JP2013031845A - Method for producing fluid catalytic cracking catalyst of hydrocarbon - Google Patents
Method for producing fluid catalytic cracking catalyst of hydrocarbon Download PDFInfo
- Publication number
- JP2013031845A JP2013031845A JP2012204458A JP2012204458A JP2013031845A JP 2013031845 A JP2013031845 A JP 2013031845A JP 2012204458 A JP2012204458 A JP 2012204458A JP 2012204458 A JP2012204458 A JP 2012204458A JP 2013031845 A JP2013031845 A JP 2013031845A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- catalytic cracking
- fluid catalytic
- cracking catalyst
- phosphate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 104
- 238000004231 fluid catalytic cracking Methods 0.000 title claims abstract description 35
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 23
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 16
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 58
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims abstract description 53
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 31
- 239000010457 zeolite Substances 0.000 claims abstract description 31
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 25
- 239000011159 matrix material Substances 0.000 claims abstract description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract description 17
- 239000011574 phosphorus Substances 0.000 claims abstract description 17
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 17
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 16
- 239000010452 phosphate Substances 0.000 claims abstract description 16
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 16
- 239000002243 precursor Substances 0.000 claims abstract description 14
- 239000012798 spherical particle Substances 0.000 claims abstract description 12
- 238000001035 drying Methods 0.000 claims abstract description 5
- 238000005406 washing Methods 0.000 claims abstract description 3
- 238000001694 spray drying Methods 0.000 claims abstract 2
- 239000002245 particle Substances 0.000 claims description 16
- 239000011268 mixed slurry Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 238000004523 catalytic cracking Methods 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims 1
- 239000011148 porous material Substances 0.000 abstract description 20
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000010304 firing Methods 0.000 abstract 1
- 229940063656 aluminum chloride Drugs 0.000 description 24
- 239000007864 aqueous solution Substances 0.000 description 21
- 235000011007 phosphoric acid Nutrition 0.000 description 21
- 239000002002 slurry Substances 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000005995 Aluminium silicate Substances 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 235000012211 aluminium silicate Nutrition 0.000 description 9
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 8
- 229910052761 rare earth metal Inorganic materials 0.000 description 8
- 150000002910 rare earth metals Chemical class 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 4
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 4
- 239000000347 magnesium hydroxide Substances 0.000 description 4
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 3
- 235000019838 diammonium phosphate Nutrition 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- PPOYSYMZGRUZJO-UHFFFAOYSA-N [NH4+].[NH4+].[NH4+].[NH4+].[NH4+].OP([O-])([O-])=O.[O-]P([O-])([O-])=O Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[NH4+].OP([O-])([O-])=O.[O-]P([O-])([O-])=O PPOYSYMZGRUZJO-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- JGDITNMASUZKPW-UHFFFAOYSA-K aluminium trichloride hexahydrate Chemical compound O.O.O.O.O.O.Cl[Al](Cl)Cl JGDITNMASUZKPW-UHFFFAOYSA-K 0.000 description 1
- 229940009861 aluminum chloride hexahydrate Drugs 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- HNQGTZYKXIXXST-UHFFFAOYSA-N calcium;dioxido(oxo)tin Chemical compound [Ca+2].[O-][Sn]([O-])=O HNQGTZYKXIXXST-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- QQFLQYOOQVLGTQ-UHFFFAOYSA-L magnesium;dihydrogen phosphate Chemical compound [Mg+2].OP(O)([O-])=O.OP(O)([O-])=O QQFLQYOOQVLGTQ-UHFFFAOYSA-L 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- UIEKYBOPAVTZKW-UHFFFAOYSA-L naphthalene-2-carboxylate;nickel(2+) Chemical compound [Ni+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 UIEKYBOPAVTZKW-UHFFFAOYSA-L 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
本発明は、細孔容積が大きく、かつ耐摩耗性が高い炭化水素の流動接触分解触媒の製造方法に関する。 The present invention relates to a method for producing a hydrocarbon fluid catalytic cracking catalyst having a large pore volume and high wear resistance.
従来の炭化水素の流動接触分解触媒は、例えば、粒子径の小さい原料を使用したり、バインダー量を増やしたりして、触媒の粒子密度を高めることにより、耐摩耗性を向上させていた。しかしながら、前記した方法で製造した触媒は、細孔容積が小さいので原料油が触媒粒子内へ拡散し難くなり、触媒の原料油に対する分解活性が低下するという問題があった。そこで、結合力が高い塩基性塩化アルミニウム(アルミニウムクロルヒドロール)をバインダー成分として用い、耐摩耗性が高く、しかも細孔容積が大きい炭化水素の流動接触分解触媒が提案されている(例えば、特許文献1参照)。 Conventional hydrocarbon fluid catalytic cracking catalysts have improved wear resistance by, for example, using raw materials with small particle diameters or increasing the amount of binder to increase the particle density of the catalyst. However, the catalyst produced by the above-described method has a problem that since the pore volume is small, the raw material oil is difficult to diffuse into the catalyst particles, and the cracking activity of the catalyst with respect to the raw material oil is reduced. Therefore, a hydrocarbon fluid catalytic cracking catalyst using basic aluminum chloride (aluminum chlorohydrol) having a high binding force as a binder component and having high wear resistance and a large pore volume has been proposed (for example, patents). Reference 1).
しかしながら、前記した塩基性塩化アルミニウムをバインダー成分として用いた炭化水素の流動接触分解触媒でも、耐摩耗性については充分に満足できるものではなかった。
そこで、本発明は、細孔容積が大きくしかも耐摩耗性が高い、炭化水素の流動接触分解触媒の製造方法の提供を目的とする。
However, even the hydrocarbon fluid catalytic cracking catalyst using basic aluminum chloride as a binder component is not satisfactory in terms of wear resistance.
Therefore, an object of the present invention is to provide a method for producing a hydrocarbon fluid catalytic cracking catalyst having a large pore volume and high wear resistance.
上記課題は、次の1)〜3)の発明によって解決される。
1) 塩基性塩化アルミニウムを含有する無機酸化物マトリックス前駆体とゼオライトの混合スラリーを噴霧乾燥し、得られる球状粒子を洗浄した後、乾燥して又は乾燥後に焼成して炭化水素の流動接触分解触媒を製造する方法であって、前記流動接触分解触媒の無機酸化物マトリックス中に、リン酸又はリン酸塩をP2O5として0.1〜3質量%含有させ、ゼオライト中にはリンを含有させないことを特徴とする炭化水素の流動接触分解触媒の製造方法。
2) 以下の少なくとも1つの段階で、リン酸又はリン酸塩を含有させることを特徴とする1)記載の炭化水素の流動接触分解触媒の製造方法。
(a)塩基性塩化アルミニウムを含有する無機酸化物マトリックス前駆体とゼオライトよりなる原料の1種又は2種以上に、あらかじめリン酸又はリン酸塩を混合しておく。
(b)混合スラリーの段階で、リン酸又はリン酸塩を混合する。
(c)球状粒子に、リン酸又はリン酸塩を混合する。
(d)洗浄粒子に、リン酸又はリン酸塩を混合する。
(e)洗浄粒子を乾燥し、更に焼成した後、リン酸又はリン酸塩を混合する。
3) ゼオライトがpH2以上の雰囲気にあることを特徴とする1)又は2)に記載の炭化水素の流動接触分解触媒の製造方法。
The above problems are solved by the following inventions 1) to 3).
1) A mixed slurry of an inorganic oxide matrix precursor containing basic aluminum chloride and zeolite is spray-dried, and the resulting spherical particles are washed, then dried or calcined after drying, and a fluidized catalytic cracking catalyst for hydrocarbons In the inorganic oxide matrix of the fluid catalytic cracking catalyst, 0.1 to 3% by mass of phosphoric acid or phosphate as P 2 O 5 is contained, and the zeolite contains phosphorus. A method for producing a fluidized catalytic cracking catalyst for hydrocarbons, wherein
2) The method for producing a hydrocarbon fluid catalytic cracking catalyst according to 1), wherein phosphoric acid or a phosphate is contained in at least one of the following steps.
(A) Phosphoric acid or phosphate is mixed in advance with one or more of raw materials comprising an inorganic oxide matrix precursor containing basic aluminum chloride and zeolite.
(B) In the mixed slurry stage, phosphoric acid or phosphate is mixed.
(C) Phosphoric acid or phosphate is mixed with the spherical particles.
(D) Phosphoric acid or phosphate is mixed with the cleaning particles.
(E) The washed particles are dried and further baked, and then mixed with phosphoric acid or phosphate.
3) The method for producing a hydrocarbon fluid catalytic cracking catalyst according to 1) or 2), wherein the zeolite is in an atmosphere having a pH of 2 or higher.
本発明により製造される炭化水素の流動接触分解触媒は、リンがP2O5として0.1〜3質量%含有されているので、リン酸根(PO4)が、触媒成分である塩基性塩化アルミニウムと反応し、塩基性塩化アルミニウムの結晶の表面にリン酸アルミニウムを形成し、隣り合う塩基性塩化アルミニウムの結晶の接触面の結合力を高めることができる。これによって、触媒性能を維持したまま、耐摩耗性を高くすることができる。従って、大きな細孔容積を持ち、かつ、耐摩耗性に優れた触媒の製造が可能になる。 Since the hydrocarbon fluid catalytic cracking catalyst produced according to the present invention contains 0.1 to 3% by mass of phosphorus as P 2 O 5 , the basic chloride whose phosphate group (PO 4 ) is the catalyst component is used. By reacting with aluminum, aluminum phosphate is formed on the surface of the basic aluminum chloride crystal, and the bonding force between the contact surfaces of the adjacent basic aluminum chloride crystals can be increased. As a result, the wear resistance can be increased while maintaining the catalyst performance. Therefore, it is possible to produce a catalyst having a large pore volume and excellent wear resistance.
リン〔リンとは、リン酸根(PO4)をいう〕とアルミニウム化合物(例えば、アルミナ)は親和性が高く、塩基性塩化アルミニウムをリンが架橋して、塩基性塩化アルミニウムの結合力を高めることができる。これにより、触媒の耐摩耗性が向上する。
また、触媒のリンの含有量が、P2O5として、0.1質量%未満では、塩基性塩化アルミニウムの結晶の表面に形成されるリン酸アルミニウムが少なくなり、塩基性塩化アルミニウム同士の結合力を高めることができず、3質量%を超えると、余剰のリンが触媒の細孔を塞いで、細孔容積が小さくなる虞がある。
本発明において、「リン酸」とは、正リン酸(オルトリン酸)を意味する。また、リン酸塩としては、リン酸アンモニウム、リン酸水素−アンモニウム、リン酸水素二アンモニウム、第一リン酸アルミニウム、第一リン酸マグネシウム等がある。
Phosphorus (phosphorus refers to phosphate group (PO 4 )) and aluminum compounds (eg, alumina) have high affinity, and basic aluminum chloride is cross-linked with phosphorus to increase the binding strength of basic aluminum chloride. Can do. This improves the wear resistance of the catalyst.
Further, if the phosphorus content of the catalyst is less than 0.1% by mass as P 2 O 5 , the amount of aluminum phosphate formed on the surface of the basic aluminum chloride crystal decreases, and the basic aluminum chloride bonds to each other. If the force cannot be increased and the amount exceeds 3% by mass, excess phosphorus may block the pores of the catalyst, which may reduce the pore volume.
In the present invention, “phosphoric acid” means orthophosphoric acid (orthophosphoric acid). Examples of the phosphate include ammonium phosphate, hydrogen phosphate-ammonium phosphate, diammonium hydrogen phosphate, primary aluminum phosphate, primary magnesium phosphate, and the like.
塩基性塩化アルミニウムは、塩化アルミニウム水溶液に金属アルミニウム(例えば、アルミニウム粉、アルミニウムホイル)を溶解させて製造することができ、下記(1)式で示される。
〔Al2(OH)nCl6−n〕m・・・(1)
(ただし、0<n<6、1≦m≦10、好ましくは4.8≦n≦5.3、3≦m≦7である。なお、mは、自然数を示す。)
無機酸化物マトリックス前駆体の構成成分としては、塩基性塩化アルミニウムの他に、カオリン、活性アルミナ、メタルトラップ剤等がある。
ここで、メタルトラップ剤としては、アルミナ粒子、リン−アルミナ粒子、結晶性カルシウムアルミネート、セピオライト、チタン酸バリウム、スズ酸カルシウム、チタン酸ストロンチウム、酸化マンガン、マグネシア、マグネシア−アルミナ等が例示される。
触媒には、レアアース(希土類金属)を含んでもよい。希土類金属としては、セリウム(Ce)、ランタン(La)、プラセオジウム(Pr)、及びネオジム(Nd)等を挙げることができ、通常は、その1種又は2種以上の希土類元素の塩化物(希土類金属塩化物)として用いる。
Basic aluminum chloride can be produced by dissolving metallic aluminum (for example, aluminum powder, aluminum foil) in an aluminum chloride aqueous solution, and is represented by the following formula (1).
[Al 2 (OH) n Cl 6-n ] m (1)
(However, 0 <n <6, 1 ≦ m ≦ 10, preferably 4.8 ≦ n ≦ 5.3, 3 ≦ m ≦ 7, where m represents a natural number.)
Constituent components of the inorganic oxide matrix precursor include kaolin, activated alumina, metal trapping agent and the like in addition to basic aluminum chloride.
Examples of the metal trapping agent include alumina particles, phosphorus-alumina particles, crystalline calcium aluminate, sepiolite, barium titanate, calcium stannate, strontium titanate, manganese oxide, magnesia, magnesia-alumina, and the like. .
The catalyst may contain rare earth (rare earth metal). Examples of the rare earth metal include cerium (Ce), lanthanum (La), praseodymium (Pr), and neodymium (Nd). Usually, one or more rare earth element chlorides (rare earth) are used. Metal chloride).
ゼオライトは、炭化水素の流動接触分解触媒の製造中に、pH2以上の雰囲気にあることが好ましく、より好ましくはpH3〜12である。なお、ゼオライト粒子表面のpHは直接測定できないため、前記pHはゼオライト粒子が存在している系(溶液)のpHである。前記pHが2未満であると、ゼオライト粒子が脱アルミして、ゼオライトが破壊される虞がある。
ゼオライトとしては、Y型ゼオライト、超安定化Y型ゼオライト(USY)、レアアース交換Y型ゼオライト(RE−Y)、レアアース交換超安定化Y型ゼオライト(RE−USY)が使用される。
The zeolite is preferably in an atmosphere having a pH of 2 or more during the production of a fluid catalytic cracking catalyst for hydrocarbons, and more preferably has a pH of 3-12. Since the pH of the zeolite particle surface cannot be measured directly, the pH is the pH of the system (solution) in which the zeolite particles are present. If the pH is less than 2, the zeolite particles may be dealuminated and the zeolite may be destroyed.
As the zeolite, Y-type zeolite, ultra-stabilized Y-type zeolite (USY), rare earth-exchanged Y-type zeolite (RE-Y), and rare-earth exchanged ultra-stabilized Y-type zeolite (RE-USY) are used.
本発明により製造される炭化水素の流動接触分解触媒は、耐摩耗性指数(CCIC Attrition Index.CAI)が6以下で、水銀圧入法によって測定される全細孔容積(細孔径5.5〜500nm)が0.10〜0.40ml/gであることが好ましい。
ここで、耐摩耗性指数は、触媒化成技報Vol.13、No.1、P65、1996に記載された方法により測定される値である。耐摩耗性指数が6を超えると、触媒が使用時に粉化して、触媒の損失、流動接触分解装置のトラブル、触媒粉の製品(特に、HCO)への混入等が起こることがあるので好ましくない。
また、水銀圧入法によって測定される全細孔容積は、細孔径が5.5〜500nmの細孔のものであり、これはマトリックスに形成される細孔である。なお、ゼオライトの細孔は水銀圧入法では測定できない。全細孔容積が0.10ml/g未満では、炭化水素を効率よく分解することができず、0.40ml/gを超えると、強度(耐摩耗性)が低下する虞がある。
洗浄粒子の乾燥は、例えば、100〜200℃程度で行われ、焼成は500〜600℃程度で行われる。
The hydrocarbon fluid catalytic cracking catalyst produced according to the present invention has a wear resistance index (CCIC Attrition Index. CAI) of 6 or less and a total pore volume (pore diameter of 5.5 to 500 nm) measured by mercury porosimetry. ) Is preferably 0.10 to 0.40 ml / g.
Here, the abrasion resistance index is the value of the catalyst chemical technical report Vol. 13, no. 1, P65, a value measured by the method described in 1996. If the wear resistance index exceeds 6, the catalyst is pulverized during use, which may lead to loss of the catalyst, trouble in the fluid catalytic cracking device, mixing of the catalyst powder into the product (particularly HCO), etc., which is not preferable. .
The total pore volume measured by the mercury intrusion method is a pore having a pore diameter of 5.5 to 500 nm, which is a pore formed in the matrix. Note that the pores of zeolite cannot be measured by the mercury intrusion method. If the total pore volume is less than 0.10 ml / g, hydrocarbons cannot be decomposed efficiently, and if it exceeds 0.40 ml / g, the strength (wear resistance) may be reduced.
For example, the cleaning particles are dried at about 100 to 200 ° C., and the baking is performed at about 500 to 600 ° C.
[実施例1]
<塩基性塩化アルミニウム水溶液の製造>
33.7kgの純水を入れたスチームジャケット付きのチタン製のタンク(容量70L)に、7245gの塩化アルミニウム6水和物(関東化学社製。1級試薬)を挿入して十分に攪拌し、塩化アルミニウム水溶液を得た。この塩化アルミニウム水溶液を攪拌しながら95℃まで加温した後、液温を保持したまま、純度99.9%のアルミ箔(アルミニウムホイル)4050gを6時間かけて少量づつ(11.25g/分程度で)投入して、アルミ箔を溶解させた。なお、アルミ箔の溶解時には、大量の水素ガスが発生し、水溶液中の水が水蒸気として蒸発するため、タンク内の水溶液の貯留量が一定になるように95℃の純水を適宜補給した。アルミ箔が完全に溶解した後、この水溶液を30℃まで冷却して、45.0kgの塩基性塩化アルミニウム水溶液を得た。この塩基性塩化アルミニウム水溶液は、pH3.9であり、Al2O3として20.5%の塩基性塩化アルミニウムを含んでいた。なお、以下の実施例、比較例においても、この塩基性塩化アルミニウム水溶液を使用した。
<流動接触分解触媒の製造>
この塩基性塩化アルミニウム水溶液975.6g(触媒基準で10質量%)と、カオリン1093.0g(触媒基準で47質量%)と、活性アルミナ222.2g(触媒基準で10質量%)と、メタルトラップ剤として二酸化マンガン20.0g(触媒基準で1質量%)とを混合して、無機酸化物マトリックス前駆体を得た。更に、得られた無機酸化物マトリックス前駆体に、超安定化Y型ゼオライトスラリー1818.2g(超安定化Y型ゼオライトを600.0g含む。触媒基準で30質量%)を加え、混合スラリーを得た。この混合スラリーに、85%リン酸(オルトリン酸。以下、同様)を16.2g(触媒基準でP2O5として0.5質量%)加え、十分に攪拌した後、20%水酸化マグネシウム水溶液を添加して、pH4.8に調整し、リン含有スラリーを得た。
このリン含有スラリーを噴霧乾燥して、微小な球状の粒子(平均粒子径が60μm程度)を調製した後、Na2O含有量が0.5質量%以下になるまで洗浄し、更に、レアアース含有水溶液を用いてRE2O3として1.5質量%となるようにイオン交換した後、135℃で乾燥し、炭化水素の流動接触分解触媒A(以下、単に「触媒A」ともいう。以下同様)を製造した。得られた触媒Aの性状を表1に示す。
[Example 1]
<Production of basic aluminum chloride aqueous solution>
7245 g of aluminum chloride hexahydrate (manufactured by Kanto Chemical Co., Ltd., first grade reagent) was inserted into a titanium tank with a steam jacket (capacity: 70 L) containing 33.7 kg of pure water, and stirred sufficiently. An aqueous aluminum chloride solution was obtained. After this aluminum chloride aqueous solution was heated to 95 ° C. with stirring, 4050 g of aluminum foil (aluminum foil) having a purity of 99.9% was gradually added over 6 hours while maintaining the liquid temperature (about 11.25 g / min). In) to dissolve the aluminum foil. When the aluminum foil was dissolved, a large amount of hydrogen gas was generated, and water in the aqueous solution evaporated as water vapor. Therefore, 95 ° C. pure water was appropriately replenished so that the amount of the aqueous solution stored in the tank was constant. After the aluminum foil was completely dissolved, the aqueous solution was cooled to 30 ° C. to obtain 45.0 kg of basic aluminum chloride aqueous solution. This basic aluminum chloride aqueous solution had a pH of 3.9 and contained 20.5% basic aluminum chloride as Al 2 O 3 . The basic aluminum chloride aqueous solution was also used in the following examples and comparative examples.
<Production of fluid catalytic cracking catalyst>
975.6 g of this basic aluminum chloride aqueous solution (10% by mass based on catalyst), 1093.0 g of kaolin (47% by mass based on catalyst), 222.2 g of activated alumina (10% by mass based on catalyst), metal trap As an agent, 20.0 g of manganese dioxide (1% by mass on the basis of catalyst) was mixed to obtain an inorganic oxide matrix precursor. Furthermore, 1818.2 g of super-stabilized Y-type zeolite slurry (including 600.0 g of super-stabilized Y-type zeolite. 30% by mass based on catalyst) was added to the obtained inorganic oxide matrix precursor to obtain a mixed slurry. It was. After adding 16.2 g of 85% phosphoric acid (orthophosphoric acid, hereinafter the same) to this mixed slurry (0.5% by mass as P 2 O 5 based on the catalyst) and stirring sufficiently, a 20% magnesium hydroxide aqueous solution was added. Was added to adjust the pH to 4.8 to obtain a phosphorus-containing slurry.
The phosphorus-containing slurry is spray-dried to prepare fine spherical particles (average particle size is about 60 μm), and then washed until the Na 2 O content is 0.5% by mass or less, and further contains rare earth. After ion exchange so that the RE 2 O 3 is 1.5% by mass using an aqueous solution, it is dried at 135 ° C. and fluidized catalytic cracking catalyst A of hydrocarbon (hereinafter simply referred to as “catalyst A”. The same applies hereinafter. ) Was manufactured. The properties of the obtained catalyst A are shown in Table 1.
[実施例2]
カオリンを1081.4g(触媒基準で46.5質量%)、85%リン酸を32.5g(触媒基準でP2O5として1.0質量%)として、流動接触分解触媒Bを製造した点が、実施例1と異なる。
[Example 2]
The point of producing fluid catalytic cracking catalyst B with 1081.4 g of kaolin (46.5% by mass based on catalyst) and 32.5 g of 85% phosphoric acid (1.0% by mass as P 2 O 5 based on catalyst) However, this is different from the first embodiment.
[実施例3]
カオリンを1058.1g(触媒基準で45.5質量%)、85%リン酸を64.9g(触媒基準でP2O5として2.0質量%)として、流動接触分解触媒Cを製造した点が、実施例1と異なる。
[Example 3]
Point of producing fluid catalytic cracking catalyst C with 1058.1 g of kaolin (45.5% by mass based on catalyst) and 64.9 g of 85% phosphoric acid (2.0% by mass as P 2 O 5 based on catalyst) However, this is different from the first embodiment.
[比較例1]
カオリンを1104.7g(触媒基準で47.5質量%)とし、85%リン酸を混合せずに、流動接触分解触媒Dを製造した点が、実施例1と異なる。
[Comparative Example 1]
The difference from Example 1 is that the fluid catalytic cracking catalyst D was produced with 1104.7 g of kaolin (47.5 mass% based on the catalyst) and without mixing 85% phosphoric acid.
[比較例2]
カオリンを1011.6g(触媒基準で43.5質量%)、85%リン酸を129.9g(触媒基準でP2O5として4.0質量%)として、流動接触分解触媒Eを製造した点が、実施例1と異なる。
[Comparative Example 2]
The point of producing fluid catalytic cracking catalyst E with 1011.6 g of kaolin (43.5% by mass based on catalyst) and 129.9 g of 85% phosphoric acid (4.0% by mass as P 2 O 5 based on catalyst) However, this is different from the first embodiment.
[実施例4]
85%リン酸16.2g(触媒基準でP2O5として0.5質量%)を、塩基性塩化アルミニウム水溶液975.6g(触媒基準で10質量%)に予めに加えて得られた水溶液と、カオリン1093.0g(触媒基準で47質量%)と、活性アルミナ222.2g(触媒基準で10質量%)と、メタルトラップ剤として二酸化マンガン20.0g(触媒基準で1質量%)とを混合して、無機酸化物マトリックス前駆体を得た。更に、得られた無機酸化物マトリックス前駆体に、超安定化Y型ゼオライトスラリー1818.2g(超安定化Y型ゼオライトを600.0g含む。触媒基準で30質量%)を加え、混合スラリーを得た。この混合スラリーに、20%水酸化マグネシウム水溶液を添加して、pH4.8に調整し、リン含有スラリーを得た。
このリン含有スラリーを噴霧乾燥して、微小な球状の粒子(平均粒子径が60μm程度)を調製した後、Na2O含有量が0.5質量%以下になるまで洗浄し、更に、レアアース含有水溶液を用いてRE2O3として1.5質量%となるようにイオン交換した後、135℃で乾燥し、炭化水素の流動接触分解触媒F(以下、単に「触媒F」ともいう。以下同様)を製造した。
[Example 4]
An aqueous solution obtained by previously adding 16.2 g of 85% phosphoric acid (0.5% by mass as P 2 O 5 on a catalyst basis) to 975.6 g of a basic aqueous aluminum chloride solution (10% by mass on a catalyst basis) , 1093.0 g of kaolin (47% by mass based on catalyst), 222.2 g of activated alumina (10% by mass based on catalyst) and 20.0 g of manganese dioxide (1% by mass based on catalyst) as a metal trapping agent Thus, an inorganic oxide matrix precursor was obtained. Furthermore, 1818.2 g of super-stabilized Y-type zeolite slurry (including 600.0 g of super-stabilized Y-type zeolite. 30% by mass based on catalyst) was added to the obtained inorganic oxide matrix precursor to obtain a mixed slurry. It was. A 20% magnesium hydroxide aqueous solution was added to the mixed slurry to adjust the pH to 4.8 to obtain a phosphorus-containing slurry.
The phosphorus-containing slurry is spray-dried to prepare fine spherical particles (average particle size is about 60 μm), and then washed until the Na 2 O content is 0.5% by mass or less, and further contains rare earth. After ion exchange so that the RE 2 O 3 is 1.5% by mass using an aqueous solution, it is dried at 135 ° C. and fluidized catalytic cracking catalyst F of hydrocarbon (hereinafter also simply referred to as “catalyst F”. ) Was manufactured.
[実施例5]
塩基性塩化アルミニウム水溶液975.6g(触媒基準で10質量%)と、カオリン1093.0g(触媒基準で47質量%)と、活性アルミナ222.2g(触媒基準で10質量%)と、メタルトラップ剤として二酸化マンガン20.0g(触媒基準で1質量%)とを混合して、無機酸化物マトリックス前駆体を得た。更に、得られた無機酸化物マトリックス前駆体に、超安定化Y型ゼオライトスラリー1818.2g(超安定化Y型ゼオライトを600.0g含む。触媒基準で30質量%)を加え、混合スラリーを得た。この混合スラリーに、20%水酸化マグネシウム水溶液を添加して、pH4.8に調整し、スラリーを得た。
このスラリーを噴霧乾燥して、微小な球状の粒子(平均粒子径が60μm程度)を調製した後、Na2O含有量が0.5質量%以下になるまで洗浄し、更に、レアアース含有水溶液を用いてRE2O3として1.5質量%となるようにイオン交換した後、この水溶液に、85%オルトリン酸16.2g(触媒基準でP2O5として0.5質量%)を添加して、充分微小粒子と水溶液を接触させてから、微小粒子を回収・乾燥して炭化水素の流動接触分解触媒G(以下、単に「触媒G」ともいう。以下同様)を製造した。
[Example 5]
975.6 g basic aluminum chloride aqueous solution (10% by mass based on catalyst), 1093.0 g kaolin (47% by mass based on catalyst), 222.2 g activated alumina (10% by mass based on catalyst), metal trapping agent As a mixture, 20.0 g of manganese dioxide (1% by mass on the basis of catalyst) was mixed to obtain an inorganic oxide matrix precursor. Furthermore, 1818.2 g of super-stabilized Y-type zeolite slurry (including 600.0 g of super-stabilized Y-type zeolite. 30% by mass based on catalyst) was added to the obtained inorganic oxide matrix precursor to obtain a mixed slurry. It was. A 20% magnesium hydroxide aqueous solution was added to the mixed slurry to adjust the pH to 4.8 to obtain a slurry.
The slurry is spray-dried to prepare fine spherical particles (average particle size is about 60 μm), and then washed until the Na 2 O content is 0.5 mass% or less. And then ion-exchanged to 1.5% by mass as RE 2 O 3 , and then added to this aqueous solution 16.2 g of 85% orthophosphoric acid (0.5% by mass as P 2 O 5 on a catalyst basis). Then, after sufficiently bringing the microparticles into contact with the aqueous solution, the microparticles were collected and dried to produce a hydrocarbon fluid catalytic cracking catalyst G (hereinafter also simply referred to as “catalyst G”, hereinafter the same).
[実施例6]
塩基性塩化アルミニウム水溶液975.6g(触媒基準で10質量%)と、カオリン1093.0g(触媒基準で47質量%)と、活性アルミナ222.2g(触媒基準で10質量%)と、メタルトラップ剤として二酸化マンガン20.0g(触媒基準で1質量%)とを混合して、無機酸化物マトリックス前駆体を得た。更に、得られた無機酸化物マトリックス前駆体に、超安定化Y型ゼオライトスラリー1818.2g(超安定化Y型ゼオライトを600.0g含む。触媒基準で30質量%)を加え、混合スラリーを得た。この混合スラリーに、20%水酸化マグネシウム水溶液を添加して、pH4.8に調整し、スラリーを得た。
このスラリーを噴霧乾燥して、微小な球状の粒子(平均粒子径が60μm程度)を調製した後、Na2O含有量が0.5質量%以下になるまで洗浄し、135℃で乾燥し、更に、600℃で焼成したものに85%リン酸16.2g(触媒基準でP2O5として0.5質量%)含浸して、流動接触分解触媒H(以下、単に「触媒H」ともいう。以下同様)を製造した。
[Example 6]
975.6 g basic aluminum chloride aqueous solution (10% by mass based on catalyst), 1093.0 g kaolin (47% by mass based on catalyst), 222.2 g activated alumina (10% by mass based on catalyst), metal trapping agent As a mixture, 20.0 g of manganese dioxide (1% by mass on the basis of catalyst) was mixed to obtain an inorganic oxide matrix precursor. Furthermore, 1818.2 g of super-stabilized Y-type zeolite slurry (including 600.0 g of super-stabilized Y-type zeolite. 30% by mass based on catalyst) was added to the obtained inorganic oxide matrix precursor to obtain a mixed slurry. It was. A 20% magnesium hydroxide aqueous solution was added to the mixed slurry to adjust the pH to 4.8 to obtain a slurry.
This slurry is spray-dried to prepare fine spherical particles (average particle size is about 60 μm), then washed until the Na 2 O content is 0.5% by mass or less, and dried at 135 ° C., Further, the product calcined at 600 ° C. was impregnated with 16.2 g of 85% phosphoric acid (0.5% by mass as P 2 O 5 based on the catalyst), and fluidized catalytic cracking catalyst H (hereinafter also simply referred to as “catalyst H”). The same applies hereinafter.
[実施例7]
リン酸の代わりに、リン酸水素二アンモニウムを18.6g(触媒基準で0.5質量%)を含浸して、流動接触分解触媒Iを製造した点が、実施例6と異なる。
[Example 7]
The difference from Example 6 is that fluid catalytic cracking catalyst I was produced by impregnating diammonium hydrogen phosphate with 18.6 g (0.5% by mass based on catalyst) instead of phosphoric acid.
触媒A〜Iについて、それぞれFCC触媒評価装置(ケイザー社製、ACE−MAT モデルR+)を用い、同一原料油、同一反応条件下で接触分解反応を行なった。表1に結果を示す。なお、予め、触媒A〜Iは、触媒の重量基準で、ナフテン酸バナジウムをV2O5として4000wtppm、ナフテン酸ニッケルをNiOとして2000wtppmをともに含浸し、780℃で13時間100%スチーム雰囲気下で前処理をした。
ここで、接触分解反応条件は、以下の通りであった。
反応温度:520℃
原料油:脱硫常圧蒸留残さ油
Cat./Oil比(触媒と油の質量比):4wt%/wt%(触媒9g、油2.25g),及び、5wt%/wt%(触媒9g、油1.80g)
Catalysts A to I were each subjected to catalytic cracking reaction under the same feedstock and the same reaction conditions using an FCC catalyst evaluation device (manufactured by Kaiser, ACE-MAT model R +). Table 1 shows the results. The catalysts A to I were impregnated with 2,000 wtppm of vanadium naphthenate as V 2 O 5 and 2,000 wtppm of nickel naphthenate as NiO in advance, based on the weight of the catalyst, at 780 ° C. for 13 hours in a 100% steam atmosphere. Pre-processed.
Here, the catalytic cracking reaction conditions were as follows.
Reaction temperature: 520 ° C
Raw material oil: Desulfurized atmospheric distillation residue oil Cat. / Oil ratio (mass ratio of catalyst and oil): 4 wt% / wt% (catalyst 9 g, oil 2.25 g) and 5 wt% / wt% (catalyst 9 g, oil 1.80 g)
(1)比表面積の測定方法
全自動ガス吸着量測定装置(ユアサアイオニクス社製マルチソーブ16)を用いてBET法により測定した。
(2)嵩密度の測定方法
25mlのシリンダーを用いて、触媒の重量を測定し、単位体積当たりの重量から嵩密度を計算した。
(3)耐摩耗性指数(CAI)の測定方法
触媒化成技報 Vol.13、No.1、P65(1996)「触媒の摩耗強度測定法」に記載の装置及び方法により測定した。
(4)転化率(質量%)=(A−B)/A×100
A:原料油の重量
B:生成油中の沸点216℃以上の留分の重量
(5)ガソリン収率(質量%)=C/A×100
C:生成油中のガソリン(沸点範囲:C5〜216℃)の重量
(6)LCO収率(質量%)=D/A×100
D:生成油中のLCO(沸点範囲:216〜343℃)の重量
(7)HCO収率(質量%)=E/A×100
E:生成油中のHCO(沸点範囲:343℃〜)の重量
(8)コーク収率(質量%)=F/A×100
F:触媒混合物上に析出したコーク重量
(1) Method for measuring specific surface area The specific surface area was measured by the BET method using a fully automatic gas adsorption amount measuring device (Multisorb 16 manufactured by Yuasa Ionics).
(2) Method for measuring bulk density The weight of the catalyst was measured using a 25 ml cylinder, and the bulk density was calculated from the weight per unit volume.
(3) Measuring method of abrasion resistance index (CAI) Catalytic conversion technical report Vol. 13, no. 1, measured by the apparatus and method described in P65 (1996) “Method for Measuring Abrasion Strength of Catalyst”.
(4) Conversion (mass%) = (A−B) / A × 100
A: Weight of raw material oil B: Weight of fraction having boiling point of 216 ° C. or higher in product oil (5) Gasoline yield (mass%) = C / A × 100
C: Weight of gasoline (boiling range: C5 to 216 ° C.) in the produced oil (6) LCO yield (% by mass) = D / A × 100
D: Weight of LCO (boiling range: 216 to 343 ° C.) in the product oil (7) HCO yield (% by mass) = E / A × 100
E: Weight of HCO (boiling range: from 343 ° C.) in the product oil (8) Coke yield (% by mass) = F / A × 100
F: Weight of coke deposited on the catalyst mixture
<流動接触分解触媒A〜Eについて>
リンがP2O5として0.5〜2質量%含有されている流動接触分解触媒A〜Cは、比表面積が219m2/g以上と大きく、しかも、耐摩耗性指数が6以下と高くなった。これにより、触媒性能を維持したまま、耐摩耗性を高くすることができる。従って、大きな細孔容積を持ち、かつ、耐摩耗性に優れた触媒の調製が可能になる。しかしながら、リンを含まない流動接触分解触媒Dは、耐摩耗性が悪く、リンがP2O5として4質量%含有されている流動接触分解触媒Eは、細孔容積が0.198ml/gと低くなった。
<About fluid catalytic cracking catalysts A to E>
Fluid catalytic cracking catalysts A to C containing 0.5 to 2% by mass of phosphorus as P 2 O 5 have a large specific surface area of 219 m 2 / g or more and a high wear resistance index of 6 or less. It was. Thereby, abrasion resistance can be made high, maintaining catalyst performance. Therefore, a catalyst having a large pore volume and excellent wear resistance can be prepared. However, the fluid catalytic cracking catalyst D containing no phosphorus has poor wear resistance, and the fluid catalytic cracking catalyst E containing 4% by mass of phosphorus as P 2 O 5 has a pore volume of 0.198 ml / g. It became low.
<流動接触分解触媒A、F〜Iについて>
P2O5として0.5質量%のリンを製造工程で含有させている流動接触分解触媒A及び流動接触分解触媒F〜Iは、細孔容積が0.228ml/g以上と大きく、しかも、耐摩耗性指数が6以下と高くなった。これにより、触媒性能を維持したまま、耐摩耗性を高くすることができる。従って、大きな細孔容積を持ち、かつ、耐摩耗性に優れた触媒の調製が可能になる。また、流動接触分解触媒Hでは、洗浄粒子を乾燥した後、リン酸を添加した場合、ゼオライトがpH2以下の雰囲気にあり、ゼオライトの結晶が壊れ易くなる傾向にあるため、流動接触分解触媒Iのように、リン酸水素二アンモニウムを添加して、ゼオライトがpH2以上(pH3〜12)の雰囲気にし、ゼオライト結晶の破壊を防ぐことにより、耐摩耗性を良くすることができる。
<About fluid catalytic cracking catalysts A and F to I>
The fluid catalytic cracking catalyst A and fluid catalytic cracking catalysts F to I containing 0.5% by mass of phosphorus as P 2 O 5 in the production process have a large pore volume of 0.228 ml / g or more, The wear resistance index was as high as 6 or less. Thereby, abrasion resistance can be made high, maintaining catalyst performance. Therefore, a catalyst having a large pore volume and excellent wear resistance can be prepared. Further, in the fluid catalytic cracking catalyst H, when phosphoric acid is added after drying the washing particles, the zeolite is in an atmosphere having a pH of 2 or less, and the crystals of the zeolite tend to be broken. Thus, by adding diammonium hydrogen phosphate to make the zeolite in an atmosphere having a pH of 2 or more (pH 3 to 12) and preventing destruction of the zeolite crystals, the wear resistance can be improved.
本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の流動接触分解触媒の製造方法を構成する場合も本発明の権利範囲に含まれる。 The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible. A combination of these is also included in the scope of the right of the present invention.
Claims (3)
(a)塩基性塩化アルミニウムを含有する無機酸化物マトリックス前駆体とゼオライトよりなる原料の1種又は2種以上に、あらかじめリン酸又はリン酸塩を混合しておく。
(b)混合スラリーの段階で、リン酸又はリン酸塩を混合する。
(c)球状粒子に、リン酸又はリン酸塩を混合する。
(d)洗浄粒子に、リン酸又はリン酸塩を混合する。
(e)洗浄粒子を乾燥し、更に焼成した後、リン酸又はリン酸塩を混合する。 The method for producing a hydrocarbon fluid catalytic cracking catalyst according to claim 1, wherein phosphoric acid or phosphate is contained in at least one of the following steps.
(A) Phosphoric acid or phosphate is mixed in advance with one or more of raw materials comprising an inorganic oxide matrix precursor containing basic aluminum chloride and zeolite.
(B) In the mixed slurry stage, phosphoric acid or phosphate is mixed.
(C) Phosphoric acid or phosphate is mixed with the spherical particles.
(D) Phosphoric acid or phosphate is mixed with the cleaning particles.
(E) The washed particles are dried and further baked, and then mixed with phosphoric acid or phosphate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012204458A JP5579236B2 (en) | 2012-09-18 | 2012-09-18 | Process for producing hydrocarbon fluid catalytic cracking catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012204458A JP5579236B2 (en) | 2012-09-18 | 2012-09-18 | Process for producing hydrocarbon fluid catalytic cracking catalyst |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008254364A Division JP5258488B2 (en) | 2008-09-30 | 2008-09-30 | Hydrocarbon catalytic cracking catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013031845A true JP2013031845A (en) | 2013-02-14 |
JP5579236B2 JP5579236B2 (en) | 2014-08-27 |
Family
ID=47788191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012204458A Active JP5579236B2 (en) | 2012-09-18 | 2012-09-18 | Process for producing hydrocarbon fluid catalytic cracking catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5579236B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117983283A (en) * | 2024-04-07 | 2024-05-07 | 岳阳怡天化工有限公司 | Heavy metal resistant catalytic cracking auxiliary agent and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08173816A (en) * | 1994-12-27 | 1996-07-09 | Catalysts & Chem Ind Co Ltd | Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production |
JP2006142273A (en) * | 2004-11-24 | 2006-06-08 | Catalysts & Chem Ind Co Ltd | Process for producing catalyst composition for hydrocarbon fluid catalytic cracking |
JP2008055416A (en) * | 2006-08-30 | 2008-03-13 | Petrochina Co Ltd | Method for increasing solid content of catalytic cracking catalyst slurry |
JP2010509044A (en) * | 2006-11-13 | 2010-03-25 | アルベマール・ネーザーランズ・ベー・ブイ | Manufacturing method of FCC catalyst |
-
2012
- 2012-09-18 JP JP2012204458A patent/JP5579236B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08173816A (en) * | 1994-12-27 | 1996-07-09 | Catalysts & Chem Ind Co Ltd | Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production |
JP2006142273A (en) * | 2004-11-24 | 2006-06-08 | Catalysts & Chem Ind Co Ltd | Process for producing catalyst composition for hydrocarbon fluid catalytic cracking |
JP2008055416A (en) * | 2006-08-30 | 2008-03-13 | Petrochina Co Ltd | Method for increasing solid content of catalytic cracking catalyst slurry |
JP2010509044A (en) * | 2006-11-13 | 2010-03-25 | アルベマール・ネーザーランズ・ベー・ブイ | Manufacturing method of FCC catalyst |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117983283A (en) * | 2024-04-07 | 2024-05-07 | 岳阳怡天化工有限公司 | Heavy metal resistant catalytic cracking auxiliary agent and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5579236B2 (en) | 2014-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5258488B2 (en) | Hydrocarbon catalytic cracking catalyst | |
JP5628027B2 (en) | Fluid catalytic cracking catalyst of hydrocarbon oil and fluid catalytic cracking method of hydrocarbon oil using the same | |
JP6793004B2 (en) | Residual oil cracking active flow catalytic cracking catalyst and its manufacturing method | |
JP4820919B2 (en) | Catalyst for producing monocyclic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon | |
JP6915985B2 (en) | Metal scavengers, methods for producing metal scavengers, and fluid catalytic cracking catalysts | |
TWI650176B (en) | Fcc catalyst compositions containing boron oxide and phosphorus | |
JP5390833B2 (en) | Fluid catalytic cracking catalyst for hydrocarbon oil | |
JP2019141845A (en) | Mesoporous fcc catalysts with excellent attrition resistance | |
KR102089608B1 (en) | Method for manufacturing catalytic cracking catalyst for hydrocarbon oil | |
JP2018167213A (en) | Method for producing fluid catalytic cracking catalyst | |
WO2012091092A1 (en) | Catalyst for producing monocylic aromatic hydrocarbon and method for producing monocyclic aromatic hydrocarbon | |
US9403161B2 (en) | Method of producing FCC catalysts with reduced attrition rates | |
CN104014361A (en) | Catalytic cracking catalyst and preparation method thereof | |
JP2019523705A (en) | FCC catalyst with alumina obtained from crystalline boehmite | |
JP2006142273A (en) | Process for producing catalyst composition for hydrocarbon fluid catalytic cracking | |
JP5954970B2 (en) | Hydrocarbon catalytic cracking catalyst and process for producing the same | |
JP5579236B2 (en) | Process for producing hydrocarbon fluid catalytic cracking catalyst | |
KR102151830B1 (en) | Magnesium stabilized ultra low soda cracking catalysts | |
JP7123864B2 (en) | Fluid catalytic cracking catalyst for hydrocarbon oil | |
JP2020032350A (en) | Fluid contact cracking catalyst for hydrocarbon oil | |
JP2020032352A (en) | Fluid contact cracking catalyst for hydrocarbon oil | |
WO2020044859A1 (en) | Fluid catalytic cracking catalyst for hydrocarbon oil | |
JP2009160496A (en) | Catalyst composition for catalytic cracking of hydrocarbon oil | |
JP2004337758A (en) | Catalyst composition for hydrocarbon fluid catalytic cracking and fluid catalytic cracking method for heavy hydrocarbon using it | |
WO2020129455A1 (en) | Metal scavenger, method for manufacturing metal scavenger, and fluid catalytic cracking catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140408 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140527 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140708 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140708 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5579236 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |