadband(UMB)、Evolved UTRA(E-UTRA)、IEEE802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE802.20、Flash-OFDMなどの無線技術を実装し得る。UTRAおよびE-UTRAは、Universal Mobile Telecommunication System(UMTS)の一部である。3GPP Long Term Evolution(LTE)およびLTE-Advanced(LTE-A)は、E-UTRAを用いるUMTSの新しいリリースである。UTRA、E-UTRA、UMTS、LTE、LTE-AおよびGSM(登録商標)は、「3rd Generation Partnership Project」(3GPP)という名称の組織からの文書で説明されている。CDMA2000およびUMBは、「3rd Generation Partnership Project 2」(3GPP2)という名称の組織からの文書で説明されている。WLANシステムは、IEEE802.11(Wi-Fi)規格に基づく無線技術を実装することができる。本明細書で説明する技法は、上記のシステムおよび無線技術、ならびに他のシステムおよび無線技術に使用され得る。ただし、以下の記述では、例として、LTEおよびWi-Fiシステムについて記載し、LTEおよびWi-Fi用語が、以下の記述の大部分において使われるが、これらの技法は、LTEおよびWi-Fiアプリケーションを超えて適用可能である。
多種多様な技術および技法のうちのいずれかを使用して、情報および信号が表され得る。たとえば、上記の説明全体にわたって言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁界または磁性粒子、光場または光学粒子、あるいはそれらの任意の組合せによって表され得る。
本明細書の開示に関して説明した様々な例示的なブロックおよびモジュールは、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)または他のプログラマブル論理デバイス、個別ゲートまたはトランジスタ論理、個別ハードウェア構成要素、あるいは本明細書で説明した機能を実施するように設計されたそれらの任意の組合せを用いて実装または実施され得る。汎用プロセッサはマイクロプロセッサであり得るが、代替として、プロセッサは任意の従来のプロセッサ、コントローラ、マイクロコントローラ、または状態機械であり得る。プロセッサはまた、コンピューティングデバイスの組合せ、たとえば、DSPとマイクロプロセッサとの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つまたは複数のマイクロプロセッサ、あるいは任意の他のそのような構成として実装され得る。
本明細書で説明した機能は、ハードウェア、プロセッサによって実行されるソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。プロセッサで実行されるソフトウェアで実装した場合、機能は、1つまたは複数の命令またはコードとしてコンピュータ可読記録媒体上に記憶されるか、あるいはコンピュータ可読記録媒体を介して1つまたは複数の命令またはコードとして送信され得る。他の例および実装形態が、本開示および添付の特許請求の範囲の範囲および趣旨の中にある。たとえば、ソフトウェアの性質により、上記で説明した機能は、プロセッサ、ハードウェア、ファームウェア、ハードワイヤリング、またはこれらの任意の組合せによって実行されるソフトウェアを使用して、実装され得る。機能を実装する機構はまた、機能の一部が異なる物理的ロケーションで実装されるように分散された状態を含む、様々な位置に物理的に位置していてもよい。また、特許請求の範囲を含めて本明細書で使用する場合、「のうちの少なくとも1つ」によって修飾される項目の列挙で用いられる「または」は、たとえば、「A、B、またはCのうちの少なくとも1つ」という列挙が、AまたはBまたはCまたはABまたはACまたはBCまたはABC(すなわち、AおよびBおよびC)を意味するように、選言的な列挙を示す。
コンピュータ可読記録媒体は、ある場所から別の場所へのコンピュータプログラムの転送を可能にする任意の媒体を含む、コンピュータ記憶媒体とコンピュータ通信媒体の両方を含む。記憶媒体は、汎用または専用コンピュータによってアクセスできる任意の利用可能な媒体とすることができる。限定ではなく例として、コンピュータ可読記録媒体は、RAM、ROM、EEPROM、CD-ROM、または他の光ディスクストレージ、磁気ディスクストレージまたは他の磁気ストレージデバイス、あるいは命令またはデータ構造の形態の所望のプログラムコード手段を搬送または記憶するために使用され得、汎用もしくは専用コンピュータまたは汎用もしくは専用プロセッサによってアクセスされ得る、任意の他の媒体を備えることができる。また、いかなる接続もコンピュータ可読記録媒体と適切に呼ばれる。たとえば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL)、または赤外線、無線、およびマイクロ波などのワイヤレス技術を使用して、ウェブサイト、サーバ、または他のリモートソースから送信される場合、同軸ケーブル、光ファイバケーブル、ツイストペア、DSL、または赤外線、無線、およびマイクロ波などのワイヤレス技術は、媒体の定義に含まれる。本明細書で使用する場合、ディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザーディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピー(登録商標)ディスク(disk)、およびブルーレイディスク(disc)を含み、ディスク(disk)は、通常、磁気的にデータを再生し、ディスク(disc)は、レーザーで光学的にデータを再生する。上記の組合せもコンピュータ可読記録媒体の範囲内に含まれる。
本開示の上記の説明は、当業者が本開示を作成または使用できるようにするために提供される。本開示への様々な修正が当業者には容易に明らかになることになり、本明細書に定義する一般原理は、本開示の趣旨および範囲を逸脱することなしに他の変形形態に適用され得る。本開示全体にわたって、「例」または「例示的」という用語は、一例または実例を示し、言及する例についてのいかなる選好をも暗示または必要としない。したがって、本開示は、本明細書で説明した例および設計に限定するものではなく、本明細書で開示する原理および新規の特徴に一致する最も広い範囲を与えられるべきである。
100 ワイヤレス通信システム、システム
105 基地局
105-a ノードB
105-b 基地局
105-m 基地局
105-n 基地局
110 基地局カバレージエリア、カバレージエリア
110-c カバレージエリア
115 UE、モバイルデバイス
115-a UE、モバイルデバイス
115-b UE
115-c UE
115-d UE
120 基地局コントローラ、コントローラ
120-a 無線ネットワークコントローラ(RNC)
125 コアネットワーク
125-a コアネットワーク
125-b コアネットワーク
130 セルラーネットワーク
140 WAP
140-a WAP
140-b WAP
140-c WAP
145 アクセスネットワーク
150 WAPカバレージエリア、カバレージエリア
150-a カバレージエリア
155 WLAN
200 デバイス
205 受信機モジュール
205-a 受信機モジュール
205-b 受信機モジュール
205-c 受信機モジュール
210 WLAN発見モジュール
210-a WLAN発見モジュール
210-b WLAN発見モジュール
210-c WLAN発見モジュール
210-d WLAN発見モジュール
210-e WLAN発見モジュール
210-f WLAN発見モジュール
210-g WLAN発見モジュール
215 送信機モジュール
215-a 送信機モジュール
300 デバイス
305 タイミング基準識別モジュール
305-a タイミング基準識別モジュール
305-b タイミング基準識別モジュール
305-c タイミング基準識別モジュール
305-d タイミング基準識別モジュール
310 ビーコンブロードキャストモジュール、ビーコン送信モジュール
310-a ビーコンブロードキャストモジュール、ビーコン送信モジュール
310-b ビーコンブロードキャストモジュール、ビーコン送信モジュール
315 スロット選択モジュール
400 デバイス
405 第1の無線技術モジュール
410 第2の無線技術モジュール
500 デバイス
505 タイミング補正識別モジュール
505-a タイミング補正識別モジュール
600 デバイス
610 WLAN起動モジュール
610-a WLAN起動モジュール
615 WLAN受信機
620 WLAN接続モジュール
620-a WLAN接続モジュール
625 タイミング基準ブロードキャストモジュール
700 デバイス
805 セルラー受信機
810 衛星受信機
815 WLAN受信機
820 ワイヤードネットワーク受信機
905 セルラー送信機
910 WLAN送信機
915 ワイヤードネットワーク送信機
1000 ワイヤレス通信システム
1005 サーバ
1010 ユニバーサルモバイル通信システム(UMTS)地上無線アクセスネットワーク(UTRAN)
1100 通信システム
1115 基地局通信モジュール
1130 通信管理モジュール
1145 アンテナ
1150 トランシーバモジュール
1165 プロセッサモジュール
1170 メモリ
1171 ソフトウェアコード、ソフトウェア
1175 ネットワーク通信モジュール
1225 ハンドオーバモジュール
1240 アンテナ
1250 トランシーバモジュール
1260 通信管理モジュール
1265 電力モジュール
1270 プロセッサモジュール
1280 メモリ
1285 ソフトウェアコード
105 基地局
105-a ノードB
105-b 基地局
105-m 基地局
105-n 基地局
110 基地局カバレージエリア、カバレージエリア
110-c カバレージエリア
115 UE、モバイルデバイス
115-a UE、モバイルデバイス
115-b UE
115-c UE
115-d UE
120 基地局コントローラ、コントローラ
120-a 無線ネットワークコントローラ(RNC)
125 コアネットワーク
125-a コアネットワーク
125-b コアネットワーク
130 セルラーネットワーク
140 WAP
140-a WAP
140-b WAP
140-c WAP
145 アクセスネットワーク
150 WAPカバレージエリア、カバレージエリア
150-a カバレージエリア
155 WLAN
200 デバイス
205 受信機モジュール
205-a 受信機モジュール
205-b 受信機モジュール
205-c 受信機モジュール
210 WLAN発見モジュール
210-a WLAN発見モジュール
210-b WLAN発見モジュール
210-c WLAN発見モジュール
210-d WLAN発見モジュール
210-e WLAN発見モジュール
210-f WLAN発見モジュール
210-g WLAN発見モジュール
215 送信機モジュール
215-a 送信機モジュール
300 デバイス
305 タイミング基準識別モジュール
305-a タイミング基準識別モジュール
305-b タイミング基準識別モジュール
305-c タイミング基準識別モジュール
305-d タイミング基準識別モジュール
310 ビーコンブロードキャストモジュール、ビーコン送信モジュール
310-a ビーコンブロードキャストモジュール、ビーコン送信モジュール
310-b ビーコンブロードキャストモジュール、ビーコン送信モジュール
315 スロット選択モジュール
400 デバイス
405 第1の無線技術モジュール
410 第2の無線技術モジュール
500 デバイス
505 タイミング補正識別モジュール
505-a タイミング補正識別モジュール
600 デバイス
610 WLAN起動モジュール
610-a WLAN起動モジュール
615 WLAN受信機
620 WLAN接続モジュール
620-a WLAN接続モジュール
625 タイミング基準ブロードキャストモジュール
700 デバイス
805 セルラー受信機
810 衛星受信機
815 WLAN受信機
820 ワイヤードネットワーク受信機
905 セルラー送信機
910 WLAN送信機
915 ワイヤードネットワーク送信機
1000 ワイヤレス通信システム
1005 サーバ
1010 ユニバーサルモバイル通信システム(UMTS)地上無線アクセスネットワーク(UTRAN)
1100 通信システム
1115 基地局通信モジュール
1130 通信管理モジュール
1145 アンテナ
1150 トランシーバモジュール
1165 プロセッサモジュール
1170 メモリ
1171 ソフトウェアコード、ソフトウェア
1175 ネットワーク通信モジュール
1225 ハンドオーバモジュール
1240 アンテナ
1250 トランシーバモジュール
1260 通信管理モジュール
1265 電力モジュール
1270 プロセッサモジュール
1280 メモリ
1285 ソフトウェアコード
Claims (53)
- ワイヤレスローカルエリアネットワーク(WLAN)の発見を支援するための方法であって、
ユーザ機器(UE)によって、第1の無線技術に由来するタイミング基準を識別するステップであって、前記第1の無線技術が非WLAN無線技術であるステップと、
ビーコン送信スケジュールに従って、前記WLAN上でビーコンをリッスンするためにWLAN受信機を起こすステップであって、前記ビーコン送信スケジュールが、前記タイミング基準に少なくとも部分的に基づくステップとを含む方法。 - 前記ビーコン送信スケジュールが、前記WLAN上でビーコン送信期間がいつ生じるかを示す、請求項1に記載の方法。
- 1つまたは複数のビーコン送信期間中に、第1のWLAN内の第1のワイヤレスアクセスポイント(WAP)からビーコンを受信するステップと、
前記WLAN内の前記第1のWAPとの接続を確立するステップとをさらに含む、請求項2に記載の方法。 - 単一のビーコン送信期間中に複数のビーコンを受信するステップであって、前記複数のビーコンが、第1のWLAN内の複数のワイヤレスアクセスポイント(WAP)から受信されるステップをさらに含む、請求項2に記載の方法。
- 前記ビーコン送信期間の後、前記WLAN受信機をスリープ状態に戻すステップをさらに含む、請求項2に記載の方法。
- 前記ビーコン送信期間が前記WLANの動作の第1チャネルに対応し、前記方法が、
前記WLANの動作の第2チャネルに対応する第2のビーコン送信期間中、前記WLAN受信機を起こしておくステップであって、前記第2のビーコン送信期間が第1のビーコン送信期間に続くステップをさらに含む、請求項2に記載の方法。 - 前記ビーコン送信期間と前記第2のビーコン送信期間との間のオフセット中、前記WLAN受信機を起こしておくステップであって、前記オフセットが、少なくとも、前記WLAN受信機を前記第1チャネルから前記第2チャネルに同調させるべき時間に基づくステップをさらに含む、請求項6に記載の方法。
- 前記非WLAN無線技術を含むソースから前記ビーコン送信スケジュールを受信するステップをさらに含む、請求項1に記載の方法。
- 前記タイミング基準を、第1のWLAN内の1つまたは複数のワイヤレスアクセスポイント(WAP)に送信するステップをさらに含む、請求項1に記載の方法。
- 前記タイミング基準がセルラーネットワークまたは衛星ネットワークのタイミングである、請求項1に記載の方法。
- 前記WLAN受信機を介して第1のワイヤレスアクセスポイント(WAP)から受信されたビーコンのビーコン受信時間を記録するステップと、
前記ビーコン受信時間および前記ビーコン送信スケジュールによって示されるビーコン送信時間に基づいて、ビーコンタイミング補正を計算するステップと、
前記ビーコンタイミング補正を送信するステップとをさらに含む、請求項1に記載の方法。 - 前記WLAN受信機を介して第1のワイヤレスアクセスポイント(WAP)から受信されたビーコンのビーコン受信時間を記録するステップと、
前記ビーコン受信時間および前記ビーコン送信スケジュールによって示されるビーコン送信時間に基づいて、ビーコンタイミング補正を計算するステップと、
前記ビーコンタイミング補正の程度を閾値と比較するステップと、
前記ビーコンタイミング補正の前記程度が前記閾値を超えるとき、前記ビーコンタイミング補正を送信するステップとをさらに含む、請求項1に記載の方法。 - 前記タイミング基準を、複数の利用可能タイミング基準の中から選択するステップをさらに含む、請求項1に記載の方法。
- ワイヤレスローカルエリアネットワーク(WLAN)の発見を支援するためのユーザ機器(UE)であって、
プロセッサと、
前記プロセッサと電子通信しているメモリとを備え、前記メモリが命令を格納し、前記命令が、
第1の無線技術に由来するタイミング基準を識別することであって、前記第1の無線技術が非WLAN無線技術であることと、
ビーコン送信スケジュールに従って、前記WLAN上でビーコンをリッスンするためにWLAN受信機を起こすことであって、前記ビーコン送信スケジュールが、前記タイミング基準に少なくとも部分的に基づくこととを行うように、前記プロセッサによって実行可能である、UE。 - 前記ビーコン送信スケジュールが、前記WLAN上でビーコン送信期間がいつ生じるかを示す、請求項14に記載のUE。
- 前記命令が、
1つまたは複数のビーコン送信期間中に、第1のWLAN内の第1のワイヤレスアクセスポイント(WAP)からビーコンを受信し、
前記WLAN内の前記第1のWAPとの接続を確立するように、前記プロセッサによって実行可能である、請求項15に記載のUE。 - 前記命令が、
単一のビーコン送信期間中に複数のビーコンを受信することであって、前記複数のビーコンが、第1のWLAN内の複数のワイヤレスアクセスポイント(WAP)から受信されることを行うように、前記プロセッサによって実行可能である、請求項15に記載のUE。 - 前記命令が、
前記ビーコン送信期間の後、前記WLAN受信機をスリープ状態に戻すように、前記プロセッサによって実行可能である、請求項15に記載のUE。 - 前記ビーコン送信期間が前記WLANの動作の第1チャネルに対応し、前記命令が、
前記WLANの動作の第2チャネルに対応する第2のビーコン送信期間中、前記WLAN受信機を起こしておくことであって、前記第2のビーコン送信期間が第1のビーコン送信期間に続くことを行うように、前記プロセッサによって実行可能である、請求項15に記載のUE。 - 前記ビーコン送信期間が前記WLANの動作の第1チャネルに対応し、前記命令が、
前記ビーコン送信期間と前記第2のビーコン送信期間との間のオフセット中、前記WLAN受信機を起こしておくことであって、前記オフセットが、少なくとも、前記WLAN受信機を前記第1チャネルから前記第2チャネルに同調させるべき時間に基づくこととを行うように、前記プロセッサによって実行可能である、請求項19に記載のUE。 - 前記命令が、
前記非WLAN無線技術を含むソースから前記ビーコン送信スケジュールを受信するように、前記プロセッサによって実行可能である、請求項14に記載のUE。 - 前記命令が、
前記タイミング基準を、第1のWLAN内の1つまたは複数のワイヤレスアクセスポイント(WAP)に送信するように、前記プロセッサによって実行可能である、請求項14に記載のUE。 - 前記タイミング基準がセルラーネットワークまたは衛星ネットワークのタイミングである、請求項14に記載のUE。
- 前記命令が、
前記WLAN受信機を介して第1のワイヤレスアクセスポイント(WAP)から受信されたビーコンのビーコン受信時間を記録し、
前記ビーコン受信時間および前記ビーコン送信スケジュールによって示されるビーコン送信時間に基づいて、ビーコンタイミング補正を計算し、
前記ビーコンタイミング補正を送信するように、前記プロセッサによって実行可能である、請求項14に記載のUE。 - 前記命令が、
前記WLAN受信機を介して第1のワイヤレスアクセスポイント(WAP)から受信されたビーコンのビーコン受信時間を記録し、
前記ビーコン受信時間および前記ビーコン送信スケジュールによって示されるビーコン送信時間に基づいて、ビーコンタイミング補正を計算し、
前記ビーコンタイミング補正の程度を閾値と比較し、
前記ビーコンタイミング補正の前記程度が前記閾値を超えるとき、前記ビーコンタイミング補正を送信するように、前記プロセッサによって実行可能である、請求項14に記載のUE。 - 前記命令が、
前記タイミング基準を、複数の利用可能タイミング基準の中から選択するように、前記プロセッサによって実行可能である、請求項14に記載のUE。 - ワイヤレスローカルエリアネットワーク(WLAN)の発見を支援するためのユーザ機器(UE)であって、
第1の無線技術に由来するタイミング基準を識別するための手段であって、前記第1の無線技術が非WLAN無線技術である手段と、
ビーコン送信スケジュールに従って、前記WLAN上でビーコンをリッスンするためにWLAN受信機を起こすための手段であって、前記ビーコン送信スケジュールが、前記タイミング基準に少なくとも部分的に基づく手段とを備えるUE。 - 前記ビーコン送信スケジュールが、前記WLAN上でビーコン送信期間がいつ生じるかを示す、請求項27に記載のUE。
- 1つまたは複数のビーコン送信期間中に、第1のWLAN内の第1のワイヤレスアクセスポイント(WAP)からビーコンを受信するための手段と、
前記WLAN内の前記第1のWAPとの接続を確立するための手段とをさらに備える、請求項28に記載のUE。 - 前記ビーコン送信期間の後、前記WLAN受信機をスリープ状態に戻すための手段をさらに備える、請求項28に記載のUE。
- 前記タイミング基準がセルラーネットワークまたは衛星ネットワークのタイミングである、請求項27に記載のUE。
- ワイヤレスローカルエリアネットワーク(WLAN)の発見を支援するためのコンピュータプログラムであって、前記コンピュータプログラムが、
ユーザ機器(UE)によって、第1の無線技術に由来するタイミング基準を識別することであって、前記第1の無線技術が非WLAN無線技術であることと、
ビーコン送信スケジュールに従って、前記WLAN上でビーコンをリッスンするためにWLAN受信機を起こすことであって、前記ビーコン送信スケジュールが、前記タイミング基準に少なくとも部分的に基づくこととを行うように、プロセッサによって実行可能な命令を含むコンピュータプログラム。 - 前記ビーコン送信スケジュールが、前記WLAN上でビーコン送信期間がいつ生じるかを示す、請求項32に記載のコンピュータプログラム。
- 前記命令が、
1つまたは複数のビーコン送信期間中に、第1のWLAN内の第1のワイヤレスアクセスポイント(WAP)からビーコンを受信し、
前記WLAN内の前記第1のWAPとの接続を確立するように、前記プロセッサによって実行可能である、請求項33に記載のコンピュータプログラム。 - 前記命令が、
前記ビーコン送信期間の後、前記WLAN受信機をスリープ状態に戻すように、前記プロセッサによって実行可能である、請求項33に記載のコンピュータプログラム。 - 前記タイミング基準がセルラーネットワークまたは衛星ネットワークのタイミングである、請求項32に記載のコンピュータプログラム。
- ワイヤレスローカルエリアネットワーク(WLAN)の発見を支援するための方法であって、
第1の無線技術に由来するタイミング基準を識別するステップであって、前記第1の無線技術が非WLAN無線技術であるステップと、
ビーコン送信スケジュールに従って、前記WLAN上でビーコンをブロードキャストするステップであって、前記ビーコン送信スケジュールが、前記タイミング基準に少なくとも部分的に基づくステップとを含む方法。 - 前記非WLAN無線技術を含むソースから前記タイミング基準を受信するステップをさらに含む、請求項37に記載の方法。
- 前記タイミング基準を、ネットワーク時間プロトコル(NTP)に従ってバックエンドサーバから受信するステップをさらに含む、請求項37に記載の方法。
- 前記タイミング基準を、前記WLAN上でユーザ機器(UE)から受信するステップをさらに含む、請求項37に記載の方法。
- 前記非WLAN無線技術を含むソースから前記ビーコン送信スケジュールを受信するステップをさらに含む、請求項37に記載の方法。
- 前記ビーコン送信スケジュールを、前記非WLAN無線技術を使って1つまたは複数のユーザ機器(UE)にブロードキャストするステップをさらに含む、請求項37に記載の方法。
- 前記ビーコン送信スケジュールが、前記WLAN上でビーコン送信期間がいつ生じるかを示し、前記方法が、
前記ビーコンをブロードキャストするための、前記ビーコン送信期間内の複数のタイムスロットのうち1つを選択するステップと、
前記ビーコンを、前記選択されたタイムスロットに挿入するステップとをさらに含む、請求項37に記載の方法。 - 前記複数のタイムスロットのうち1つを選択するステップが、
メディアアクセス制御(MAC)アドレスに対してハッシュ関数を実施するステップを含む、請求項43に記載の方法。 - 前記ビーコン送信スケジュールが、前記WLAN上でビーコン送信期間がいつ生じるかを示し、
前記ビーコンをブロードキャストするステップが、前記ビーコン送信期間内のランダム時間に前記ビーコンをブロードキャストするステップを含む、請求項37に記載の方法。 - ビーコンタイミング補正を受信するステップと、
前記ビーコンタイミング補正に従って前記ビーコンをブロードキャストするステップとをさらに含む、請求項37に記載の方法。 - 前記タイミング基準がセルラーネットワークまたは衛星ネットワークのタイミングである、請求項37に記載の方法。
- 前記タイミング基準を、複数の利用可能タイミング基準の中から選択するステップをさらに含む、請求項37に記載の方法。
- ワイヤレスローカルエリアネットワーク(WLAN)の発見を支援するためのワイヤレスアクセスポイント(WAP)であって、
プロセッサと、
前記プロセッサと電子通信しているメモリとを備え、前記メモリが命令を格納し、前記命令が、
第1の無線技術に由来するタイミング基準を識別することであって、前記第1の無線技術が非WLAN無線技術であることと、
ビーコン送信スケジュールに従って、前記WLAN上でビーコンをブロードキャストすることであって、前記ビーコン送信スケジュールが、前記タイミング基準に少なくとも部分的に基づくこととを行うように、前記プロセッサによって実行可能である、WAP。 - 前記命令が、
前記非WLAN無線技術を含むソースから前記タイミング基準を受信するように、前記プロセッサによって実行可能である、請求項49に記載のWAP。 - 前記命令が、
前記タイミング基準を、ネットワーク時間プロトコル(NTP)に従ってバックエンドサーバから受信するように、前記プロセッサによって実行可能である、請求項49に記載のWAP。 - 前記命令が、
前記タイミング基準を、前記WLAN上でユーザ機器(UE)から受信するように、前記プロセッサによって実行可能である、請求項49に記載のWAP。 - 前記命令が、
前記ビーコン送信スケジュールをソースから受信するように、前記プロセッサによって実行可能である、請求項49に記載のWAP。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261691942P | 2012-08-22 | 2012-08-22 | |
US61/691,942 | 2012-08-22 | ||
US13/753,315 US9179397B2 (en) | 2012-08-22 | 2013-01-29 | Wireless local area network discovery using non-WLAN timing reference |
US13/753,315 | 2013-01-29 | ||
PCT/US2013/055887 WO2014031703A1 (en) | 2012-08-22 | 2013-08-20 | Wireless local area network discovery using non-wlan timing reference |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015531219A true JP2015531219A (ja) | 2015-10-29 |
Family
ID=50147934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015528611A Pending JP2015531219A (ja) | 2012-08-22 | 2013-08-20 | 非wlanタイミング基準を使うワイヤレスローカルエリアネットワーク発見 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9179397B2 (ja) |
JP (1) | JP2015531219A (ja) |
KR (1) | KR20150047540A (ja) |
CN (1) | CN104584641A (ja) |
WO (1) | WO2014031703A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017528936A (ja) * | 2014-06-17 | 2017-09-28 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいて端末間の直接通信のための同期信号を受信する方法及びそのための装置 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9131457B2 (en) | 2010-08-12 | 2015-09-08 | Samsung Electronics Co., Ltd. | Apparatus and method for transmission of uplink sounding reference signals in a wireless network |
EP2624639B1 (en) * | 2010-11-10 | 2014-08-27 | Panasonic Corporation | Wireless communication system and wireless communication device |
US9179269B2 (en) * | 2012-09-12 | 2015-11-03 | Electronics And Telecommunications Research Institute | Method and apparatus for transmitting synchronization signal in talk-around direct communication network |
US9408140B2 (en) * | 2013-01-03 | 2016-08-02 | Apple Inc. | Using proximate access points to ensure fast Wi-Fi network discovery and reconnection with reduced power consumption |
KR20140111513A (ko) * | 2013-03-11 | 2014-09-19 | 삼성전자주식회사 | 무선 통신 방법 및 장치 |
US9544754B1 (en) * | 2013-05-28 | 2017-01-10 | Marvell International Ltd. | Systems and methods for scheduling discovery-related communication in a wireless network |
US9143979B1 (en) | 2013-06-18 | 2015-09-22 | Marvell International Ltd. | Method and apparatus for limiting a number of mobile devices that can contend for a time slot in a wireless network |
US9648552B2 (en) * | 2014-04-15 | 2017-05-09 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Wireless network scanning strategies |
WO2015162966A1 (ja) * | 2014-04-22 | 2015-10-29 | ソニー株式会社 | 装置及び方法 |
US10659135B2 (en) * | 2014-06-16 | 2020-05-19 | Qualcomm Incorporated | Coordinated discovery of MMW connection points and UES |
CN106664177B (zh) | 2014-06-27 | 2020-10-23 | 泰科弗勒克斯公司 | 用于发送数据的方法和装置 |
WO2015198143A2 (en) | 2014-06-27 | 2015-12-30 | Techflux. Ltd., | Method and device for transmitting data |
EP3167422A4 (en) * | 2014-07-09 | 2018-05-09 | Altierre Corporation | Range configurable beacon based devices for smart interaction and broadcast of information |
US20160095091A1 (en) * | 2014-09-25 | 2016-03-31 | Qualcomm Incorporated | Adjusting frequency for performing wireless local area network (wlan) measurements based on ue mobility |
US10278117B2 (en) | 2015-04-29 | 2019-04-30 | Blackberry Limited | Randomized beacon transmissions |
US10455350B2 (en) | 2016-07-10 | 2019-10-22 | ZaiNar, Inc. | Method and system for radiolocation asset tracking via a mesh network |
KR102718124B1 (ko) * | 2016-12-09 | 2024-10-17 | 삼성전자주식회사 | 무선랜의 액세스 포인트에 접속하는 모바일 디바이스 및 방법 |
CN108119133B (zh) * | 2017-11-13 | 2021-09-28 | 中国石油天然气股份有限公司 | 储层沉积过程的确定方法和装置 |
WO2019208989A1 (ko) * | 2018-04-23 | 2019-10-31 | 엘지전자 주식회사 | 무선랜 시스템에서 다수의 채널을 통해 통신하는 방법 및 이를 이용한 장치 |
US20200259896A1 (en) * | 2019-02-13 | 2020-08-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Industrial Automation with 5G and Beyond |
US10998967B2 (en) * | 2019-02-22 | 2021-05-04 | Locix, Inc. | Systems and methods for pseudo random beacon signal scheduling and data scheduling to improve network conditions |
US11070995B2 (en) * | 2019-06-14 | 2021-07-20 | Cypress Semiconductor Corporation | Method for IoT device to stagger TX and save power |
US11109408B2 (en) | 2019-08-16 | 2021-08-31 | Techflux, Inc. | Method and device for uplink transmission |
WO2022228648A1 (en) * | 2021-04-26 | 2022-11-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Beacon coordination for wireless sensing |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004336779A (ja) * | 2003-05-01 | 2004-11-25 | Lucent Technol Inc | 高エネルギー効率アドホック・ネットワーク用の適応型スリーピングおよびウェイクアップ・プロトコル |
JP2005072677A (ja) * | 2003-08-27 | 2005-03-17 | Sharp Corp | 無線通信システム、無線通信システムにおける無線装置および移動無線装置 |
JP2007506384A (ja) * | 2003-09-22 | 2007-03-15 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | IEEE802.11eスケジュール・エレメントのTSFタイマのあいまいさを解決する方法 |
JP2009239568A (ja) * | 2008-03-27 | 2009-10-15 | Nec Corp | 基地局間の同期制御方法および移動通信システム |
US20100118834A1 (en) * | 2008-11-07 | 2010-05-13 | Amit Kalhan | Device beacon for communication management for peer to peer communications |
JP2010520667A (ja) * | 2007-02-28 | 2010-06-10 | クゥアルコム・インコーポレイテッド | 無線システムにおける近隣探索 |
JP2010171509A (ja) * | 2009-01-20 | 2010-08-05 | Sumitomo Electric Ind Ltd | 路側通信機 |
WO2011096147A1 (ja) * | 2010-02-04 | 2011-08-11 | 日本電気株式会社 | 無線通信システム、無線基地局および協調制御方法 |
JP2011254319A (ja) * | 2010-06-02 | 2011-12-15 | National Institute Of Information & Communication Technology | 基地局装置、無線通信システムおよび無線通信方法 |
WO2012063491A1 (ja) * | 2010-11-10 | 2012-05-18 | パナソニック株式会社 | 無線通信システムおよび無線通信装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7564812B1 (en) * | 2002-06-06 | 2009-07-21 | Bbn Technologies Corp | Method and apparatus for varying times/channels of broadcast beacons |
US20060039332A1 (en) * | 2004-08-17 | 2006-02-23 | Kotzin Michael D | Mechanism for hand off using subscriber detection of synchronized access point beacon transmissions |
US20080085690A1 (en) | 2006-10-05 | 2008-04-10 | Ilya Shnayderman | Method and apparatus of passive scanning |
US8027272B2 (en) * | 2008-04-18 | 2011-09-27 | Telefonaktiebolaget L M Ericsson (Publ) | Auto-configuration and discovery of portable telecommunication system |
US8135379B2 (en) * | 2008-04-18 | 2012-03-13 | Telefoanktiebolaget L M Ericsson (Publ) | Auto-control of radiation power in a portable telecommunication system |
US20090303975A1 (en) | 2008-06-05 | 2009-12-10 | Texas Instruments Incorporated | Method and system for wireless coexistence |
US8175008B1 (en) * | 2008-06-17 | 2012-05-08 | Juniper Networks, Inc. | Auto MEP ID assignment within CFM maintenance association |
US8254355B2 (en) | 2008-09-17 | 2012-08-28 | Airhop Communications, Inc. | Method and apparatus for utilizing a second receiver to establish time and frequency |
US8412263B2 (en) | 2008-12-04 | 2013-04-02 | Intel Corporation | Coexistence interface for multiple radio modules using a reduced number of connections |
US8743848B2 (en) * | 2009-05-26 | 2014-06-03 | Broadcom Corporation | Hybrid location determination for wireless communication device |
US8229041B2 (en) * | 2009-05-26 | 2012-07-24 | Broadcom Corporation | Direct detection of wireless interferers in a communication device for multiple modulation types |
US9161233B2 (en) | 2010-03-30 | 2015-10-13 | Qualcomm Incorporated | Method and apparatus to facilitate support for multi-radio coexistence |
EP2424304A1 (en) | 2010-08-25 | 2012-02-29 | Nxp B.V. | Method and network manager device for scheduling a transmission of messages within a wireless network |
EP2702822B1 (en) | 2011-04-29 | 2020-02-05 | Marvell World Trade Ltd. | Multi-technology coexistence for ibss networks |
-
2013
- 2013-01-29 US US13/753,315 patent/US9179397B2/en active Active
- 2013-08-20 JP JP2015528611A patent/JP2015531219A/ja active Pending
- 2013-08-20 WO PCT/US2013/055887 patent/WO2014031703A1/en active Application Filing
- 2013-08-20 KR KR1020157007117A patent/KR20150047540A/ko not_active Application Discontinuation
- 2013-08-20 CN CN201380043779.9A patent/CN104584641A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004336779A (ja) * | 2003-05-01 | 2004-11-25 | Lucent Technol Inc | 高エネルギー効率アドホック・ネットワーク用の適応型スリーピングおよびウェイクアップ・プロトコル |
JP2005072677A (ja) * | 2003-08-27 | 2005-03-17 | Sharp Corp | 無線通信システム、無線通信システムにおける無線装置および移動無線装置 |
JP2007506384A (ja) * | 2003-09-22 | 2007-03-15 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | IEEE802.11eスケジュール・エレメントのTSFタイマのあいまいさを解決する方法 |
JP2010520667A (ja) * | 2007-02-28 | 2010-06-10 | クゥアルコム・インコーポレイテッド | 無線システムにおける近隣探索 |
JP2009239568A (ja) * | 2008-03-27 | 2009-10-15 | Nec Corp | 基地局間の同期制御方法および移動通信システム |
US20100118834A1 (en) * | 2008-11-07 | 2010-05-13 | Amit Kalhan | Device beacon for communication management for peer to peer communications |
JP2010171509A (ja) * | 2009-01-20 | 2010-08-05 | Sumitomo Electric Ind Ltd | 路側通信機 |
WO2011096147A1 (ja) * | 2010-02-04 | 2011-08-11 | 日本電気株式会社 | 無線通信システム、無線基地局および協調制御方法 |
JP2011254319A (ja) * | 2010-06-02 | 2011-12-15 | National Institute Of Information & Communication Technology | 基地局装置、無線通信システムおよび無線通信方法 |
WO2012063491A1 (ja) * | 2010-11-10 | 2012-05-18 | パナソニック株式会社 | 無線通信システムおよび無線通信装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017528936A (ja) * | 2014-06-17 | 2017-09-28 | エルジー エレクトロニクス インコーポレイティド | 無線通信システムにおいて端末間の直接通信のための同期信号を受信する方法及びそのための装置 |
US11438853B2 (en) | 2014-06-17 | 2022-09-06 | Lg Electronics Inc. | Method for receiving synchronizing signals for direct communication between terminals in wireless communication system, and device for same |
Also Published As
Publication number | Publication date |
---|---|
KR20150047540A (ko) | 2015-05-04 |
CN104584641A (zh) | 2015-04-29 |
US9179397B2 (en) | 2015-11-03 |
WO2014031703A1 (en) | 2014-02-27 |
US20140056192A1 (en) | 2014-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2015531219A (ja) | 非wlanタイミング基準を使うワイヤレスローカルエリアネットワーク発見 | |
JP7379637B2 (ja) | オンデマンドシステム情報 | |
US12137429B2 (en) | Method and apparatus for maintaining uplink synchronization and reducing battery power consumption | |
KR101886319B1 (ko) | 이웃 영역 네트워크 검출을 위한 방법들 및 장치 | |
JP6706266B2 (ja) | システム情報の更新 | |
JP6707552B2 (ja) | システム情報の付加的な送信 | |
US12021631B2 (en) | Efficient sparse network resource usage and connection release | |
US9730162B2 (en) | Power management for WLAN client devices using low energy signaling | |
EP2876967B1 (en) | Drx operation with dual connectivity | |
JP6854354B2 (ja) | New Radio免許不要周波数帯でのデバイス能力に基づくスタンドアローンページング | |
US20150138991A1 (en) | Relay capable wireless apparatuses | |
US9955422B2 (en) | User equipment power optimization | |
US20180027494A1 (en) | Apparatus, system and method of neighbor awareness networking (nan) data link (ndl) power save | |
US10455506B2 (en) | Method and apparatus for discontinuous reception | |
KR102232735B1 (ko) | 분산형 디바이스-투-디바이스 동기화를 위한 리소스 할당 | |
JP2022502958A (ja) | 早期データ伝送及び無線アクセスネットワーク通知エリア更新 | |
US9788258B2 (en) | PULL-based relay selection for device-to-device communication | |
CN112771913A (zh) | 方法、装置和计算机程序产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170911 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180409 |