Nothing Special   »   [go: up one dir, main page]

JP2013142082A - Metal complex and anion-removing material comprising the same - Google Patents

Metal complex and anion-removing material comprising the same Download PDF

Info

Publication number
JP2013142082A
JP2013142082A JP2012003962A JP2012003962A JP2013142082A JP 2013142082 A JP2013142082 A JP 2013142082A JP 2012003962 A JP2012003962 A JP 2012003962A JP 2012003962 A JP2012003962 A JP 2012003962A JP 2013142082 A JP2013142082 A JP 2013142082A
Authority
JP
Japan
Prior art keywords
group
ion
excluding
metal complex
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012003962A
Other languages
Japanese (ja)
Inventor
Yasutaka Inubushi
康貴 犬伏
Naohiro Katayama
直浩 片山
Mitsuru Kondo
満 近藤
Tatsunari Inoue
達成 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Kuraray Co Ltd
Original Assignee
Shizuoka University NUC
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, Kuraray Co Ltd filed Critical Shizuoka University NUC
Priority to JP2012003962A priority Critical patent/JP2013142082A/en
Publication of JP2013142082A publication Critical patent/JP2013142082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal complex having a high anion removal activity.SOLUTION: This metal complex includes a copper ion, a carbonate ion and an organic ligand capable of bidentately coordinating with the copper ion and expressed by general formula (I) (wherein, Rto Rare each H, alkyl which may have a substituent, or the like; and Ris substituted methyl having 5-membered or 6-membered heterocyclic ring which may have a substituent containing at least one nitrogen atom), and the composition of the metal complex is expressed by formula (A) [wherein, L is an organic ligand capable of bidentate coordination]. As the organic ligand capable of bidentately coordinating, an imidazolyl group is preferable.

Description

本発明は、金属錯体、並びにそれからなるアニオン除去材に関する。さらに詳しくは、銅イオンと、炭酸イオンと、該金属イオンに二座配位可能な特定の有機配位子とからなる金属錯体に関する。本発明の金属錯体は、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ酸イオン、ヘキサフルオロアンチモン酸イオン、メタンスルホン酸イオン、ベンゼンスルホン酸イオン、トリフルオロ酢酸イオン、トリフルオロメタンスルホン酸イオン、硝酸イオン、硫酸イオン、リン酸イオンまたはハロゲン化物イオンなどを除去するための除去材として好ましい。   The present invention relates to a metal complex and an anion-removing material comprising the same. More specifically, the present invention relates to a metal complex comprising a copper ion, a carbonate ion, and a specific organic ligand capable of bidentate coordination with the metal ion. The metal complex of the present invention comprises perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, hexafluoroarsenate ion, hexafluoroantimonate ion, methanesulfonate ion, benzenesulfonate ion, trifluoroacetate ion. It is preferable as a removing material for removing trifluoromethanesulfonate ion, nitrate ion, sulfate ion, phosphate ion or halide ion.

これまで、水処理の分野で種々の有害アニオン除去材が開発されている。最近ではより高い除去活性を有する材料として、特殊な陰イオン交換樹脂が開発されている(例えば、特許文献1参照)。   Until now, various harmful anion removing materials have been developed in the field of water treatment. Recently, a special anion exchange resin has been developed as a material having higher removal activity (see, for example, Patent Document 1).

有害アニオンの例として、花火やロケットなどの固体燃料、エアバッグのインフレーターなどに利用される過塩素酸イオンが挙げられる。過塩素酸イオンは、成人の代謝機能を司り小児の身体発育を促進する甲状腺に障害を及ぼす物質である。その除去方法としては、過塩素酸イオンにより汚染された廃液を濃縮し、塩化カリウムを加えることにより過塩素酸カリウムを生成させ、冷却して結晶化させる方法が知られている(特許文献2参照)。   Examples of harmful anions include solid fuels such as fireworks and rockets, and perchlorate ions used for airbag inflators. Perchlorate ion is a substance that damages the thyroid gland, which controls the metabolic function of adults and promotes physical development in children. As the removal method, there is known a method of concentrating the waste liquid contaminated with perchlorate ions, adding potassium chloride to produce potassium perchlorate, and cooling to crystallize (see Patent Document 2). ).

他の有害アニオンの例として、半導体製造工程やメッキ工程等の廃液に含まれるテトラフルオロホウ酸イオンが挙げられる。ホウ素及びフッ素は動物や植物にとって必須微量元素であるが、過剰の摂取は植物の成長阻害、動物の生殖阻害毒性、神経及び消化器系の障害などが懸念される。その除去方法としては、テトラフルオロホウ酸イオンを含む廃水にアルミニウム化合物、塩化第2鉄及び鉄粉を添加し反応させ、該反応物に水酸化カルシウムを添加して中和し、フッ素をカルシウム塩として除去する方法が知られている(特許文献3参照)。   Examples of other harmful anions include tetrafluoroborate ions contained in waste liquids such as semiconductor manufacturing processes and plating processes. Boron and fluorine are essential trace elements for animals and plants. However, excessive intake may cause plant growth inhibition, animal reproduction inhibition toxicity, nerve and digestive system disorders, and the like. As the removal method, an aluminum compound, ferric chloride and iron powder are added to and reacted with wastewater containing tetrafluoroborate ions, and the reaction product is neutralized by adding calcium hydroxide, and fluorine is converted into a calcium salt. The method of removing is known (refer patent document 3).

また、過塩素酸イオンやテトラフルオロホウ酸イオンの除去材として、硫酸銅と1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼンとからなる高分子金属錯体が開示されている(特許文献4、特許文献5参照)。該高分子金属錯体は溶液中で過塩素酸イオンやテトラフルオロホウ酸イオンと接触した際に、カプセル型分子へと構造変化し、これらのアニオンを捕捉することにより溶液中から除去することができる。しかし、構造変化の際に、金属錯体中の銅イオンが溶液中に溶出するという問題があり、銅イオンは法令により生活環境項目に係る排水基準において規制の対象となることから、その溶出を抑えたアニオン除去材が求められていた。また、アニオンの除去速度においても満足できるものではなく、その性能のさらなる向上が求められていた。   Moreover, as a removing agent for perchlorate ions and tetrafluoroborate ions, a polymer metal comprising copper sulfate and 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene Complexes are disclosed (see Patent Document 4 and Patent Document 5). When the polymer metal complex contacts with perchlorate ion or tetrafluoroborate ion in solution, it changes its structure into a capsule molecule and can be removed from the solution by capturing these anions. . However, there is a problem that the copper ions in the metal complex elute into the solution when the structure changes, and copper ions are subject to regulation in the wastewater standards related to living environment items by law. There was a need for an anion remover. Further, the removal rate of anions is not satisfactory, and further improvement in performance has been demanded.

特開2004−346299号公報JP 2004-346299 A 特表平9−504472号公報JP-T 9-504472 特開平7−16577号公報JP-A-7-16577 WO2008/029804公報WO2008 / 029804 WO2009/110499公報WO2009 / 110499

したがって、本発明の目的は、従来よりもアニオン除去活性が高い除去材として使用でき、アニオン除去後の溶液の汚染が少ない金属錯体を提供することにある。   Accordingly, an object of the present invention is to provide a metal complex that can be used as a removal material having higher anion removal activity than conventional ones, and has less contamination of the solution after the removal of anions.

本発明者らは鋭意検討し、銅イオンと、炭酸イオンと、該銅イオンに二座配位可能な特定の有機配位子とからなる金属錯体により、上記目的を達成できることを見出し、本発明に至った。   The present inventors have intensively studied and found that the above object can be achieved by a metal complex comprising a copper ion, a carbonate ion, and a specific organic ligand capable of bidentate coordination with the copper ion. It came to.

すなわち、本発明によれば、以下のものが提供される。   That is, according to the present invention, the following is provided.

(1)銅イオンと、炭酸イオンと、下記一般式(I); (1) Copper ion, carbonate ion, and the following general formula (I);

(式中、R、R及びR4の内1つはRに対してメタ位或いはパラ位にあるRであり、Rを除くR、R、R、R及びRはそれぞれ同一または異なって水素原子、置換基を有していてもよいアルキル基、アルコキシ基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基またはハロゲン原子である。R及びRは同一または異なって下記一般式 (In the formula, one of R 2 , R 3 and R 4 is R y in the meta position or para position with respect to R x , and R 1 , R 2 , R 3 , R 4 and R 4 except R y and R 5 is the same or different and each represents a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group, a formyl group, an acyloxy group, an alkoxycarbonyl group, a nitro group, a cyano group, an amino group, a monoalkylamino group, A dialkylamino group, an acylamino group, or a halogen atom, wherein R x and R y are the same or different and have the following general formula:

で表される置換基であり、R及びRはそれぞれ同一または異なって水素原子、置換基を有していてもよいアルキル基、アルコキシ基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基またはハロゲン原子であり、Aは窒素原子を少なくとも1つ含む置換基を有していてもよい5員または6員の複素環基である。)で表される該銅イオンに二座配位可能な有機配位子(I)とからなる金属錯体であって、その組成が Wherein R 6 and R 7 are the same or different and each represents a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group, a formyl group, an acyloxy group, an alkoxycarbonyl group, or a nitro group. , A cyano group, an amino group, a monoalkylamino group, a dialkylamino group, an acylamino group, or a halogen atom, and A is a 5- or 6-membered heterocyclic ring optionally having a substituent containing at least one nitrogen atom It is a group. And a metal complex composed of an organic ligand (I) capable of bidentate coordination to the copper ion represented by

(式中、Lは二座配位可能な有機配位子(I)を示す。)で表される金属錯体。   (Wherein L represents an organic ligand (I) capable of bidentate coordination).

(2)該二座配位可能な有機配位子(I)が有する複素環基Aが、ピロール−1−イル基を除いたピロリル基、2H−ピロール−1−イル基を除いた2H−ピロリル基、イミダゾリル基、インドール−1−イル基を除いたインドリル基、3H−インドール−1−イル基を除いた3H−インドリル基、1H−イソインドール−2−イル基を除いた1H−イソインドリル基、ベンゾイミダゾール−3−イル基を除いたベンゾイミダゾリル基、ピラゾリル基、チアゾール−1−イル基を除いたチアゾリル基、イソチアゾール−1−イル基を除いたイソチアゾリル基、オキサゾール−1−イル基を除いたオキサゾリル基、イソオキサゾール−1−イル基を除いたイソオキサゾリル基、ピロリジン−1−イル基を除いたピロリジニル基、イミダゾリジニル基、ピラゾリジニル基、ピリジン−1−イル基を除いたピリジル基、ピラジル基、ピリミジニル基、ピリダジニル基、ピペリジン−1−イル基を除いたピペリジニル基、ピペラジニル基及びモルホリン−4−イル基を除いたモルホリニル基から選択される少なくとも1種である(1)に記載の金属錯体。 (2) The heterocyclic group A possessed by the organic ligand (I) capable of bidentate coordination is a pyrrolyl group excluding a pyrrol-1-yl group, or 2H— excluding a 2H-pyrrol-1-yl group. Indolyl group except pyrrolyl group, imidazolyl group, indol-1-yl group, 3H-indolyl group except 3H-indol-1-yl group, 1H-isoindolyl group except 1H-isoindol-2-yl group , Except benzimidazolyl group, pyrazolyl group, thiazolyl group excluding thiazol-1-yl group, isothiazolyl group excluding isothiazol-1-yl group, and oxazol-1-yl group excluding benzimidazol-3-yl group Oxazolyl group, isoxazolyl group excluding isoxazol-1-yl group, pyrrolidinyl group excluding pyrrolidin-1-yl group, imidazolidini Group, pyrazolidinyl group, pyridyl group excluding pyridin-1-yl group, pyrazin group, pyrimidinyl group, pyridazinyl group, piperidinyl group excluding piperidin-1-yl group, piperazinyl group and morpholin-4-yl group were excluded The metal complex according to (1), which is at least one selected from morpholinyl groups.

(3)(1)または(2)のいずれかに記載の金属錯体からなるアニオン除去材。 (3) An anion removing material comprising the metal complex according to either (1) or (2).

(4)該アニオン除去材が、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ酸イオン、ヘキサフルオロアンチモン酸イオン、メタンスルホン酸イオン、ベンゼンスルホン酸イオン、トリフルオロ酢酸イオン、トリフルオロメタンスルホン酸イオン、硝酸イオン、硫酸イオン、リン酸イオンまたはハロゲン化物イオンを除去するための除去材である(3)に記載のアニオン除去材。 (4) The anion removing material is perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, hexafluoroarsenate ion, hexafluoroantimonate ion, methanesulfonate ion, benzenesulfonate ion, trifluoro The anion removing material according to (3), which is a removing material for removing acetate ion, trifluoromethanesulfonate ion, nitrate ion, sulfate ion, phosphate ion or halide ion.

本発明により、銅イオンと、炭酸イオンと、該銅イオンに二座配位可能な有機配位子(I)とからなる金属錯体を提供することができる。   According to the present invention, a metal complex comprising a copper ion, a carbonate ion, and an organic ligand (I) capable of bidentate coordination with the copper ion can be provided.

本発明の金属錯体は、各種アニオン除去能に優れているので、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ酸イオン、ヘキサフルオロアンチモン酸イオン、メタンスルホン酸イオン、ベンゼンスルホン酸イオン、トリフルオロ酢酸イオン、トリフルオロメタンスルホン酸イオン、硝酸イオン、硫酸イオン、リン酸イオンまたはハロゲン化物イオンなどを除去するための除去材として使用することができる。   Since the metal complex of the present invention has excellent ability to remove various anions, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, hexafluoroarsenate ion, hexafluoroantimonate ion, methanesulfonate ion , Benzenesulfonate ion, trifluoroacetate ion, trifluoromethanesulfonate ion, nitrate ion, sulfate ion, phosphate ion or halide ion can be used as a removing material.

また、本発明の金属錯体は、アニオン除去に伴う金属錯体中の金属イオンの溶出を抑えることができるため、アニオン除去後の溶液の汚染が少ないアニオン除去材として使用することができる。   Moreover, since the metal complex of this invention can suppress elution of the metal ion in the metal complex accompanying anion removal, it can be used as an anion removal material with little contamination of the solution after anion removal.

合成例1で得た金属錯体の結晶構造である。3 is a crystal structure of the metal complex obtained in Synthesis Example 1. 合成例2で得た金属錯体の結晶構造である。3 is a crystal structure of the metal complex obtained in Synthesis Example 2. 比較合成例1で得た金属錯体の結晶構造である。3 is a crystal structure of a metal complex obtained in Comparative Synthesis Example 1. 比較合成例2で得た金属錯体の結晶構造である。It is a crystal structure of the metal complex obtained in Comparative Synthesis Example 2. 実施例1、実施例2、比較例1、比較例2及び比較例3における過塩素酸イオン濃度の経時変化である。It is a time-dependent change of the perchlorate ion concentration in Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3. 実施例3、実施例4、比較例4、比較例5及び比較例6におけるテトラフルオロホウ酸イオン濃度の経時変化である。4 is a change with time of tetrafluoroborate ion concentration in Example 3, Example 4, Comparative Example 4, Comparative Example 5 and Comparative Example 6. FIG.

本発明の金属錯体は、銅イオン(Cu2+)と、炭酸イオン(CO 2−)と、該銅イオンに二座配位可能な有機配位子(I)とからなる。 The metal complex of the present invention comprises a copper ion (Cu 2+ ), a carbonate ion (CO 3 2− ), and an organic ligand (I) capable of bidentate coordination with the copper ion.

金属錯体は、銅イオンと、炭酸イオンと、該銅イオンに二座配位可能な特定の有機配位子(I)とを、常圧下、溶媒中で数時間から数日間反応させ、析出させて製造することができる。例えば、銅塩の水溶液または有機溶媒溶液と、炭酸イオン及び二座配位可能な有機配位子を含有する水溶液または有機溶媒溶液とを、常圧下で混合して反応させることにより本発明の金属錯体を得ることができる。このとき、二座配位可能な有機配位子は複数回に分けて添加してもよい。   The metal complex is formed by reacting copper ions, carbonate ions, and a specific organic ligand (I) capable of bidentate coordination with the copper ions in a solvent at normal pressure for several hours to several days. Can be manufactured. For example, an aqueous solution or organic solvent solution of a copper salt and an aqueous solution or organic solvent solution containing a carbonate ion and an organic ligand capable of bidentate coordination are mixed and reacted under normal pressure to react with the metal of the present invention. A complex can be obtained. At this time, the organic ligand capable of bidentate coordination may be added in a plurality of times.

銅塩は単一の銅塩を使用することが好ましいが、2種以上の銅塩を混合して用いてもよい。これらの銅塩としては、酢酸塩、ギ酸塩などの有機酸塩、炭酸塩、水酸化物塩などの無機塩を使用することができる。   The copper salt is preferably a single copper salt, but two or more copper salts may be mixed and used. As these copper salts, organic acid salts such as acetates and formates, and inorganic salts such as carbonates and hydroxide salts can be used.

本発明に用いられる炭酸イオンは、アルカリ金属炭酸塩やアルカリ土類金属炭酸塩の形で添加してもよいし、アルカリ水溶液中に二酸化炭素を溶解させることで系中発生させてもよい。また、炭酸銅のカウンターアニオンをそのまま使用してもよい。   The carbonate ion used in the present invention may be added in the form of an alkali metal carbonate or alkaline earth metal carbonate, or may be generated in the system by dissolving carbon dioxide in an alkaline aqueous solution. Further, a counter anion of copper carbonate may be used as it is.

本発明に用いられる二座配位可能な有機配位子(I)は、下記一般式(I);   The organic ligand (I) capable of bidentate coordination used in the present invention has the following general formula (I):

で表される。式中、R、R及びR4の内1つはRに対してメタ位或いはパラ位にあるRであり、Rを除くR、R、R、R及びRはそれぞれ同一または異なって水素原子、置換基を有していてもよいアルキル基、アルコキシ基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基またはハロゲン原子である。R及びRは同一または異なって下記一般式 It is represented by In the formula, one of R 2 , R 3 and R 4 is R y in the meta position or para position with respect to R x , and R 1 , R 2 , R 3 , R 4 and R excluding R y 5 are the same or different and each may be a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group, a formyl group, an acyloxy group, an alkoxycarbonyl group, a nitro group, a cyano group, an amino group, a monoalkylamino group, a dialkyl An amino group, an acylamino group, or a halogen atom. R x and R y are the same or different and have the following general formula:

で表される置換基であり、R及びRはそれぞれ同一または異なって水素原子、置換基を有していてもよいアルキル基、アルコキシ基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基またはハロゲン原子であり、Aは窒素原子を少なくとも1つ含む置換基を有していてもよい5員または6員の複素環基である。 Wherein R 6 and R 7 are the same or different and each represents a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group, a formyl group, an acyloxy group, an alkoxycarbonyl group, or a nitro group. , A cyano group, an amino group, a monoalkylamino group, a dialkylamino group, an acylamino group, or a halogen atom, and A is a 5- or 6-membered heterocyclic ring optionally having a substituent containing at least one nitrogen atom It is a group.

二座配位可能な有機配位子とは非共有電子対で金属イオンに対して配位する部位を少なくとも2箇所持つ中性配位子を意味する。   The organic ligand capable of bidentate coordination means a neutral ligand having at least two sites coordinated to a metal ion by an unshared electron pair.

上記R、R、R、R、R、R及びRを構成することのできる置換基の内、アルキル基またはアルコキシ基の炭素原子数は1〜5が好ましい。アルキル基の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基などの直鎖または分岐を有するアルキル基が、アルコキシ基の例としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基,n−ブトキシ基、イソブトキシ基、tert−ブトキシ基が、アシロキシ基の例としては、アセトキシ基、n−プロパノイルオキシ基、n−ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基が、アルコキシカルボニル基の例としては、メトキシカルボニル基、エトキシカルボニル基、n−ブトキシカルボニル基が、モノアルキルアミノ基の例としては、メチルアミノ基が、ジアルキルアミノ基の例としては、ジメチルアミノ基が、アシルアミノ基の例としては、アセチルアミノ基が、ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が、それぞれ挙げられる。また、該アルキル基等が有していてもよい置換基の例としては、アルコキシ基(メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基,n−ブトキシ基、イソブトキシ基、tert−ブトキシ基など)、ジアルキルアミノ基(ジメチルアミノ基など)、ホルミル基、シアノ基、エポキシ基、アシロキシ基(アセトキシ基、n−プロパノイルオキシ基、n−ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、n−ブトキシカルボニル基など)、カルボン酸無水物基(−CO−O−CO−R基)(Rは炭素数1〜5のアルキル基である)などが挙げられる。アルキル基の置換基の数は、1〜3個が好ましく、1個がより好ましい。 Of the substituents that can constitute R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 , the alkyl group or alkoxy group preferably has 1 to 5 carbon atoms. Examples of the alkyl group include a linear or branched alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, and a pentyl group, and an alkoxy group. Examples of methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, and examples of acyloxy group include acetoxy group, n-propanoyloxy group , N-butanoyloxy group, pivaloyloxy group, benzoyloxy group are examples of alkoxycarbonyl group, methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group are examples of monoalkylamino group, methylamino Examples of the dialkylamino group include a dimethylamino group Examples of amino group, acetylamino group, examples of the halogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, and the like, respectively. Examples of the substituent that the alkyl group may have include an alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group). Dialkylamino group (dimethylamino group, etc.), formyl group, cyano group, epoxy group, acyloxy group (acetoxy group, n-propanoyloxy group, n-butanoyloxy group, pivaloyloxy group, benzoyloxy group, etc.) , Alkoxycarbonyl groups (methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group, etc.), carboxylic acid anhydride groups (—CO—O—CO—R group) (R is an alkyl group having 1 to 5 carbon atoms) ) And the like. 1-3 are preferable and, as for the number of the substituents of an alkyl group, one is more preferable.

本発明において、上記Aを構成する複素環基は、有機配位子(I)の銅イオンに対する配位性の観点から、複素環中に銅イオンに配位できる窒素原子を少なくとも一つ持つ必要がある。上記Aを構成する複素環基が複素環中に銅イオンに配位できる窒素原子を一つしか持たない場合は、該窒素原子以外の部分で上記Aがベンジル位炭素原子に結合するのが好ましい。そのようなAの例としては、ピロール−1−イル基を除いたピロリル基、2H−ピロール−1−イル基を除いた2H−ピロリル基、インドール−1−イル基を除いたインドリル基、3H−インドール−1−イル基を除いた3H−インドリル基、1H−イソインドール−2−イル基を除いた1H−イソインドリル基、ベンゾイミダゾール−3−イル基を除いたベンゾイミダゾリル基、チアゾール−1−イル基を除いたチアゾリル基、イソチアゾール−1−イル基を除いたイソチアゾリル基、オキサゾール−1−イル基を除いたオキサゾリル基、イソオキサゾール−1−イル基を除いたイソオキサゾリル基、ピロリジン−1−イル基を除いたピロリジニル基、ピリジン−1−イル基を除いたピリジル基、ピペリジン−1−イル基を除いたピペリジニル基またはモルホリン−4−イル基を除いたモルホリニル基などが挙げられる。また、複素環中に銅イオンに配位できる窒素原子を二つ以上持つAの例としては、イミダゾリル基、ピラゾリル基、イミダゾリジニル基、ピラゾリジニル基、ピラジル基、ピリミジニル基、ピリダジニル基またはピペラジニル基などが挙げられる。   In the present invention, the heterocyclic group constituting the above A must have at least one nitrogen atom capable of coordinating with the copper ion in the heterocyclic ring from the viewpoint of the coordination property of the organic ligand (I) to the copper ion. There is. When the heterocyclic group constituting the A has only one nitrogen atom capable of coordinating with a copper ion in the heterocyclic ring, the A is preferably bonded to the benzylic carbon atom at a portion other than the nitrogen atom. . Examples of such A include pyrrolyl group excluding pyrrol-1-yl group, 2H-pyrrolyl group excluding 2H-pyrrol-1-yl group, indolyl group excluding indol-1-yl group, 3H -3H-indolyl group excluding indol-1-yl group, 1H-isoindolyl group excluding 1H-isoindol-2-yl group, benzimidazolyl group excluding benzimidazol-3-yl group, thiazol-1-yl A thiazolyl group excluding a group, an isothiazolyl group excluding an isothiazol-1-yl group, an oxazolyl group excluding an oxazol-1-yl group, an isoxazolyl group excluding an isoxazol-1-yl group, a pyrrolidin-1-yl Pyrrolidinyl group excluding the group, pyridyl group excluding the pyridin-1-yl group, piperidini excluding the piperidin-1-yl group Morpholinyl group, excluding the group or morpholin-4-yl group. Examples of A having two or more nitrogen atoms capable of coordinating to a copper ion in the heterocyclic ring include imidazolyl group, pyrazolyl group, imidazolidinyl group, pyrazolidinyl group, pyrazyl group, pyrimidinyl group, pyridazinyl group or piperazinyl group. Can be mentioned.

二座配位可能な有機配位子(I)は、1個又は複数個の不斉炭素を有し得る。本発明で使用する二座配位可能な有機配位子(I)は、光学異性体、ラセミ体またはいずれかの光学異性体が多い異性体混合物、ジアステレオ異性体など任意の異性体のいずれを使用してもよいが、R及びRが同一であれば不斉炭素ではなくなるので好ましい。 The bidentate organic ligand (I) may have one or more asymmetric carbons. The organic ligand (I) capable of bidentate coordination used in the present invention may be any isomer such as an optical isomer, a racemate, an isomer mixture containing many optical isomers, or a diastereoisomer. However, it is preferable that R 6 and R 7 are the same because they are not asymmetric carbons.

本発明の二座配位可能な有機配位子(I)の好ましい化合物は、下記式(IA)、(IB)で表される:   Preferred compounds of the bidentate organic ligand (I) of the present invention are represented by the following formulas (IA) and (IB):

(式中、Aは、前記に定義される通りである。) (Wherein A is as defined above.)

二座配位可能な有機配位子(I)としては、例えば、下記化学式で示される1,4−ビス(ベンゾイミダゾール−1−イルメチル)−2,4,5,6−テトラメチルベンゼン(I−1)、1,4−ビス(4−ピリジルメチル)−2,3,5,6−テトラメチルベンゼン(I−2)、1,3−ビス(イミダゾール−1−イルメチル)−2,4,6−トリメチルベンゼン(I−3)、1,3−ビス(4−ピリジルメチル)−2,4,6−トリメチルベンゼン(I−4)、などを使用することができ、中でも1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼン(I−1)がより好ましい。   Examples of the bidentate organic ligand (I) include 1,4-bis (benzimidazol-1-ylmethyl) -2,4,5,6-tetramethylbenzene (I) represented by the following chemical formula: -1), 1,4-bis (4-pyridylmethyl) -2,3,5,6-tetramethylbenzene (I-2), 1,3-bis (imidazol-1-ylmethyl) -2,4 6-trimethylbenzene (I-3), 1,3-bis (4-pyridylmethyl) -2,4,6-trimethylbenzene (I-4), and the like can be used, among which 1,4-bis (Imidazole-1-ylmethyl) -2,3,5,6-tetramethylbenzene (I-1) is more preferred.

金属錯体を製造するときの金属塩と二座配位可能な有機配位子(I)の混合比率は、1:5〜5:1のモル比の範囲内が好ましく、1:3〜3:1のモル比の範囲がより好ましい。これ以外の範囲で反応を行っても目的とする金属錯体は得られるが、収率が低下し、また、未反応の原料が残留し、得られた金属錯体の精製が困難になる。   When the metal complex is produced, the mixing ratio of the metal salt and the organic ligand (I) capable of bidentate coordination is preferably in the range of a molar ratio of 1: 5 to 5: 1. A range of 1 molar ratio is more preferred. Even if the reaction is performed in a range other than this, the target metal complex can be obtained, but the yield decreases, and unreacted raw materials remain, making it difficult to purify the obtained metal complex.

金属錯体を製造するための溶媒における二座配位可能な有機配位子(I)の濃度は、0.01〜5.0mol/Lが好ましく、0.01〜2.0mol/Lがより好ましい。これより低い濃度では、反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では溶解性が低下し、反応が円滑に進行しない。   The concentration of the organic ligand (I) capable of bidentate coordination in the solvent for producing the metal complex is preferably 0.01 to 5.0 mol / L, more preferably 0.01 to 2.0 mol / L. . If the concentration is lower than this, the target metal complex can be obtained even if the reaction is carried out, but this is not preferable because the yield decreases. If the concentration is higher than this, the solubility is lowered and the reaction does not proceed smoothly.

金属錯体の製造に用いる溶媒としては、有機溶媒、水またはそれらの混合溶媒を使用することができる。具体的には、メタノール、エタノール、プロパノール、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、塩化メチレン、クロロホルム、アセトン、酢酸エチル、アセトニトリル、N,N−ジメチルホルムアミド、ジメチルスルホキシド、アンモニア水、水またはこれらの混合溶媒を使用することができる。反応温度としては、253〜423Kが好ましい。   As a solvent used for producing the metal complex, an organic solvent, water, or a mixed solvent thereof can be used. Specifically, methanol, ethanol, propanol, diethyl ether, dimethoxyethane, tetrahydrofuran, hexane, cyclohexane, heptane, benzene, toluene, methylene chloride, chloroform, acetone, ethyl acetate, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide Aqueous ammonia, water, or a mixed solvent thereof can be used. The reaction temperature is preferably 253 to 423K.

反応が終了したことは、ガスクロマトグラフィーまたは高速液体クロマトグラフィーにより原料の残存量を定量することにより確認することができる。反応終了後、得られた混合液を吸引濾過に付して沈殿物を集め、有機溶媒、水またはそれらの混合溶媒による洗浄後、空気中で風乾または減圧下で乾燥することにより本発明の金属錯体を得ることができる。   The completion of the reaction can be confirmed by quantifying the remaining amount of the raw material by gas chromatography or high performance liquid chromatography. After completion of the reaction, the obtained mixed solution is subjected to suction filtration to collect a precipitate, washed with an organic solvent, water or a mixed solvent thereof, and then dried in air or under reduced pressure to dry the metal of the present invention. A complex can be obtained.

本発明の金属錯体は、溶液中で炭酸イオン以外のアニオンと接触した際に、アニオン交換反応を経てアニオンを取り込んだ不溶性の錯体へと構造変化することで、アニオン除去材として機能する。例えば、過塩素酸イオンを含む溶液中に本発明の金属錯体を浸漬させた場合、金属錯体は構造変化を伴いながら過塩素酸イオンを取り込み、代わりに炭酸イオンを溶液中に放出する。過塩素酸イオンを取り込んだ金属錯体は不溶性であるため、例えば濾過などの処理を施すことで過塩素酸イオンを除去することができる。   The metal complex of the present invention functions as an anion removing material by changing the structure to an insoluble complex incorporating an anion through an anion exchange reaction when contacting with an anion other than carbonate ion in a solution. For example, when the metal complex of the present invention is immersed in a solution containing perchlorate ions, the metal complex takes in perchlorate ions while changing the structure, and releases carbonate ions into the solution instead. Since the metal complex incorporating the perchlorate ion is insoluble, the perchlorate ion can be removed by performing a treatment such as filtration.

本発明の金属錯体は、銅イオン2つに対し二座配位可能な有機配位子(I)が3つ配位した錯体であり、炭酸イオンは銅イオンの電荷を中和するのに必要な量存在する。具体的には、銅イオン:炭酸イオン:二座配位可能な有機配位子(I)=2:2:3の組成を有する。この組成を有する場合にのみ炭酸イオンが銅イオンに対してキレート配位でき、その結果、ヤーン・テラー効果により銅イオンと二座配位可能な有機配位子(I)との配位結合が弱くなり、前記のアニオンを取り込んだ不溶性の金属錯体への構造変化が容易に進行するので、高いアニオン除去性能を発現する。   The metal complex of the present invention is a complex in which three organic ligands (I) capable of bidentate coordination with two copper ions are coordinated, and carbonate ions are necessary to neutralize the charge of the copper ions. There is a great amount. Specifically, it has a composition of copper ion: carbonate ion: bidentate organic ligand (I) = 2: 2: 3. Only when it has this composition, carbonate ions can be chelate coordinated to copper ions, and as a result, coordination bonds between copper ions and organic ligands (I) capable of bidentate coordination by the Yarn-Teller effect. Since the structure is weakened and the structural change to the insoluble metal complex incorporating the anion proceeds easily, high anion removal performance is exhibited.

また、本発明の金属錯体は、アニオン交換反応によって系中に炭酸イオンを放出し、その結果、溶液はアルカリ性となり、金属錯体が構造変化する際に溶出した銅イオンは水酸化銅として沈澱するので、炭酸イオン以外のアニオンを用いた場合に比べて銅イオンの溶液中への溶出量を大幅に低減することができる。   In addition, the metal complex of the present invention releases carbonate ions into the system by anion exchange reaction. As a result, the solution becomes alkaline, and the copper ions eluted when the metal complex undergoes structural change precipitates as copper hydroxide. Compared with the case where anions other than carbonate ions are used, the elution amount of copper ions into the solution can be greatly reduced.

前記のアニオン除去メカニズムは推定であるが、例え前記メカニズムに従っていない場合でも、本発明を規定する要件を満足するのであれば、本発明の技術的範囲に包含される。   The anion removal mechanism is presumed, but even if it does not follow the mechanism, it is included in the technical scope of the present invention as long as it satisfies the requirements defining the present invention.

本発明の金属錯体は、各種アニオンの除去能に優れているので、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ酸イオン、ヘキサフルオロアンチモン酸イオン、メタンスルホン酸イオン、ベンゼンスルホン酸イオン、トリフルオロ酢酸イオン、トリフルオロメタンスルホン酸イオン、硝酸イオン、硫酸イオン、リン酸イオンまたはハロゲン化物イオンなどの除去材として好ましい。   Since the metal complex of the present invention is excellent in the ability to remove various anions, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, hexafluoroarsenate ion, hexafluoroantimonate ion, methanesulfonic acid It is preferable as a removing material for ions, benzenesulfonate ions, trifluoroacetate ions, trifluoromethanesulfonate ions, nitrate ions, sulfate ions, phosphate ions or halide ions.

本発明におけるアニオン除去材の使用形態は特に限定されない。例えば、金属錯体を粉末のまま用いてもよいし、ペレット、フィルム、シート、プレート、パイプ、チューブ、棒状体、粒状体、各種異形成形体、繊維、中空糸、織布、編布及び不織布などに成形して用いてもよい。   The usage form of the anion removing material in the present invention is not particularly limited. For example, the metal complex may be used as powder, pellets, films, sheets, plates, pipes, tubes, rods, granules, various deformed shapes, fibers, hollow fibers, woven fabrics, knitted fabrics, non-woven fabrics, etc. You may shape | mold and use.

以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。以下の実施例、比較例における分析及び評価は次のようにして行った。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. Analysis and evaluation in the following examples and comparative examples were performed as follows.

(1)単結晶X線構造解析
得られた単結晶をゴニオヘッドにマウントし、単結晶X線回折装置を用いて測定した。分析条件の詳細を以下に示す。
<分析条件>
装置:株式会社リガク製Mercury CCD system
X線源:MoKα(λ=0.71073Å) 50kV 40mA
検出器:CCD
コリメータ:Φ0.50mm
測定温度:293K
解析ソフト:SHELXL97
(1) Single crystal X-ray structure analysis The obtained single crystal was mounted on a gonio head and measured using a single crystal X-ray diffractometer. Details of the analysis conditions are shown below.
<Analysis conditions>
Apparatus: Mercury CCD system manufactured by Rigaku Corporation
X-ray source: MoKα (λ = 0.10773Å) 50 kV 40 mA
Detector: CCD
Collimator: Φ0.50mm
Measurement temperature: 293K
Analysis software: SHELXL97

(2)アニオンの定量
アニオンを含む溶液200μLを採取し、超純水で25倍に希釈し、陰イオンクロマトグラフを用いて測定した。
<分析条件>
装置:メトローム社製861 Advanced Compact IC
(2) Determination of anion 200 μL of an anion-containing solution was collected, diluted 25-fold with ultrapure water, and measured using an anion chromatograph.
<Analysis conditions>
Apparatus: 861 Advanced Compact IC manufactured by Metrohm

<合成例1>
水酸化銅195mg(2.0mmol)を、二酸化炭素を溶解させた28%アンモニア水30mLに溶解させ、これに1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼン589mg(2.0mmol)を溶解させたエタノール30mLを加え、298Kで12時間撹拌した。生成した紫色沈殿を吸引濾過により回収し、水20mLとエタノール20mLで洗浄した。続いて、回収した紫色沈澱をメタノール100mLに懸濁させ、313Kに加温、溶解させ、不溶分を濾過で除いた後、水100mLを加えて1日間静置した。析出した金属錯体を吸引濾過により回収した後、エタノールで洗浄し、金属錯体(1)253mgを得た。この金属錯体(1)210mg(0.50mmol)をエタノール50mLに再度溶解させ、1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼン71.0mg(0.25mmol)をさらに加え、313Kで30分間撹拌を行い、溶解させた。298Kまで冷却した後、不溶分を濾過で除き、3週間自然濃縮することで目的の金属錯体220mg(収率76%)を緑青色ブロック状結晶として得た。得られた金属錯体について単結晶X線構造解析を行った結果を以下に示す。また、結晶構造を図1に示す。図1より、得られた金属錯体の組成は、銅イオン:炭酸イオン:1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼン=2:2:3であることが分かる。
Monoclinic(P2/n)
a=12.610(5)Å
b=13.430(5)Å
c=17.512(7)Å
β=105.797(6)°
V=2853.7(19)Å
R=0.0761
Rw=0.1560
<Synthesis Example 1>
195 mg (2.0 mmol) of copper hydroxide was dissolved in 30 mL of 28% ammonia water in which carbon dioxide was dissolved, and 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetra was added thereto. 30 mL of ethanol in which 589 mg (2.0 mmol) of methylbenzene was dissolved was added and stirred at 298 K for 12 hours. The produced purple precipitate was collected by suction filtration and washed with 20 mL of water and 20 mL of ethanol. Subsequently, the collected purple precipitate was suspended in 100 mL of methanol, heated and dissolved in 313 K, insoluble matter was removed by filtration, 100 mL of water was added, and the mixture was allowed to stand for 1 day. The precipitated metal complex was collected by suction filtration and then washed with ethanol to obtain 253 mg of metal complex (1). 210 mg (0.50 mmol) of this metal complex (1) was dissolved again in 50 mL of ethanol, and 71.0 mg (0. 0. 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene) was obtained. 25 mmol) was further added, and the mixture was stirred at 313 K for 30 minutes to be dissolved. After cooling to 298K, the insoluble matter was removed by filtration, and the mixture was naturally concentrated for 3 weeks to obtain 220 mg (yield 76%) of the target metal complex as green-blue block crystals. Results of single crystal X-ray structural analysis of the obtained metal complex are shown below. The crystal structure is shown in FIG. From FIG. 1, the composition of the obtained metal complex is copper ion: carbonate ion: 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene = 2: 2: 3. I understand that there is.
Monoclinic (P2 1 / n)
a = 12.610 (5) Å
b = 13.430 (5) Å
c = 17.512 (7) Å
β = 105.797 (6) °
V = 2853.7 (19) Å 3
R = 0.0761
Rw = 0.1560

<合成例2>
合成例1で得られた金属錯体(1)210mg(0.50mmol)をメタノール50mLに再度溶解させ、1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼン71.0mg(0.25mmol)をさらに加え、313Kで30分間撹拌を行い、溶解させた。298Kまで冷却した後、不溶分を濾過で除き、2週間自然濃縮することで目的の金属錯体210mg(収率66%)を青色ブロック状結晶として得た。得られた金属錯体について単結晶X線構造解析を行った結果を以下に示す。また、結晶構造を図2に示す。図2より、得られた金属錯体の組成は、銅イオン:炭酸イオン:1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼン=2:2:3であることが分かる。
Monoclinic(C2/c)
a=23.895(10)Å
b=12.717(6)Å
c=24.315(11)Å
β=107.182(4)°
V=7059(6)Å
R=0.0794
Rw=0.0901
<Synthesis Example 2>
210 mg (0.50 mmol) of the metal complex (1) obtained in Synthesis Example 1 was dissolved again in 50 mL of methanol, and 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene was dissolved. 71.0 mg (0.25 mmol) was further added, and the mixture was stirred at 313 K for 30 minutes to be dissolved. After cooling to 298K, the insoluble matter was removed by filtration, and natural concentration was performed for 2 weeks to obtain 210 mg (yield 66%) of the target metal complex as blue block crystals. Results of single crystal X-ray structural analysis of the obtained metal complex are shown below. The crystal structure is shown in FIG. From FIG. 2, the composition of the obtained metal complex is copper ion: carbonate ion: 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene = 2: 2: 3. I understand that there is.
Monoclinic (C2 / c)
a = 2.895 (10) Å
b = 12.717 (6) Å
c = 24.315 (11) Å
β = 107.182 (4) °
V = 7059 (6) Å 3
R = 0.0794
Rw = 0.0901

<比較合成例1>
水酸化銅195mg(2.0mmol)を、二酸化炭素を溶解させた28%アンモニア水30mLに溶解させ、これに1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼン589mg(2.0mmol)を溶解させたエタノール30mLを加え、298Kで12時間撹拌した。生成した紫色沈殿を吸引濾過により回収し、水20mLとエタノール20mLで洗浄した。続いて、回収した紫色沈澱をメタノール100mLに懸濁させ、313Kに加温、溶解させ、不溶分を濾過で除いた後、水100mLを加えて1日間静置した。析出した金属錯体を吸引濾過により回収した後、エタノールで洗浄することで、金属錯体253mg(収率23%)を紫色フィルム状結晶として得た。得られた金属錯体について単結晶X線構造解析を行った結果を以下に示す。また、結晶構造を図3に示す。図3より、得られた金属錯体の組成は、銅イオン:炭酸イオン:1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼン=1:1:1であることが分かる。
Monoclinic(P2/c)
a=11.542(16)Å
b=5.142(7)Å
c=16.68(3)Å
β=101.137(17)°
V=971(3)Å
R=0.0869
Rw=0.1865
<Comparative Synthesis Example 1>
195 mg (2.0 mmol) of copper hydroxide was dissolved in 30 mL of 28% ammonia water in which carbon dioxide was dissolved, and 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetra was added thereto. 30 mL of ethanol in which 589 mg (2.0 mmol) of methylbenzene was dissolved was added and stirred at 298 K for 12 hours. The produced purple precipitate was collected by suction filtration and washed with 20 mL of water and 20 mL of ethanol. Subsequently, the collected purple precipitate was suspended in 100 mL of methanol, heated and dissolved in 313 K, insoluble matter was removed by filtration, 100 mL of water was added, and the mixture was allowed to stand for 1 day. The deposited metal complex was collected by suction filtration and then washed with ethanol to obtain 253 mg (yield 23%) of the metal complex as a purple film crystal. Results of single crystal X-ray structural analysis of the obtained metal complex are shown below. The crystal structure is shown in FIG. From FIG. 3, the composition of the obtained metal complex is copper ion: carbonate ion: 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene = 1: 1: 1. I understand that there is.
Monoclinic (P2 / c)
a = 11.542 (16) Å
b = 5.142 (7) Å
c = 16.88 (3) Å
β = 101.137 (17) °
V = 971 (3) 3 3
R = 0.0869
Rw = 0.1865

<比較合成例2>
硫酸銅5水和物31.2mg(0.13mmol)を水25mLに、1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼン73.6mg(0.25mmol)をN,N−ジメチルホルムアミド25mLに、それぞれ溶解させ、これらの溶液を混合し7日間、298Kで静置することで金属錯体89mg(収率85%)を青色の板状結晶として得た。得られた金属錯体について単結晶X線構造解析を行った結果を以下に示す。また、結晶構造を図4に示す。図4より、得られた金属錯体の組成は、銅イオン:硫酸イオン:1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼン=1:1:2であることが分かる。
Monoclinic(C2/m)
a=12.3507(17)Å
b=27.263(3)Å
c=14.377(3)Å
β=118.774°
V=4243.4(10)Å3
Z=2
R=0.0644
Rw=0.0722
<Comparative Synthesis Example 2>
31.2 mg (0.13 mmol) of copper sulfate pentahydrate was added to 25 mL of water, and 73.6 mg (0.25 mmol) of 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene. ) Was dissolved in 25 mL of N, N-dimethylformamide, and these solutions were mixed and allowed to stand at 298 K for 7 days to obtain 89 mg (yield 85%) of a metal complex as blue plate crystals. Results of single crystal X-ray structural analysis of the obtained metal complex are shown below. The crystal structure is shown in FIG. From FIG. 4, the composition of the obtained metal complex is copper ion: sulfate ion: 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene = 1: 1: 2. I understand that there is.
Monoclinic (C2 / m)
a = 12.3507 (17) Å
b = 27.263 (3) Å
c = 14.377 (3) Å
β = 118.774 °
V = 4243.4 (10) Å3
Z = 2
R = 0.0644
Rw = 0.0722

<実施例1>
1mM過塩素酸ナトリウム水溶液50mLに合成例1で得た金属錯体75.0mg(1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼンを0.20mmol含有)を加え、298Kにおける過塩素酸イオン濃度の経時変化を陰イオンクロマトグラフで追跡した。結果を図5に示す。このとき、溶液中の銅イオン濃度は0.01mg/L以下であった。
<Example 1>
75.0 mg of the metal complex obtained in Synthesis Example 1 in 50 mL of 1 mM sodium perchlorate aqueous solution (containing 0.20 mmol of 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene) Was added, and the change with time in the perchlorate ion concentration at 298 K was followed by an anion chromatograph. The results are shown in FIG. At this time, the copper ion concentration in the solution was 0.01 mg / L or less.

<実施例2>
1mM過塩素酸ナトリウム水溶液50mLに合成例2で得た金属錯体75.0mg(1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼンを0.20mmol含有)を加え、298Kにおける過塩素酸イオン濃度の経時変化を陰イオンクロマトグラフで追跡した。結果を図5に示す。このとき、溶液中の銅イオン濃度は0.01mg/L以下であった。
<Example 2>
75.0 mg of the metal complex obtained in Synthesis Example 2 in 50 mL of 1 mM sodium perchlorate aqueous solution (containing 0.20 mmol of 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene) Was added, and the change with time in the perchlorate ion concentration at 298 K was followed by an anion chromatograph. The results are shown in FIG. At this time, the copper ion concentration in the solution was 0.01 mg / L or less.

<比較例1>
1mM過塩素酸ナトリウム水溶液50mLに比較合成例1で得た金属錯体83.0mg(1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼンを0.20mmol含有)を加え、298Kにおける過塩素酸イオン濃度の経時変化を陰イオンクロマトグラフで追跡した。結果を図5に示す。このとき、溶液中の銅イオン濃度は0.01mg/L以下であった。
<Comparative Example 1>
50 mL of 1 mM sodium perchlorate aqueous solution contains 0.20 mmol of 83.0 mg (1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene) obtained in Comparative Synthesis Example 1 ) Was added, and the change with time in the perchlorate ion concentration at 298 K was followed by an anion chromatograph. The results are shown in FIG. At this time, the copper ion concentration in the solution was 0.01 mg / L or less.

<比較例2>
1mM過塩素酸ナトリウム水溶液50mLに比較合成例2で得た金属錯体170mg(1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼンを0.20mmol含有)を加え、298Kにおける過塩素酸イオン濃度の経時変化を陰イオンクロマトグラフで追跡した。結果を図5に示す。このとき、溶液中の銅イオン濃度は7.18mg/Lであった。
<Comparative example 2>
170 mg of metal complex obtained in Comparative Synthesis Example 2 (containing 0.20 mmol of 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene) in 50 mL of 1 mM sodium perchlorate aqueous solution In addition, the time course of the perchlorate ion concentration at 298K was followed by anion chromatography. The results are shown in FIG. At this time, the copper ion concentration in the solution was 7.18 mg / L.

<比較例3>
1mM過塩素酸ナトリウム水溶液50mLに塩基性炭酸銅11.1mg(0.050mmol)、1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼン58.9mg(0.20mmol)を加え、298Kにおける過塩素酸イオン濃度の経時変化を陰イオンクロマトグラフで追跡した。結果を図5に示す。このとき、溶液中の銅イオン濃度は0.05mg/Lであった。
<Comparative Example 3>
To 50 mL of a 1 mM aqueous solution of sodium perchlorate, 11.1 mg (0.050 mmol) of basic copper carbonate, 58.9 mg of 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene (0 .20 mmol) was added, and the time course of the perchlorate ion concentration at 298 K was followed by an anion chromatograph. The results are shown in FIG. At this time, the copper ion concentration in the solution was 0.05 mg / L.

実施例1及び実施例2より、本発明の金属錯体は過塩素酸イオンを速やかに除去することができ、かつ溶液中への銅イオンの溶出量が少ないので、過塩素酸イオンの除去材として優れていることが分かる。   From Example 1 and Example 2, the metal complex of the present invention can quickly remove perchlorate ions, and the amount of copper ions eluted into the solution is small. It turns out that it is excellent.

一方、組成比が本発明の構成要件を満たさない比較合成例1の金属錯体を用いた場合(比較例1)では、銅イオンの溶出量は抑えられたが、過塩素酸イオンをほとんど除去することができなかった。炭酸イオンの変わりに硫酸イオンを用いた比較合成例2の金属錯体を用いた場合(比較例2)では、過塩素酸イオンの除去速度が本発明に比較して遅く、また大量に銅イオンの溶出が見られた。塩基性炭酸銅と1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼンとを個別に加えた場合(比較例3)では、過塩素酸イオンの除去速度が本発明に比較して遅かった。   On the other hand, when the metal complex of Comparative Synthesis Example 1 whose composition ratio does not satisfy the constituent requirements of the present invention (Comparative Example 1) was used, the elution amount of copper ions was suppressed, but almost all perchlorate ions were removed. I couldn't. When the metal complex of Comparative Synthesis Example 2 using sulfate ions instead of carbonate ions (Comparative Example 2) was used, the removal rate of perchlorate ions was slower than that of the present invention, and a large amount of copper ions Elution was seen. When basic copper carbonate and 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene were added separately (Comparative Example 3), the perchlorate ion removal rate Was slower than the present invention.

<実施例3>
1mMテトラフルオロホウ酸ナトリウム水溶液50mLに合成例1で得た金属錯体75mg(1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼンを0.20mmol含有)を加え、298Kにおけるテトラフルオロホウ酸イオン濃度の経時変化を陰イオンクロマトグラフで追跡した。結果を図6に示す。このとき、溶液中の銅イオン濃度は0.01mg/L以下であった。
<Example 3>
In 50 mL of 1 mM sodium tetrafluoroborate aqueous solution, 75 mg of the metal complex obtained in Synthesis Example 1 (containing 0.20 mmol of 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene) In addition, the time course of the tetrafluoroborate ion concentration at 298K was followed by an anion chromatograph. The results are shown in FIG. At this time, the copper ion concentration in the solution was 0.01 mg / L or less.

<実施例4>
1mMテトラフルオロホウ酸ナトリウム水溶液50mLに合成例2で得た金属錯体75mg(1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼンを0.20mmol含有)を加え、298Kにおけるテトラフルオロホウ酸イオン濃度の経時変化を陰イオンクロマトグラフで追跡した。結果を図6に示す。このとき、溶液中の銅イオン濃度は0.01mg/L以下であった。
<Example 4>
75 mg of the metal complex obtained in Synthesis Example 2 (containing 0.20 mmol of 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene) in 50 mL of 1 mM sodium tetrafluoroborate aqueous solution In addition, the time course of the tetrafluoroborate ion concentration at 298K was followed by an anion chromatograph. The results are shown in FIG. At this time, the copper ion concentration in the solution was 0.01 mg / L or less.

<比較例4>
1mMテトラフルオロホウ酸ナトリウム水溶液50mLに比較合成例1で得た金属錯体83mg(1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼンを0.20mmol含有)を加え、298Kにおけるテトラフルオロホウ酸イオン濃度の経時変化を陰イオンクロマトグラフで追跡した。結果を図6に示す。このとき、溶液中の銅イオン濃度は0.01mg/L以下であった。
<Comparative example 4>
83 mg of the metal complex obtained in Comparative Synthesis Example 1 in 50 mL of 1 mM sodium tetrafluoroborate aqueous solution (containing 0.20 mmol of 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene) And the change with time of the tetrafluoroborate ion concentration at 298K was followed by an anion chromatograph. The results are shown in FIG. At this time, the copper ion concentration in the solution was 0.01 mg / L or less.

<比較例5>
1mMテトラフルオロホウ酸ナトリウム水溶液50mLに比較合成例2で得た金属錯体170mg(1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼンを0.20mmol含有)を加え、298Kにおけるテトラフルオロホウ酸イオン濃度の経時変化を陰イオンクロマトグラフで追跡した。結果を図6に示す。このとき、溶液中の銅イオン濃度は15.89mg/Lであった。
<Comparative Example 5>
170 mg of the metal complex obtained in Comparative Synthesis Example 2 (containing 0.20 mmol of 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene) in 50 mL of 1 mM sodium tetrafluoroborate aqueous solution And the change with time of the tetrafluoroborate ion concentration at 298K was followed by an anion chromatograph. The results are shown in FIG. At this time, the copper ion concentration in the solution was 15.89 mg / L.

<比較例6>
1mMテトラフルオロホウ酸ナトリウム水溶液50mLに塩基性炭酸銅11.1mg(0.050mmol)、1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼン58.9mg(0.20mmol)を加え、298Kにおけるテトラフルオロホウ酸イオン濃度の経時変化を陰イオンクロマトグラフで追跡した。結果を図6に示す。このとき、溶液中の銅イオン濃度は0.01mg/L以下であった。
<Comparative Example 6>
To 50 mL of a 1 mM sodium tetrafluoroborate aqueous solution, 11.1 mg (0.050 mmol) of basic copper carbonate, 58.9 mg of 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene ( 0.20 mmol) was added, and the change over time in the tetrafluoroborate ion concentration at 298 K was followed by an anion chromatograph. The results are shown in FIG. At this time, the copper ion concentration in the solution was 0.01 mg / L or less.

実施例3及び実施例4より、本発明の金属錯体はテトラフルオロホウ酸イオンを速やかに除去することができ、かつ溶液中への銅イオンの溶出量が少ないので、テトラフルオロホウ酸イオンの除去材として優れていることが分かる。   From Example 3 and Example 4, the metal complex of the present invention can quickly remove tetrafluoroborate ions and the amount of copper ions eluted into the solution is small. It turns out that it is excellent as a material.

一方、組成比が本発明の構成要件を満たさない比較合成例1の金属錯体を用いた場合(比較例4)では、銅イオンの溶出量は抑えられたが、テトラフルオロホウ酸イオンをほとんど除去することができなかった。炭酸イオンの変わりに硫酸イオンを用いた比較合成例2の金属錯体を用いた場合(比較例5)では、テトラフルオロホウ酸イオンの除去速度が本発明に比較して遅く、また大量に銅イオンの溶出が見られた。塩基性炭酸銅と1,4−ビス(イミダゾール−1−イルメチル)−2,3,5,6−テトラメチルベンゼンとを個別に加えた場合(比較例6)では、テトラフルオロホウ酸イオンの除去速度が本発明に比較して遅かった。   On the other hand, when the metal complex of Comparative Synthesis Example 1 whose composition ratio does not satisfy the constituent requirements of the present invention (Comparative Example 4) was used, the elution amount of copper ions was suppressed, but almost all tetrafluoroborate ions were removed. I couldn't. In the case of using the metal complex of Comparative Synthesis Example 2 using sulfate ions instead of carbonate ions (Comparative Example 5), the removal rate of tetrafluoroborate ions is slower than that of the present invention, and a large amount of copper ions Elution was observed. When basic copper carbonate and 1,4-bis (imidazol-1-ylmethyl) -2,3,5,6-tetramethylbenzene were added separately (Comparative Example 6), removal of tetrafluoroborate ions The speed was slow compared to the present invention.

Claims (4)

銅イオンと、炭酸イオンと、下記一般式(I);

(式中、R、R及びR4の内1つはRに対してメタ位或いはパラ位にあるRであり、Rを除くR、R、R、R及びRはそれぞれ同一または異なって水素原子、置換基を有していてもよいアルキル基、アルコキシ基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基またはハロゲン原子である。R及びRは同一または異なって下記一般式

で表される置換基であり、R及びRはそれぞれ同一または異なって水素原子、置換基を有していてもよいアルキル基、アルコキシ基、ホルミル基、アシロキシ基、アルコキシカルボニル基、ニトロ基、シアノ基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アシルアミノ基またはハロゲン原子であり、Aは窒素原子を少なくとも1つ含む置換基を有していてもよい5員または6員の複素環基である。)で表される該銅イオンに二座配位可能な有機配位子とからなる金属錯体であって、その組成が
(式中、Lは二座配位可能な有機配位子を示す。)で表される金属錯体。
Copper ions, carbonate ions, and the following general formula (I):

(In the formula, one of R 2 , R 3 and R 4 is R y in the meta position or para position with respect to R x , and R 1 , R 2 , R 3 , R 4 and R 4 except R y and R 5 is the same or different and each represents a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group, a formyl group, an acyloxy group, an alkoxycarbonyl group, a nitro group, a cyano group, an amino group, a monoalkylamino group, A dialkylamino group, an acylamino group, or a halogen atom, wherein R x and R y are the same or different and have the following general formula:

Wherein R 6 and R 7 are the same or different and each represents a hydrogen atom, an alkyl group which may have a substituent, an alkoxy group, a formyl group, an acyloxy group, an alkoxycarbonyl group, or a nitro group. , A cyano group, an amino group, a monoalkylamino group, a dialkylamino group, an acylamino group, or a halogen atom, and A is a 5- or 6-membered heterocyclic ring optionally having a substituent containing at least one nitrogen atom It is a group. And a metal complex composed of an organic ligand capable of bidentate coordination with the copper ion represented by
(Wherein L represents an organic ligand capable of bidentate coordination).
該二座配位可能な有機配位子(I)が有する複素環基Aが、ピロール−1−イル基を除いたピロリル基、2H−ピロール−1−イル基を除いた2H−ピロリル基、イミダゾリル基、インドール−1−イル基を除いたインドリル基、3H−インドール−1−イル基を除いた3H−インドリル基、1H−イソインドール−2−イル基を除いた1H−イソインドリル基、ベンゾイミダゾール−3−イル基を除いたベンゾイミダゾリル基、ピラゾリル基、チアゾール−1−イル基を除いたチアゾリル基、イソチアゾール−1−イル基を除いたイソチアゾリル基、オキサゾール−1−イル基を除いたオキサゾリル基、イソオキサゾール−1−イル基を除いたイソオキサゾリル基、ピロリジン−1−イル基を除いたピロリジニル基、イミダゾリジニル基、ピラゾリジニル基、ピリジン−1−イル基を除いたピリジル基、ピラジル基、ピリミジニル基、ピリダジニル基、ピペリジン−1−イル基を除いたピペリジニル基、ピペラジニル基及びモルホリン−4−イル基を除いたモルホリニル基から選択される少なくとも1種である請求項1に記載の金属錯体。   The heterocyclic group A of the organic ligand (I) capable of bidentate coordination is a pyrrolyl group excluding a pyrrol-1-yl group, a 2H-pyrrolyl group excluding a 2H-pyrrol-1-yl group, Indolyl group excluding imidazolyl group, indol-1-yl group, 3H-indolyl group excluding 3H-indol-1-yl group, 1H-isoindolyl group excluding 1H-isoindol-2-yl group, benzimidazole Benzimidazolyl group excluding -3-yl group, pyrazolyl group, thiazolyl group excluding thiazol-1-yl group, isothiazolyl group excluding isothiazol-1-yl group, oxazolyl group excluding oxazol-1-yl group , Isoxazolyl group excluding isoxazol-1-yl group, pyrrolidinyl group excluding pyrrolidin-1-yl group, imidazolidinyl group, Razolidinyl group, pyridyl group excluding pyridin-1-yl group, pyrazin group, pyrimidinyl group, pyridazinyl group, piperidinyl group excluding piperidin-1-yl group, morpholinyl group excluding piperidinyl group and morpholin-4-yl group The metal complex according to claim 1, which is at least one selected from the group consisting of: 請求項1または2のいずれかに記載の金属錯体からなるアニオン除去材。   An anion removing material comprising the metal complex according to claim 1. 該アニオン除去材が、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ酸イオン、ヘキサフルオロアンチモン酸イオン、メタンスルホン酸イオン、ベンゼンスルホン酸イオン、トリフルオロ酢酸イオン、トリフルオロメタンスルホン酸イオン、硝酸イオン、硫酸イオン、リン酸イオンまたはハロゲン化物イオンを除去するための除去材である請求項3に記載のアニオン除去材。   The anion removing material is perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, hexafluoroarsenate ion, hexafluoroantimonate ion, methanesulfonate ion, benzenesulfonate ion, trifluoroacetate ion, The anion removing material according to claim 3, which is a removing material for removing trifluoromethanesulfonate ion, nitrate ion, sulfate ion, phosphate ion or halide ion.
JP2012003962A 2012-01-12 2012-01-12 Metal complex and anion-removing material comprising the same Pending JP2013142082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012003962A JP2013142082A (en) 2012-01-12 2012-01-12 Metal complex and anion-removing material comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003962A JP2013142082A (en) 2012-01-12 2012-01-12 Metal complex and anion-removing material comprising the same

Publications (1)

Publication Number Publication Date
JP2013142082A true JP2013142082A (en) 2013-07-22

Family

ID=49038844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003962A Pending JP2013142082A (en) 2012-01-12 2012-01-12 Metal complex and anion-removing material comprising the same

Country Status (1)

Country Link
JP (1) JP2013142082A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017653A1 (en) * 2012-07-27 2014-01-30 国立大学法人静岡大学 Capsule compound, negative-ion remover, and negative-ion removal method
CN113671100A (en) * 2020-05-15 2021-11-19 中国科学院理化技术研究所 Degradation performance detection device of high polymer material in marine environment
CN114976298A (en) * 2022-06-29 2022-08-30 华中科技大学 Method for inducing preferential exposure of zinc (002) crystal face of water system zinc ion battery and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029804A1 (en) * 2006-09-06 2008-03-13 National University Corporation Shizuoka University Perchloric acid ion trapping agent
JP2010022886A (en) * 2008-07-15 2010-02-04 National Univ Corp Shizuoka Univ Method for removing tetrafluoroborate ion
JP2010042403A (en) * 2008-07-15 2010-02-25 National Univ Corp Shizuoka Univ Method for purifying water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029804A1 (en) * 2006-09-06 2008-03-13 National University Corporation Shizuoka University Perchloric acid ion trapping agent
JP2010022886A (en) * 2008-07-15 2010-02-04 National Univ Corp Shizuoka Univ Method for removing tetrafluoroborate ion
JP2010042403A (en) * 2008-07-15 2010-02-25 National Univ Corp Shizuoka Univ Method for purifying water

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015032179; Jin Yang, et al.: Crystal Growth & design Vol.8, No.12, 2008, pp.4383-4393 *
JPN6015032181; Yu-Mei Dai, et al.: Acta Crystallographica. Section C. Crystal Structure Communications Vol.64, No.10, 2008, pp.m349-m352 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017653A1 (en) * 2012-07-27 2014-01-30 国立大学法人静岡大学 Capsule compound, negative-ion remover, and negative-ion removal method
CN113671100A (en) * 2020-05-15 2021-11-19 中国科学院理化技术研究所 Degradation performance detection device of high polymer material in marine environment
CN114976298A (en) * 2022-06-29 2022-08-30 华中科技大学 Method for inducing preferential exposure of zinc (002) crystal face of water system zinc ion battery and application

Similar Documents

Publication Publication Date Title
Howson et al. Origins of stereoselectivity in optically pure phenylethaniminopyridine tris-chelates M (NN′) 3 n+ (M= Mn, Fe, Co, Ni and Zn)
Gahan et al. Encapsulated metal ions: synthesis, structure, and spectra of nitrogen-sulfur ligand atom cages containing cobalt (III) and cobalt (II)
Hou et al. Synthesis and structural characterization of three copper coordination polymers with pyridine derivatives from hydro (solvo) thermal in situ decarboxylation reactions of 2, 5-dicarboxylpyridine
JP5190995B2 (en) Heterocyclic substituted aromatic compounds, coordination compounds, perchlorate ion scavengers, perchlorate ion capture methods, and perchlorate ion removal methods
Segl’a et al. Metal (II)-promoted hydrolysis of pyridine-2-carbonitrile to pyridine-2-carboxylic acid. The structure of [Cu (pyridine-2-carboxylate) 2]· 2H2O
Huang et al. Two pairs of Zn (II) coordination polymer enantiomers based on chiral aromatic polycarboxylate ligands: synthesis, crystal structures and properties
JP2010022886A (en) Method for removing tetrafluoroborate ion
JP2013142082A (en) Metal complex and anion-removing material comprising the same
JP2010083730A (en) Method for producing at least either deuterium (d2) or hydrogen deuteride (hd) and catalyst for formic acid decomposition used therefor
Wang et al. Synthesis, structure, and surface photovoltage properties of a series of novel d 7–d 10 metal complexes with pincer N-heterocycle ligands
JP6052768B2 (en) Anion exchanger
Vinogradova et al. Synthesis and structures of copper (II), copper (I, II) and copper (I) complexes with 4-(3, 5-diphenyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl) pyrimidine. Luminescence of copper (I) complexes
He et al. Three new alkaline earth-based metal-organic frameworks based on two tricarboxylic acid ligands: Structural diversity, stability study and luminescent properties
JP2007223905A (en) Method for producing palladium acetylacetonate
Huang et al. Synthesis and crystal structures of ZnCl2 and CdCl2 containing helical coordination polymers derived from a flexible bis (pyridylurea) ligand
Bharara et al. Hydroxy-and alkoxy-bridged dinuclear uranyl–Schiff base complexes: hydrolysis, transamination and extraction studies
Wang et al. Physical characterizations, Hirshfeld surface analysis and luminescent properties of Cd (II) and Pb (II) coordination polymers based on 3-(1, 2, 4-triazol-1-yl)-benzoic acid
JP2010042403A (en) Method for purifying water
Starobrat et al. Synthesis and characterization of a series of mixed-cation borohydrides of scandium:[Cat][Sc (BH4) 4],[Cat]=[Me4N],[n-Bu4N], and [Ph4P]
JP6974788B2 (en) Imidazopyrroloquinoline salt and its manufacturing method, as well as pharmaceuticals, cosmetics and foods
Lorenz et al. Small compound–big colors: synthesis and structural investigation of brightly colored alkaline earth metal 1, 3-dimethylviolurates
WO2019021290A1 (en) Process for the preparation of glycopyrrolate tosylate
Allali et al. Ethylenediamine-and propylenediaminediacetic acid derivatives as ligands for the “fac-[M (CO) 3]+” core (M= Re, 99mTc)
Szklarzewicz et al. The complex approach to the synthesis of [W (CN) 6 (bpy)] 2−/− ion complexes. The X-ray crystal structures of reaction products
Tsang et al. Rhenium (V)-oxo complexes of neutral and monoanionic tetraazamacrocycles. X-ray structures of trans-oxohydroxo (1, 4, 8, 11-tetraazacyclotetradecan-2-one) rhenium (V) perrhenate and trans-oxohydroxo (1, 4, 8, 11-tetraazacyclotetradecane) rhenium (V) bis (perchlorate)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160112