JP2006142273A - Process for producing catalyst composition for hydrocarbon fluid catalytic cracking - Google Patents
Process for producing catalyst composition for hydrocarbon fluid catalytic cracking Download PDFInfo
- Publication number
- JP2006142273A JP2006142273A JP2004368452A JP2004368452A JP2006142273A JP 2006142273 A JP2006142273 A JP 2006142273A JP 2004368452 A JP2004368452 A JP 2004368452A JP 2004368452 A JP2004368452 A JP 2004368452A JP 2006142273 A JP2006142273 A JP 2006142273A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst composition
- alumina hydrate
- catalytic cracking
- coated
- zeolite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
本発明は、炭化水素流動接触分解用触媒組成物の製造方法に関し、さらに詳しくは炭化水素、特に残渣油などの重質炭化水素の流動接触分解に使用して、高い分解活性を示し、水素、ドライガス(メタン、エタン)やコークの生成が少なく、オレフィン含有量の少ないガソリン生成に優れ、しかも耐熱安定性に優れた炭化水素流動接触分解用触媒組成物の製造方法に関する。 The present invention relates to a method for producing a catalyst composition for fluid catalytic cracking of hydrocarbons, and more particularly, it is used for fluid catalytic cracking of hydrocarbons, particularly heavy hydrocarbons such as residual oils, and exhibits high cracking activity. The present invention relates to a method for producing a catalyst composition for hydrocarbon fluid catalytic cracking that produces less dry gas (methane, ethane) and coke, is excellent in producing gasoline with low olefin content, and has excellent heat stability.
近年の炭化水素供給原料油の重質化に伴って、流動接触分解(FCC)装置での接触分解に際して流動接触分解用触媒組成物(FCC触媒)に付着するコーク量が多くなり、再生塔でのFCC触媒の再生温度が高くなっている。そのためFCC触媒には、重質炭化水素の流動接触分解に使用して高い分解活性を示し、水素、ドライガスやコークの生成が少なく、しかも耐熱安定性に優れたFCC触媒が要求されている。
一方、市販のガソリンに含まれるオレフィンの量は取り扱いの安全性の面から制限が課せられており、製油所によってはオレフィン含有量の少ないFCCガソリンを望まれるところがある。
この様な要望に応えて、種々の炭化水素流動接触分解用触媒組成物やその製造方法が提案されている。As the hydrocarbon feedstock oil has become heavier in recent years, the amount of coke adhering to the fluid catalytic cracking catalyst composition (FCC catalyst) during catalytic cracking in a fluid catalytic cracking (FCC) unit has increased. The regeneration temperature of the FCC catalyst is high. For this reason, FCC catalysts are required to be used for fluid catalytic cracking of heavy hydrocarbons, exhibit high cracking activity, produce less hydrogen, dry gas and coke, and have excellent heat stability.
On the other hand, the amount of olefins contained in commercially available gasoline is limited from the viewpoint of handling safety, and some refineries desire FCC gasoline with a low olefin content.
In response to such a demand, various hydrocarbon fluid catalytic cracking catalyst compositions and production methods thereof have been proposed.
例えば、特許文献1には、Y型フォージャサイトを、リン酸イオンを含有する水溶液で処理して、リンの含有量がP2O5として0.3〜15重量%であるリン含有Y型フォージャサイトを調製し、このリン含有Y型フォージャサイトを多孔性母材の前駆体の水懸濁液と混合し、この水性混合物を噴霧乾燥し、洗浄し、乾燥することを特徴とする炭化水素油の接触分解用触媒組成物の製造方法が記載されており、該触媒組成物は、炭化水素油の接触分解に使用して、高い分解活性を発揮するにも拘わらず、コークの生成が少なく、しかも熱安定性に優れていることが開示されている。For example, Patent Document 1 discloses that a phosphorus-containing Y-type in which Y-type faujasite is treated with an aqueous solution containing phosphate ions and the phosphorus content is 0.3 to 15% by weight as P 2 O 5. A faujasite is prepared, the phosphorus-containing Y-type faujasite is mixed with an aqueous suspension of a porous matrix precursor, and the aqueous mixture is spray-dried, washed and dried. A method for producing a catalytic composition for catalytic cracking of hydrocarbon oil is described, and the catalyst composition is used for catalytic cracking of hydrocarbon oil to produce coke even though it exhibits high cracking activity. It is disclosed that there are few and it is excellent in thermal stability.
また、特許文献2には、NaY−ゼオライトをまずアンモニウム交換に附し、得られたアンモニウム交換されたゼオライトをアルミニウム交換に附し、アルミニウム交換されたゼオライトを水蒸気焼成に附し、そしてリン成分を水蒸気焼成されたゼオライトに取り込むことを特徴とする変性Y型ゼオライトを調製する方法および該アルミニウム交換されたリン含有Y−ゼオライトを含有するFCC触媒が記載されており、該FCC触媒は、アルミニウム交換されているか或いはリンを含んでいるかのいずれかのゼオライトを含有するFCC触媒に比べて、より少ないコーク形成およびC3オレフィンへの改善された選択率を示すことが記載されている。
これらの触媒は、分解活性が高く、水素、コークの生成が少なくプロピレン(C3=)/プロパン(C3)比を低めるなどの一応の効果は有するものの、さらなる改善が望まれていた。In Patent Document 2, NaY-zeolite is first subjected to ammonium exchange, the obtained ammonium-exchanged zeolite is subjected to aluminum exchange, the aluminum-exchanged zeolite is subjected to steam calcination, and a phosphorus component is added. A process for preparing a modified Y-type zeolite characterized in that it is incorporated into a steam-fired zeolite and an FCC catalyst containing the aluminum-exchanged phosphorus-containing Y-zeolite are described, wherein the FCC catalyst is aluminum-exchanged as compared to FCC catalyst containing any one of zeolites contain and or phosphorus and are described to exhibit less coking and C 3 improved selectivity to olefins.
Although these catalysts have high cracking activity and little production of hydrogen and coke and have a temporary effect such as lowering the ratio of propylene (C 3 =) / propane (C 3 ), further improvements have been desired.
一方、特許文献3には、重質炭化水素の接触分解に使用して優れた効果を示す、アルミナ水和物で被覆した超安定性Y型ゼオライトを使用した炭化水素接触分解用触媒組成物の製造方法が記載されており、該アルミナ水和物で被覆した超安定性Y型ゼオライトは、骨格外アルミナ(NFA)の含有量が2.0wt%以上で、結晶度が80%以上のY型ゼオライトを酸性水溶液中に懸濁し、次いで、該懸濁液とアルカリ水溶液とを系のpHが7.0〜9.5の範囲になる割合で混合して調製することが開示されている。 On the other hand, Patent Document 3 discloses a catalyst composition for catalytic catalytic cracking of hydrocarbons using an ultrastable Y-type zeolite coated with alumina hydrate, which exhibits excellent effects when used for catalytic cracking of heavy hydrocarbons. A production method is described, and the ultrastable Y-type zeolite coated with the alumina hydrate is a Y-type having a non-framework alumina (NFA) content of 2.0 wt% or more and a crystallinity of 80% or more. It is disclosed that the zeolite is suspended in an acidic aqueous solution, and then the suspension and the alkaline aqueous solution are mixed at a ratio such that the pH of the system is in the range of 7.0 to 9.5.
また、特許文献4には、炭化水素の接触分解触媒を含む触媒の製法が開示されており、結合剤としてアルミニウムクロルヒドロールを使用して耐摩耗性の触媒を製造する方法が記載されている。 Patent Document 4 discloses a method for producing a catalyst containing a hydrocarbon catalytic cracking catalyst, and describes a method for producing an abrasion-resistant catalyst using aluminum chlorohydrol as a binder. .
本発明の目的は、炭化水素、特に、ニッケルやバナジウムなどの金属汚染物質を含有する原油、減圧残渣油、常圧残渣油、水素化処理油、減圧軽油などの重質炭化水素の流動接触分解に使用して、残油(ボトム)分解能が高く、水素、ドライガスやコークの生成が少なく、オレフィン含有量の少ないガソリン生成に優れ、しかも耐熱安定性に優れた炭化水素流動接触分解用触媒組成物の製造方法を提供することにある。 The object of the present invention is the fluid catalytic cracking of hydrocarbons, particularly heavy hydrocarbons such as crude oils containing metal contaminants such as nickel and vanadium, vacuum residue oils, atmospheric residue oils, hydrotreated oils and vacuum gas oils. Hydrocarbon fluid catalytic cracking catalyst composition with high residual oil (bottom) resolution, low hydrogen, dry gas and coke production, low olefin content and excellent heat resistance stability It is in providing the manufacturing method of a thing.
本発明者らは、前述の目的を達成するために鋭意研究を重ねた結果、アルミナ水和物で被覆した超安定性Y型ゼオライトをリン酸イオン含有水溶液で処理したリン処理アルミナ水和物被覆ゼオライトと結合剤として塩基性塩化アルミニウムを使用して製造したFCC触媒は、前述の目的を達成することを見出し本発明を完成するに至った。
即ち、本発明の第1は、(A)アルミナ水和物で被覆されたY型ゼオライトをリン酸イオン含有水溶液で処理して得られたリン処理アルミナ水和物被覆ゼオライトと、(B)結合剤として塩基性塩化アルミニウムを含有する無機酸化物マトリックス前駆体、との水性混合物を噴霧乾燥することを特徴とする炭化水素流動接触分解用触媒組成物の製造方法に関する。
本発明の第2は、前記リン処理アルミナ水和物被覆ゼオライトのリン含有量がゼオライトとアルミナとリンの酸化物合計に対してP2O5として0.1〜20wt%の範囲であることを特徴とする請求項1記載の炭化水素流動接触分解用触媒組成物の製造方法に関する。As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention have obtained a phosphorus-treated alumina hydrate coating obtained by treating an ultrastable Y-type zeolite coated with alumina hydrate with a phosphate ion-containing aqueous solution. An FCC catalyst produced using zeolite and basic aluminum chloride as a binder has been found to achieve the above-mentioned object, and the present invention has been completed.
That is, the first of the present invention is (A) a phosphorous-treated alumina hydrate-coated zeolite obtained by treating Y-type zeolite coated with alumina hydrate with a phosphate ion-containing aqueous solution, and (B) a bond. The present invention relates to a process for producing a hydrocarbon fluid catalytic cracking catalyst composition characterized by spray-drying an aqueous mixture with an inorganic oxide matrix precursor containing basic aluminum chloride as an agent.
The second of the present invention, the phosphorus content of the phosphorus-treated alumina hydrate coating zeolite is in the range of 0.1-20 weight% as P 2 O 5 with respect to the oxide sum of zeolite and alumina and phosphorus The present invention relates to a method for producing a hydrocarbon fluid catalytic cracking catalyst composition according to claim 1.
本発明の製造方法で得られる炭化水素流動接触分解用触媒組成物は、FCC装置での再生塔の再生温度が高くても耐水熱安定性に優れており、残油(ボトム)分解能が高く、水素、ドライガスやコークの生成が少なく、オレフィン含有量の少ないガソリン生成に優れているので、オレフィン含有量の少ないFCCガソリンを望まれる製油所では好適に使用される。 The hydrocarbon fluid catalytic cracking catalyst composition obtained by the production method of the present invention has excellent hydrothermal stability even when the regeneration temperature of the regeneration tower in the FCC unit is high, and has a high residual oil (bottom) resolution, Since it produces less hydrogen, dry gas and coke, and is excellent in producing gasoline with low olefin content, it is suitably used in refineries where FCC gasoline with low olefin content is desired.
本発明の炭化水素流動接触分解用触媒組成物の製造方法では、(A)アルミナ水和物で被覆されたY型ゼオライトをリン酸イオン含有水溶液で処理して得られたリン処理アルミナ水和物被覆ゼオライトを使用する。
該アルミナ水和物で被覆されたY型ゼオライトは、本出願人の出願にかかる特許文献3に記載の方法に従って調製される。即ち、骨格外アルミナ(NFA)の含有量が2.0wt%以上で、結晶度が80%以上のY型ゼオライトを酸性水溶液中に懸濁し、次いで、該懸濁液とアルカリ水溶液とを系のpHが7.0〜9.5の範囲になる割合で混合してアルミナ水和物被覆ゼオライトを調製する。前記Y型ゼオライトの骨格外アルミナ(NFA)の含有量は2.0〜17.0wt%の範囲にあることが好ましい。また、該Y型ゼオライトを被覆するアルミナ水和物のアルミナ量は、Al2O3として1〜20wt%(ゼオライトと被覆アルミナとの合計基準)の範囲にあることが好ましい。In the method for producing a hydrocarbon fluid catalytic cracking catalyst composition of the present invention, (A) a phosphorus-treated alumina hydrate obtained by treating a Y-type zeolite coated with alumina hydrate with a phosphate ion-containing aqueous solution. Use coated zeolite.
Y-type zeolite coated with the alumina hydrate is prepared according to the method described in Patent Document 3 of the applicant's application. That is, a Y-type zeolite having a non-framework alumina (NFA) content of 2.0 wt% or more and a crystallinity of 80% or more is suspended in an acidic aqueous solution, and then the suspension and the alkaline aqueous solution are combined. Alumina hydrate-coated zeolite is prepared by mixing at a ratio of pH ranging from 7.0 to 9.5. The content of extra-framework alumina (NFA) in the Y-type zeolite is preferably in the range of 2.0 to 17.0 wt%. Further, the alumina content of the alumina hydrate covering the Y-type zeolite is preferably in the range of 1 to 20 wt% as Al 2 O 3 (total basis of zeolite-coated alumina).
本発明でのリン処理アルミナ水和物被覆ゼオライトは、前述のアルミナ水和物被覆ゼオライトをリン酸イオン含有水溶液で処理して調製する。
リン酸イオン含有水溶液は、リン酸、リン酸水素二アンモニウム、リン酸二水素アンモニウム、およびその他の水溶性リン酸塩等を、任意の濃度で水に溶解させて調製することができる。該リン酸イオン含有水溶液と前記アルミナ水和物被覆ゼオライトを接触させてリン処理アルミナ水和物被覆ゼオライトを調製する。該リン酸イオン含有水溶液と該アルミナ水和物被覆ゼオライトとの接触は、pH3〜8の範囲で常温から約100℃の温度で行うことができる。この処理で得られるリン処理アルミナ水和物被覆ゼオライトのリン含有量は、ゼオライトとアルミナとリンの酸化物合計に対してP2O5として0.1〜20wt%の範囲であることが好ましい。リン含有量が0.1wt%より少ない場合には、コーク生成の十分な抑制効果が得られないことがある。また、リン含有量が20wt%より多い場合には、ガソリン収率が低下することがある。リン含有量は、さらに好ましくは0.5〜15wt%の範囲である。The phosphorus-treated alumina hydrate-coated zeolite in the present invention is prepared by treating the above-mentioned alumina hydrate-coated zeolite with an aqueous solution containing phosphate ions.
A phosphate ion-containing aqueous solution can be prepared by dissolving phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, and other water-soluble phosphates in water at an arbitrary concentration. The phosphoric acid-treated alumina hydrate-coated zeolite is prepared by bringing the phosphate ion-containing aqueous solution into contact with the alumina hydrate-coated zeolite. The contact between the phosphate ion-containing aqueous solution and the alumina hydrate-coated zeolite can be performed at a temperature ranging from room temperature to about 100 ° C. within a pH range of 3 to 8. The phosphorus content of the phosphorus-treated alumina hydrate-coated zeolite obtained by this treatment is preferably in the range of 0.1 to 20 wt% as P 2 O 5 with respect to the total oxide of zeolite, alumina and phosphorus. When the phosphorus content is less than 0.1 wt%, a sufficient suppression effect of coke formation may not be obtained. In addition, when the phosphorus content is more than 20 wt%, the gasoline yield may decrease. The phosphorus content is more preferably in the range of 0.5 to 15 wt%.
本発明の製造方法では、(B)結合剤として塩基性塩化アルミニウムを含有する無機酸化物マトリックス前駆体を使用する。
塩基性塩化アルミニウム(Basic aluminumchloride)は、一般式[Al2(OH)nCl6−n]m(ただし、0<n<6、m≦10)で示されるポリ塩化アルミニウムで、市販されている。特に、nの値が4〜5の高塩基性塩化アルミニウムは結合力が強いので好適に使用される。
本発明での無機酸化物マトリックス前駆体は、塩基性塩化アルミニウムを結合剤として含有する他は、通常のFCC触媒に慣用される無機酸化物マトリックス前駆体が使用可能である。該無機酸化物マトリックス前駆体は、最終触媒組成物の酸化物重量基準で、結合剤(バインダー)としての塩基性塩化アルミニウムに由来するアルミナが5〜30wt%、カオリンなどの粘土が20〜70wt%、アルミナ粒子や酸化マンガン粒子などのメタル捕捉剤が0.5〜20wt%の範囲で含有することが好ましい。In the production method of the present invention, (B) an inorganic oxide matrix precursor containing basic aluminum chloride as a binder is used.
Basic aluminum chloride (basic aluminum chloride) is a polyaluminum chloride represented by the general formula [Al 2 (OH) n Cl 6-n ] m (where 0 <n <6, m ≦ 10), and is commercially available. . In particular, highly basic aluminum chloride having a value of n of 4 to 5 is preferably used because of its strong bonding strength.
As the inorganic oxide matrix precursor in the present invention, an inorganic oxide matrix precursor commonly used in ordinary FCC catalysts can be used except that it contains basic aluminum chloride as a binder. The inorganic oxide matrix precursor is composed of 5 to 30 wt% alumina derived from basic aluminum chloride as a binder (binder) and 20 to 70 wt% clay such as kaolin, based on the oxide weight of the final catalyst composition. It is preferable that a metal scavenger such as alumina particles or manganese oxide particles is contained in the range of 0.5 to 20 wt%.
本発明の製造方法では、前述のリン処理アルミナ水和物被覆ゼオライトと、前述の結合剤として塩基性塩化アルミニウムを含有する無機酸化物マトリックス前駆体、との水性混合物を通常の方法で噴霧乾燥して微小球状粒子を得る。リン処理アルミナ水和物被覆ゼオライトの混合割合は、ゼオライト(SiO2−Al2O3基準)とアルミナ(Al2O3)とリン(P2O5)の合計として最終触媒組成物の5〜50wt%の範囲になるようにすることが好ましい。得られた微小球状粒子は、通常の方法で洗浄、乾燥し、必要に応じて希土類成分が導入される。
なお、該触媒組成物の使用に際しては、通常の接触分解の反応条件が採用可能であり、FCC装置での再生塔の再生温度を高くすることも可能である。In the production method of the present invention, an aqueous mixture of the above-mentioned phosphor-treated alumina hydrate-coated zeolite and the above-mentioned inorganic oxide matrix precursor containing basic aluminum chloride as a binder is spray-dried by a usual method. To obtain microspherical particles. The mixing ratio of the phosphorus-treated alumina hydrate-coated zeolite is 5 to 5 of the final catalyst composition as the sum of zeolite (SiO 2 —Al 2 O 3 standard), alumina (Al 2 O 3 ) and phosphorus (P 2 O 5 ). It is preferable to be in the range of 50 wt%. The obtained microspherical particles are washed and dried by a usual method, and a rare earth component is introduced as necessary.
When using the catalyst composition, the usual catalytic cracking reaction conditions can be adopted, and the regeneration temperature of the regeneration tower in the FCC apparatus can be increased.
以下、本発明を実施例により詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by a following example, unless the summary is exceeded.
実施例1
特開2001−212462号公報の実施例1に基づき、アルミナ水和物被覆超安定性Y型ゼオライトスラリーを調製した。
即ち格子定数24.57Åの超安定性Y型ゼオライト(USY)1650g(SiO2−Al2O3基準)を3350gの脱イオン水に攪拌しながら懸濁し60℃まで加温した。このゼオライト懸濁スラリーに25wt%濃度の硫酸を加えpHを2.8に調整した。別途、60℃に加温したAl2O3濃度5wt%のアルミン酸ナトリウム溶液2850gを準備した。このアルミン酸ナトリウム溶液にpH2.8に調整した先のゼオライト懸濁スラリーを5分間で添加した。添加終了後の混合スラリーのpHは7.8であった。混合スラリーを1時間攪拌した後、減圧吸引式濾過器で固液分離し、60℃の脱イオン水を掛けて水洗浄し、残存しているNaイオンやSO4イオン等の副生塩を除去してアルミナ水和物で被覆したUSYを調製した。該アルミナ水和物被覆USYを4000gの脱イオン水にスラリー化して、アルミナ水和物被覆USYスラリーを得た。
このアルミナ水和物被覆USYの25wt%スラリーに撹拌しながら、リン処理アルミナ水和物被覆USYゼオライト中リン含有量(P2O5として)が5wt%となるように濃度85wt%のオルトリン酸を加えて、60℃で20分間撹拌した。このようにして、リン処理アルミナ水和物被覆USYスラリーを調製した。
一方、スティームジャケット付きの70Lタンクに純水33.7kgを計量し、塩化アルミニウム6水塩−1級試薬(関東化学社製)7245gを攪拌しながら95℃まで昇温した。この塩化アルミニウム溶液に家庭用の金属アルミ箔4050gを6時間かけて溶かした後、30℃まで冷却しAl2O3濃度で20.5wt%、pH3.9の塩基性塩化アルミニウムスラリーを調製した。
前記塩基性塩化アルミニウムスラリーを最終組成物の重量基準でAl2O3濃度が10wt%となるように秤量し、これに、カオリンと活性アルミナを最終触媒組成物の重量基準でそれぞれ65.5wt%、3wt%となるように加え、無機酸化物マトリックス前躯体を調製した。さらに、前記のリン処理アルミナ水和物被覆USYスラリーを前記の無機酸化物マトリックス前躯体にリン処理アルミナ水和物被覆USYの酸化物としての含有量が最終触媒組成物の重量基準で20wt%になるように加えて混合した。最後にメタルトラップ剤として二酸化マンガンを最終触媒組成物の重量基準で1.5wt%になるように加え、混合スラリーを得た。
この混合スラリーを噴霧乾燥して微小球状粒子を調製した後、Na2O含有量が0.5wt%以下になるまで洗浄した後、塩化希土類水溶液に60℃で浸漬した後、乾燥して酸化物(RE2O3)として2wt%の希土類成分を含有する触媒組成物Aを調製した。Example 1
Based on Example 1 of JP-A-2001-212462, an alumina hydrate-coated ultrastable Y-type zeolite slurry was prepared.
That is, 1650 g of ultrastable Y-type zeolite (USY) having a lattice constant of 24.57 L (based on SiO 2 —Al 2 O 3 ) was suspended in 3350 g of deionized water while stirring and heated to 60 ° C. To this zeolite suspension slurry, 25 wt% sulfuric acid was added to adjust the pH to 2.8. Separately, 2850 g of a sodium aluminate solution having an Al 2 O 3 concentration of 5 wt% heated to 60 ° C. was prepared. The zeolite suspension slurry adjusted to pH 2.8 was added to the sodium aluminate solution over 5 minutes. The pH of the mixed slurry after the addition was 7.8. After stirring the mixed slurry for 1 hour, it is separated into solid and liquid using a vacuum suction filter and washed with deionized water at 60 ° C to remove residual salt such as Na ions and SO 4 ions. Thus, USY coated with alumina hydrate was prepared. The alumina hydrate-coated USY was slurried in 4000 g of deionized water to obtain an alumina hydrate-coated USY slurry.
While stirring the 25 wt% slurry of the alumina hydrate-coated USY, an orthophosphoric acid having a concentration of 85 wt% was added so that the phosphorus content (as P 2 O 5 ) in the phosphorus-treated alumina hydrate-coated USY zeolite was 5 wt%. In addition, the mixture was stirred at 60 ° C. for 20 minutes. In this way, a phosphorylated alumina hydrate-coated USY slurry was prepared.
On the other hand, 33.7 kg of pure water was weighed in a 70 L tank with a steam jacket, and heated to 95 ° C. while stirring 7245 g of aluminum chloride hexahydrate-first grade reagent (manufactured by Kanto Chemical Co., Inc.). In this aluminum chloride solution, 4050 g of household metal aluminum foil was dissolved over 6 hours, and then cooled to 30 ° C. to prepare a basic aluminum chloride slurry having an Al 2 O 3 concentration of 20.5 wt% and pH 3.9.
The basic aluminum chloride slurry was weighed so that the Al 2 O 3 concentration was 10 wt% based on the weight of the final composition, and kaolin and activated alumina were respectively added to 65.5 wt% based on the weight of the final catalyst composition. In addition, an inorganic oxide matrix precursor was prepared so as to be 3 wt%. Furthermore, the content of the phosphorus-treated alumina hydrate-coated USY slurry in the inorganic oxide matrix precursor as an oxide of the phosphorus-treated alumina hydrate-coated USY is 20 wt% based on the weight of the final catalyst composition. And mixed. Finally, manganese dioxide as a metal trapping agent was added to 1.5 wt% based on the weight of the final catalyst composition to obtain a mixed slurry.
The mixed slurry is spray-dried to prepare fine spherical particles, washed until the Na 2 O content is 0.5 wt% or less, immersed in a rare earth chloride aqueous solution at 60 ° C., and then dried to form an oxide. A catalyst composition A containing 2 wt% of a rare earth component as (RE 2 O 3 ) was prepared.
実施例2
実施例1に使用したと同様のアルミナ水和物被覆USYの25wt%スラリーに、撹拌しながら、リン処理アルミナ水和物被覆USYゼオライト中リン含有量(P2O5として)が8wt%となるように濃度85wt%のオルトリン酸を加えて、60℃で20分間撹拌した。このようにして、リン処理アルミナ水和物被覆USYスラリーを調製した。
実施例1に使用したと同様の塩基性塩化アルミニウムスラリーを最終組成物の重量基準でAl2O3濃度が10wt%となるように秤量し、カオリン、活性アルミナを最終触媒組成物の重量基準でそれぞれ65.5wt%、3wt%となるように塩基性塩化アルミニウムスラリーに加え無機酸化物マトリックス前躯体を調製した。さらに、前記のリン処理アルミナ水和物被覆USYスラリーを前記の無機酸化物マトリックス前駆体にリン処理アルミナ水和物被覆USYの酸化物としての含有量が最終触媒組成物の重量基準で20wt%になるように加えて混合した。最後にメタルトラップ剤として二酸化マンガンを最終触媒組成物の重量基準で1.5wt%になるように加え、混合スラリーを得た。
この混合スラリーを噴霧乾燥して微小球状粒子を調製した後、Na2O含有量が0.5wt%以下になるまで洗浄した後、塩化希土類水溶液に60℃で浸漬した後、乾燥して酸化物(RE2O3)として2wt%の希土類成分を含有する触媒組成物Bを調製した。Example 2
Phosphorus-treated alumina hydrate-coated USY zeolite has a phosphorus content (as P 2 O 5 ) of 8 wt% with stirring in a 25 wt% slurry of alumina hydrate-coated USY similar to that used in Example 1. Thus, orthophosphoric acid having a concentration of 85 wt% was added and stirred at 60 ° C. for 20 minutes. In this way, a phosphorylated alumina hydrate-coated USY slurry was prepared.
The same basic aluminum chloride slurry as used in Example 1 was weighed so that the Al 2 O 3 concentration was 10 wt% based on the weight of the final composition, and kaolin and activated alumina were measured based on the weight of the final catalyst composition. In addition to the basic aluminum chloride slurry, inorganic oxide matrix precursors were prepared so as to be 65.5 wt% and 3 wt%, respectively. Furthermore, the content of the phosphorous-treated alumina hydrate-coated USY slurry as an oxide of the phosphorous-treated alumina hydrate-coated USY in the inorganic oxide matrix precursor is 20 wt% based on the weight of the final catalyst composition. And mixed. Finally, manganese dioxide as a metal trapping agent was added to 1.5 wt% based on the weight of the final catalyst composition to obtain a mixed slurry.
The mixed slurry is spray-dried to prepare fine spherical particles, washed until the Na 2 O content is 0.5 wt% or less, immersed in a rare earth chloride aqueous solution at 60 ° C., and then dried to form an oxide. Catalyst composition B containing 2 wt% rare earth component as (RE 2 O 3 ) was prepared.
実施例3
実施例1に使用したと同様のアルミナ水和物被覆USYの25wt%スラリーに、撹拌しながら、リン処理アルミナ水和物被覆USYゼオライト中リン含有量(P2O5として)が15wt%となるようにオルトリン酸とリン酸一アンモニウム混合溶液(リン酸:リン酸一アンモニウム=7:3)を加えて、60℃で20分間撹拌した。このようにして、リン処理アルミナ水和物被覆USYスラリーを調製した。
実施例1に使用したと同様の塩基性塩化アルミニウムスラリーを最終組成物の重量基準でAl2O3濃度が10wt%となるように秤量し、カオリン、活性アルミナを最終触媒組成物の重量基準でそれぞれ65.5wt%、3wt%となるように塩基性塩化アルミニウムスラリーに加え無機酸化物マトリックス前躯体を調製した。さらに、前記のリン処理アルミナ水和物被覆USYスラリーを前記の無機酸化物マトリックス前躯体にリン処理アルミナ水和物被覆USYの酸化物としての含有量が最終触媒組成物の重量基準で20wt%になるように加えて混合した。最後にメタルトラップ剤として二酸化マンガンを最終触媒組成物の重量基準で1.5wt%になるように加え、混合スラリーを得た。
この混合スラリーを噴霧乾燥して微小球状粒子を調製した後、Na2O含有量が0.5wt%以下になるまで洗浄した後、塩化希土類水溶液に60℃で浸漬した後、乾燥して酸化物(RE2O3)として2wt%の希土類成分を含有する触媒組成物Cを調製した。Example 3
The 25 wt% slurry of alumina hydrate-coated USY similar to that used in Example 1 has a phosphorus content (as P 2 O 5 ) of 15 wt% in the phosphated alumina hydrate-coated USY zeolite with stirring. In this way, a mixed solution of orthophosphoric acid and monoammonium phosphate (phosphoric acid: monoammonium phosphate = 7: 3) was added and stirred at 60 ° C. for 20 minutes. In this way, a phosphorylated alumina hydrate-coated USY slurry was prepared.
The same basic aluminum chloride slurry as used in Example 1 was weighed so that the Al 2 O 3 concentration was 10 wt% based on the weight of the final composition, and kaolin and activated alumina were measured based on the weight of the final catalyst composition. In addition to the basic aluminum chloride slurry, inorganic oxide matrix precursors were prepared so as to be 65.5 wt% and 3 wt%, respectively. Furthermore, the content of the phosphorus-treated alumina hydrate-coated USY slurry in the inorganic oxide matrix precursor as an oxide of the phosphorus-treated alumina hydrate-coated USY is 20 wt% based on the weight of the final catalyst composition. And mixed. Finally, manganese dioxide as a metal trapping agent was added to 1.5 wt% based on the weight of the final catalyst composition to obtain a mixed slurry.
The mixed slurry is spray-dried to prepare fine spherical particles, washed until the Na 2 O content is 0.5 wt% or less, immersed in a rare earth chloride aqueous solution at 60 ° C., and then dried to form an oxide. Catalyst composition C containing 2 wt% rare earth component as (RE 2 O 3 ) was prepared.
比較例1
実施例1に使用したと同様の塩基性塩化アルミニウムスラリーを最終組成物の重量基準でAl2O3濃度が10wt%となるように秤量し、カオリン、活性アルミナを最終触媒組成物の重量基準でそれぞれ65.5wt%、3wt%となるように塩基性塩化アルミニウムスラリーに加え無機酸化物マトリックス前躯体を調製した。さらに、実施例1に使用したと同様のアルミナ水和物被覆USYの25wt%スラリーを前述の無機酸化物マトリックス前躯体にアルミナ水和物被覆USYの酸化物としての含有量が最終触媒組成物の重量基準で20wt%になるように加えて混合した。最後にメタルトラップ剤として二酸化マンガンを最終触媒組成物の重量基準で1.5wt%になるように加え、混合スラリーを得た。
この混合スラリーを噴霧乾燥して微小球状粒子を調製した後、Na2O含有量が0.5wt%以下になるまで洗浄した後、塩化希土類水溶液に60℃で浸漬した後、乾燥して酸化物(RE2O3)として2wt%の希土類成分を含有する触媒組成物Dを調製した。Comparative Example 1
The same basic aluminum chloride slurry as used in Example 1 was weighed so that the Al 2 O 3 concentration was 10 wt% based on the weight of the final composition, and kaolin and activated alumina were measured based on the weight of the final catalyst composition. In addition to the basic aluminum chloride slurry, inorganic oxide matrix precursors were prepared so as to be 65.5 wt% and 3 wt%, respectively. Further, a 25 wt% slurry of alumina hydrate-coated USY similar to that used in Example 1 was added to the above-mentioned inorganic oxide matrix precursor as an oxide of alumina hydrate-coated USY. It added and mixed so that it might become 20 wt% on a weight basis. Finally, manganese dioxide as a metal trapping agent was added to 1.5 wt% based on the weight of the final catalyst composition to obtain a mixed slurry.
The mixed slurry is spray-dried to prepare fine spherical particles, washed until the Na 2 O content is 0.5 wt% or less, immersed in a rare earth chloride aqueous solution at 60 ° C., and then dried to form an oxide. A catalyst composition D containing 2 wt% of a rare earth component as (RE 2 O 3 ) was prepared.
比較例2
実施例1に使用したと同様のアルミナ水和物被覆USYの25wt%スラリーに、撹拌しながら、リン処理アルミナ水和物被覆USYゼオライト中リン含有量(P2O5として)が5wt%となるように濃度85wt%のオルトリン酸を加えて、60℃で20分間撹拌した。このようにして、リン処理アルミナ水和物被覆USYスラリーを得た。
SiO2濃度17wt%の水ガラスに、濃度25wt%の硫酸を連続的に加えて、SiO2濃度12.5wt%のシリカヒドロゾルを調製した。最終触媒組成物の重量基準でSiO2濃度が20wt%となるようにこのシリカヒドロゾルを秤量し、カオリン、活性アルミナを最終触媒組成物の重量基準でそれぞれ55.5wt%、3wt%となるように該シリカヒドロゾルに加え無機酸化物マトリックス前躯体を調製した。さらに、前記のリン処理アルミナ水和物被覆USYスラリーを前述の無機酸化物マトリックス前躯体にリン処理アルミナ水和物被覆USYの酸化物としての含有量が最終触媒組成物の重量基準で20wt%になるように加えて混合した。最後にメタルトラップ剤として二酸化マンガンを最終触媒組成物の重量基準で1.5wt%になるように加え、混合スラリーを得た。
この混合スラリーを噴霧乾燥して微小球状粒子を調製した後、Na2O含有量が0.5wt%以下になるまで洗浄した後、塩化希土類水溶液に60℃で浸漬した後、乾燥して酸化物(RE2O3)として2wt%の希土類成分を含有する触媒組成物Eを調製した。Comparative Example 2
The 25 wt% slurry of alumina hydrate-coated USY similar to that used in Example 1 has a phosphorus content (as P 2 O 5 ) in the phosphated alumina hydrate-coated USY zeolite of 5 wt% while stirring. Thus, orthophosphoric acid having a concentration of 85 wt% was added and stirred at 60 ° C. for 20 minutes. In this way, a phosphorylated alumina hydrate-coated USY slurry was obtained.
A silica hydrosol having a SiO 2 concentration of 12.5 wt% was prepared by continuously adding 25 wt% sulfuric acid to a water glass having a SiO 2 concentration of 17 wt%. The silica hydrosol is weighed so that the SiO 2 concentration is 20 wt% based on the weight of the final catalyst composition, and kaolin and activated alumina are respectively 55.5 wt% and 3 wt% based on the weight of the final catalyst composition. In addition to the silica hydrosol, an inorganic oxide matrix precursor was prepared. Furthermore, the content of the phosphorus-treated alumina hydrate-coated USY slurry as an oxide of the phosphor-treated alumina hydrate-coated USY in the inorganic oxide matrix precursor is 20 wt% based on the weight of the final catalyst composition. And mixed. Finally, manganese dioxide as a metal trapping agent was added to 1.5 wt% based on the weight of the final catalyst composition to obtain a mixed slurry.
The mixed slurry is spray-dried to prepare fine spherical particles, washed until the Na 2 O content is 0.5 wt% or less, immersed in a rare earth chloride aqueous solution at 60 ° C., and then dried to form an oxide. Catalyst composition E containing 2 wt% rare earth component as (RE 2 O 3 ) was prepared.
比較例3
水素イオン交換された格子定数24.57Åの超安定性Y型ゼオライトの33wt%スラリーに、撹拌しながら、リン処理超安定性Y型ゼオライト中リン含有量(P2O5として)が5wt%となるように濃度85wt%のオルトリン酸を加えて、60℃で20分間撹拌した。このようにして、リン処理超安定性Y型ゼオライトを得た。
実施例1に使用したと同様の塩基性塩化アルミニウムスラリーを最終組成物の重量基準でAl2O3濃度が10wt%となるように秤量し、カオリン、活性アルミナを最終触媒組成物の重量基準でそれぞれ65.5wt%、3wt%となるように塩基性塩化アルミニウムスラリーに加え無機酸化物マトリックス前躯体を調製した。さらに、前記のリン処理超安定性Y型ゼオライトの33wt%スラリーを前記の無機酸化物マトリックス前躯体にリン処理超安定性Y型ゼオライトの酸化物としての含有量が最終触媒組成物の重量基準で20wt%になるように加えて混合した。最後にメタルトラップ剤として二酸化マンガンを最終触媒組成物の重量基準で1.5wt%になるように加え、混合スラリーを得た。
この混合スラリーを噴霧乾燥して微小球状粒子を調製した後、Na2O含有量が0.5wt%以下になるまで洗浄した後、塩化希土類水溶液に60℃で浸漬した後、乾燥して酸化物(RE2O3)として2wt%の希土類成分を含有する触媒組成物Fを調製した。Comparative Example 3
The phosphorus content (as P 2 O 5 ) in the phosphorus-treated ultrastable Y-type zeolite was 5 wt% while stirring in a 33 wt% slurry of the superstable Y-type zeolite having a lattice constant of 24.57 L that had undergone hydrogen ion exchange. Then, orthophosphoric acid having a concentration of 85 wt% was added and stirred at 60 ° C. for 20 minutes. In this way, a phosphorus-treated ultrastable Y-type zeolite was obtained.
The same basic aluminum chloride slurry as used in Example 1 was weighed so that the Al 2 O 3 concentration was 10 wt% based on the weight of the final composition, and kaolin and activated alumina were measured based on the weight of the final catalyst composition. In addition to the basic aluminum chloride slurry, inorganic oxide matrix precursors were prepared so as to be 65.5 wt% and 3 wt%, respectively. Further, the 33 wt% slurry of the phosphorus-treated ultrastable Y-type zeolite is added to the inorganic oxide matrix precursor as an oxide of the phosphorus-treated superstable Y-type zeolite based on the weight of the final catalyst composition. It added and mixed so that it might become 20 wt%. Finally, manganese dioxide as a metal trapping agent was added to 1.5 wt% based on the weight of the final catalyst composition to obtain a mixed slurry.
The mixed slurry is spray-dried to prepare fine spherical particles, washed until the Na 2 O content is 0.5 wt% or less, immersed in a rare earth chloride aqueous solution at 60 ° C., and then dried to form an oxide. A catalyst composition F containing 2 wt% rare earth component as (RE 2 O 3 ) was prepared.
実施例4(触媒使用例)
実施例および比較例で調製した触媒A,B,CおよびD,E,Fのそれぞれについて、反応試験装置ASTM MATを用い、同一原料油、同一反応条件下で接触分解反応試験を行なった。反応試験を行なう前に、それぞれの触媒は、最終組成物の重量基準で、ナフテン酸バナジウムをV2O5として4000wtppm、ナフテン酸ニッケルをNiOとして2000wtppmをともに含浸し、780℃で13時間100%スチーム雰囲気下で前処理をした。
接触分解反応条件は、以下の通りであった。
反応温度:510℃
原料油:脱硫常圧蒸留残さ油(DSAR)40wt%と脱硫減圧軽油(DSVGO)60wt%の混合油。
WHSV:40hr−1
触媒/油比:4wt%/wt%
反応結果を表1に結果を示す。
なお、表1の活性評価の項目は次の意味を表す。
転化率(wt%)=(A−B)/A×100
A:原料油の重量
B:生成油中の沸点216℃以上の留分の重量
ガソリン(wt%)=C/A×100
C:生成油中のガソリン(沸点範囲:C5〜216℃)の重量
LCO(wt%)=D/A×100
D:生成油中のLCO*1)(沸点範囲:216〜343℃)の重量
*1)ライトサイクルオイル
HCO(wt%)=E/A×100
E:生成油中のHCO*2)(沸点範囲:343℃−)の重量
*2)ヘビーサイクルオイル
コーク(wt%)=F/A×100
F:触媒混合物上に析出したコーク重量
K=分解率/(100−分解率)
K:速度定数
LPG Olefinicity=LPG(C3+C4)中のオレフィンの割合
ガソリン中のオレフィン含有量を示す指標としてLPG Olefin icityを表示した。
表1から分かるように、本発明の製造方法で得られる炭化水素流動接触分解用触媒組成物は、転化率が高くて、しかもガソリン収率が高く、水素、コークの生成量が少ない。Example 4 (Catalyst use example)
For each of the catalysts A, B, C and D, E, F prepared in the examples and comparative examples, catalytic cracking reaction tests were performed using the reaction test equipment ASTM MAT under the same feedstock and the same reaction conditions. Prior to conducting the reaction test, each catalyst was impregnated with 4000 wtppm of vanadium naphthenate as V 2 O 5 and 2000 wtppm of nickel naphthenate as NiO and 100% at 780 ° C. for 13 hours, based on the weight of the final composition. Pre-treatment was performed in a steam atmosphere.
The catalytic cracking reaction conditions were as follows.
Reaction temperature: 510 ° C
Raw material oil: Mixed oil of desulfurized atmospheric distillation residue oil (DSAR) 40 wt% and desulfurized vacuum gas oil (DSVGO) 60 wt%.
WHSV: 40 hr −1
Catalyst / oil ratio: 4 wt% / wt%
The reaction results are shown in Table 1.
In addition, the item of activity evaluation of Table 1 represents the following meaning.
Conversion rate (wt%) = (A−B) / A × 100
A: Weight of raw material oil
B: Weight of a fraction having a boiling point of 216 ° C. or higher in the product oil Gasoline (wt%) = C / A × 100
C: Weight of gasoline in boiling oil (boiling range: C5 to 216 ° C.) LCO (wt%) = D / A × 100
D: weight of LCO * 1 ) (boiling range: 216 to 343 ° C.) in the product oil
* 1) Light cycle oil HCO (wt%) = E / A x 100
E: Weight of HCO * 2 ) (boiling range: 343 ° C. −) in the product oil
* 2) Heavy cycle oil Coke (wt%) = F / A x 100
F: Weight of coke deposited on catalyst mixture K = decomposition rate / (100-decomposition rate)
K: Rate constant LPG Olefinity = Percentage of olefin in LPG (C3 + C4)
LPG Olefinity was displayed as an index indicating the olefin content in gasoline.
As can be seen from Table 1, the hydrocarbon fluid catalytic cracking catalyst composition obtained by the production method of the present invention has a high conversion rate, a high gasoline yield, and a small amount of hydrogen and coke production.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004368452A JP2006142273A (en) | 2004-11-24 | 2004-11-24 | Process for producing catalyst composition for hydrocarbon fluid catalytic cracking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004368452A JP2006142273A (en) | 2004-11-24 | 2004-11-24 | Process for producing catalyst composition for hydrocarbon fluid catalytic cracking |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006142273A true JP2006142273A (en) | 2006-06-08 |
Family
ID=36622554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004368452A Pending JP2006142273A (en) | 2004-11-24 | 2004-11-24 | Process for producing catalyst composition for hydrocarbon fluid catalytic cracking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006142273A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008001709A1 (en) * | 2006-06-28 | 2008-01-03 | Idemitsu Kosan Co., Ltd. | Fluid catalytic cracking catalyst having desulfurizing functions, process for production of the same, and process for production of low-sulfur catalytically cracked gasoline with the catalyst |
JP2009000657A (en) * | 2007-06-22 | 2009-01-08 | Jgc Catalysts & Chemicals Ltd | Manufacturing method of fluid catalytic cracking catalyst |
JP2009022842A (en) * | 2007-07-17 | 2009-02-05 | Jgc Catalysts & Chemicals Ltd | Method for manufacturing fluid catalytic cracking catalyst |
JP2009207948A (en) * | 2008-02-29 | 2009-09-17 | Jgc Catalysts & Chemicals Ltd | Fluid catalytic cracking catalyst and its manufacturing method |
JP2009262127A (en) * | 2008-03-31 | 2009-11-12 | Petroleum Energy Center | Catalytic cracking catalyst, method for producing the same, and catalytic cracking method for hydrocarbon oil |
JP2009542428A (en) * | 2006-07-06 | 2009-12-03 | ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット | Catalyst combined with aluminum sulfate |
JP2010509044A (en) * | 2006-11-13 | 2010-03-25 | アルベマール・ネーザーランズ・ベー・ブイ | Manufacturing method of FCC catalyst |
JP2010082547A (en) * | 2008-09-30 | 2010-04-15 | Jgc Catalysts & Chemicals Ltd | Fluid catalytic cracking catalyst for hydrocarbon and method of producing the same |
JP2011067734A (en) * | 2009-09-24 | 2011-04-07 | Petroleum Energy Center | Catalyst for catalytically cracking hydrocarbon oil, method of producing the same, and method of catalytically cracking hydrocarbon oil |
JP2011523584A (en) * | 2008-02-05 | 2011-08-18 | エスケー イノベーション カンパニー リミテッド | Hydrocarbon catalytic cracking catalyst for light olefin production and method for producing the same |
JP2013031845A (en) * | 2012-09-18 | 2013-02-14 | Jgc Catalysts & Chemicals Ltd | Method for producing fluid catalytic cracking catalyst of hydrocarbon |
JP2013111528A (en) * | 2011-11-29 | 2013-06-10 | Jgc Catalysts & Chemicals Ltd | Hydrocarbon catalytic cracking catalyst and method for manufacturing the same |
JP2014080326A (en) * | 2012-10-16 | 2014-05-08 | Jgc Catalysts & Chemicals Ltd | Method of manufacturing modified zeolite and catalyst for hydrocarbon contact degradation |
JP2017087204A (en) * | 2015-11-11 | 2017-05-25 | 日揮触媒化成株式会社 | Catalyst for residual oil decomposition active fluid catalytic cracking and manufacturing method therefor |
KR20180033204A (en) * | 2015-07-23 | 2018-04-02 | 알베마를 코포레이션 | FCC catalyst additives and binders |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63197549A (en) * | 1987-02-13 | 1988-08-16 | Catalysts & Chem Ind Co Ltd | Production of catalytic composition for catalytic cracking of hydrocarbon oil |
JPH01258742A (en) * | 1987-12-28 | 1989-10-16 | Mobil Oil Corp | Catalyst and method for catalytic cracking |
JPH0853678A (en) * | 1994-07-15 | 1996-02-27 | Shell Internatl Res Maatschappij Bv | Conversion of hydrocarbon feedstock |
JPH0985097A (en) * | 1995-09-26 | 1997-03-31 | Catalysts & Chem Ind Co Ltd | Catalyst composition for catalytic decomposition of hydrocarbon and catalytic decomposition using this catalyst |
JPH10500898A (en) * | 1994-06-03 | 1998-01-27 | アクゾ ノーベル ナムローゼ フェンノートシャップ | FCC catalyst containing coated zeolite particles |
JPH10128121A (en) * | 1996-10-29 | 1998-05-19 | Catalysts & Chem Ind Co Ltd | Catalytic composition for catalytic decomposition of hydrocarbon and its preparation |
JPH11246868A (en) * | 1998-02-27 | 1999-09-14 | Catalysts & Chem Ind Co Ltd | Catalyst composition for hydrocarbon catalytic decomposition |
JP2001212462A (en) * | 2000-02-03 | 2001-08-07 | Catalysts & Chem Ind Co Ltd | Method for preparing catalytic composition for catalytically cracking hydrocarbon |
JP2002143687A (en) * | 2000-08-28 | 2002-05-21 | Petroleum Energy Center | Catalyst for fluid catalytic cracking of heavy hydrocarbon oil and method for fluid catalytic cracking |
JP2004528180A (en) * | 2001-06-05 | 2004-09-16 | アクゾ ノーベル ナムローゼ フェンノートシャップ | Method for producing catalyst with improved accessibility |
-
2004
- 2004-11-24 JP JP2004368452A patent/JP2006142273A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63197549A (en) * | 1987-02-13 | 1988-08-16 | Catalysts & Chem Ind Co Ltd | Production of catalytic composition for catalytic cracking of hydrocarbon oil |
JPH01258742A (en) * | 1987-12-28 | 1989-10-16 | Mobil Oil Corp | Catalyst and method for catalytic cracking |
JPH10500898A (en) * | 1994-06-03 | 1998-01-27 | アクゾ ノーベル ナムローゼ フェンノートシャップ | FCC catalyst containing coated zeolite particles |
JPH0853678A (en) * | 1994-07-15 | 1996-02-27 | Shell Internatl Res Maatschappij Bv | Conversion of hydrocarbon feedstock |
JPH0985097A (en) * | 1995-09-26 | 1997-03-31 | Catalysts & Chem Ind Co Ltd | Catalyst composition for catalytic decomposition of hydrocarbon and catalytic decomposition using this catalyst |
JPH10128121A (en) * | 1996-10-29 | 1998-05-19 | Catalysts & Chem Ind Co Ltd | Catalytic composition for catalytic decomposition of hydrocarbon and its preparation |
JPH11246868A (en) * | 1998-02-27 | 1999-09-14 | Catalysts & Chem Ind Co Ltd | Catalyst composition for hydrocarbon catalytic decomposition |
JP2001212462A (en) * | 2000-02-03 | 2001-08-07 | Catalysts & Chem Ind Co Ltd | Method for preparing catalytic composition for catalytically cracking hydrocarbon |
JP2002143687A (en) * | 2000-08-28 | 2002-05-21 | Petroleum Energy Center | Catalyst for fluid catalytic cracking of heavy hydrocarbon oil and method for fluid catalytic cracking |
JP2004528180A (en) * | 2001-06-05 | 2004-09-16 | アクゾ ノーベル ナムローゼ フェンノートシャップ | Method for producing catalyst with improved accessibility |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008001709A1 (en) * | 2006-06-28 | 2008-01-03 | Idemitsu Kosan Co., Ltd. | Fluid catalytic cracking catalyst having desulfurizing functions, process for production of the same, and process for production of low-sulfur catalytically cracked gasoline with the catalyst |
JP5008666B2 (en) * | 2006-06-28 | 2012-08-22 | 出光興産株式会社 | Desulfurization function-added fluid catalytic cracking catalyst, production method thereof, and method for producing low sulfur catalytic cracking gasoline using the desulfurization function-added fluid catalytic cracking catalyst |
JP2009542428A (en) * | 2006-07-06 | 2009-12-03 | ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット | Catalyst combined with aluminum sulfate |
JP2010509044A (en) * | 2006-11-13 | 2010-03-25 | アルベマール・ネーザーランズ・ベー・ブイ | Manufacturing method of FCC catalyst |
JP2009000657A (en) * | 2007-06-22 | 2009-01-08 | Jgc Catalysts & Chemicals Ltd | Manufacturing method of fluid catalytic cracking catalyst |
JP2009022842A (en) * | 2007-07-17 | 2009-02-05 | Jgc Catalysts & Chemicals Ltd | Method for manufacturing fluid catalytic cracking catalyst |
JP2011523584A (en) * | 2008-02-05 | 2011-08-18 | エスケー イノベーション カンパニー リミテッド | Hydrocarbon catalytic cracking catalyst for light olefin production and method for producing the same |
JP2009207948A (en) * | 2008-02-29 | 2009-09-17 | Jgc Catalysts & Chemicals Ltd | Fluid catalytic cracking catalyst and its manufacturing method |
JP2009262127A (en) * | 2008-03-31 | 2009-11-12 | Petroleum Energy Center | Catalytic cracking catalyst, method for producing the same, and catalytic cracking method for hydrocarbon oil |
JP2010082547A (en) * | 2008-09-30 | 2010-04-15 | Jgc Catalysts & Chemicals Ltd | Fluid catalytic cracking catalyst for hydrocarbon and method of producing the same |
JP2011067734A (en) * | 2009-09-24 | 2011-04-07 | Petroleum Energy Center | Catalyst for catalytically cracking hydrocarbon oil, method of producing the same, and method of catalytically cracking hydrocarbon oil |
JP2013111528A (en) * | 2011-11-29 | 2013-06-10 | Jgc Catalysts & Chemicals Ltd | Hydrocarbon catalytic cracking catalyst and method for manufacturing the same |
JP2013031845A (en) * | 2012-09-18 | 2013-02-14 | Jgc Catalysts & Chemicals Ltd | Method for producing fluid catalytic cracking catalyst of hydrocarbon |
JP2014080326A (en) * | 2012-10-16 | 2014-05-08 | Jgc Catalysts & Chemicals Ltd | Method of manufacturing modified zeolite and catalyst for hydrocarbon contact degradation |
KR20180033204A (en) * | 2015-07-23 | 2018-04-02 | 알베마를 코포레이션 | FCC catalyst additives and binders |
JP2018528067A (en) * | 2015-07-23 | 2018-09-27 | アルベマール・コーポレーシヨン | FCC catalyst additives and binders |
JP2021007943A (en) * | 2015-07-23 | 2021-01-28 | アルベマール・コーポレーシヨン | Fcc catalyst additive and binder |
JP7021323B2 (en) | 2015-07-23 | 2022-02-16 | アルベマール コーポレーション | FCC catalyst additives and binders |
KR102590635B1 (en) | 2015-07-23 | 2023-10-17 | 알베마를 코포레이션 | FCC catalyst additives and binders |
JP2017087204A (en) * | 2015-11-11 | 2017-05-25 | 日揮触媒化成株式会社 | Catalyst for residual oil decomposition active fluid catalytic cracking and manufacturing method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5628027B2 (en) | Fluid catalytic cracking catalyst of hydrocarbon oil and fluid catalytic cracking method of hydrocarbon oil using the same | |
JP6461161B2 (en) | Phosphorus-containing FCC catalyst | |
JP5662936B2 (en) | Additives having a complex system of zeolite and process for preparation | |
EP1795259A1 (en) | A cracking catalyst for hydrocarbons and its preparation | |
JP2015533639A (en) | A novel catalyst to increase propylene yield from fluid catalytic cracking unit | |
TW200815577A (en) | Hydrocarbon conversion catalyst | |
JP2006142273A (en) | Process for producing catalyst composition for hydrocarbon fluid catalytic cracking | |
JP5258488B2 (en) | Hydrocarbon catalytic cracking catalyst | |
KR102095506B1 (en) | Catalyst for catalytic cracking of hydrocarbon oil and method for catalytic cracking of hydrocarbon oil | |
JP5911446B2 (en) | Method for producing catalytic cracking catalyst of hydrocarbon oil | |
JP2554706B2 (en) | Method for catalytic cracking of feedstock containing high levels of nitrogen | |
KR20140099471A (en) | Phosphorus modified cracking catalysts with enhanced activity and hydrothermal stability | |
CN104946301A (en) | Catalytic conversion method for increasing concentration of low-carbon olefin | |
JPH08173816A (en) | Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production | |
KR102151830B1 (en) | Magnesium stabilized ultra low soda cracking catalysts | |
JP5426308B2 (en) | Fluid catalytic cracking method | |
JPH04200641A (en) | Production of hydrocarbon converting catalyst | |
CN105728029A (en) | Nickel cracking resistant catalyst | |
JP2024502195A (en) | Catalytic cracking agent containing phosphorus-modified molecular sieve, manufacturing method, manufacturing system and use thereof | |
JP2022540138A (en) | Fluidized cracking process for increasing olefin yield and catalyst composition therefor | |
JP7046763B2 (en) | Fluid cracking catalyst for hydrocarbon oil | |
JP2020032350A (en) | Fluid contact cracking catalyst for hydrocarbon oil | |
RU2793858C1 (en) | Method for fluidized cracking to increase yield of olefins and intended catalytic composition | |
JP5579236B2 (en) | Process for producing hydrocarbon fluid catalytic cracking catalyst | |
KR20240154699A (en) | Fluidized cracking process for increasing olefin yield and catalyst composition for same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20071012 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20071012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091130 |
|
A131 | Notification of reasons for refusal |
Effective date: 20101102 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110301 |