Nothing Special   »   [go: up one dir, main page]

JP2012104434A - Fuel cell system, and method for operating fuel cell system - Google Patents

Fuel cell system, and method for operating fuel cell system Download PDF

Info

Publication number
JP2012104434A
JP2012104434A JP2010253660A JP2010253660A JP2012104434A JP 2012104434 A JP2012104434 A JP 2012104434A JP 2010253660 A JP2010253660 A JP 2010253660A JP 2010253660 A JP2010253660 A JP 2010253660A JP 2012104434 A JP2012104434 A JP 2012104434A
Authority
JP
Japan
Prior art keywords
flow rate
fuel
fuel cell
cell system
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010253660A
Other languages
Japanese (ja)
Inventor
Mitsutaka Konishi
充峻 小西
Koichi Kubo
浩一 久保
Tomotaka Ishida
友孝 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2010253660A priority Critical patent/JP2012104434A/en
Priority to PCT/JP2011/075999 priority patent/WO2012063922A1/en
Publication of JP2012104434A publication Critical patent/JP2012104434A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell system and a method for operating the fuel cell system capable of adjusting the supply of a gas fuel with high accuracy even if the environmental temperature varies.SOLUTION: The method for operating a fuel cell system 1 comprises the steps of determining a target value Ft for a flowmeter 3 with reference to the environmental temperature, and controlling a fuel supply unit 2 to supply a gas fuel to a reformer 5 so that the flowmeter 3 indicates the target value. Therefore a proper amount by mass of the fuel can be supplied according to the value of the output current of a fuel cell 6 regardless of whether the environmental temperature is high or low.

Description

本発明は、燃料電池システム及び燃料電池システムの運転方法に関する。   The present invention relates to a fuel cell system and a method for operating the fuel cell system.

燃料電池システムは、都市ガス、液化天然ガス(LPG)、灯油等の水素含有燃料を改質器に供給して水素を生成し、水素を燃料電池スタックの燃料極に供給する。   The fuel cell system supplies hydrogen-containing fuels such as city gas, liquefied natural gas (LPG), and kerosene to the reformer to generate hydrogen, and supplies hydrogen to the fuel electrode of the fuel cell stack.

通常、ポンプによって燃料電池の燃料極に供給される気体燃料の流量は、物質量を一定として考えた場合、環境温度によって異なる場合がある。例えば、体積流量計を用いる場合は、寒冷地であれば濃度が高まるため小さい体積流量となり、温暖地であれば濃度が低くなるため大きい体積流量となる。このような現象は、寒冷地において気体燃料が濃くなることで効率が低下したり、温暖地において気体燃料が薄くなることで燃料枯れが生じて燃料電池の損傷を招く。   Usually, the flow rate of the gaseous fuel supplied to the fuel electrode of the fuel cell by the pump may vary depending on the environmental temperature when the amount of material is considered constant. For example, in the case of using a volume flow meter, if the temperature is cold, the concentration increases, so the volume flow is small, and if it is warm, the concentration is low, so the volume flow is large. Such a phenomenon results in a decrease in efficiency due to the concentration of the gaseous fuel in a cold region, or fuel depletion due to a decrease in the gaseous fuel in a warm region, resulting in damage to the fuel cell.

従来、このような分野の技術として、下記特許文献1に記載されるように、燃料電池の燃料極へ気体燃料を供給するポンプを備え、このポンプに対する制御指示値(出力制御量)をポンプ付近の環境温度(外気温度)に基づいて補正し、補正した制御指示値によりポンプを制御することで、環境温度が変化した場合でも供給量の安定化を図る燃料電池システムが知られている。   Conventionally, as a technique in such a field, as described in Patent Document 1 below, a pump for supplying gaseous fuel to a fuel electrode of a fuel cell is provided, and a control instruction value (output control amount) for this pump is set near the pump. There is known a fuel cell system that corrects based on the ambient temperature (outside air temperature) and controls the pump with the corrected control instruction value to stabilize the supply amount even when the ambient temperature changes.

このシステムでは、例えば、ある環境温度における制御指示値の基準値を記憶しており、システムの運転時における環境温度とその基準値に対応する環境温度との比を基準値に乗じることで、気体の状態方程式に基づく制御指示値の演算を行っている。   In this system, for example, a reference value of a control instruction value at a certain environmental temperature is stored, and by multiplying the reference value by a ratio between the environmental temperature during operation of the system and the environmental temperature corresponding to the reference value, the gas The control instruction value is calculated based on the state equation.

特開2004−207133号公報JP 2004-207133 A

しかしながら、実在の気体を取り扱う場合、また、上記特許文献1に記載されたような、外気温度及び出力電流に基づいて決定されるガス供給量を燃料電池等に供給するために、ガス供給手段の出力を直接的に調整する燃料電池システムにおいては、ガス供給手段の精度や劣化を考慮していないため、燃料電池等に実際に供給されるガス量が正確であるとは限らないという問題がある。   However, when handling an actual gas, or in order to supply a gas supply amount determined based on the outside air temperature and the output current, as described in Patent Document 1, to the fuel cell or the like, the gas supply means The fuel cell system that directly adjusts the output does not take into account the accuracy and deterioration of the gas supply means, and thus there is a problem that the amount of gas actually supplied to the fuel cell or the like is not always accurate. .

本発明は、環境温度が変化する場合においても、気体燃料の供給量を精度良く調整することができる燃料電池システム及び燃料電池システムの運転方法を提供することを目的とする。   An object of the present invention is to provide a fuel cell system and a fuel cell system operating method capable of accurately adjusting the amount of gaseous fuel supplied even when the ambient temperature changes.

本発明に係る燃料電池システムは、気体燃料の改質反応により水素を含有する改質ガスを生成する改質器と、改質ガスを用いて発電を行う燃料電池と、改質器に気体燃料を供給する燃料供給手段と、改質器に供給される気体燃料の流量を測定する流量測定手段と、燃料電池の出力電流の電流値を測定する電流値測定手段と、環境温度を測定する環境温度測定手段と、電流値に応じて改質器に供給すべき単位時間当たりの燃料物質量を予め記憶し、環境温度を参照して燃料物質量に相当する流量で気体燃料を燃料供給手段に吐出させるための流量測定手段の指示目標値を決定し、流量測定手段が指示目標値を示すよう燃料供給手段を制御する制御手段と、を備えることを特徴とする。   A fuel cell system according to the present invention includes a reformer that generates a reformed gas containing hydrogen by a reforming reaction of a gaseous fuel, a fuel cell that generates power using the reformed gas, and a gaseous fuel in the reformer. The fuel supply means for supplying the fuel, the flow rate measuring means for measuring the flow rate of the gaseous fuel supplied to the reformer, the current value measuring means for measuring the current value of the output current of the fuel cell, and the environment for measuring the environmental temperature The temperature measurement means and the fuel substance amount per unit time to be supplied to the reformer according to the current value are stored in advance, and the gaseous fuel is supplied to the fuel supply means at a flow rate corresponding to the fuel substance quantity with reference to the environmental temperature. Control means for determining an instruction target value of the flow rate measurement means for discharging and controlling the fuel supply means so that the flow rate measurement means indicates the instruction target value.

また、本発明に係る燃料電池システムの運転方法は、気体燃料の改質反応により水素を含有する改質ガスを生成する改質器と、改質ガスを用いて発電を行う燃料電池と、改質器に気体燃料を供給する燃料供給手段と、改質器に供給される気体燃料の流量を測定する流量測定手段と、燃料電池の出力電流の電流値を測定する電流値測定手段と、環境温度を測定する環境温度測定手段と、電流値に応じた燃料物質量を予め記憶する制御手段と、を備えた燃料電池システムにおいて、電流値に応じて改質器に供給すべき単位時間当たりの燃料物質量を決定するステップと、環境温度を参照して燃料物質量に相当する流量で気体燃料を燃料供給手段に吐出させるための流量測定手段の指示目標値を決定するステップと、流量測定手段が指示目標値を示すよう燃料供給手段を制御するステップと、を備えることを特徴とする。   In addition, an operation method of the fuel cell system according to the present invention includes a reformer that generates a reformed gas containing hydrogen by a reforming reaction of a gaseous fuel, a fuel cell that generates power using the reformed gas, and a modification. A fuel supply means for supplying gaseous fuel to the gasifier, a flow rate measuring means for measuring the flow rate of the gaseous fuel supplied to the reformer, a current value measuring means for measuring the current value of the output current of the fuel cell, and the environment In a fuel cell system comprising an environmental temperature measuring means for measuring temperature and a control means for storing in advance a fuel substance amount corresponding to the current value, a unit per unit time to be supplied to the reformer according to the current value Determining a fuel substance amount; determining an indicated target value of a flow rate measuring means for discharging gaseous fuel to the fuel supply means at a flow rate corresponding to the fuel substance amount with reference to an environmental temperature; and a flow rate measuring means Indicates the indicated target value. Characterized in that it comprises Yo and controlling the fuel supply means.

これらの燃料電池システム及び燃料電池システムの運転方法によれば、環境温度を参照して、電流値に応じた燃料物質量に相当する流量の気体燃料が燃料供給手段によって吐出されるよう、流量測定手段の指示目標値が決定される。よって、環境温度が変化する場合においても、電流値に応じた燃料物質量を改質器に供給することができ、気体燃料の供給量を精度良く調整することができる。   According to these fuel cell systems and fuel cell system operation methods, flow rate measurement is performed so that gaseous fuel having a flow rate corresponding to the amount of fuel material corresponding to the current value is discharged by the fuel supply means with reference to the environmental temperature. The indicated target value of the means is determined. Therefore, even when the environmental temperature changes, the amount of fuel material corresponding to the current value can be supplied to the reformer, and the supply amount of gaseous fuel can be adjusted with high accuracy.

また、本発明に係る燃料電池システムにおいて、制御手段は、流量測定手段の経年劣化情報を記憶しており、記憶した経年劣化情報を更に参照して指示目標値を決定することが好ましい。   In the fuel cell system according to the present invention, it is preferable that the control means stores the aging deterioration information of the flow rate measurement means, and further determines the indicated target value by further referring to the stored aging deterioration information.

また、本発明に係る燃料電池システムの運転方法において、制御手段は、流量測定手段の経年劣化情報を記憶しており、経年劣化情報を参照して指示目標値を決定するステップを更に備えることが好ましい。   Moreover, in the operating method of the fuel cell system according to the present invention, the control means stores aging deterioration information of the flow rate measurement means, and further includes a step of determining an instruction target value with reference to the aging deterioration information. preferable.

これらの燃料電池システム及び燃料電池システムの運転方法によれば、長期間の使用により流量測定手段に経年劣化が生じた場合であっても、この経年劣化が燃料供給手段の制御に加味されるため、燃料供給手段の精度や劣化に拠らず、気体燃料の供給量を確実に調整でき、システムの運用効率および長期信頼性を高めることができる。   According to these fuel cell systems and fuel cell system operation methods, even when the flow rate measuring means is deteriorated due to long-term use, the deterioration is added to the control of the fuel supply means. Therefore, the supply amount of gaseous fuel can be reliably adjusted without depending on the accuracy and deterioration of the fuel supply means, and the operation efficiency and long-term reliability of the system can be improved.

また、本発明に係る燃料電池システムにおいて、制御手段は、流量測定手段の運転時間の累積値を経年劣化情報として記憶することが好ましい。   Moreover, in the fuel cell system according to the present invention, it is preferable that the control means stores the cumulative value of the operation time of the flow rate measuring means as aged deterioration information.

また、本発明に係る燃料電池システムの運転方法において、制御手段は、流量測定手段の運転時間の累積値を経年劣化情報として記憶しており、運転時間の累積値を参照して指示目標値を決定するステップを備えることが好ましい。   Further, in the operation method of the fuel cell system according to the present invention, the control means stores the accumulated value of the operation time of the flow rate measuring means as the aged deterioration information, and refers to the accumulated value of the operation time to determine the indicated target value. Preferably a step of determining is provided.

これらの燃料電池システム及び燃料電池システムの運転方法によれば、経年劣化情報として流量測定手段の運転時間の累積値を用いることにより、流量測定手段を構成する部品等の機械的な劣化を容易に推定することができるため、気体燃料の供給量をより精度良く調整することができる。   According to these fuel cell systems and fuel cell system operation methods, the mechanical deterioration of the parts constituting the flow measurement means can be easily performed by using the cumulative value of the operation time of the flow measurement means as the aging deterioration information. Since it can be estimated, the supply amount of gaseous fuel can be adjusted more accurately.

また、本発明に係る燃料電池システムにおいて、制御手段は、流量測定手段によって測定される流量の累積値を経年劣化情報として記憶することが好ましい。   In the fuel cell system according to the present invention, the control means preferably stores a cumulative value of the flow rate measured by the flow rate measurement means as aged deterioration information.

また、本発明に係る燃料電池システムの運転方法において、制御手段は、流量測定手段によって測定される流量の累積値を経年劣化情報として記憶しており、流量測定手段によって測定される流量の累積値を参照して指示目標値を決定するステップを備えることが好ましい。   In the operation method of the fuel cell system according to the present invention, the control means stores the accumulated value of the flow rate measured by the flow rate measuring means as the aged deterioration information, and the accumulated value of the flow rate measured by the flow rate measuring means. It is preferable to comprise the step of determining the indicated target value with reference to FIG.

これらの燃料電池システム及び燃料電池システムの運転方法によれば、経年劣化情報として流量測定手段によって測定される流量の累積値を用いることにより、気体燃料に含まれる不純物の蓄積等による流量測定手段の経年劣化状態を容易に推定することができるため、気体燃料の供給量をより精度良く調整することができる。   According to these fuel cell systems and fuel cell system operation methods, the accumulated value of the flow rate measured by the flow rate measurement unit is used as the aged deterioration information, so that the flow rate measurement unit by accumulation of impurities contained in the gaseous fuel can be used. Since the aged deterioration state can be easily estimated, the supply amount of the gaseous fuel can be adjusted with higher accuracy.

また、本発明に係る燃料電池システムにおいて、制御手段は、指示目標値をマップとして記憶しており、マップに基づいて指示目標値を決定することが好ましい。   In the fuel cell system according to the present invention, it is preferable that the control means stores the instruction target value as a map and determines the instruction target value based on the map.

また、本発明に係る燃料電池システムの運転方法において、制御手段は、指示目標値をマップとして更に記憶しており、マップに基づいて指示目標値を決定するステップを備えることが好ましい。   In the operation method of the fuel cell system according to the present invention, it is preferable that the control means further includes a step of storing the indicated target value as a map and determining the indicated target value based on the map.

これらの燃料電池システム及び燃料電池システムの運転方法によれば、環境温度測定手段及び電流値測定手段によってそれぞれ測定される環境温度及び電流値、若しくは流量測定手段の経年劣化情報に対応づけられた制御指示値をマップから選択することにより、演算負荷を一層低減することができる。   According to these fuel cell systems and fuel cell system operation methods, control corresponding to the environmental temperature and current values measured by the environmental temperature measuring means and the current value measuring means, respectively, or the aged deterioration information of the flow rate measuring means, respectively. The calculation load can be further reduced by selecting the instruction value from the map.

また、上記作用をより効果的に発揮させる構成としては、流量測定手段は、体積に基づく流量測定手段である構成が挙げられる。   Moreover, as a structure which exhibits the said effect | action more effectively, the structure whose flow volume measuring means is a flow volume measuring means based on a volume is mentioned.

本発明によれば、環境温度が変化する場合においても、気体燃料の供給量を精度良く調整することができる。   According to the present invention, even when the environmental temperature changes, it is possible to accurately adjust the supply amount of gaseous fuel.

本発明に係る燃料電池システムの一実施形態を概略的に示すブロック図である。1 is a block diagram schematically showing one embodiment of a fuel cell system according to the present invention. 燃料電池システムにおける制御手順を示すフローチャートである。It is a flowchart which shows the control procedure in a fuel cell system. 流量測定手段の運転時間の累積値のマップを示す図である。It is a figure which shows the map of the cumulative value of the operation time of a flow measurement means. 第2実施形態における制御手順を示すフローチャートである。It is a flowchart which shows the control procedure in 2nd Embodiment.

以下、本発明の実施形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1実施形態]
図1に示されるように、本実施形態の燃料電池システム1は、気体燃料を用いて水素を含有する改質ガスを生成する改質器5と、改質ガスを用いて発電を行う固体酸化物形燃料電池6と、を備えている。
[First Embodiment]
As shown in FIG. 1, the fuel cell system 1 of the present embodiment includes a reformer 5 that generates a reformed gas containing hydrogen using gaseous fuel, and a solid oxide that generates power using the reformed gas. A physical fuel cell 6.

改質器5は、内部に改質触媒を収容しており、水蒸気改質、部分酸化改質、自己熱改質などの改質反応により、改質ガスを生成する。改質触媒としては、公知の触媒を用いることができる。   The reformer 5 contains a reforming catalyst therein and generates a reformed gas by a reforming reaction such as steam reforming, partial oxidation reforming, or autothermal reforming. A known catalyst can be used as the reforming catalyst.

気体燃料としては、改質ガスの原料として固体酸化物方燃料電池の分野で公知の炭化水素系燃料、すなわち、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはその混合物から適宜選んで用いることができる。例えば、炭化水素類、アルコール類、エーテル類等、分子中に炭素と水素とを含む化合物である。より具体的には、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、ガソリン、ナフサ、灯油、軽油等の炭化水素類、メタノール、エタノール等のアルコール類、ジメチルエーテル等のエーテル類等である。なかでも、灯油やLPGは、入手が容易であるため好ましい。また、灯油やLPGは、独立して貯蔵可能であるため、都市ガスのラインが普及していない地域において有用である。更に、灯油やLPGを利用した固体酸化物方燃料電池は、非常用電源として有用である。なお、常温で液体である燃料の場合、例えば気化器によって気化することで、気体燃料として用いることができる。   The gaseous fuel is a hydrocarbon-based fuel known in the field of solid oxide fuel cells as a raw material for reformed gas, that is, a compound containing carbon and hydrogen in its molecule (containing other elements such as oxygen). Or a mixture thereof may be used as appropriate. For example, it is a compound containing carbon and hydrogen in the molecule, such as hydrocarbons, alcohols and ethers. More specifically, methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, hydrocarbons such as gasoline, naphtha, kerosene and light oil, alcohols such as methanol and ethanol, dimethyl ether, etc. Ethers and the like. Of these, kerosene and LPG are preferable because they are easily available. Moreover, since kerosene and LPG can be stored independently, they are useful in areas where city gas lines are not widespread. Furthermore, a solid oxide fuel cell using kerosene or LPG is useful as an emergency power source. In addition, in the case of the fuel which is liquid at normal temperature, it can be used as gaseous fuel, for example by vaporizing with a vaporizer.

燃料電池6は、改質器5で生成された改質ガスを燃料として用い、SOFC(Solid Oxide Fuel Cells)と称される複数のセルを直列させてなるセルスタックで発電を行う。各セルは、固体酸化物である電解質が燃料極と空気極との間に配置されることで構成されている。電解質は、例えばイットリア安定化ジルコニア(YSZ)からなり、800℃〜1000℃の温度で酸化物イオンを伝導する。燃料極は、例えばニッケルとYSZとの混合物からなり、酸化物イオンと燃料極に供給される改質ガス中の水素とを反応させて、電子及び水を発生させる。空気極は、例えばランタンストロンチウムマンガナイトからなり、空気極に供給される空気中の酸素と電子とを反応させて、酸化物イオンを発生させる。   The fuel cell 6 uses the reformed gas generated by the reformer 5 as fuel, and generates power with a cell stack formed by connecting a plurality of cells called SOFC (Solid Oxide Fuel Cells) in series. Each cell is configured by disposing an electrolyte, which is a solid oxide, between a fuel electrode and an air electrode. The electrolyte is made of, for example, yttria stabilized zirconia (YSZ), and conducts oxide ions at a temperature of 800 ° C. to 1000 ° C. The fuel electrode is made of, for example, a mixture of nickel and YSZ, and generates electrons and water by reacting oxide ions with hydrogen in the reformed gas supplied to the fuel electrode. The air electrode is made of, for example, lanthanum strontium manganite, and reacts oxygen in the air supplied to the air electrode with electrons to generate oxide ions.

また、燃料電池システム1は、改質器5に気体燃料を供給する燃料供給装置2と、燃料供給装置2によって改質器5に供給される気体燃料の流量を測定する流量測定装置3と、燃料電池6の出力電流の電流値を測定する電流値測定装置7と、環境温度を測定する環境温度測定装置8と、を備えている。更に、燃料電池システム1は、電流値測定装置7によって測定された電流値および環境温度測定装置8によって測定された環境温度に基づいて燃料供給装置2を制御する制御装置4を備えている。   The fuel cell system 1 includes a fuel supply device 2 that supplies gaseous fuel to the reformer 5, a flow rate measuring device 3 that measures the flow rate of the gaseous fuel supplied to the reformer 5 by the fuel supply device 2, A current value measuring device 7 that measures the current value of the output current of the fuel cell 6 and an environmental temperature measuring device 8 that measures the environmental temperature are provided. Furthermore, the fuel cell system 1 includes a control device 4 that controls the fuel supply device 2 based on the current value measured by the current value measuring device 7 and the environmental temperature measured by the environmental temperature measuring device 8.

ここで、環境温度とは、燃料電池システム1が設置された環境における外気温である。更に、以下の説明において用いる燃料物質量とは、燃料供給装置2によって改質器5に供給される気体燃料の単位時間あたりのモル数あるいは質量である。   Here, the environmental temperature is the outside air temperature in the environment where the fuel cell system 1 is installed. Furthermore, the amount of fuel substance used in the following description is the number of moles or mass per unit time of the gaseous fuel supplied to the reformer 5 by the fuel supply device 2.

燃料供給装置2は、改質器5に気体燃料を供給するためのポンプを有している。燃料供給装置2は、後述する流量測定手段3で取得される値が、改質器5に供給すべき気体燃料の単位時間当たりの燃料物質量に相当する流量になるようフィードバック制御することにより、改質器5に気体燃料を供給する。   The fuel supply device 2 has a pump for supplying gaseous fuel to the reformer 5. The fuel supply device 2 performs feedback control so that a value acquired by a flow rate measuring unit 3 to be described later becomes a flow rate corresponding to the amount of fuel material per unit time of gaseous fuel to be supplied to the reformer 5, Gaseous fuel is supplied to the reformer 5.

燃料供給装置2は、ポンプの運転中においては、運転中である旨を示す情報を制御装置4に出力する。燃料供給装置2は、ポンプのほか、気体燃料の供給ラインに設けられた調節弁等を有している。   The fuel supply device 2 outputs information indicating that it is in operation to the control device 4 during operation of the pump. In addition to the pump, the fuel supply device 2 has a control valve or the like provided in the gas fuel supply line.

流量測定装置3は、気体燃料の供給ラインに設けられた流量計を有している。流量測定装置3は、体積に基づく気体燃料の流量を測定し、流量の測定値を制御装置4に出力する。ここで、流量測定装置3による流量の測定精度は、使用初期においては誤差が小さく高精度であるが、使用年月が長くなるにつれて、流量測定装置3を構成する部品の機械的な劣化や、気体燃料に含まれる不純物等が流路に付着することによる劣化により、測定精度が低下する傾向にある。   The flow rate measuring device 3 has a flow meter provided in a gaseous fuel supply line. The flow rate measuring device 3 measures the flow rate of the gaseous fuel based on the volume, and outputs a measured value of the flow rate to the control device 4. Here, the measurement accuracy of the flow rate by the flow rate measuring device 3 is small and highly accurate in the initial stage of use. However, as the service life becomes longer, mechanical deterioration of parts constituting the flow rate measuring device 3 or The measurement accuracy tends to decrease due to deterioration caused by adhesion of impurities contained in the gaseous fuel to the flow path.

電流値測定装置7は、燃料電池6における掃引電流値を測定する電流計を有しており、測定した掃引電流値を制御装置4に出力する。   The current value measuring device 7 has an ammeter that measures the sweep current value in the fuel cell 6, and outputs the measured sweep current value to the control device 4.

環境温度測定装置8は、環境温度を測定する温度計を有している。この温度計は、具体的には、燃料供給装置2の周辺に設置されて、燃料供給装置2の周辺の温度を測定し、測定した環境温度を制御装置4に出力する。   The environmental temperature measuring device 8 has a thermometer that measures the environmental temperature. Specifically, this thermometer is installed around the fuel supply device 2, measures the temperature around the fuel supply device 2, and outputs the measured environmental temperature to the control device 4.

制御装置4は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイス等を有して構成されており、燃料電池システム1のシステム全体を制御するものである。すなわち、制御装置4は、燃料電池6における発電量(例えば燃料電池6からの電流掃引)を制御する。また、制御装置4は、電流測定装置7から出力される掃引電流値Iを、環境温度測定装置8から出力される環境温度Kを、また流量測定装置3から出力される気体燃料の実流量Faをそれぞれ取得する。そして、取得した各情報に基づいて所定の処理を実行することにより、燃料供給装置2を制御する。   The control device 4 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input / output interface, and the like, and controls the entire system of the fuel cell system 1. Is. That is, the control device 4 controls the amount of power generated in the fuel cell 6 (for example, current sweep from the fuel cell 6). Further, the control device 4 sets the sweep current value I output from the current measuring device 7, the environmental temperature K output from the environmental temperature measuring device 8, and the actual flow rate Fa of the gaseous fuel output from the flow rate measuring device 3. Get each. And the fuel supply apparatus 2 is controlled by performing a predetermined | prescribed process based on each acquired information.

制御装置4は、掃引電流値に応じた改質器5に供給すべき気体燃料の燃料物質量を予め記憶している。そのため、制御装置4は、電流測定装置7から取得した掃引電流Iを取得することにより、発電に必要な気体燃料の燃料物質量Nfを決定することができる。なお、掃引電流値に応じた燃料物質量は、計算式として記憶していてもよいし、実験的に得られた好適な値をマップとして記憶していてもよい。   The control device 4 stores in advance a fuel material amount of gaseous fuel to be supplied to the reformer 5 according to the sweep current value. Therefore, the control device 4 can determine the fuel material amount Nf of the gaseous fuel necessary for power generation by acquiring the sweep current I acquired from the current measuring device 7. Note that the amount of fuel substance corresponding to the sweep current value may be stored as a calculation formula, or a suitable value obtained experimentally may be stored as a map.

また、制御装置4は、環境温度測定装置8から取得した環境温度Kを参照して、流量測定装置3の指示目標値Ftを決定する。指示目標値は、気体の状態方程式を用いて都度演算を行ってもよいし、環境温度毎に流量測定装置の好適な指示目標値をマップとして予め記憶しておき、そのマップを参照して指示目標値を決定してもよい。   Further, the control device 4 refers to the environmental temperature K acquired from the environmental temperature measurement device 8 and determines the instruction target value Ft of the flow rate measurement device 3. The instruction target value may be calculated each time using the gas equation of state, or a suitable instruction target value of the flow rate measuring device is stored in advance as a map for each environmental temperature, and the instruction target value is indicated with reference to the map. A target value may be determined.

更に、制御装置4は、流量測定装置3から取得した燃料供給装置2が吐出している実際の燃料流量Faと、流量測定装置3の指示目標値Ftとを比較する。そして、制御装置4は、実際の燃料流量Faと指示目標値Ftとが等しくなるように燃料供給装置2を制御する。具体的には、実際の燃料流量Faが指示目標値Ftより小さい場合は燃料供給装置2の吐出量を上げ、反対に、実際の燃料流量Faが指示目標値Ftより大きい場合は燃料供給装置2の吐出量を下げるように、燃料供給装置2を制御する。   Further, the control device 4 compares the actual fuel flow rate Fa discharged from the fuel supply device 2 acquired from the flow measurement device 3 with the indicated target value Ft of the flow measurement device 3. Then, the control device 4 controls the fuel supply device 2 so that the actual fuel flow rate Fa is equal to the indicated target value Ft. Specifically, when the actual fuel flow rate Fa is smaller than the command target value Ft, the discharge amount of the fuel supply device 2 is increased. Conversely, when the actual fuel flow rate Fa is larger than the command target value Ft, the fuel supply device 2 The fuel supply device 2 is controlled so as to reduce the discharge amount.

なお、図示は省略するが、燃料電池システム1は、改質器5に水蒸気を供給する水蒸気供給装置と、燃料電池6の空気極に空気を供給する空気供給装置と、を備えている。水蒸気供給装置は、改質器5と一体に又は改質器5とは別体に設けられた気化器によって水を気化し、水蒸気として改質器5に供給する。   Although not shown, the fuel cell system 1 includes a water vapor supply device that supplies water vapor to the reformer 5 and an air supply device that supplies air to the air electrode of the fuel cell 6. The steam supply apparatus vaporizes water by a vaporizer provided integrally with the reformer 5 or separately from the reformer 5 and supplies the water to the reformer 5 as steam.

続いて、本実施形態における制御装置4の機能について説明する。図2は、第1実施形態において、燃料電池システムが起動し、発電を開始したときに制御装置4が実行する処理のフロー図である。図2に示される各処理は、燃料電池システム1の通常運転中、制御装置4によって繰り返し実行される。   Next, functions of the control device 4 in this embodiment will be described. FIG. 2 is a flowchart of processing executed by the control device 4 when the fuel cell system is started and power generation is started in the first embodiment. Each process shown in FIG. 2 is repeatedly executed by the control device 4 during normal operation of the fuel cell system 1.

まず、制御装置4は、掃引電流値Iを取得し(S1)、取得した掃引電流値Iのときに改質器5に供給すべき単位時間当たりの燃料物質量Nfを決定する(S2)。   First, the control device 4 acquires the sweep current value I (S1), and determines the fuel substance amount Nf per unit time to be supplied to the reformer 5 at the acquired sweep current value I (S2).

次に、環境温度Kを取得し(S3)、当該温度において燃料物質量Nfに相当する所望の流量Xを決定する(S4)。そして、当該所望の流量で気体燃料を燃料供給装置2に吐出させるための流量測定装置3の指示目標値Ftを決定する(S5)。   Next, the environmental temperature K is acquired (S3), and a desired flow rate X corresponding to the fuel substance amount Nf is determined at the temperature (S4). Then, the instruction target value Ft of the flow rate measuring device 3 for discharging the gaseous fuel to the fuel supply device 2 at the desired flow rate is determined (S5).

次に、制御装置4は、現在の改質器5に供給されている燃料流量Faを取得し(S6)、指示目標値Ftと比較する(S7)。現在の燃料流量Faと指示目標値Ftとが等しい場合は、ステップS1に戻り、ステップS1〜S7の処理を繰り返す。一方、現在の燃料流量Faと指示目標値Ftとが等しくない場合は、燃料供給装置2の出力を調整する(S8)。具体的には、制御装置4は、Fa<Ftの場合は燃料供給装置2の吐出量を増やすように燃料供給装置2を制御し、Fa>Ftの場合は燃料供給装置2の吐出量を減らすように燃料供給装置2を制御する。そして、ステップS6に戻り、再び現在の燃料流量Faを取得して指示目標値Ftと比較する。   Next, the control device 4 acquires the fuel flow rate Fa supplied to the current reformer 5 (S6) and compares it with the indicated target value Ft (S7). If the current fuel flow rate Fa is equal to the command target value Ft, the process returns to step S1 and the processes of steps S1 to S7 are repeated. On the other hand, if the current fuel flow rate Fa and the command target value Ft are not equal, the output of the fuel supply device 2 is adjusted (S8). Specifically, the control device 4 controls the fuel supply device 2 to increase the discharge amount of the fuel supply device 2 when Fa <Ft, and decreases the discharge amount of the fuel supply device 2 when Fa> Ft. Thus, the fuel supply device 2 is controlled. Then, the process returns to step S6, and the current fuel flow rate Fa is acquired again and compared with the instruction target value Ft.

本実施形態の燃料電池システム1及び燃料電池システム1の運転方法によれば、環境温度を参照して流量測定装置3の流量計指示目標値Ftが決定され、流量測定装置3が流量計指示目標値を示すように燃料供給装置2が制御されて気体燃料が改質器5に供給されるため、環境温度の高低に関わらず、燃料電池6の出力電流の電流値に応じた燃料物質量の燃料供給が可能になる。   According to the fuel cell system 1 and the operation method of the fuel cell system 1 of the present embodiment, the flow meter instruction target value Ft of the flow measurement device 3 is determined with reference to the environmental temperature, and the flow measurement device 3 determines the flow meter instruction target. Since the fuel supply device 2 is controlled so as to show the value and the gaseous fuel is supplied to the reformer 5, the amount of fuel substance corresponding to the current value of the output current of the fuel cell 6 regardless of the environmental temperature is high or low. Fuel supply becomes possible.

また、環境温度に基づく制御指示値の設定は予めマップとして記憶することができるため、数式から求められる値の他、実験的に得られたより好適な値を記憶することができ、好適な値を低演算負荷で実現することができる。従って、環境温度が変化する場合においても、演算負荷を低減しつつ気体燃料の供給量を精度よく調整することができる。   Moreover, since the setting of the control instruction value based on the environmental temperature can be stored in advance as a map, in addition to the value obtained from the mathematical formula, a more preferable value obtained experimentally can be stored. This can be realized with a low computational load. Therefore, even when the environmental temperature changes, it is possible to accurately adjust the supply amount of the gaseous fuel while reducing the calculation load.

[第2実施形態]
第2実施形態の燃料電池システムは、図1に示した燃料電池システム1と同様の構成を有しているが、制御装置4は、流量測定装置3の経年劣化情報を更に記憶しており、また、制御装置4における処理が第1実施形態とは異なっている。本実施形態においては、流量測定装置3の指示目標値を決定する際に流量測定装置3の経年劣化情報を加味する処理を有する。具体的には、経年劣化情報として、流量測定装置3の運転時間の累積値を用いる。図3は、当該経年劣化情報を加味した燃料吐出量と流量測定装置3指示値との関係を示すマップである。図4は、本実施形態において、燃料電池システムが起動し、発電を開始したときに制御装置4が実行する処理のフロー図である。図4に示される各処理は、燃料電池システムの通常運転中、制御装置4によって繰り返し実行される。
[Second Embodiment]
The fuel cell system of the second embodiment has the same configuration as the fuel cell system 1 shown in FIG. 1, but the control device 4 further stores aging deterioration information of the flow rate measuring device 3. Further, the processing in the control device 4 is different from that in the first embodiment. In this embodiment, when determining the instruction | indication target value of the flow measuring device 3, it has a process which considers the aged deterioration information of the flow measuring device 3. FIG. Specifically, a cumulative value of the operation time of the flow rate measuring device 3 is used as the aging deterioration information. FIG. 3 is a map showing the relationship between the fuel discharge amount taking the aging deterioration information into consideration and the flow rate measuring device 3 indicated value. FIG. 4 is a flowchart of processing executed by the control device 4 when the fuel cell system is started and power generation is started in the present embodiment. Each process shown in FIG. 4 is repeatedly executed by the control device 4 during normal operation of the fuel cell system.

図4に示されるように、制御装置4は、環境温度Kを取得し(S3)、当該温度において燃料物質量Nfに相当する所望の流量Xを決定した後、流量測定装置3の累積運転時間tを取得する(S9)。制御装置4は、流量測定装置3の累積運転時間tから経年劣化情報であるマップを選択する。具体的には、掃引電流値I、必要な燃料物質量Nf及び環境温度Kから決定される所望の燃料流量がX1である場合、0年≦t年<3年の場合はマップM1を参照し(S10〜S11A)、指示目標値X1に決定する(S5A)。3年≦t年<5年の場合はマップM2を参照し(S10〜S11B)、指示目標値FtをX2に決定する(S5B)。5年≦t年<6年の場合はマップM3を参照し(S10〜S11C)、指示目標値FtをX3に決定する(S5C)。以下、第1実施形態と同様に、現在の燃料流量Faと指示目標値Ftとを比較する。   As shown in FIG. 4, the control device 4 acquires the environmental temperature K (S3), determines a desired flow rate X corresponding to the fuel substance amount Nf at the temperature, and then the cumulative operation time of the flow measurement device 3 t is acquired (S9). The control device 4 selects a map that is aged deterioration information from the accumulated operation time t of the flow rate measuring device 3. Specifically, when the desired fuel flow rate determined from the sweep current value I, the required fuel material amount Nf and the environmental temperature K is X1, refer to the map M1 when 0 year ≦ t year <3 years. (S10 to S11A), the instruction target value X1 is determined (S5A). In the case of 3 years ≦ t year <5 years, the map M2 is referred to (S10 to S11B), and the instruction target value Ft is determined to be X2 (S5B). If 5 years ≦ t year <6 years, the map M3 is referred to (S10 to S11C), and the instruction target value Ft is determined to be X3 (S5C). Hereinafter, as in the first embodiment, the current fuel flow rate Fa is compared with the indicated target value Ft.

本実施形態の燃料電池システム及び燃料電池システムの運転方法によれば、流量測定装置3を長期使用することにより生じる流量測定装置3を構成する部品類の機械的劣化や、燃料に含まれる不純物が流路に蓄積することによる劣化による、流量測定装置3の指示値と実際の吐出量との誤差を加味して指示目標値Ftを決定することができる。これによって気体燃料の供給量を精度良く調整でき、システムの運用効率および長期信頼性を高めて長期的な寿命を確保することができる。   According to the fuel cell system and the operation method of the fuel cell system of the present embodiment, mechanical deterioration of parts constituting the flow rate measuring device 3 caused by long-term use of the flow rate measuring device 3 and impurities contained in the fuel are present. The instruction target value Ft can be determined in consideration of an error between the instruction value of the flow rate measuring device 3 and the actual discharge amount due to deterioration due to accumulation in the flow path. As a result, the supply amount of gaseous fuel can be adjusted with high precision, and the system operation efficiency and long-term reliability can be improved to ensure a long-term life.

なお、上述の実施形態では、グラフ形式のマップを用いて説明したが、マトリックス形式のマップを用いてもよい。また、なお、ステップS9で取得する経年劣化情報は、流量測定装置3の累積運転時間ではなく、流量測定装置3の流量の累積値を用いても上記と同様の効果を得ることができる。   In the above-described embodiment, the graph format map is used for explanation, but a matrix format map may be used. In addition, even if the aged deterioration information acquired in step S9 is not the accumulated operation time of the flow rate measuring device 3, but the accumulated value of the flow rate of the flow rate measuring device 3, the same effect as described above can be obtained.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限られるものではない。例えば、上記実施形態では、固体酸化物形燃料電池を用いる場合について説明したが、本発明は、固体高分子形燃料電池や溶融炭酸塩形燃料電池を用いた燃料電池システムにも適用できる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, in the above embodiment, the case of using a solid oxide fuel cell has been described, but the present invention can also be applied to a fuel cell system using a solid polymer fuel cell or a molten carbonate fuel cell.

また、上記各実施形態における運転方法では、ステップS8の後、流量の測定値を流量の指示目標値に追従させるステップS6に戻る場合について説明したが、掃引電流値を取得するステップS1や、環境温度を取得するステップS3に戻ってもよい。   In the operation methods in the above embodiments, the case where the flow rate measurement value is returned to step S6 after step S8 is followed by the flow rate measurement value has been described. However, step S1 for acquiring the sweep current value and the environment You may return to step S3 which acquires temperature.

1…燃料電池システム、2…燃料供給装置(燃料供給手段)、3…流量測定装置(流量測定手段)、4…制御装置(制御手段)、5…改質器、6…燃料電池、7…電流値測定装置(電流値測定手段)、8…環境温度測定装置(環境温度測定手段)。   DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 2 ... Fuel supply apparatus (fuel supply means), 3 ... Flow measurement apparatus (flow measurement means), 4 ... Control apparatus (control means), 5 ... Reformer, 6 ... Fuel cell, 7 ... Current value measuring device (current value measuring means), 8... Environmental temperature measuring device (environment temperature measuring means).

Claims (11)

気体燃料の改質反応により水素を含有する改質ガスを生成する改質器と、
前記改質ガスを用いて発電を行う燃料電池と、
前記改質器に前記気体燃料を供給する燃料供給手段と、
前記改質器に供給される前記気体燃料の流量を測定する流量測定手段と、
前記燃料電池の出力電流の電流値を測定する電流値測定手段と、
環境温度を測定する環境温度測定手段と、
前記電流値に応じて前記改質器に供給すべき単位時間当たりの燃料物質量を予め記憶し、前記環境温度を参照して前記燃料物質量に相当する流量で前記気体燃料を前記燃料供給手段に吐出させるための前記流量測定手段の指示目標値を決定し、前記流量測定手段が前記指示目標値を示すよう前記燃料供給手段を制御する制御手段と、を備えることを特徴とする燃料電池システム。
A reformer that generates reformed gas containing hydrogen by a reforming reaction of gaseous fuel;
A fuel cell that generates power using the reformed gas;
Fuel supply means for supplying the gaseous fuel to the reformer;
Flow rate measuring means for measuring the flow rate of the gaseous fuel supplied to the reformer;
Current value measuring means for measuring the current value of the output current of the fuel cell;
Environmental temperature measuring means for measuring environmental temperature;
A fuel material amount per unit time to be supplied to the reformer according to the current value is stored in advance, and the fuel supply means supplies the gaseous fuel at a flow rate corresponding to the fuel material amount with reference to the environmental temperature. A fuel cell system comprising: control means for determining an instruction target value of the flow rate measurement means for causing the flow rate measurement means to discharge, and controlling the fuel supply means so that the flow rate measurement means indicates the instruction target value .
前記制御手段は、前記流量測定手段の経年劣化情報を記憶しており、記憶した前記経年劣化情報を更に参照して前記指示目標値を決定することを特徴とする請求項1に記載の燃料電池システム。   2. The fuel cell according to claim 1, wherein the control means stores aging deterioration information of the flow rate measuring means, and further determines the indicated target value by further referring to the stored aging deterioration information. system. 前記制御手段は、前記流量測定手段の運転時間の累積値を前記経年劣化情報として記憶することを特徴とする請求項2に記載の燃料電池システム。   3. The fuel cell system according to claim 2, wherein the control unit stores an accumulated value of an operation time of the flow rate measuring unit as the aging deterioration information. 前記制御手段は、前記流量測定手段によって測定される流量の累積値を前記経年劣化情報として記憶することを特徴とする請求項2に記載の燃料電池システム。   3. The fuel cell system according to claim 2, wherein the control unit stores a cumulative value of the flow rate measured by the flow rate measurement unit as the aging deterioration information. 前記制御手段は、前記指示目標値をマップとして記憶しており、前記マップに基づいて前記指示目標値を決定することを特徴とする請求項1〜4のいずれか一項に記載の燃料電池システム。   The fuel cell system according to any one of claims 1 to 4, wherein the control means stores the indicated target value as a map, and determines the indicated target value based on the map. . 前記流量測定手段は、体積に基づく流量測定手段である請求項1〜5のいずれか一項に記載の燃料電池システム。   The fuel cell system according to any one of claims 1 to 5, wherein the flow rate measurement unit is a volume-based flow rate measurement unit. 気体燃料の改質反応により水素を含有する改質ガスを生成する改質器と、
前記改質ガスを用いて発電を行う燃料電池と、
前記改質器に前記気体燃料を供給する燃料供給手段と、
前記改質器に供給される前記気体燃料の流量を測定する流量測定手段と、
前記燃料電池の出力電流の電流値を測定する電流値測定手段と、
環境温度を測定する環境温度測定手段と、
前記電流値に応じた燃料物質量を予め記憶する制御手段と、を備えた燃料電池システムにおいて、
前記電流値に応じて前記改質器に供給すべき単位時間当たりの前記燃料物質量を決定するステップと、
前記環境温度を参照して前記燃料物質量に相当する流量で前記気体燃料を前記燃料供給手段に吐出させるための前記流量測定手段の指示目標値を決定するステップと、
前記流量測定手段が前記指示目標値を示すよう前記燃料供給手段を制御するステップと、を備えることを特徴とする燃料電池システムの運転方法。
A reformer that generates reformed gas containing hydrogen by a reforming reaction of gaseous fuel;
A fuel cell that generates power using the reformed gas;
Fuel supply means for supplying the gaseous fuel to the reformer;
Flow rate measuring means for measuring the flow rate of the gaseous fuel supplied to the reformer;
Current value measuring means for measuring the current value of the output current of the fuel cell;
Environmental temperature measuring means for measuring environmental temperature;
A fuel cell system comprising: a control unit that stores in advance a fuel substance amount corresponding to the current value;
Determining the amount of the fuel material per unit time to be supplied to the reformer according to the current value;
Determining an instruction target value of the flow rate measuring means for discharging the gaseous fuel to the fuel supply means at a flow rate corresponding to the fuel substance amount with reference to the environmental temperature;
And a step of controlling the fuel supply means so that the flow rate measuring means indicates the indicated target value.
前記制御手段は、前記流量測定手段の経年劣化情報を記憶しており、
前記経年劣化情報を参照して前記指示目標値を決定するステップを更に備えることを特徴とする請求項7に記載の燃料電池システムの運転方法。
The control means stores aged deterioration information of the flow rate measuring means,
8. The method of operating a fuel cell system according to claim 7, further comprising a step of determining the indicated target value with reference to the aged deterioration information.
前記制御手段は、前記流量測定手段の運転時間の累積値を前記経年劣化情報として記憶しており、
前記運転時間の累積値を参照して前記指示目標値を決定するステップを備えることを特徴とする請求項8に記載の燃料電池システムの運転方法。
The control means stores a cumulative value of operation time of the flow rate measuring means as the aging deterioration information,
The operation method of the fuel cell system according to claim 8, further comprising a step of determining the indicated target value with reference to a cumulative value of the operation time.
前記制御手段は、前記流量測定手段によって測定される流量の累積値を前記経年劣化情報として記憶しており、
前記流量測定手段によって測定される流量の累積値を参照して前記指示目標値を決定するステップを備えることを特徴とする請求項8に記載の燃料電池システムの運転方法。
The control means stores a cumulative value of the flow rate measured by the flow rate measurement means as the aging deterioration information,
9. The method of operating a fuel cell system according to claim 8, further comprising the step of determining the indicated target value with reference to a cumulative value of the flow rate measured by the flow rate measuring means.
前記制御手段は、前記指示目標値をマップとして更に記憶しており、
前記マップに基づいて前記指示目標値を決定するステップを備えることを特徴とする請求項7〜10のいずれか一項に記載の燃料電池システムの運転方法。
The control means further stores the indicated target value as a map,
The method for operating a fuel cell system according to any one of claims 7 to 10, further comprising a step of determining the indicated target value based on the map.
JP2010253660A 2010-11-12 2010-11-12 Fuel cell system, and method for operating fuel cell system Pending JP2012104434A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010253660A JP2012104434A (en) 2010-11-12 2010-11-12 Fuel cell system, and method for operating fuel cell system
PCT/JP2011/075999 WO2012063922A1 (en) 2010-11-12 2011-11-10 Fuel cell system and method for operating fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253660A JP2012104434A (en) 2010-11-12 2010-11-12 Fuel cell system, and method for operating fuel cell system

Publications (1)

Publication Number Publication Date
JP2012104434A true JP2012104434A (en) 2012-05-31

Family

ID=46051059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253660A Pending JP2012104434A (en) 2010-11-12 2010-11-12 Fuel cell system, and method for operating fuel cell system

Country Status (2)

Country Link
JP (1) JP2012104434A (en)
WO (1) WO2012063922A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057837A (en) * 2014-09-09 2016-04-21 株式会社デンソー Flow control device and fuel battery system
US10050293B2 (en) * 2014-11-28 2018-08-14 Panasonic Intellectual Property Management Co., Ltd. Method for operating fuel cell system and method for estimating composition of fuel used in fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212779A (en) * 1981-06-23 1982-12-27 Kansai Electric Power Co Inc:The Fuel controlling method in fuel cell power generating system
JPH05335029A (en) * 1992-06-01 1993-12-17 Hitachi Ltd Fuel cell power-generating system
JP2001165431A (en) * 1999-12-02 2001-06-22 Osaka Gas Co Ltd Apparatus for controlling air-fuel ratio of reformer for fuel cell
JP2004207133A (en) * 2002-12-26 2004-07-22 Sanyo Electric Co Ltd Fuel cell system and operation method of fuel cell
JP2006153857A (en) * 2004-10-26 2006-06-15 Nissan Motor Co Ltd Deterioration detection system of hydrogen sensor, deterioration detection method, and deterioration detection system of hydrogen concentration measuring means

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048838A (en) * 1998-07-27 2000-02-18 Sanyo Electric Co Ltd Control method for fuel cell device
JP4747496B2 (en) * 2004-03-08 2011-08-17 日産自動車株式会社 Fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212779A (en) * 1981-06-23 1982-12-27 Kansai Electric Power Co Inc:The Fuel controlling method in fuel cell power generating system
JPH05335029A (en) * 1992-06-01 1993-12-17 Hitachi Ltd Fuel cell power-generating system
JP2001165431A (en) * 1999-12-02 2001-06-22 Osaka Gas Co Ltd Apparatus for controlling air-fuel ratio of reformer for fuel cell
JP2004207133A (en) * 2002-12-26 2004-07-22 Sanyo Electric Co Ltd Fuel cell system and operation method of fuel cell
JP2006153857A (en) * 2004-10-26 2006-06-15 Nissan Motor Co Ltd Deterioration detection system of hydrogen sensor, deterioration detection method, and deterioration detection system of hydrogen concentration measuring means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057837A (en) * 2014-09-09 2016-04-21 株式会社デンソー Flow control device and fuel battery system
US10050293B2 (en) * 2014-11-28 2018-08-14 Panasonic Intellectual Property Management Co., Ltd. Method for operating fuel cell system and method for estimating composition of fuel used in fuel cell system

Also Published As

Publication number Publication date
WO2012063922A1 (en) 2012-05-18

Similar Documents

Publication Publication Date Title
US8852822B2 (en) Reforming system, fuel cell system, and its operation method
JP4331125B2 (en) Operation control method and system for solid oxide fuel cell
US8927166B2 (en) Indirect internal reforming solid oxide fuel cell and method for shutting down the same
EP3026746B1 (en) Method for estimating composition of fuel used in fuel cell system
US20110039175A1 (en) Method for operating indirect internal reforming solid oxide fuel cell system
US8771888B2 (en) Fuel cell system and method of load following operation of the same
CN102365779B (en) Method of stopping indirect internal reforming solid oxide fuel cell
WO2012063922A1 (en) Fuel cell system and method for operating fuel cell system
US8790837B2 (en) Method for shutting down indirect internal reforming solid oxide fuel cell
JP2015220211A (en) Control device and control method of fuel cell
JP5134251B2 (en) Reformer system, fuel cell system, and operation method thereof
WO2012063921A1 (en) Fuel cell system and method for operating fuel cell system
JP4896601B2 (en) Operation control method of solid oxide fuel cell
US20120009492A1 (en) Fuel cell system, control method for the fuel cell system, and state detection method for fuel cell
JP5705577B2 (en) Fuel cell system
EP2800185B1 (en) Fuel cell system and method for operating same
US8865358B2 (en) Method for load following operation of fuel cell system
JP2012142121A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140826