Nothing Special   »   [go: up one dir, main page]

JP2012054287A - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP2012054287A
JP2012054287A JP2010193671A JP2010193671A JP2012054287A JP 2012054287 A JP2012054287 A JP 2012054287A JP 2010193671 A JP2010193671 A JP 2010193671A JP 2010193671 A JP2010193671 A JP 2010193671A JP 2012054287 A JP2012054287 A JP 2012054287A
Authority
JP
Japan
Prior art keywords
interconnector
electrode
solar cell
bus bar
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010193671A
Other languages
Japanese (ja)
Other versions
JP5365591B2 (en
Inventor
Shigenori Saisu
重徳 斎須
Takenori Watabe
武紀 渡部
Hiroyuki Otsuka
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010193671A priority Critical patent/JP5365591B2/en
Publication of JP2012054287A publication Critical patent/JP2012054287A/en
Application granted granted Critical
Publication of JP5365591B2 publication Critical patent/JP5365591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of large warpage of a semiconductor substrate of a solar cell, a cell crack, or peeling of an electrode in a manufacturing process of a solar cell module.SOLUTION: A solar cell module comprises: a plurality of solar cells having bus-bar electrodes; and interconnectors that electrically connect the solar cells to each other. Each one bus-bar electrode of the solar cells adjacent to each other is connected by one interconnector. Each interconnector comprises: two electrode connection portions to mutually connect bus-bar electrodes of the solar cells adjacent to each other; and a joint portion to connect these electrode connection portions. Each electrode connection portion is formed such that the side end portions across the length thereof are thin, and the intermediate portion across the length is thicker than the side end portions.

Description

本発明は、太陽電池モジュールに関し、更に詳述すると、太陽電池セルの表面に備えられたバスバー電極にインターコネクタを接続して複数の太陽電池セルを接続した太陽電池モジュールに関する。   The present invention relates to a solar cell module, and more specifically, relates to a solar cell module in which an interconnector is connected to a bus bar electrode provided on the surface of a solar cell to connect a plurality of solar cells.

太陽電池モジュールは、インターコネクタ(平角状の銅箔やインバール等の導体)を使用して、太陽電池セルを直列又は並列にはんだ付けして作製される。しかし、太陽電池セル全面にインターコネクタをはんだ結合すると、インターコネクタが冷える際に収縮し、太陽電池セルが反り上がると同時に、界面に収縮応力が働き、割れてしまう場合があった。セル割れを低減する方法、即ち界面の応力を減らす方法として、インターコネクタを薄くする方法があるが、単純に薄くすると抵抗損失が増大し、F.F.(フィルファクター)が低下する。抵抗損失を低く保つためには、インターコネクタの表面積を増大させて断面積を確保しなければならない。幅広の薄いインターコネクタを用意し、バスバーとの接触面積を増やさずはんだ付けすれば界面の収縮応力は減るが、表面積が増大するためシャドウロスが発生してしまう。一方、インターコネクタを厚くすると抵抗損失は減るが、インターコネクタと基板の界面の収縮応力が強まるため、割れが発生する確率が高まるという欠点がある。   The solar cell module is produced by soldering solar cells in series or in parallel using an interconnector (a conductor such as a rectangular copper foil or Invar). However, when the interconnector is solder-bonded to the entire surface of the solar battery cell, the interconnector contracts when it cools, and the solar battery cell warps, and at the same time, shrinkage stress acts on the interface and may break. As a method of reducing cell cracking, that is, a method of reducing stress at the interface, there is a method of thinning the interconnector. F. (Fill factor) decreases. In order to keep the resistance loss low, the cross-sectional area must be ensured by increasing the surface area of the interconnector. If a wide thin interconnector is prepared and soldered without increasing the contact area with the bus bar, the shrinkage stress at the interface will be reduced, but the surface area will increase, and shadow loss will occur. On the other hand, when the interconnector is thickened, the resistance loss is reduced, but the contraction stress at the interface between the interconnector and the substrate is increased, so that there is a disadvantage that the probability of occurrence of cracking is increased.

また、シリコン基板のコスト低減のために、シリコンインゴットを薄くスライスする。これにより多くの基板が得られるが、基板の厚さが薄くなり、基板が薄くなるとインターコネクタを結合する際に太陽電池セルの反りが増大し、セル割れが顕著になる。特に、セル割れ箇所はインターコネクタを結合した部分であって、応力集中に弱い太陽電池セルの端部分で発生する。
なお、本発明に関連する先行技術文献としては、下記のものが挙げられる。
In addition, the silicon ingot is sliced thinly to reduce the cost of the silicon substrate. As a result, a large number of substrates can be obtained. However, when the thickness of the substrate is reduced and the thickness of the substrate is reduced, the warpage of the solar battery cell increases when the interconnector is coupled, and cell cracking becomes prominent. In particular, the cell cracking portion is a portion where the interconnector is joined, and is generated at the end portion of the solar cell that is weak against stress concentration.
In addition, the following are mentioned as prior art documents relevant to the present invention.

特開2010−27659号公報JP 2010-27659 A

本発明は、上記問題に鑑みてなされたものであり、太陽電池モジュールの製造過程で、太陽電池セルの割れや電極剥がれ等が発生したりするのを防止でき、製造歩留りの低下を防止できると共に、抵抗損失を低減してF.F.(フィルファクター)を向上した太陽電池モジュールを提供することを目的としている。   The present invention has been made in view of the above problems, and can prevent the occurrence of cracks in the solar cells, electrode peeling, and the like during the manufacturing process of the solar cell module, and can prevent a decrease in manufacturing yield. Reduce resistance loss, F. It aims at providing the solar cell module which improved (fill factor).

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、バスバー電極を有する複数の太陽電池セルどうしをインターコネクタによって電気的に接続する際、互いに隣接する太陽電池セルのそれぞれ1つのバスバー電極どうしを、隣接する太陽電池セルのバスバー電極相互を接続するための2つの電極接続部と、これら電極接続部を連結するジョイント部とを有するインターコネクタを用い、上記電極接続部の長さ方向両端部を薄く、長さ方向中間部を両端部より厚くし、電極接続部の長さ方向両端部及び中間部をバスバー電極の長さ方向両端部及び中間部にそれぞれ対応するよう接続することで、セルの端部はインターコネクタの熱収縮による応力集中に弱く、割れが発生しやすいが、この箇所を薄くしたインターコネクタで結合することで応力の集中を緩和し、セル割れを防ぐことができることを見出した。また、セル端部ではバスバー電極を流れる電流は小さいのでインターコネクタが薄く、電気抵抗が高くても電力損失は小さく抑えられる。一方、バスバー電極中央ではフィンガー電極で集電される電流が集中するが、インターコネクタが厚いため電気抵抗が低く抑えられ、結果として電力損失が抑制されることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention, when electrically connecting a plurality of solar cells having bus bar electrodes to each other by an interconnector, each of the adjacent solar cells 1 Using an interconnector having two electrode connection parts for connecting two bus bar electrodes to each other, and a joint part for connecting these electrode connection parts, the length of the electrode connection part Both ends in the length direction are thin, the middle portion in the length direction is thicker than both ends, and both the length direction both ends and the middle portion of the electrode connection portion are connected to correspond to both the length direction both ends and the middle portion of the bus bar electrode, respectively. Therefore, the end of the cell is weak against stress concentration due to thermal contraction of the interconnector, and cracking is likely to occur. The stress concentration is mitigated Rukoto, it found that it is possible to prevent cell fracture. Further, since the current flowing through the bus bar electrode is small at the cell edge, the interconnector is thin, and even if the electric resistance is high, the power loss can be kept small. On the other hand, the current collected by the finger electrodes is concentrated in the center of the bus bar electrode, but the electrical resistance is suppressed low because the interconnector is thick, and as a result, the power loss is suppressed, and the present invention has been made. .

即ち、本発明は、下記の太陽電池モジュールを提供する。
請求項1:
バスバー電極を有する複数の太陽電池セルと、これら太陽電池セルどうしを電気的に接続するインターコネクタとを備え、互いに隣接する太陽電池セルのそれぞれ1つのバスバー電極が1つのインターコネクタによって接続されてなる太陽電池モジュールであって、上記インターコネクタが、上記隣接する太陽電池セルのバスバー電極相互を接続するための2つの電極接続部と、これら電極接続部を連結するジョイント部とを備え、上記電極接続部はその長さ方向両端部が薄く、長さ方向中間部が両端部より厚く形成されていることを特徴とする太陽電池モジュール。
請求項2:
上記インターコネクタのジョイント部が、電極接続部の長さ方向中間部に接続されている請求項1記載の太陽電池モジュール。
請求項3:
上記インターコネクタの電極接続部の長さ方向両端部の厚さが10μmを超え200μm以下であり、長さ方向中間部の厚さが200μmを超え3000μm以下である請求項1又は2記載の太陽電池モジュール。
That is, the present invention provides the following solar cell module.
Claim 1:
A plurality of solar cells having bus bar electrodes and an interconnector for electrically connecting the solar cells to each other, each bus bar electrode of solar cells adjacent to each other being connected by one interconnector A solar cell module, wherein the interconnector includes two electrode connection portions for connecting bus bar electrodes of adjacent solar cells and a joint portion for connecting the electrode connection portions, and the electrode connection The solar cell module is characterized in that the portion is formed such that both ends in the length direction are thin and the middle portion in the length direction is thicker than both ends.
Claim 2:
The solar cell module according to claim 1, wherein the joint portion of the interconnector is connected to a middle portion in the length direction of the electrode connecting portion.
Claim 3:
3. The solar cell according to claim 1, wherein the thickness of both end portions in the length direction of the electrode connector of the interconnector is more than 10 μm and not more than 200 μm, and the thickness of the intermediate portion in the length direction is more than 200 μm and not more than 3000 μm. module.

本発明の太陽電池モジュールは、電極端部(セル端部)に結合する薄いインターコネクタが基板界面の収縮応力の総和を小さくするため、太陽電池モジュールの製造過程で、太陽電池セルの半導体基板に大きな反りが生じたり、セル割れや電極剥がれ等が発生したりするのを防止する。また、セル間は厚いインターコネクタで接続されるためフィルファクタを向上した太陽電池モジュールを提供できる。   In the solar cell module of the present invention, the thin interconnector coupled to the electrode end (cell end) reduces the total sum of the shrinkage stress at the substrate interface. It prevents the occurrence of large warpage, cell cracking, electrode peeling and the like. In addition, since the cells are connected by a thick interconnector, a solar cell module having an improved fill factor can be provided.

本発明に係る太陽電池セルの構造の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the structure of the photovoltaic cell concerning this invention. 本発明に係るインターコネクタの一例を示す概略断面図であり、(A)は非折曲状態、(B)は折曲した状態を示す。It is a schematic sectional drawing which shows an example of the interconnector which concerns on this invention, (A) is a non-bending state, (B) shows the bent state. 本発明の太陽電池セル相互をインターコネクタによって互いに連結した場合の一例を示し、(A)は概略平面図であり、(B)は(A)中のB−B線に沿った概略断面図である。An example at the time of mutually connecting the photovoltaic cell of this invention by an interconnector is shown, (A) is a schematic plan view, (B) is a schematic sectional drawing in alignment with the BB line in (A). is there. 本発明の太陽電池モジュールの一例を示し、(A)は概略平面図であり、(B)は(A)中のB−B線に沿った概略断面図である。An example of the solar cell module of this invention is shown, (A) is a schematic plan view, (B) is a schematic sectional drawing along the BB line in (A). 本発明の太陽電池モジュールの他の例を示し、(A)は概略平面図であり、(B)は(A)中のB−B線に沿った概略断面図である。The other example of the solar cell module of this invention is shown, (A) is a schematic plan view, (B) is a schematic sectional drawing along the BB line in (A). 本発明の太陽電池モジュールの別の例を示し、(A)は概略平面図であり、(B)は(A)中のB−B線に沿った概略断面図である。The other example of the solar cell module of this invention is shown, (A) is a schematic plan view, (B) is a schematic sectional drawing in alignment with the BB line in (A). 従来の太陽電池セル相互をインターコネクタによって互いに連結した場合の一例を示し、(A)は概略平面図であり、(B)は(A)中のB−B線に沿った概略断面図である。An example at the time of connecting the conventional photovoltaic cells mutually with an interconnector is shown, (A) is a schematic plan view, (B) is a schematic sectional drawing in alignment with the BB line in (A). . 従来の太陽電池モジュールを示し、(A)は概略平面図であり、(B)は(A)中のB−B線に沿った概略断面図である。The conventional solar cell module is shown, (A) is a schematic plan view, (B) is a schematic sectional drawing in alignment with the BB line in (A).

以下、本発明に係る太陽電池モジュールの一実施形態について図面を参照して説明する。ただし、本発明は、この方法で作製された太陽電池モジュールに限られるものではない。   Hereinafter, an embodiment of a solar cell module according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the solar cell module manufactured by this method.

図1に示すように、本発明の太陽電池モジュールに用いられる太陽電池セル1は、半導体基板2と、その表面(受光面、以下同じ。)の集電電極3及び裏面の集電電極4とを具備する。半導体基板2としては、例えば、一辺が155mm程度の擬似四角形で、厚みが0.2〜0.3mm程度の単結晶シリコンや多結晶シリコン等のP型又はN型シリコン基板が用いられる。   As shown in FIG. 1, a solar battery cell 1 used in the solar battery module of the present invention includes a semiconductor substrate 2, a current collecting electrode 3 on the front surface (light receiving surface, the same applies hereinafter), and a current collecting electrode 4 on the back surface. It comprises. As the semiconductor substrate 2, for example, a P-type or N-type silicon substrate such as single crystal silicon or polycrystalline silicon having a quasi-square shape with a side of about 155 mm and a thickness of about 0.2 to 0.3 mm is used.

P型シリコン基板の場合、この基板表層にはP/N接合が形成される。このP/N接合の形成は、具体的には、リン等のN型の不純物を含む溶液をP型シリコン基板の表面に塗布した後、熱処理するか、あるいはP型シリコン基板同士を重ね合わせ、これをボートに移載して気相中において800〜900℃程度でその表面からリン、砒素、アンチモン等のN型の不純物を含む化合物、例えばオキシ塩化リンなどを気相拡散することにより、P型シリコン基板の表層に不純物拡散層を形成することで行なわれる。即ち、半導体基板2内にN型領域2−2とP型領域2−1が形成され、N型領域2−2とP型領域2−1との界面部分に半導体接合部が形成される。こうして形成された太陽電池セル1の受光面であるN型拡散面を表面とし、この面と反対側の不拡散面を裏面とする。受光面である表面には、図示していないが、反射防止膜を形成しておくことが望ましい。なお、この半導体基板2は、シリコン以外に単結晶ガリウム砒素等を用いてもよいし、N型基板に臭化ボロンなどの拡散源を用いてP型の拡散層を設けてP/N接合を形成してもよい。   In the case of a P-type silicon substrate, a P / N junction is formed on the substrate surface layer. Specifically, this P / N junction is formed by applying a solution containing an N-type impurity such as phosphorus on the surface of the P-type silicon substrate and then performing heat treatment, or overlapping the P-type silicon substrates. This is transferred to a boat, and a compound containing N-type impurities such as phosphorus, arsenic and antimony, such as phosphorus oxychloride, is vapor-phase diffused from the surface at about 800 to 900 ° C. in the gas phase. This is done by forming an impurity diffusion layer in the surface layer of the silicon substrate. That is, the N-type region 2-2 and the P-type region 2-1 are formed in the semiconductor substrate 2, and a semiconductor junction is formed at the interface portion between the N-type region 2-2 and the P-type region 2-1. The N-type diffusion surface, which is the light receiving surface of the solar battery cell 1 formed in this way, is the front surface, and the non-diffusive surface opposite to this surface is the back surface. Although not shown, it is desirable to form an antireflection film on the surface that is the light receiving surface. The semiconductor substrate 2 may be made of single crystal gallium arsenide or the like in addition to silicon. A P-type diffusion layer may be provided on an N-type substrate using a diffusion source such as boron bromide to form a P / N junction. It may be formed.

上記の半導体基板2には、図1に示すように、基板2の受光面にN型領域2−2と接して受光面集電電極3が形成され、基板2の裏面にP型領域2−1と接して裏面集電電極4が形成されている。図3(A),(B)に示すように、表面の集電電極3は、フィンガー部(フィンガー電極)3a(3’a)と、バスバー部(バスバー電極)3b(3’b)とで構成される。図中、バスバー部3’bは、半導体基板2’の受光面を長さ方向(隣接する半導体基板との連設方向)に沿ってその一端部から他端部にかけて2本平行に形成されているが、バスバー部は1本以上、2〜10の多数本形成されていてもよい。フィンガー部は、バスバー部と直角に交差するようにして複数本が基板の全幅にわたって形成されることが多い。バスバー部の幅は、例えば1〜3mm程度であり、フィンガー部の幅は、例えば0.05〜0.15mm程度が好ましいが、これに限定されるものではない。   As shown in FIG. 1, the semiconductor substrate 2 has a light receiving surface collecting electrode 3 formed on the light receiving surface of the substrate 2 in contact with the N type region 2-2, and a P type region 2 on the back surface of the substrate 2. A back surface collecting electrode 4 is formed in contact with 1. As shown in FIGS. 3 (A) and 3 (B), the current collecting electrode 3 on the surface includes a finger part (finger electrode) 3a (3′a) and a bus bar part (bus bar electrode) 3b (3′b). Composed. In the drawing, two bus bar portions 3'b are formed in parallel on the light receiving surface of the semiconductor substrate 2 'from the one end portion to the other end portion along the length direction (direction of connection with the adjacent semiconductor substrate). However, one or more bus bar portions may be formed in a number of 2 to 10. In many cases, a plurality of finger portions are formed over the entire width of the substrate so as to intersect the bus bar portion at a right angle. The width of the bus bar portion is, for example, about 1 to 3 mm, and the width of the finger portion is preferably, for example, about 0.05 to 0.15 mm, but is not limited thereto.

受光面の集電電極及び裏面の集電電極は、具体的には、次のようにして形成される。即ち、電極形成工程において、半導体基板2の受光面には線状に、裏面には全面に、金属又はそれに準じる物質を各集電電極としてパターニングし、真空蒸着法やスクリーン印刷法を用いて各集電電極を形成する。スクリーン印刷の場合、例えば、銀粉末、ガラスフリット、結合剤、溶剤等を含むペーストをスクリーン印刷して、700〜800℃程度の温度で焼き付け、全体をはんだ層で被覆することにより形成される。また、裏面の集電電極4は、インターコネクタを接続するための銀電極(裏面バスバー電極(図3中の4b又は4’b))と、それを除くほぼ全面に形成された集電用のアルミニウム電極(図示せず)とで構成され、通常、銀電極ははんだ層で被覆される。   Specifically, the current collecting electrode on the light receiving surface and the current collecting electrode on the back surface are formed as follows. That is, in the electrode forming step, a metal or a similar material is patterned as a current collecting electrode in a linear shape on the light receiving surface of the semiconductor substrate 2 and on the entire back surface, and each pattern is collected using a vacuum deposition method or a screen printing method. A current collecting electrode is formed. In the case of screen printing, for example, it is formed by screen printing a paste containing silver powder, glass frit, binder, solvent, etc., baking at a temperature of about 700 to 800 ° C., and covering the whole with a solder layer. Further, the current collecting electrode 4 on the back surface is a silver electrode (back surface bus bar electrode (4b or 4'b in FIG. 3)) for connecting the interconnector and a current collecting electrode formed on almost the entire surface excluding it. The silver electrode is usually covered with a solder layer.

このようにして得られる太陽電池セル1の受光面バスバー電極3bと、この太陽電池セル1と隣接する他の太陽電池セル1’の裏面バスバー電極4bに、図2に示すインターコネクタを接続して、図3(A),(B)に示すような太陽電池モジュールを得る。なお、太陽電池セルの連結数は、通常2〜80個である。   The interconnector shown in FIG. 2 is connected to the light-receiving surface bus bar electrode 3b of the solar battery cell 1 thus obtained and the back bus bar electrode 4b of another solar battery cell 1 ′ adjacent to the solar battery cell 1. A solar cell module as shown in FIGS. 3A and 3B is obtained. In addition, the connection number of a photovoltaic cell is 2-80 normally.

本発明で用いられるインターコネクタは、図2に示すように、互いに隣接する太陽電池セルのバスバー電極相互を接続するための2つの細長テープ状の電極接続部5a,5aと、これら電極接続部を連結する紐状のジョイント部5bとからなり、平角状の銅箔やインバール等で形成される。図2(A)は非折曲状態、(B)は太陽電池のバスバー電極に接続すべく折曲させた状態を示す。電極接続部5aの長さはこれを接続するバスバー電極に対応する長さであることが好ましく、電極接続部5aの長さ方向両端部5a−1,5a−3及び中間部5a−2は、バスバー電極の長さ方向両端部及び中間部にそれぞれ対応するように接続される。電極接続部5aの両端部5a−1,5a−3は薄く、中間部5a−2は両端部より厚くなっており、例えば図2〜4に示すような長さ方向中間部から両端部に向かうに従い、漸次薄くなるテーパー形状とすることができる。また、このようなテーパー形状だけでなく、図5に示す中間部が厚く、その両側が薄い2段形状、図6に示す多段形状でもよい。   As shown in FIG. 2, the interconnector used in the present invention includes two elongated tape-like electrode connecting portions 5a and 5a for connecting bus bar electrodes of solar cells adjacent to each other, and these electrode connecting portions. It consists of a string-like joint portion 5b to be connected, and is formed of a rectangular copper foil, Invar, or the like. FIG. 2 (A) shows a non-bent state, and FIG. 2 (B) shows a state of being bent so as to be connected to the bus bar electrode of the solar cell. The length of the electrode connecting portion 5a is preferably the length corresponding to the bus bar electrode to which the electrode connecting portion 5a is connected. The lengthwise both ends 5a-1, 5a-3 and the intermediate portion 5a-2 of the electrode connecting portion 5a are: The bus bar electrodes are connected so as to correspond to both ends in the length direction and intermediate portions. Both end portions 5a-1 and 5a-3 of the electrode connecting portion 5a are thin, and the intermediate portion 5a-2 is thicker than both end portions. For example, from the intermediate portion in the length direction as shown in FIGS. Accordingly, the taper shape can be made gradually thinner. Further, not only such a tapered shape but also a two-stage shape in which the intermediate portion shown in FIG. 5 is thick and both sides thereof are thin, or a multi-stage shape shown in FIG. 6 may be used.

接続部5a(一端部5a−1、中間部5a−2、他端部5a−3)及びジョイント部5bを有するインターコネクタ5の太陽電池セル1への接続例を以下に説明する。
まず、図3に示すように、電極接続部の長さ方向一端部5a−1、中間部5a−2、他端部5a−3を、太陽電池セル1の受光面バスバー電極部3bに接続する。具体的には、電極接続部の長さ方向両端部5a−1、5a−3及び中間部5a−2がそれぞれ太陽電池セル1の受光面バスバー電極の長さ方向両端部及び中間部に対応するよう接続し、一端部5a−1、中間部5a−2、他端部5a−3の上部をはんだごてでなぞり、太陽電池セル1とインターコネクタ電極接続部の一端部5a−1、中間部5a−2、他端部5a−3をはんだ接続する。次いで、太陽電池セル1と隣接する太陽電池セル1’にも同様に接続する。
A connection example of the interconnector 5 having the connection portion 5a (one end portion 5a-1, the intermediate portion 5a-2, the other end portion 5a-3) and the joint portion 5b to the solar battery cell 1 will be described below.
First, as shown in FIG. 3, one end part 5 a-1 in the length direction of the electrode connection part, the intermediate part 5 a-2, and the other end part 5 a-3 are connected to the light receiving surface bus bar electrode part 3 b of the solar battery cell 1. . Specifically, the length direction both ends 5a-1, 5a-3 and the intermediate portion 5a-2 of the electrode connecting portion respectively correspond to the length direction both ends and the intermediate portion of the light receiving surface bus bar electrode of the solar battery cell 1. The upper ends of the one end portion 5a-1, the intermediate portion 5a-2, and the other end portion 5a-3 are traced with a soldering iron. 5a-2 and the other end 5a-3 are connected by soldering. Next, the solar cell 1 is adjacently connected to the adjacent solar cell 1 ′.

ここで、インターコネクタの電極接続部の両端部5a−1,5a−3の厚さは10μmを超え200μm以下であることが好ましく、より好ましくは50〜150μmである。バスバー電極端部(セル端部)に接続するインターコネクタの厚さを10μmを超え200μm以下とすることで、セル端部におけるインターコネクタの冷却収縮による応力集中が緩和される。応力集中が緩和されることで応力集中に弱いセル端部の割れが低減できる。また、セル端部のバスバー電極の電流は小さいのでインターコネクタ端部の薄い部分で電気抵抗が高くても電力損失は小さく抑えられる。   Here, the thickness of both end portions 5a-1 and 5a-3 of the electrode connecting portion of the interconnector is preferably more than 10 μm and not more than 200 μm, and more preferably 50 to 150 μm. By setting the thickness of the interconnector connected to the bus bar electrode end (cell end) to more than 10 μm and not more than 200 μm, stress concentration due to the cooling contraction of the interconnector at the cell end is alleviated. The relaxation of the stress concentration can reduce the cracks at the cell edge that are vulnerable to the stress concentration. In addition, since the current of the bus bar electrode at the cell end is small, even if the electrical resistance is high at the thin portion of the interconnector end, the power loss can be kept small.

一方、インターコネクタ電極接続部の中間部5a−2は、両端部よりも厚くなっており、200μmを超え3000μm以下であることが好ましく、より好ましくは500〜3000μm、更に好ましくは500〜1000μmである。電極接続部中間部5a−2ではフィンガー電極で集電される電流が集中するが、インターコネクタが200μmを超え3000μm以下と厚いため電気抵抗が低く抑えられ、結果として電力損失が抑制される。なお、インターコネクタ電極接続部の幅は特に制限されないが、バスバー電極に対応する幅が好ましく、例えば1〜4mm程度、特に1〜3mm程度が好ましい。   On the other hand, the intermediate part 5a-2 of the interconnector electrode connecting part is thicker than both end parts, preferably exceeding 200 μm and not more than 3000 μm, more preferably 500 to 3000 μm, still more preferably 500 to 1000 μm. . In the electrode connection part middle part 5a-2, the current collected by the finger electrodes is concentrated, but since the interconnector is thicker than 200 [mu] m and 3000 [mu] m or less, the electrical resistance is kept low, and as a result, power loss is restrained. The width of the interconnector electrode connecting portion is not particularly limited, but is preferably a width corresponding to the bus bar electrode, for example, about 1 to 4 mm, particularly about 1 to 3 mm.

この場合、インターコネクタ電極接続部の両端側の厚さの薄い部分は、それぞれバスバー電極の長さの1/30〜1/3を占めるようにすることが好ましい。   In this case, it is preferable that the thin portions on both ends of the interconnector electrode connecting portion occupy 1/30 to 1/3 of the length of the bus bar electrode.

また、インターコネクタジョイント部の厚さは、200μmを超え3000μm以下、特に1000〜3000μmであることが好ましく、このジョイント部は、図2に示すように、電極接続部の中央部分に接続していることが好ましい。セル同士をバスバー中央部で200μmを超え3000μm以下の厚いインターコネクタジョイント部により接続するために、セル間の電気抵抗も低くなっている。ジョイント部の幅も特に制限されないが、インターコネクタ電極接続部と同じであることが好ましく、例えば1〜4mm程度、特に1〜3mm程度が好ましい。
また、図3(A)に示すように、太陽電池セル1と1’を接続するときに、インターコネクタジョイント部5bは、電極接続部5aの中間部5a−2及び他端部5a−3に重なるように接続できるため、シャドウロスを必要最小限にとどめることができる。
Moreover, it is preferable that the thickness of an interconnector joint part exceeds 200 micrometers and is 3000 micrometers or less, especially 1000-3000 micrometers, and this joint part is connected to the center part of an electrode connection part, as shown in FIG. It is preferable. Since the cells are connected to each other by a thick interconnector joint part of more than 200 μm and not more than 3000 μm at the center of the bus bar, the electrical resistance between the cells is also low. The width of the joint part is not particularly limited, but is preferably the same as the interconnector electrode connection part, for example, about 1 to 4 mm, particularly about 1 to 3 mm.
Further, as shown in FIG. 3A, when connecting the solar cells 1 and 1 ′, the interconnector joint portion 5b is connected to the intermediate portion 5a-2 and the other end portion 5a-3 of the electrode connecting portion 5a. Since they can be connected so that they overlap, shadow loss can be minimized.

次に、上記のようにして形成された太陽電池セルを用いて、図4(A),(B)に示すようにこれと隣接する他の太陽電池セルどうしを接続し、太陽電池モジュールを形成する。なお、図4では、簡単のため2つの太陽電池セルの接続例を示したが、必要に応じて2〜80の複数の太陽電池セルを接続した構成とすることができる。   Next, using the solar cells formed as described above, as shown in FIGS. 4A and 4B, other solar cells adjacent to the solar cells are connected to form a solar cell module. To do. In addition, in FIG. 4, although the example of a connection of two photovoltaic cells was shown for simplicity, it can be set as the structure which connected the some 2-80 solar cell as needed.

一般に、太陽電池モジュールでは、太陽電池セルの表面や裏面を保護する必要があることから、太陽電池モジュール製品としては、上述したインターコネクタを備えた複数の太陽電池セルを、図4(A),(B)に示すように、透明基板10と裏面カバー(バックシート)13との間に挟んだ構成になっている。この場合、例えば、ガラス板等の透明基板10と裏面カバー13との間に、太陽電池セルの受光面である表面を透明基板に向けて挟み、透明な充填材12でインターコネクタを備えた複数の太陽電池セルを封入し、外部端子11を接続したスーパーストレート方式が一般に用いられる。ここで、透明な充填剤としては、光透過率の低下の少ないPVB(ポリビニルブチロール)や耐湿性に優れたEVA(エチレンビニルアセタート)等が用いられる。太陽電池セル及び外部端子間は、上記インターコネクタと同様に、電極接続部の両端部が薄く、中間部がこれより厚い形状のインターコネクタ6,7をそれぞれ接続することが好ましい。   Generally, in a solar cell module, since it is necessary to protect the surface and back surface of a solar cell, as a solar cell module product, the several solar cell provided with the interconnector mentioned above is shown in FIG. As shown to (B), it has the structure pinched | interposed between the transparent substrate 10 and the back surface cover (back sheet | seat) 13. As shown in FIG. In this case, for example, a surface that is a light-receiving surface of the solar battery cell is sandwiched between the transparent substrate 10 such as a glass plate and the back cover 13, and the interconnector is provided with the transparent filler 12. In general, a super straight type in which the solar cells are encapsulated and the external terminals 11 are connected is used. Here, as the transparent filler, PVB (polyvinyl butyrol) with little decrease in light transmittance, EVA (ethylene vinyl acetate) excellent in moisture resistance, or the like is used. Like the interconnector, it is preferable to connect the interconnectors 6 and 7 each having a shape in which both end portions of the electrode connecting portion are thin and the intermediate portion is thicker than the solar cell and the external terminals.

こうして作製した太陽電池モジュールは、製造歩留りの低下を防止できると共に、太陽電池モジュールの抵抗損失を低減し、F.F.を高めることができる。また、上記例では一般的な両面電極型セルについて説明したが、同一面にP,N電極を設けたいわゆる裏面接合型セルにも適用できる。   The solar cell module produced in this way can prevent the production yield from decreasing and reduce the resistance loss of the solar cell module. F. Can be increased. In the above example, a general double-sided electrode type cell has been described. However, the present invention can also be applied to a so-called back junction type cell in which P and N electrodes are provided on the same surface.

以下、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not restrict | limited to the following Example.

[実施例,比較例]
厚さ300μm、比抵抗0.5Ω・cmの、ホウ素ドープ{100}p型アズカットシリコン基板4枚を用意した。濃水酸化カリウム水溶液によりダメージ層を除去した後、これらの基板を同時に水酸化カリウム/2−プロパノール混合溶液に浸漬した。水洗、乾燥後、アンモニア過水・フッ酸・塩酸過水・フッ酸洗浄を順次行い、水洗・乾燥した。次に、基板4枚を非受光面どうし重ね合わせ、石英ボートに搭載して、熱処理炉に投入した。ヒーター温度を850℃まで昇温して、オキシ塩化リンを窒素1リットル/分にてバブリングさせた。バブリング蒸発したオキシ塩化リンは、酸素ガス1リットル/分を伴ってシリコン表面にリンガラスとして堆積させた。引き続き、窒素雰囲気中に30分間放置した後、熱処理炉から取出した。
[Examples and comparative examples]
Four boron-doped {100} p-type as-cut silicon substrates having a thickness of 300 μm and a specific resistance of 0.5 Ω · cm were prepared. After removing the damaged layer with a concentrated aqueous potassium hydroxide solution, these substrates were simultaneously immersed in a potassium hydroxide / 2-propanol mixed solution. After washing with water and drying, washing with ammonia perhydrous, hydrofluoric acid, hydrochloric acid overwater, and hydrofluoric acid was sequentially performed, followed by water washing and drying. Next, the four substrates were overlapped with each other and mounted on a quartz boat and put into a heat treatment furnace. The heater temperature was raised to 850 ° C., and phosphorus oxychloride was bubbled at 1 liter / min of nitrogen. The bubbling evaporated phosphorus oxychloride was deposited as phosphorus glass on the silicon surface with oxygen gas of 1 liter / min. Subsequently, it was left in a nitrogen atmosphere for 30 minutes and then removed from the heat treatment furnace.

拡散したこれら4枚の基板に対しHFでリンガラスを除去後、900℃の酸素雰囲気で熱処理し、酸化膜パッシベーション層を形成した。
次に、上記基板に対しプラズマCVD処理により表面にSiN膜を製膜した。この際、原料ガスとしてモノシランガスとアンモニアガスを使用した。また、プラズマを発生させるための電源の周波数は、マイクロ波を用い、圧力は0.5Torr、基板温度は400℃、処理時間は5分間とした。
その後、スクリーン印刷でアルミニウムをほぼ全面に印刷し、銀をバスバー形状に印刷・焼成して裏面電極を形成した。
最後に、受光面にスクリーン印刷により銀をパターン印刷・焼成し表面電極フィンガー部と、バスバー部を形成し、太陽電池セル4枚を得た。なお、バスバー部の長さは150mmであった。
The phosphorus glass was removed from these four diffused substrates with HF and then heat-treated in an oxygen atmosphere at 900 ° C. to form an oxide film passivation layer.
Next, a SiN film was formed on the surface of the substrate by plasma CVD. At this time, monosilane gas and ammonia gas were used as source gases. The frequency of the power source for generating plasma was microwaves, the pressure was 0.5 Torr, the substrate temperature was 400 ° C., and the treatment time was 5 minutes.
Thereafter, aluminum was printed on almost the entire surface by screen printing, and silver was printed and fired into a bus bar shape to form a back electrode.
Finally, silver was pattern-printed and fired on the light-receiving surface to form surface electrode finger portions and bus bar portions, and four solar cells were obtained. The length of the bus bar portion was 150 mm.

上記太陽電池セルを用いて下記に示す2種類の太陽電池モジュールを作製した。
[実施例1:インターコネクタテーパー(幅2mmで長さ方向両端縁からそれぞれ中央部に向かうに従い厚さが0.1mmから3.0mmに厚膜となる断面テーパー形状)と厚いインターコネクタジョイント(幅2mmで厚さが3.0mm)を有するインターコネクタを使用した太陽電池モジュールの作製(図2〜4参照)]
得られた太陽電池セル4枚のうち太陽電池セル1及び1’の2枚を使用した。図2に示すインターコネクタを使用して、図3に示すように、インターコネクタにフラックスを予め浸漬塗布し、太陽電池セル1’の裏面バスバー4’bにはんだ接続した。また、もう一つの太陽電池セル1の表面銀電極3もはんだ接続した。また、図4に示すようにモジュール外部への配線として受光面バスバー部と裏面銀電極に上記と同様にインターコネクタ電極接続部に予めフラックスを塗布して、受光面バスバーと裏面銀電極にはんだ接続した。
最後に、ガラス板と裏面バックシートとの間に、太陽電池セルの受光面である表面をガラス基板に向けて挟み、透明なEVA充填材を伴ってインターコネクタを備えた太陽電池セルを封入し、太陽電池モジュールIを得た。また、モジュール製作時に太陽電池セルの割れは全くなかった。
Two types of solar cell modules shown below were produced using the solar cells.
[Example 1: Interconnector taper (cross-sectional taper shape in which the thickness becomes 0.1 mm to 3.0 mm as the thickness increases from the both end edges in the length direction toward the center portion with a width of 2 mm) and a thick interconnector joint (width Fabrication of a solar cell module using an interconnector having a thickness of 2 mm and a thickness of 3.0 mm (see FIGS. 2 to 4)]
Of the obtained four solar cells, two solar cells 1 and 1 ′ were used. Using the interconnector shown in FIG. 2, as shown in FIG. 3, flux was dipped and applied in advance to the interconnector and solder-connected to the back surface bus bar 4 ′ b of the solar cell 1 ′. The surface silver electrode 3 of another solar battery cell 1 was also soldered. In addition, as shown in FIG. 4, as the wiring to the outside of the module, flux is applied in advance to the interconnector electrode connection portion on the light receiving surface bus bar portion and the back surface silver electrode in the same manner as described above, and solder connection is made to the light receiving surface bus bar and the back surface silver electrode. did.
Finally, sandwich the solar cell with the interconnector with a transparent EVA filler between the glass plate and the back sheet, sandwiching the front surface of the solar cell facing the glass substrate. A solar cell module I was obtained. Moreover, there was no crack of the solar battery cell at the time of module manufacture.

[比較例1:厚いインターコネクタ(幅2mmで厚さが0.3mm)を使用した太陽電池モジュールの作製(図7,8参照)]
残り2枚の太陽電池セルを使用して、図7に示すようにインターコネクタ20にフラックスを予め浸漬し、インターコネクタ20と太陽電池セル1の受光面バスバー全体をはんだ接続した。もう一つの太陽電池セルの裏面バスバー電極もはんだ接続した。また、図8に示すようにモジュール外部への配線として受光面バスバー部と裏面銀電極にインターコネクタ21,22をそれぞれ、予めフラックスを塗布してはんだ接続した。最後に、ガラス板と裏面バックシートとの間に、太陽電池セルの受光面である表面をガラス基板に向けて挟み、透明なEVA充填材を伴ってインターコネクタを備えた太陽電池セルを封入し、太陽電池モジュールIIを得た。また、モジュール製作時にインターコネクタを接続した太陽電池セルの端部に欠けが一個所発生した。
[Comparative Example 1: Fabrication of a solar cell module using a thick interconnector (width 2 mm and thickness 0.3 mm) (see FIGS. 7 and 8)]
The remaining two solar cells were used to immerse the flux in the interconnector 20 in advance as shown in FIG. 7, and the interconnector 20 and the entire light-receiving surface bus bar of the solar cell 1 were soldered. The back bus bar electrode of another solar cell was also soldered. Further, as shown in FIG. 8, interconnectors 21 and 22 were previously soldered and connected to the light-receiving surface bus bar portion and the back surface silver electrode as wiring to the outside of the module, respectively. Finally, sandwich the solar cell with the interconnector with a transparent EVA filler between the glass plate and the back sheet, sandwiching the front surface of the solar cell facing the glass substrate. The solar cell module II was obtained. In addition, one chip occurred at the end of the solar cell connected with the interconnector during module production.

得られたモジュールI,IIをモジュールシュミュレータにて測定した結果を表1に示す。

Figure 2012054287
Table 1 shows the results obtained by measuring the obtained modules I and II with a module simulator.
Figure 2012054287

実施例1では、F.F.が極めて高い太陽電池モジュールが得られ、変換効率も大幅に高くなった。   In Example 1, F.I. F. However, a very high solar cell module was obtained, and the conversion efficiency was greatly increased.

1,1’ 太陽電池セル
2,2’ 基板
2−1,2’−1 P型領域
2−2,2’−2 N型領域
3,3’ 表面集電電極
3a,3’a フィンガー電極
3b,3’b バスバー電極
4 裏面集電電極
4b,4’b バスバー電極
5,6,7,8,9 インターコネクタ
10 透明基板
11 外部端子
12 充填材
13 裏面カバー
20,21,22 インターコネクタ
1, 1 'solar cell 2, 2' substrate 2-1, 2'-1 P-type region 2-2, 2'-2 N-type region 3, 3 'Surface current collecting electrode 3a, 3'a Finger electrode 3b , 3'b Bus bar electrode 4 Back surface collecting electrode 4b, 4'b Bus bar electrode 5, 6, 7, 8, 9 Interconnector 10 Transparent substrate 11 External terminal 12 Filler 13 Back cover 20, 21, 22 Interconnector

Claims (3)

バスバー電極を有する複数の太陽電池セルと、これら太陽電池セルどうしを電気的に接続するインターコネクタとを備え、互いに隣接する太陽電池セルのそれぞれ1つのバスバー電極が1つのインターコネクタによって接続されてなる太陽電池モジュールであって、上記インターコネクタが、上記隣接する太陽電池セルのバスバー電極相互を接続するための2つの電極接続部と、これら電極接続部を連結するジョイント部とを備え、上記電極接続部はその長さ方向両端部が薄く、長さ方向中間部が両端部より厚く形成されていることを特徴とする太陽電池モジュール。   A plurality of solar cells having bus bar electrodes and an interconnector for electrically connecting the solar cells to each other, each bus bar electrode of solar cells adjacent to each other being connected by one interconnector A solar cell module, wherein the interconnector includes two electrode connection portions for connecting bus bar electrodes of adjacent solar cells and a joint portion for connecting the electrode connection portions, and the electrode connection The solar cell module is characterized in that the portion is formed such that both ends in the length direction are thin and the middle portion in the length direction is thicker than both ends. 上記インターコネクタのジョイント部が、電極接続部の長さ方向中間部に接続されている請求項1記載の太陽電池モジュール。   The solar cell module according to claim 1, wherein the joint portion of the interconnector is connected to a middle portion in the length direction of the electrode connecting portion. 上記インターコネクタの電極接続部の長さ方向両端部の厚さが10μmを超え200μm以下であり、長さ方向中間部の厚さが200μmを超え3000μm以下である請求項1又は2記載の太陽電池モジュール。   3. The solar cell according to claim 1, wherein the thickness of both end portions in the length direction of the electrode connector of the interconnector is more than 10 μm and not more than 200 μm, and the thickness of the intermediate portion in the length direction is more than 200 μm and not more than 3000 μm. module.
JP2010193671A 2010-08-31 2010-08-31 Solar cell module Active JP5365591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193671A JP5365591B2 (en) 2010-08-31 2010-08-31 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193671A JP5365591B2 (en) 2010-08-31 2010-08-31 Solar cell module

Publications (2)

Publication Number Publication Date
JP2012054287A true JP2012054287A (en) 2012-03-15
JP5365591B2 JP5365591B2 (en) 2013-12-11

Family

ID=45907341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193671A Active JP5365591B2 (en) 2010-08-31 2010-08-31 Solar cell module

Country Status (1)

Country Link
JP (1) JP5365591B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739967A (en) * 2019-03-25 2020-10-02 苏州阿特斯阳光电力科技有限公司 Photovoltaic module and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270043A (en) * 2005-02-22 2006-10-05 Kyocera Corp Solar cell module
JP2009141264A (en) * 2007-12-10 2009-06-25 Shin Etsu Chem Co Ltd Solar-battery module and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270043A (en) * 2005-02-22 2006-10-05 Kyocera Corp Solar cell module
JP2009141264A (en) * 2007-12-10 2009-06-25 Shin Etsu Chem Co Ltd Solar-battery module and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739967A (en) * 2019-03-25 2020-10-02 苏州阿特斯阳光电力科技有限公司 Photovoltaic module and method for manufacturing same

Also Published As

Publication number Publication date
JP5365591B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5186192B2 (en) Solar cell module
US8440907B2 (en) Solar cell, solar cell string and solar cell module
EP1936699A1 (en) Solar cell, solar cell provided with interconnector, solar cell string and solar cell module
KR102186500B1 (en) Back contact type solar battery cell
JP3220955U (en) Solar cell unit and method of manufacturing the same, assembly, system
JP5353282B2 (en) Solar cell
JP2008282990A (en) Solar cell, solar cell manufacturing method, solar cell string, and solar cell module
JP2001068699A (en) Solar cell
JP2010027659A (en) Solar battery module, and manufacturing method therefor
WO2016068237A1 (en) Solar cell module
TW201826553A (en) Solar cell having high photoelectric conversion efficiency, and method for manufacturing solar cell having high photoelectric conversion efficiency
JP5516441B2 (en) Solar cell module and manufacturing method thereof
JP2014036069A (en) Solar cell module and manufacturing method thereof
JP5692103B2 (en) Flux application tool in solar cell module manufacturing and method for manufacturing solar cell module
JP4185332B2 (en) Solar cell and solar cell module using the same
JP2008053435A (en) Solar cell module and manufacturing method thereof
JP5365591B2 (en) Solar cell module
JP4658380B2 (en) Solar cell element and solar cell module using the same
JP5447303B2 (en) Solar cell module
CN105702769B (en) A kind of solar cell module and preparation method thereof and component, system
JP2007288113A (en) Solar cell, solar cell string, and solar cell module
JP4931445B2 (en) Solar cell with interconnector, solar cell string and solar cell module
EP3125300B1 (en) Solar cell and solar cell module using same
US11049988B2 (en) High photoelectric conversion efficiency solar cell and method for manufacturing high photoelectric conversion efficiency solar cell
JP5541395B2 (en) Manufacturing method of solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5365591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150