JP2015123442A - Wastewater treatment mechanism - Google Patents
Wastewater treatment mechanism Download PDFInfo
- Publication number
- JP2015123442A JP2015123442A JP2013271732A JP2013271732A JP2015123442A JP 2015123442 A JP2015123442 A JP 2015123442A JP 2013271732 A JP2013271732 A JP 2013271732A JP 2013271732 A JP2013271732 A JP 2013271732A JP 2015123442 A JP2015123442 A JP 2015123442A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- tank
- wastewater
- treatment
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
この発明は、工場排水その他の排水処理機構に関するものである。 The present invention relates to industrial wastewater and other wastewater treatment mechanisms.
従来、塩類及び有機物を含んでいて再利用や河川などへの放流ができない有機性廃水から、有機性成分を除去するだけではなく、従来の処理では除去できない高濃度の塩類をあわせて除去することができ、処理水として再利用或いは放流を可能にする、有機性廃水の処理方法に関する提案があった(特許文献1)。
すなわち、し尿や、ゴミ埋め立て地からの浸出水などの塩類濃度が高い有機性廃水は、一般に、カルシウムイオンや塩素イオンなどの塩類や有機物などの汚濁物質を高濃度に含んでいる。このような有機性廃水は、しばしば生化学的酸素要求量(BOD)や化学的酸素要求量(COD)が高く、多くの懸濁固体(ss)を含み、さらにコロイド物質などに原因する色度を有している。そのため、通常はこれらを何らかの用途に直接再利用したり、河川などに直接放流したりすることはできない。
このような有機性廃水の処理方法として、従来は、有機汚濁物の除去を主体とした処理方法が用いられてきた。その主な処理方法は、例えばBOD除去を目的とした生物処理や、色度、COD及びssなどの除去を目的とした凝集沈殿処理、ssなど濁質の除去を目的とした砂ろ過、精密ろ過膜(MF膜)処理などであり、実際には、これらの処理を組み合わせることにより、BODやCODなどの有機性成分を除去することが行われていた。しかし、このような処理によると、有機性廃水中の有機性成分を除去することができても、カルシウムイオンや塩素イオンなどの塩類を除去することはできなかった。
そこで、塩類を含む有機性廃水の処理方法として、塩類を含有する有機性廃水に軟化処理を行ってその中のカルシウム濃度を低下させた後、生物処理、凝集沈殿処理、砂ろ過処理、精密ろ過膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなる処理を行い、次いで逆浸透膜を用いる逆浸透膜処理により脱塩処理して、逆浸透濃縮水と処理水とに分離し、処理水を回収するとともにその一方、前記逆浸透濃縮水を引き続いて電気透析処理を施して電気透析濃縮水と電気透析処理水とに分離し、その電気透析処理水は、逆浸透膜処理の供給側に戻す一方、電気透析濃縮水は、蒸発乾燥処理することによって水分と塩類とに分離し、塩類を単離するという、有機性廃水の処理方法が提案された。
ここで提案された処理方法は、電気透析処理で得られる濃縮水を、蒸発乾燥処理することによって水分と塩類とに分離し、塩類を単離する方法であった。しかし、この蒸発乾燥処理では、乾燥塩にするため、乾燥に伴う消費エネルギーが多く、運転コスト増大の要因となっていた。その一方、得られた乾燥塩類の利用先が少なく現実的に長期保管するか、再度最終処分場に埋め立て処分するかしかないため、回収塩類の有効利用が大きな課題となっている。
そこで、電気透析で得られる濃縮水を有効に再利用できる、新たな有機性廃水の処理方法を得んとし、塩類及び有機物を含有する有機性廃水に対して軟化処理を行ってカルシウム濃度を低減させる軟化処理を行った後、生物処理、凝集沈殿処理、砂ろ過処理、精密ろ過膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなるss除去処理を行う前処理工程と、電気透析処理により電気透析濃縮水と電気透析処理水とに分離する電気透析処理工程と、逆浸透膜処理により逆浸透濃縮水と逆浸透膜処理水とに分離する逆浸透膜処理工程とを備えた有機性廃水の処理方法において、電気透析処理工程から得られた電気透析濃縮水を電解処理装置に供給して電気分解を行い、次亜塩素酸ナトリウム溶液を生成することを特徴とする有機性廃水の処理方法が提案された。
この提案の有機性廃水の処理方法によれば、塩類を含有する有機性廃水に対して、先ずは軟化処理によってカルシウム溶解濃度を下げ、ss除去処理によって懸濁固体(ss)を除去することによって有機物の低減を図った後、逆浸透膜処理及び電気透析処理を施すため、ssや有機物の影響で逆浸透膜処理の水回収率が低下したり、電気透析処理水中へ有機物成分が漏洩したりするのを防止することができる、というものである。
しかし、この処理方法ではあまり効率が良くないという問題があった。
Conventionally, not only organic components are removed from organic wastewater that contains salts and organic matter but cannot be reused or discharged into rivers, but also high-concentration salts that cannot be removed by conventional treatment. There has been a proposal regarding a method for treating organic wastewater that can be reused or discharged as treated water (Patent Document 1).
That is, organic wastewater having a high salt concentration such as human waste and leachate from a landfill site generally contains a high concentration of pollutants such as salts such as calcium ions and chlorine ions and organic matter. Such organic wastewater often has high biochemical oxygen demand (BOD) and chemical oxygen demand (COD), contains many suspended solids (ss), and also has chromaticity caused by colloidal substances. have. For this reason, normally, these cannot be directly reused for some purpose or discharged directly into rivers.
Conventionally, as a method for treating such organic wastewater, a method mainly using organic contaminant removal has been used. The main treatment methods include biological treatment for the purpose of removing BOD, coagulation and precipitation treatment for the purpose of removing chromaticity, COD and ss, sand filtration and microfiltration for the purpose of removing turbid substances such as ss. It is a membrane (MF membrane) treatment, and in practice, organic components such as BOD and COD have been removed by combining these treatments. However, according to such treatment, even if organic components in the organic wastewater can be removed, salts such as calcium ions and chlorine ions cannot be removed.
Therefore, as a method of treating organic wastewater containing salts, after softening the organic wastewater containing salts to reduce the calcium concentration therein, biological treatment, coagulation sedimentation treatment, sand filtration treatment, microfiltration One or more treatments selected from the group consisting of membrane treatment or a treatment comprising a combination of two or more are performed, followed by desalination treatment by reverse osmosis membrane treatment using a reverse osmosis membrane to separate into reverse osmosis concentrated water and treated water On the other hand, the treated water is recovered while the reverse osmosis concentrated water is subsequently subjected to electrodialysis to separate the electrodialyzed concentrated water and the electrodialyzed water, and the electrodialyzed water is treated with the reverse osmosis membrane treatment. On the other hand, a method for treating organic wastewater has been proposed in which the electrodialyzed concentrated water is separated into moisture and salts by evaporating and drying to isolate the salts.
The treatment method proposed here is a method of isolating the salt by separating the concentrated water obtained by the electrodialysis treatment into water and salts by evaporating and drying. However, in this evaporative drying treatment, a dry salt is used, so that much energy is consumed for drying, which increases operating costs. On the other hand, since the use of the obtained dried salt is few and it can only be practically stored for a long time or landfilled again at the final disposal site, effective utilization of the recovered salt is a major issue.
Therefore, a new organic wastewater treatment method that can effectively reuse the concentrated water obtained by electrodialysis is obtained, and the calcium concentration is reduced by softening the organic wastewater containing salts and organic substances. A pretreatment step of performing ss removal treatment consisting of one or more treatments or a combination of two or more selected from the group consisting of biological treatment, coagulation sedimentation treatment, sand filtration treatment, microfiltration membrane treatment, An electrodialysis treatment step for separating electrodialysis concentrated water and electrodialysis treatment water by electrodialysis treatment, and a reverse osmosis membrane treatment step for separating reverse osmosis concentration water and reverse osmosis membrane treatment water by reverse osmosis membrane treatment The organic wastewater treatment method is characterized in that the electrodialysis concentrated water obtained from the electrodialysis treatment step is supplied to an electrolysis apparatus to perform electrolysis to produce a sodium hypochlorite solution. Method of treating organic waste water has been proposed.
According to the proposed organic wastewater treatment method, first, by reducing the calcium dissolution concentration by softening treatment and removing suspended solids (ss) by ss removal treatment for organic wastewater containing salts After reducing organic matter, reverse osmosis membrane treatment and electrodialysis treatment are performed, so the water recovery rate of reverse osmosis membrane treatment decreases due to the influence of ss and organic matter, and organic matter components leak into electrodialysis treatment water. It is possible to prevent this.
However, this processing method has a problem that it is not very efficient.
そこでこの発明は、従来よりも効率良く分解することが出来る排水処理機構を提供しようとするものである。 Therefore, the present invention intends to provide a wastewater treatment mechanism that can be decomposed more efficiently than in the prior art.
前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明の排水処理機構は、排水中の汚れ物質を吸着する活性炭吸着槽と槽内流動機構とを有し、前記活性炭吸着槽に電解水を供給すると共に、前記活性炭吸着槽内で槽内流動機構により排水と活性炭とを流動させるようにしたことを特徴とする。
この排水処理機構では、排水中の汚れ物質(主として有機成分)を吸着する活性炭吸着槽を有するので、排水中の汚れ物質を活性炭(Ac)に吸着させることにより、排水中の濃度(例えばCODやTOCとして把握)と比較して汚れ物質が濃縮された状態とすることが出来る。前記排水として、工業排水、飲食店の排水、その他各種業種の排水を例示することが出来る。
In order to solve the above problems, the present invention takes the following technical means.
(1) The wastewater treatment mechanism of the present invention has an activated carbon adsorption tank that adsorbs dirt substances in the wastewater and a flow mechanism in the tank, and supplies electrolytic water to the activated carbon adsorption tank, and in the activated carbon adsorption tank It is characterized in that the waste water and activated carbon are made to flow by the in-tank flow mechanism.
Since this wastewater treatment mechanism has an activated carbon adsorption tank that adsorbs dirt substances (mainly organic components) in the wastewater, by adsorbing dirt substances in the wastewater to the activated carbon (Ac), the concentration in the wastewater (for example, COD and COD) Compared with TOC, it can be in a state where the contaminants are concentrated. Examples of the waste water include industrial waste water, restaurant waste water, and other types of waste water.
また、前記活性炭吸着槽に電解水(例えば槽内の残留塩素濃度が200〜500ppmとなるように調整する)を供給するようにしたので、排水中の濃度と比較して汚れ物質が濃縮された状態として活性炭に吸着した汚れ物質を分解することが出来る。前記電解水は、食塩(NaCl)、次亜塩素酸(HOCl)、過酸化水素(H2O2)の共存下で電気分解することにより得ることが出来る。そして電解水によって、排水中に電解次亜塩素酸や・OHラジカルなどの活性酸素を含有させることが出来る。 In addition, since electrolyzed water (for example, adjusted so that the residual chlorine concentration in the tank becomes 200 to 500 ppm) is supplied to the activated carbon adsorption tank, dirt substances are concentrated compared to the concentration in the waste water. As a state, the dirt substance adsorbed on the activated carbon can be decomposed. The electrolyzed water can be obtained by electrolysis in the presence of sodium chloride (NaCl), hypochlorous acid (HOCl), and hydrogen peroxide (H 2 O 2 ). The electrolyzed water can contain active oxygen such as electrolytic hypochlorous acid and .OH radicals in the waste water.
さらに、前記活性炭吸着槽内で槽内流動機構(例えば、螺旋状羽根回転式コンベア)により排水と活性炭とを流動させるようにしたので、槽内が流動することにより一定の場所に停滞する部位が減少して電解水の洗浄作用を万遍なく活性炭に及ぼすことが出来る。槽内では螺旋状羽根回転式コンベア(槽内流動機構)を略中央に配して上向きに駆動することにより、下方の排水と電解水を上方に流動させて循環させる流れを形成することが出来る。
すなわち、汚れ成分が経時的に吸着していく活性炭を電解水で連続的に洗浄しながら排水処理を行うことが出来ると共に、下方の排水と電解水を上方に流動させて循環させる流れを形成してムラのない安定した排水処理を行うことが出来る。
Furthermore, since the waste water and the activated carbon are caused to flow in the activated carbon adsorption tank by a flow mechanism in the tank (for example, a spiral blade rotating conveyor), The cleaning action of electrolyzed water can be uniformly applied to the activated carbon. In the tank, a spiral blade rotary conveyor (intra-tank flow mechanism) is arranged in the approximate center and driven upward to form a flow in which the lower drainage and the electrolyzed water flow upward and circulate. .
That is, the wastewater treatment can be performed while continuously washing the activated carbon on which the dirt component is adsorbed with the electrolytic water with the electrolyzed water, and the flow of circulating the lower drainage and the electrolyzed water upward is formed. And stable wastewater treatment without unevenness.
(2)汚れ物質が吸着した前記活性炭を収容して賦活する誘導加熱機構を有するようにしてもよい。
このように構成すると、汚れ物質が吸着した活性炭を誘導加熱(例えば600℃以上に加熱)により賦活して再生することが出来る。これにより、長期間の処理により吸着平衡がたった活性炭をリフレッシュして再利用することが出来る。
(2) You may make it have the induction heating mechanism which accommodates and activates the said activated carbon which the dirt substance adsorb | sucked.
If comprised in this way, the activated carbon which the dirt substance adsorb | sucked can be activated and reproduced | regenerated by induction heating (for example, heating to 600 degreeC or more). This makes it possible to refresh and reuse activated carbon that has been in an adsorption equilibrium after a long-term treatment.
この発明は上述のような構成であり、次の効果を有する。
槽内が流動することにより一定の場所に停滞する部位が減少して電解水の洗浄作用を万遍なく活性炭に及ぼすことが出来るので、従来よりも効率良く分解することが出来る。
The present invention is configured as described above and has the following effects.
Since the site | part stagnating in a fixed place reduces by flowing in the tank and the washing | cleaning action of electrolyzed water can be exerted on activated carbon uniformly, it can decompose | disassemble more efficiently than before.
以下、この発明の実施の形態を説明する。
(実施形態1)
図1及び図2に示すように、この実施形態の排水処理機構は、排水(工場排水)中の汚れ物質(主として有機成分)を吸着する活性炭吸着槽1と槽内流動機構2とを有する。また、前記活性炭吸着槽1に電解水を供給するようにしている。
前記電解水は、次亜塩素酸留置槽3から供給される次亜塩素酸(HOCl)の共存下で、電解水生成装置(無隔膜電気分解機構)4で電気分解することにより得て、電解塩素水槽5に貯留するようにした。また前記電解水は、活性炭吸着槽1に注入した際の残留塩素濃度が200〜500ppmとなるように供給量と濃度を調整した。そして電解水によって、活性炭吸着槽1内の排水中に電解次亜塩素酸や・OHラジカルなどの活性酸素を含有させることが出来る。
Embodiments of the present invention will be described below.
(Embodiment 1)
As shown in FIGS. 1 and 2, the wastewater treatment mechanism of this embodiment includes an activated carbon adsorption tank 1 that adsorbs dirt substances (mainly organic components) in wastewater (factory wastewater) and an in-bath flow mechanism 2. In addition, electrolytic water is supplied to the activated carbon adsorption tank 1.
The electrolyzed water is obtained by electrolysis in an electrolyzed water generator (diaphragm electrolysis mechanism) 4 in the coexistence of hypochlorous acid (HOCl) supplied from a hypochlorous acid indwelling tank 3. It was made to store in the chlorine water tank 5. Further, the supply amount and concentration of the electrolyzed water were adjusted so that the residual chlorine concentration when injected into the activated carbon adsorption tank 1 was 200 to 500 ppm. Then, the electrolyzed water can contain active oxygen such as electrolytic hypochlorous acid or .OH radical in the waste water in the activated carbon adsorption tank 1.
前記活性炭吸着槽1内で、モータMで回転駆動する槽内流動機構2(スクリュー・コンベア)により排水と活性炭とを流動させるようにしている。槽内では槽内流動機構2を略中央に配して上向きに駆動することにより、下方の排水と電解水を上方に流動させて循環させる流れ(模式的に図示)を形成している。そして、清浄化された処理水は出口6から、CODセンサー7を介して再利用に供するようにしている。なお、逆洗浄水の流入口8を設けている。
また、図2に示すように、活性炭吸着槽1内にモータMで回転駆動する縦型のスクリュー・コンベア9を配して、長期間の処理により吸着平衡がたった活性炭を外部に取り出せるようにしている。さらに、再生した活性炭(実施形態2参照)を上方の受け入れ口10から活性炭吸着槽1内に注入できるようにしている。
In the activated carbon adsorption tank 1, waste water and activated carbon are caused to flow by a tank flow mechanism 2 (screw conveyor) that is driven to rotate by a motor M. In the tank, the in-tank flow mechanism 2 is arranged in the approximate center and driven upward to form a flow (schematically illustrated) that causes the lower drainage and the electrolyzed water to flow upward and circulate. The purified treated water is reused from the outlet 6 through the COD sensor 7. A backwash water inlet 8 is provided.
In addition, as shown in FIG. 2, a vertical screw conveyor 9 that is driven to rotate by a motor M is disposed in the activated carbon adsorption tank 1 so that activated carbon that has been in an adsorption equilibrium after a long-term treatment can be taken out. Yes. Furthermore, the regenerated activated carbon (see Embodiment 2) can be injected into the activated carbon adsorption tank 1 from the upper receiving port 10.
次に、この実施形態の排水処理機構の使用状態を説明する。
この排水処理機構では、排水中の汚れ物質を吸着する活性炭吸着槽1を有するので、排水中の汚れ物質を活性炭(Ac)に吸着させることにより、排水中の濃度(CODとして把握した)と比較して汚れ物質が濃縮された状態とすることが出来た。
また、前記活性炭吸着槽1に電解水を供給するようにしたので、排水中の濃度と比較して汚れ物質が濃縮された状態として活性炭に吸着した汚れ物質を分解することが出来た。
Next, the use state of the wastewater treatment mechanism of this embodiment will be described.
Since this wastewater treatment mechanism has an activated carbon adsorption tank 1 that adsorbs dirt substances in wastewater, it is compared with the concentration in wastewater (as grasped as COD) by adsorbing dirt substances in wastewater to activated carbon (Ac). Thus, it was possible to obtain a state in which the dirt substance was concentrated.
Moreover, since the electrolyzed water was supplied to the activated carbon adsorption tank 1, the dirt substance adsorbed on the activated carbon was able to be decomposed in a state where the dirt substance was concentrated as compared with the concentration in the waste water.
さらに、前記活性炭吸着槽1内で槽内流動機構2(スクリュー・コンベア)により排水と活性炭とを流動させるようにしたので、槽内が流動することにより一定の場所に停滞する部位が減少して電解水の洗浄作用を万遍なく活性炭に及ぼすことができ、従来よりも効率良く分解することが出来た。
すなわち、汚れ成分が経時的に吸着していく活性炭を電解水で連続的に洗浄しながら排水処理を行うことが出来ると共に、下方の排水と電解水を上方に流動させて循環させる流れを形成してムラのない安定した排水処理を行うことが出来た。
Further, since the waste water and activated carbon are caused to flow in the activated carbon adsorption tank 1 by the in-tank flow mechanism 2 (screw conveyor), the portion of the tank that stagnates in a certain place is reduced by flowing in the tank. Electrolytic water cleaning action can be applied to activated carbon evenly, and it was able to decompose more efficiently than before.
That is, the wastewater treatment can be performed while continuously washing the activated carbon on which the dirt component is adsorbed with the electrolytic water with the electrolyzed water, and the flow of circulating the lower drainage and the electrolyzed water upward is formed. And stable drainage treatment without unevenness.
(実施形態2)
次に、実施形態2を上記実施形態との相違点を中心に説明する。
図3に示すように、この実施形態では、汚れ物質が吸着した前記活性炭を収容して賦活する誘導加熱機構11を有するようにした。
これにより、汚れ物質が吸着した活性炭を誘導加熱(例えば600℃以上に加熱)により賦活して再生することができ、長期間の処理により吸着平衡がたった活性炭をリフレッシュして再利用することが出来た。
なお、この実施形態では、活性炭吸着槽1内に横型のスクリュー・コンベア9を配して、長期間の処理により吸着平衡がたった活性炭を外部に取り出せるようにしている。
(Embodiment 2)
Next, the second embodiment will be described focusing on the differences from the above embodiment.
As shown in FIG. 3, in this embodiment, the induction heating mechanism 11 that accommodates and activates the activated carbon on which the dirt substance is adsorbed is provided.
This makes it possible to activate and regenerate the activated carbon on which dirt is adsorbed by induction heating (for example, heating to 600 ° C. or higher), and refresh and reuse activated carbon that has been in an adsorption equilibrium after long-term treatment. It was.
In this embodiment, a horizontal screw conveyor 9 is arranged in the activated carbon adsorption tank 1 so that activated carbon having an adsorption equilibrium after a long-term treatment can be taken out.
前記誘導加熱では、導線(銅パイプ製のコイル)12に交流電流を流すと、その周りに向き、強度の変化する磁力線が発生する。その近くに電気を通す物質を置くとこの変化する磁力線の影響を受けて、コイル12内の金属筒13(の中に渦電流が流れる。金属には通常電気抵抗があるため、金属筒13に電流が流れると、電力=電流2×抵抗 分のジュール熱が発生して、金属筒13が自己発熱する。そして、前記誘導加熱機構11の金属筒13内に、使用後の活性炭を入れて復元するようにしている。 In the induction heating, when an alternating current is passed through the conducting wire (coil made of copper pipe) 12, magnetic lines of force that change in direction and around are generated. When a substance that conducts electricity is placed near it, an eddy current flows in the metal cylinder 13 (in the coil 12 under the influence of the changing magnetic field lines. When the current flows, Joule heat of power = current 2 x resistance is generated, and the metal cylinder 13 self-heats, and the activated carbon after use is put into the metal cylinder 13 of the induction heating mechanism 11 to restore it. Like to do.
高温雰囲気では活性炭(C)と水蒸気(H2O)により、C+H2O→CO+H2 の反応が生じ、活性炭の表面の炭素(C)が水蒸気(H2O)と反応して、一酸化炭素(CO)と水素(H2)とに変化して離脱し、これらはさらに二酸化炭素(CO2)と水(H2O)とに変化する。こうして熱と水蒸気によって賦活化すると、活性炭の細孔の表皮層が剥離して新しい界面が再生することとなる。
なお、誘導加熱機構11の上方に使用後の活性炭の受け入れ口14を、下方に再生後の取り出し口15を設けている。
In a high-temperature atmosphere, activated carbon (C) and water vapor (H 2 O) cause a reaction of C + H 2 O → CO + H 2 , and carbon (C) on the surface of the activated carbon reacts with water vapor (H 2 O) to produce carbon monoxide. It changes into (CO) and hydrogen (H 2 ) and leaves, and these further change into carbon dioxide (CO 2 ) and water (H 2 O). When activated by heat and water vapor in this way, the skin layer of the pores of the activated carbon peels off and a new interface is regenerated.
The used activated carbon receiving port 14 is provided above the induction heating mechanism 11, and the regenerated outlet 15 is provided below.
従来よりも効率良く分解することが出来ことによって、種々の排水処理機構の用途に適用することができる。 Since it can be decomposed more efficiently than before, it can be applied to various uses of wastewater treatment mechanisms.
1 活性炭吸着槽
2 槽内流動機構
11 誘導加熱機構
1 Activated carbon adsorption tank 2 Flow mechanism in the tank
11 Induction heating mechanism
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013271732A JP2015123442A (en) | 2013-12-27 | 2013-12-27 | Wastewater treatment mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013271732A JP2015123442A (en) | 2013-12-27 | 2013-12-27 | Wastewater treatment mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015123442A true JP2015123442A (en) | 2015-07-06 |
Family
ID=53534580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013271732A Pending JP2015123442A (en) | 2013-12-27 | 2013-12-27 | Wastewater treatment mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015123442A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020146611A (en) * | 2019-03-12 | 2020-09-17 | 株式会社オメガ | Wastewater treatment method |
JP2022093006A (en) * | 2020-12-11 | 2022-06-23 | 株式会社オメガ | Exhaust gas purification mechanism and heat treatment device of wastes |
JP2022097097A (en) * | 2020-12-18 | 2022-06-30 | 株式会社オメガ | Wastewater treatment apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4876367A (en) * | 1972-01-14 | 1973-10-15 | ||
JPS5421055A (en) * | 1977-07-16 | 1979-02-16 | Korenaga Kagaku Kougiyou Kk | Device for treating active charcoal waste water |
JP2008279435A (en) * | 2007-04-09 | 2008-11-20 | Hitachi Ltd | Method, apparatus and system for treating organic matter contained in wastewater, and bitumen recovery system |
JP2010036155A (en) * | 2008-08-07 | 2010-02-18 | J-Top Service Co Ltd | Water treatment device and water treatment method |
-
2013
- 2013-12-27 JP JP2013271732A patent/JP2015123442A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4876367A (en) * | 1972-01-14 | 1973-10-15 | ||
JPS5421055A (en) * | 1977-07-16 | 1979-02-16 | Korenaga Kagaku Kougiyou Kk | Device for treating active charcoal waste water |
JP2008279435A (en) * | 2007-04-09 | 2008-11-20 | Hitachi Ltd | Method, apparatus and system for treating organic matter contained in wastewater, and bitumen recovery system |
JP2010036155A (en) * | 2008-08-07 | 2010-02-18 | J-Top Service Co Ltd | Water treatment device and water treatment method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020146611A (en) * | 2019-03-12 | 2020-09-17 | 株式会社オメガ | Wastewater treatment method |
JP7015622B2 (en) | 2019-03-12 | 2022-02-03 | 株式会社オメガ | Wastewater treatment method |
JP2022093006A (en) * | 2020-12-11 | 2022-06-23 | 株式会社オメガ | Exhaust gas purification mechanism and heat treatment device of wastes |
JP7365322B2 (en) | 2020-12-11 | 2023-10-19 | 株式会社オメガ | Exhaust gas purification mechanism and waste heat treatment equipment |
JP2022097097A (en) * | 2020-12-18 | 2022-06-30 | 株式会社オメガ | Wastewater treatment apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104445788B (en) | High slat-containing wastewater treatment for reuse zero-emission integrated technique | |
KR102011115B1 (en) | capacitive deionization system for concentrated water saving type | |
JP5909281B2 (en) | Water treatment equipment | |
KR20080091699A (en) | Treatment method of organic materials included in waste water, treatment device of organic meterials, treatment system of organic materials and recovery system of bitumen | |
KR100893565B1 (en) | Desalinaton system according to salty of brackish water and method for desalinating using the same | |
KR20170002047A (en) | Purification system for potable water and ultra pure water | |
JP6194887B2 (en) | Fresh water production method | |
JP2007237062A (en) | Artificial dialysis water manufacturing method and its manufacturing apparatus | |
WO2012050215A1 (en) | Water treatment device and water treatment method | |
JP5911457B2 (en) | Wastewater treatment mechanism | |
JP6228471B2 (en) | To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method | |
AzadiAghdam et al. | Increasing water recovery during reclamation of treated municipal wastewater using bipolar membrane electrodialysis and fluidized bed crystallization | |
JP2015123442A (en) | Wastewater treatment mechanism | |
JP2005218983A (en) | Wastewater treatment method and apparatus using electrolytic oxidation | |
JP2001170630A (en) | Pure water production device | |
JP2008086852A (en) | Water treating device | |
JP3773187B2 (en) | Desalination wastewater treatment method and apparatus | |
JP5285135B2 (en) | Water treatment system and water treatment method | |
JP2010036173A (en) | Water treatment system and water treatment method | |
JP4641435B2 (en) | Endocrine disrupting chemical substance decomposition method and apparatus | |
CN111977850A (en) | Heavy metal wastewater reduction and concentration technology | |
KR20210027709A (en) | Desalination system with water circulation | |
JPH0639372A (en) | Water purifying system | |
CN203269702U (en) | Pretreating device for sea water desalination | |
CN109160657A (en) | A kind of processing method of polyelectrolyte waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160701 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160829 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161202 |