JP2011222393A - 燃料電池 - Google Patents
燃料電池 Download PDFInfo
- Publication number
- JP2011222393A JP2011222393A JP2010092127A JP2010092127A JP2011222393A JP 2011222393 A JP2011222393 A JP 2011222393A JP 2010092127 A JP2010092127 A JP 2010092127A JP 2010092127 A JP2010092127 A JP 2010092127A JP 2011222393 A JP2011222393 A JP 2011222393A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- refrigerant
- flow path
- convex portion
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
【課題】ガスシール部におけるシール性を向上させつつ、燃料電池の冷却効率を高める。
【解決手段】燃料電池は、単セルを複数積層して成り、隣接する各々の単セルが備えるセパレータ間には冷媒流路が形成され、冷媒流路シール部が隣り合うセパレータの双方に接する冷媒シール位置は、第1のガスシール凸部と第2のガスシール凸部が膜−電極接合体を挟むガスシール位置よりも、セパレータの外周側に配置されており、単セルを構成する一対のセパレータの少なくとも一方は、表裏裏返しとなる形状であって膜−電極接合体側に凸であり、第1のガスシール凸部と第2のガスシール凸部の少なくとも一方に覆われるセパレータ凸部を有し、冷媒流路において、セパレータ凸部の裏返し構造である凹部が形成する空間の少なくとも一部を塞ぐ冷媒脇流れ抑制部が設けられている。
【選択図】図1
【解決手段】燃料電池は、単セルを複数積層して成り、隣接する各々の単セルが備えるセパレータ間には冷媒流路が形成され、冷媒流路シール部が隣り合うセパレータの双方に接する冷媒シール位置は、第1のガスシール凸部と第2のガスシール凸部が膜−電極接合体を挟むガスシール位置よりも、セパレータの外周側に配置されており、単セルを構成する一対のセパレータの少なくとも一方は、表裏裏返しとなる形状であって膜−電極接合体側に凸であり、第1のガスシール凸部と第2のガスシール凸部の少なくとも一方に覆われるセパレータ凸部を有し、冷媒流路において、セパレータ凸部の裏返し構造である凹部が形成する空間の少なくとも一部を塞ぐ冷媒脇流れ抑制部が設けられている。
【選択図】図1
Description
本発明は、燃料電池に関するものである。
燃料電池としては、従来種々の形状のものが提案されている。一般には、電解質膜の表面に電極を形成して成る膜−電極接合体を、一対のセパレータで挟持して、各々のセパレータと膜−電極接合体との間にガス流路を形成した燃料電池が、広く知られている。このような燃料電池の一つとして、複数のプレートを積層して成るセパレータの内部に、燃料電池を冷却するための冷媒流路が設けられたものが知られている(例えば、特許文献1参照)。
燃料電池においては、電極上に形成されるガス流路におけるシール性を確保することが重要であり、ガス流路のシール性を確保するためのシール部の構成についても、種々のものが提案されている。このようなガス流路のシール部の形状が、セパレータを構成して表面でガス流路を形成する板状部材の裏面側における冷媒流路の形状に影響する場合には、シール部の構成が冷媒の冷却効率に影響を与える場合もあり得る。このように、ガス流路のシール部の構成が冷媒流路の形状に影響を与える場合であっても、シール部におけるシール性の更なる向上や、冷却効率の確保など、燃料電池全体としての性能の向上が図られることが望まれる。
本発明は、上述した従来の課題を解決するためになされたものであり、ガスシール部におけるシール性を向上させつつ、燃料電池の冷却効率を高めることを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実施することが可能である。
[適用例1]
電解質膜と該電解質膜の両面に形成された電極とを備える膜−電極接合体と、前記膜−電極接合体を挟持する位置に配置され、前記膜−電極接合体との間でガス流路を形成する一対のセパレータと、を備える複数の単セルを積層して成る燃料電池であって、
隣接する各々の単セルが備えるセパレータ間に配置されて、冷媒流路となる空間の一部を形成する冷媒流路形成部材と、
前記膜−電極接合体の外周部に沿って、前記一対のセパレータ間に配置されたガス流路シール部と、
隣接する各々の単セルが備えるセパレータの双方に接するように設けられて前記冷媒流路をシールする冷媒流路シール部と、
を備え、
前記一対のセパレータの少なくとも一方は、前記ガス流路シール部と接する位置に、表裏裏返しとなる形状であって前記膜−電極接合体側に凸であるセパレータ凸部を有し、
前記ガス流路シール部は、前記一対のセパレータの一方に接着して設けられ、第1のガスシール凸部を有する第1のガス流路シール部材と、前記一対のセパレータの他方に接着して設けられ、第2のガスシール凸部を有する第2のガス流路シール部材と、を備え、前記第1のガスシール凸部および前記第2のガスシール凸部によって前記膜−電極接合体を挟むことによって、前記膜−電極接合体の両面に形成される前記ガス流路をシールし、
前記第1のガスシール凸部と前記第2のガスシール凸部の少なくとも一方は、前記セパレータ凸部に沿う形状に形成され、
前記冷媒流路シール部が、前記隣り合うセパレータの双方に接する冷媒シール位置は、前記第1のガスシール凸部と前記第2のガスシール凸部が前記膜−電極接合体を挟むガスシール位置よりも、前記セパレータの外周側に配置されており、
前記冷媒流路において、前記セパレータ凸部の裏返し構造である凹部が形成する空間の少なくとも一部を塞ぐ冷媒脇流れ抑制部が設けられている
燃料電池。
電解質膜と該電解質膜の両面に形成された電極とを備える膜−電極接合体と、前記膜−電極接合体を挟持する位置に配置され、前記膜−電極接合体との間でガス流路を形成する一対のセパレータと、を備える複数の単セルを積層して成る燃料電池であって、
隣接する各々の単セルが備えるセパレータ間に配置されて、冷媒流路となる空間の一部を形成する冷媒流路形成部材と、
前記膜−電極接合体の外周部に沿って、前記一対のセパレータ間に配置されたガス流路シール部と、
隣接する各々の単セルが備えるセパレータの双方に接するように設けられて前記冷媒流路をシールする冷媒流路シール部と、
を備え、
前記一対のセパレータの少なくとも一方は、前記ガス流路シール部と接する位置に、表裏裏返しとなる形状であって前記膜−電極接合体側に凸であるセパレータ凸部を有し、
前記ガス流路シール部は、前記一対のセパレータの一方に接着して設けられ、第1のガスシール凸部を有する第1のガス流路シール部材と、前記一対のセパレータの他方に接着して設けられ、第2のガスシール凸部を有する第2のガス流路シール部材と、を備え、前記第1のガスシール凸部および前記第2のガスシール凸部によって前記膜−電極接合体を挟むことによって、前記膜−電極接合体の両面に形成される前記ガス流路をシールし、
前記第1のガスシール凸部と前記第2のガスシール凸部の少なくとも一方は、前記セパレータ凸部に沿う形状に形成され、
前記冷媒流路シール部が、前記隣り合うセパレータの双方に接する冷媒シール位置は、前記第1のガスシール凸部と前記第2のガスシール凸部が前記膜−電極接合体を挟むガスシール位置よりも、前記セパレータの外周側に配置されており、
前記冷媒流路において、前記セパレータ凸部の裏返し構造である凹部が形成する空間の少なくとも一部を塞ぐ冷媒脇流れ抑制部が設けられている
燃料電池。
適用例1に記載の燃料電池によれば、セパレータの凸部上に重なるように、第1のガスシール凸部と第2のガスシール凸部の少なくとも一方を配置しているため、ガス流路シール部におけるガスシール性を高めることができる。また、冷媒シールの位置が、ガスシール位置よりも、ガスセパレータの外周側に配置されているため、ガスが流れて電気化学反応が起こり得る領域全体を、冷媒によって効率良く冷却することができる。このような燃料電池において、セパレータ凸部の裏返し構造である凹部が形成する空間の少なくとも一部を塞ぐ冷媒脇流れ抑制部が設けられているため、ガスシール性を高めるためにセパレータ凸部を設けたことに起因する、冷媒流路における冷媒の脇流れの増大を抑えることができる。冷媒の脇流れを抑制することにより、冷媒流路形成部内を流れる冷媒流量を相対的に増加させることができるため、冷媒による燃料電池の冷却効率を向上させることができる。
[適用例2]
適用例1記載の燃料電池であって、前記冷媒脇流れ抑制部は、前記凹部内に嵌め込まれた独立の部材から成る燃料電池。適用例2の燃料電池によれば、冷媒脇流れ抑制部を構成する材料の選択の自由度を高めることができる。
適用例1記載の燃料電池であって、前記冷媒脇流れ抑制部は、前記凹部内に嵌め込まれた独立の部材から成る燃料電池。適用例2の燃料電池によれば、冷媒脇流れ抑制部を構成する材料の選択の自由度を高めることができる。
[適用例3]
適用例1記載の燃料電池であって、前記冷媒脇流れ抑制部は、前記セパレータ凸部が形成されたセパレータと前記冷媒流路を介して隣り合うセパレータにおいて、前記セパレータ凸部の裏返し構造である前記凹部の凹面に対して凸となるように設けた突出部である燃料電池。適用例3記載の燃料電池によれば、冷媒脇流れ抑制部をセパレータと一体で形成するため、冷媒脇流れ抑制部を設けることに起因する部品点数の増加を抑えることができる。さらに、燃料電池の組み立て時には、セパレータに設けた冷媒脇流れ抑制部である突出部を、隣り合うセパレータの凹部に嵌め込めばよいため、セパレータ間の位置合わせを容易化することができる。
適用例1記載の燃料電池であって、前記冷媒脇流れ抑制部は、前記セパレータ凸部が形成されたセパレータと前記冷媒流路を介して隣り合うセパレータにおいて、前記セパレータ凸部の裏返し構造である前記凹部の凹面に対して凸となるように設けた突出部である燃料電池。適用例3記載の燃料電池によれば、冷媒脇流れ抑制部をセパレータと一体で形成するため、冷媒脇流れ抑制部を設けることに起因する部品点数の増加を抑えることができる。さらに、燃料電池の組み立て時には、セパレータに設けた冷媒脇流れ抑制部である突出部を、隣り合うセパレータの凹部に嵌め込めばよいため、セパレータ間の位置合わせを容易化することができる。
[適用例4]
適用例1記載の燃料電池であって、前記冷媒脇流れ抑制部は、前記冷媒流路シール部と一体で形成されている燃料電池。適用例4記載の燃料電池によれば、冷媒脇流れ抑制部を冷媒流路シール部と一体で形成するため、冷媒脇流れ抑制部を設けることに起因する部品点数の増加を抑えることができる。
適用例1記載の燃料電池であって、前記冷媒脇流れ抑制部は、前記冷媒流路シール部と一体で形成されている燃料電池。適用例4記載の燃料電池によれば、冷媒脇流れ抑制部を冷媒流路シール部と一体で形成するため、冷媒脇流れ抑制部を設けることに起因する部品点数の増加を抑えることができる。
[適用例5]
適用例1記載の燃料電池であって、前記冷媒脇流れ抑制部は、前記冷媒流路形成部材の外周の一部を延出させることによって形成されている燃料電池。適用例5記載の燃料電池によれば、冷媒脇流れ抑制部を冷媒流路形成部と一体で形成するため、冷媒脇流れ抑制部を設けることに起因する部品点数の増加を抑えることができる。さらに、燃料電池の組み立て時には、冷媒流路形成部に設けた冷媒脇流れ抑制部を、セパレータの凹部に嵌め込めばよいため、セパレータに対して冷媒流路形成部を位置合わしつつ積層する動作を、容易化することができる。
適用例1記載の燃料電池であって、前記冷媒脇流れ抑制部は、前記冷媒流路形成部材の外周の一部を延出させることによって形成されている燃料電池。適用例5記載の燃料電池によれば、冷媒脇流れ抑制部を冷媒流路形成部と一体で形成するため、冷媒脇流れ抑制部を設けることに起因する部品点数の増加を抑えることができる。さらに、燃料電池の組み立て時には、冷媒流路形成部に設けた冷媒脇流れ抑制部を、セパレータの凹部に嵌め込めばよいため、セパレータに対して冷媒流路形成部を位置合わしつつ積層する動作を、容易化することができる。
[適用例6]
適用例1ないし5いずれか記載の燃料電池であって、前記冷媒脇流れ抑制部が設けられた前記凹部は、前記冷媒流路形成部材の外周と前記冷媒流路シール部との間であって、前記冷媒流路への前記冷媒の流入部、および、前記冷媒流路からの前記冷媒の流出部から、離間した位置に設けられている燃料電池。適用例6記載の燃料電池によれば、冷媒の脇流れは、冷媒流路形成部と冷媒流路シール部との間の空隙であって、冷媒の流入部および流出部から離間した位置において生じるため、冷媒流路における脇流れを効果的に抑制することができる。
適用例1ないし5いずれか記載の燃料電池であって、前記冷媒脇流れ抑制部が設けられた前記凹部は、前記冷媒流路形成部材の外周と前記冷媒流路シール部との間であって、前記冷媒流路への前記冷媒の流入部、および、前記冷媒流路からの前記冷媒の流出部から、離間した位置に設けられている燃料電池。適用例6記載の燃料電池によれば、冷媒の脇流れは、冷媒流路形成部と冷媒流路シール部との間の空隙であって、冷媒の流入部および流出部から離間した位置において生じるため、冷媒流路における脇流れを効果的に抑制することができる。
[適用例7]
適用例1ないし6いずれか記載の燃料電池であって、
前記第1および第2のガスシール凸部は、前記膜−電極接合体で電気化学反応が進行する発電領域の外周全体を囲むように形成され、
前記第1のガスシール部材は、前記一対のセパレータの一方と前記膜−電極接合体との間に形成される第1のガスの流路への前記第1のガスの流入部、および、前記第1のガス流路からの前記第1のガスの流出部において、前記第1のガスの通り道となる第1の連通孔が形成されており、
前記第2のガスシール部材は、前記一対のセパレータの他方と前記膜−電極接合体との間に形成される第2のガスの流路への前記第2のガスの流入部、および、前記第2のガス流路からの前記第2のガスの流出部において、前記第2のガスの通り道となる第2の連通孔が形成されている
燃料電池。
適用例1ないし6いずれか記載の燃料電池であって、
前記第1および第2のガスシール凸部は、前記膜−電極接合体で電気化学反応が進行する発電領域の外周全体を囲むように形成され、
前記第1のガスシール部材は、前記一対のセパレータの一方と前記膜−電極接合体との間に形成される第1のガスの流路への前記第1のガスの流入部、および、前記第1のガス流路からの前記第1のガスの流出部において、前記第1のガスの通り道となる第1の連通孔が形成されており、
前記第2のガスシール部材は、前記一対のセパレータの他方と前記膜−電極接合体との間に形成される第2のガスの流路への前記第2のガスの流入部、および、前記第2のガス流路からの前記第2のガスの流出部において、前記第2のガスの通り道となる第2の連通孔が形成されている
燃料電池。
適用例7記載の燃料電池によれば、ガス流路に対するガスの流出入は、第1および第2の連通孔によって確保することができる。このとき、発電領域の外周全体を囲むように形成された第1および第2のガスシール凸部によって膜−電極接合体を挟んで、ガス流路をシールするため、接着などの特別な動作を行なうことなく各部材を積層するだけで、燃料電池の組付けを容易に行なうことが可能になる。
[適用例8]
適用例7記載の燃料電池であって、前記第2のガスシール凸部の頭頂部は、前記第1のガスシール凸部の頭頂部よりも、前記発電領域の外周から離間した位置に配置されており、前記第1のガスシール凸部と前記第2のガスシール凸部とは、各々の凸部の頭頂部近傍の側面において、前記膜−電極接合体を介して接する燃料電池。適用例8記載の燃料電池によれば、ガスシール凸部の頭頂部同士の点(あるいは線)による接触ではなく、面による接触によって、ガスシールを行なうことができる。そのため、各構成部材を積層して燃料電池を組み立てる際に、凸部の頭頂部でシール性を確保する場合ほどには、位置合わせを厳密に行なう必要がなく、積層の動作を容易化することができる。また、このように面による接触でシール性を確保する燃料電池においては、ガスセパレータ間に僅かな位置ずれが生じたとしても、各ガスシール凸部間の接触部において締結圧が損なわれ難いため、必要な締結圧を確保して高いシール性を維持することが可能になる。
適用例7記載の燃料電池であって、前記第2のガスシール凸部の頭頂部は、前記第1のガスシール凸部の頭頂部よりも、前記発電領域の外周から離間した位置に配置されており、前記第1のガスシール凸部と前記第2のガスシール凸部とは、各々の凸部の頭頂部近傍の側面において、前記膜−電極接合体を介して接する燃料電池。適用例8記載の燃料電池によれば、ガスシール凸部の頭頂部同士の点(あるいは線)による接触ではなく、面による接触によって、ガスシールを行なうことができる。そのため、各構成部材を積層して燃料電池を組み立てる際に、凸部の頭頂部でシール性を確保する場合ほどには、位置合わせを厳密に行なう必要がなく、積層の動作を容易化することができる。また、このように面による接触でシール性を確保する燃料電池においては、ガスセパレータ間に僅かな位置ずれが生じたとしても、各ガスシール凸部間の接触部において締結圧が損なわれ難いため、必要な締結圧を確保して高いシール性を維持することが可能になる。
[適用例9]
適用例8記載の燃料電池であって、前記第1のガスシール部材は、さらに、前記第2のガスシール凸部よりも前記発電領域の外周全体から離間した位置に、前記発電領域の外周全体を囲むように形成された第3のガスシール凸部を備え、前記第2のガスシール凸部と前記第3のガスシール凸部とは、各々の凸部の頭頂部近傍の側面において互いに接する燃料電池。適用例9記載の燃料電池によれば、ガス流路のシールを、第1のガスシール凸部と第2のガスシール凸部との接触部、および、第2のガスシール凸部と第3のガスシール凸部との間の接触部の2カ所で確保するため、ガスシールの信頼性を高めることができる。
適用例8記載の燃料電池であって、前記第1のガスシール部材は、さらに、前記第2のガスシール凸部よりも前記発電領域の外周全体から離間した位置に、前記発電領域の外周全体を囲むように形成された第3のガスシール凸部を備え、前記第2のガスシール凸部と前記第3のガスシール凸部とは、各々の凸部の頭頂部近傍の側面において互いに接する燃料電池。適用例9記載の燃料電池によれば、ガス流路のシールを、第1のガスシール凸部と第2のガスシール凸部との接触部、および、第2のガスシール凸部と第3のガスシール凸部との間の接触部の2カ所で確保するため、ガスシールの信頼性を高めることができる。
本発明は、上記以外の種々の形態で実現可能であり、例えば、燃料電池における流体のシール方法や、燃料電池用セパレータなどの形態で実現することが可能である。
A.燃料電池10の全体構成:
図1は、本発明の第1実施例の燃料電池10の概略構成を表わす断面模式図である。本実施例の燃料電池10は、固体高分子型燃料電池であり、図1に示す単セル15を複数積層したスタック構造を有している。
図1は、本発明の第1実施例の燃料電池10の概略構成を表わす断面模式図である。本実施例の燃料電池10は、固体高分子型燃料電池であり、図1に示す単セル15を複数積層したスタック構造を有している。
単セル15は、電解質膜と、電解質膜の両面に形成された電極(アノードおよびカソード)と、を備える膜−電極接合体(MEA、Membrane Electrode Assembly)20を備える。また、MEA20を両側から挟持する一対のガス拡散層21,22と、ガス拡散層21,22に接するように積層された一対のガス流路形成部23,24と、ガス流路形成部23,24に接するようにさらに積層された一対のガスセパレータ30,31と、を備える。ガスセパレータ30とMEA20との間には、水素を含有する燃料ガスが流れるセル内燃料ガス流路が形成され、ガスセパレータ31とMEA20との間には、酸素を含有する酸化ガス(本実施例では、空気)が流れるセル内酸化ガス流路が形成される。以下の説明では、ガスセパレータ30を、アノード対向セパレータ30とも呼ぶこととし、ガスセパレータ31を、カソード対向セパレータ31とも呼ぶこととする。また、複数の単セル15が積層されて成る本実施例の燃料電池10において、隣り合う単セル間には、一方の単セル15が備えるガスセパレータ30と、他方の単セル15が備えるガスセパレータ31との双方に接するように冷媒流路形成部25が配置されて、セル間冷媒流路が形成されている。
電解質膜は、固体高分子材料、例えばフッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を示す。アノードおよびカソードは、触媒(例えば白金、あるいは白金合金)を備えており、これらの触媒を、導電性を有する担体(例えば、カーボン粒子)上に担持させることによって形成されている。カソードおよびアノードを形成するには、例えば、白金等の触媒金属を担持させたカーボン粉を作製し、この触媒担持カーボンと、電解質膜を構成する電解質と同様の電解質とを用いてペーストを作製し、作製した触媒ペーストを電解質膜上に塗布すればよい。ガス拡散層21,22は、ガス透過性を有する導電性部材、例えば、カーボンペーパやカーボンクロスによって形成することができる。MEA20とガス拡散層21,22とは、MEA20をガス拡散層21,22によって挟持して、プレス接合することによって一体化されている。
ガス流路形成部23,24は、エキスパンドメタルや発泡金属などの金属製多孔質体や、波板状の金属板、あるいは、カーボン製の多孔質体によって形成される導電性の薄板状部材であり、本実施例では、チタン製のエキスパンドメタルを用いている。ガス拡散層21とガスセパレータ30の間において、ガス流路形成部23によって形成される空間は、ガス拡散層21内に形成される空間と共に、既述したセル内燃料ガス流路として機能する。また、ガス拡散層22とガスセパレータ31の間において、ガス流路形成部24によって形成される空間は、ガス拡散層22内に形成される空間と共に、既述したセル内酸化ガス流路として機能する。
冷媒流路形成部25は、エキスパンドメタルや発泡金属などの金属製多孔質体や、波板状の金属板、あるいは、カーボン製の多孔質体によって形成される導電性の薄板状部材であり、本実施例では、チタン製の波板状部材を用いている。ガスセパレータ30と31との間において、冷媒流路形成部25によって形成される空間は、既述したセル間冷媒流路として機能する。
ガスセパレータ30,31は、ガス不透過な導電性部材、例えば、カーボンを圧縮してガス不透過とした緻密質カーボンや、焼成カーボン、あるいはステンレス鋼などの金属材料により形成される薄板状部材である。本実施例では、ステンレス鋼を用いて形成しており、ガスセパレータ30,31に設けた後述する凹凸形状や孔部を、プレス加工や打ち抜き加工により形成することによって、ガスセパレータ30,31を薄型化している。ガスセパレータ30,31は、既述したセル内燃料ガス流路、セル内酸化ガス流路、あるいはセル間冷媒流路の壁面を成す部材であって、ガス流路形成部23,24あるいは冷媒流路形成部25との接触部分は平坦面に形成されると共に、その他の部分には所定の凹凸形状が形成されている。
図2は、アノード対向セパレータ30の様子を模式的に表わす平面図である。図2(A)は、セル内燃料ガス流路を形成する面(ガス流路面)を表わし、図2(B)は、セル間冷媒流路を形成する面(冷媒流路面)を表わす。図3は、カソード対向セパレータ31の様子を模式的に表わす平面図である。図3(A)は、セル内酸化ガス流路を形成する面(ガス流路面)を表わし、図3(B)は、セル間冷媒流路を形成する面(冷媒流路面)を表わす。ガスセパレータ30,31は、その外周近くに、複数の孔部(孔部50〜59)を備えている。具体的には、ガスセパレータ30,31の一辺(図2(A)および図3(A)に示す辺a)に沿って、辺aの方向を長手方向とする孔部である孔部50〜52が形成され、辺aに対向する辺(図2(A)および図3(A)に示す辺b)に沿って、辺bの方向を長手方向とする孔部である孔部53〜55が形成されている。また、ガスセパレータ30,31の他の辺(図2(A)および図3(A)に示す辺c)に沿って、辺cの方向を長手方向とする孔部である孔部56,57が形成されており、辺cに対向する辺(図2(A)および図3(A)に示す辺d)に沿って、辺dの方向を長手方向とする孔部である孔部58,59が形成されている。単セル15を複数積層して燃料電池を組み立てると、各ガスセパレータの対応する位置に設けられた孔部は、互いに重なり合って、ガスセパレータの(以下、積層方向と呼ぶ)に燃料電池内部を貫通する流体流路を形成する。具体的には、孔部50〜52は、セル内酸化ガス流路へと酸化ガスを供給する酸化ガス供給マニホールドを形成し(図2、3ではAir inと表わす)、孔部53〜55は、セル内酸化ガス流路から酸化ガスが排出される酸化ガス排出マニホールドを形成する(図2、3ではAir outと表わす)。また、孔部56は、セル内燃料ガス流路から燃料ガスが排出される燃料ガス排出マニホールドを形成し(図2、3ではH2 outと表わす)、孔部59は、セル内燃料ガス流路へと燃料ガスを供給する燃料ガス供給マニホールドを形成する(図2、3ではH2 inと表わす)。また、孔部57は、セル間冷媒流路へと冷媒を供給する冷媒供給マニホールドを形成し(図2、3ではCLT inと表わす)、孔部58は、セル間冷媒流路から冷媒が排出される冷媒排出マニホールドを形成する(図2、3ではCLT outと表わす)。
なお、図1および図2(A)において、MEA20において電気化学反応が進行する領域、具体的には、MEA20とガス拡散層21,22とが接する領域と、積層方向に重なる領域を、発電領域として示している。図2(A)に示すように、発電領域は、四角形状に形成されている。また、図1に示すように、本実施例では、ガス流路形成部23,24、冷媒流路形成部25もまた、発電領域と重なる形状に形成されている。
B.シールに係る構成:
図1〜3に示すように、燃料電池10は、ガスセパレータ30,31上に、さらに、ガスケット32,34,35および、シーリングプレート33,36を備えている。燃料電池10では、これらのガスケットおよびシーリングプレートに線状の頭頂部を有する凸部を設けることによって、セル内燃料ガス流路、セル内酸化ガス流路、およびセル間冷媒流路をシールしている。なお、ガスケットおよびシーリングプレートは、共に、流路をシールするための部材であるが、シーリングプレートは、全体としてセル内ガス流路(セル内燃料ガス流路およびセル内酸化ガス流路)をシールしつつ、特定箇所において、セル内ガス流路とガスマニホールドとの間のガスの流通を可能にする。シーリングプレートの構造については、後に詳しく説明する。なお、図1は、図2にける1−1断面であって、孔部51およびその近傍の様子を表わしている。
図1〜3に示すように、燃料電池10は、ガスセパレータ30,31上に、さらに、ガスケット32,34,35および、シーリングプレート33,36を備えている。燃料電池10では、これらのガスケットおよびシーリングプレートに線状の頭頂部を有する凸部を設けることによって、セル内燃料ガス流路、セル内酸化ガス流路、およびセル間冷媒流路をシールしている。なお、ガスケットおよびシーリングプレートは、共に、流路をシールするための部材であるが、シーリングプレートは、全体としてセル内ガス流路(セル内燃料ガス流路およびセル内酸化ガス流路)をシールしつつ、特定箇所において、セル内ガス流路とガスマニホールドとの間のガスの流通を可能にする。シーリングプレートの構造については、後に詳しく説明する。なお、図1は、図2にける1−1断面であって、孔部51およびその近傍の様子を表わしている。
図4および図5は、ガスセパレータ30、31上に配置されたガスケットやシーリングプレートに形成された線状凸部の形状(頭頂部の平面的な配置)、および、ガスセパレータ30,31に形成された凹部を表わす平面図である。具体的には、図4(A)は、ガスセパレータ30のガス流路面に配置されたガスケットおよびシーリングプレートに形成された線状凸部の形状を表わす。図4(B)は、ガスセパレータ30の冷媒流路面に配置されたガスケットに形成された線状凸部、および、ガスセパレータ30の冷媒流路面に形成された凹部の形状を表わす。図5(A)は、ガスセパレータ31のガス流路面に配置されたガスケットおよびシーリングプレートに形成された線状凸部の形状を表わす。図5(B)は、ガスセパレータ31の冷媒流路面に形成された凹部の形状を表わす。なお、図4および図5では、図2および図3に示したガスケットおよびシーリングプレートの内、シーリングプレートの位置のみ破線で示す。本実施例の燃料電池10では、ガスセパレータ30,31に凹凸形状を形成すると共に、形成したセパレータ凸部上に、ガスケットの線状凸部を重ねて配置することにより、セル内ガス流路におけるシール性の向上を図っている。以下に、シールに係る構造の説明として、まず、ガスケットおよびシーリングプレートの配置と、ガスケットおよびシーリングプレートに形成した線状の凸部の配置について詳しく説明する。
ガスセパレータ30のガス流路面側において、孔部50〜59が設けられた領域よりも中心部寄りの位置であって、発電領域よりも外周寄りの位置には、ガスケット32およびシーリングプレート33が配置されている(図2(A)参照)。これらガスケット32およびシーリングプレート33は、全体として第1のガス流路シール部材を構成しており、セル内燃料ガス流路をシールするための凸部である第1線状凸部60および第3線状凸部62が形成されている(図1参照)。第1線状凸部60および第3線状凸部62は、発電領域の外周全体を囲む形状に形成されると共に、第1線状凸部60よりも第3線状凸部62の方が、より外周寄りに形成されている(図4(A)参照)。
また、ガスセパレータ31のガス流路面側には、ガスケット35およびシーリングプレート36が配置されている(図3(A)参照)。孔部50〜59が設けられた領域よりも中心部寄りの位置であって、発電領域よりも外周寄りの位置には、ガスケット35の一部とシーリングプレート36が配置されている。これらこれらガスケット35の一部とシーリングプレート36は、全体として第2のガス流路シール部材を構成しており、セル内酸化ガス流路をシールするための凸部である第2線状凸部61が形成されている(図1参照)。この第2線状凸部61は、発電領域の外周全体を囲む形状に形成されている(図5(A)参照)。第2線状凸部61は、積層方向に第1線状凸部60と重なる位置と、積層方向に第3線状凸部62と重なる位置との間に設けられており、MEA20を介して、第1線状凸部60および第3線状凸部62と接触する(図1参照)。なお、MEA20において、第2線状凸部61と第1線状凸部60との間に挟まれる部位よりも外周寄りには、電極が形成されている必要はない。このように、第2線状凸部61と、第1線状凸部60および第3線状凸部62とが接触することにより、セル内燃料ガス流路およびセル内酸化ガス流路がシールされる。
ガスセパレータ31のガス流路面側において、ガスケット35には、上記第2線状凸部61に加えてさらに、第4線状凸部63が形成されている(図1参照)。この第4線状凸部63は、第2線状凸部61が形成された位置以外の、孔部50〜59を囲む位置に形成されている(図5(A)参照)。第4線状凸部63は、単セル15内でガスセパレータ31に対向して配置されたガスセパレータ30表面に当接している(図1参照)。これにより、孔部50〜59の外周において、ガスあるいは冷媒がシールされる。なお、図2(A)および図4(A)に示したガスセパレータ30のガス流路面においては、第4線状凸部63の頭頂部が当接する箇所を、シーリングラインSLとして2点鎖線で示している。
また、ガスセパレータ30の冷媒流路面には、第5線状凸部64が形成されたガスケット34が配置されている(図1参照)。ガスケット34および第5線状凸部64は、発電領域を囲む位置と、孔部50〜59を囲む位置とに配置されている(図2(B)、図4(B)参照)。第5線状凸部64は、冷媒流路形成部25を介して隣接する単セル15が備えるガスセパレータ31の表面に当接する(図1参照)。これにより、セル間冷媒流路がシールされると共に、孔部50〜59の外周において、ガスあるいは冷媒がシールされる。ただし、第5線状凸部64は、発電領域の全周を囲んで形成されているのではなく、発電領域の全周の内、孔部57および孔部58の長手方向の辺に沿った位置には設けられていない。すなわち、セル間冷媒流路への冷媒の流入部である孔部57に沿う領域、および、セル間冷媒流路からの冷媒の流出部である孔部58に沿い領域には設けられていない。これにより、セル間冷媒流路と冷媒マニホールドとが連通可能となっている。なお、図3(B)および図5(B)に示したガスセパレータ31の冷媒流路面においては、第5線状凸部64の頭頂部が当接する箇所を、シーリングラインSLとして2点鎖線で示している。
単セル15が積層されて成る燃料電池10では、上記のようにガスセパレータ30,31上に配置されたガスケットやシーリングプレートに形成された各々の線状凸部が、積層方向に重なる位置に配置される。燃料電池10では、後述するように、積層方向に締結圧が加えられており、締結圧に対して、ガスセパレータやシーリングプレートからガスセパレータへと反力が生じることで、シール性が実現される。ここで、燃料電池10では、積層方向に重なる冷媒シールの位置(第5線状凸部64がガスセパレータ31に当接する位置)の方が、積層方向に重なるガスシールの位置(第1線状凸部60と第2線状凸部61とが、MEA20を介して接する位置)よりも、ガスセパレータの外周寄りに設けられている。そのため、冷媒によって、ガスが流れて電気化学反応が起こり得る領域全体を効率良く冷却することができる。また、第3線状凸部62と第5線状凸部64とは、ガスセパレータ30の双方の面において互いに重なる位置に設けられている。これにより、燃料電池10全体で、第3線状凸部62と第5線状凸部64とが互いに支え合い、各々の線状凸部におけるシール性を高めることができる。
ガスセパレータ30,31においては、ガスケットが備える線状凸部と重なる位置の一部に、線状凸部と同じ向きに凸となる凸部が、表裏反転する形状として設けられている。このようなガスセパレータ30,31に形成された凸部上では、ガスケットの線状凸部は、凸部に沿う形状に形成されている。具体的には、ガスセパレータ30のガス流路面では、ガスケット32に形成された第1線状凸部60と重なる位置に、セパレータ凸部70が設けられている(図1参照)。シーリングプレート33に形成された第1線状凸部60と重なる位置には、セパレータ凸部70は設けられていない。図4(A)では、第1線状凸部60の内、セパレータ凸部70上に形成された部分(ガスケット32に形成された部分)は、より太い線で表わし、セパレータ凸部70が形成されていない平坦面上に形成されている部分(シーリングプレート33に形成された部分)は、より細い線で表わしている。なお、第3線状凸部62の一部は、後述するように線状の凹部上に形成されているが、図4(A)では、第3線状凸部62については、より細い線で表わしている。
同様に、ガスセパレータ31のガス流路面では、ガスケット35に形成された第2線状凸部61と重なる位置に、セパレータ凸部71が設けられている(後述する図7参照)。シーリングプレート36に形成された第2線状凸部61と重なる位置には、セパレータ凸部71は設けられていない。図5(A)では、第2線状凸部61の内、セパレータ凸部71上に形成された部分(ガスケット35に形成された部分)は、より太い線で表わし、セパレータ凸部71が形成されていない平坦面上に形成されている部分(シーリングプレート36に形成された部分)は、より細い線で表わしている。なお、第4線状凸部63は、平坦面上に形成されているため、より細い線で表わしている。
同様に、ガスセパレータ30の冷媒流路面では、ガスケット34に形成された第5線状凸部64の内の、発電領域の外周に沿って設けられた部分と重なる位置に、セパレータ凸部74が設けられている(図1参照)。図4(B)では、第5線状凸部64の内、セパレータ凸部74上に形成された部分は、より太い線で表わし、セパレータ凸部74が形成されていない平坦面上に形成されている部分は、より細い線で表わしている。
このように、各ガスセパレータ30,31にセパレータ凸部70,71,74を設け、凸部70,71,74を線状凸部が覆うようにガスケットを配置することにより、本実施例では、セル内ガス流路およびセル間冷媒流路におけるシール性を向上させている。図6は、燃料電池の内部において、ガスケットに形成された線状凸部に締結圧が加わる様子を表わす説明図である。図6(A)は、セパレータ凸部70,71,74上に、線状凸部を有するガスケット32,34,35を配置した様子を表わす説明図であり、図6(B)は、セパレータ凸部を有しない平坦なガスセパレータ面上にガスケットを配置した様子を表わす説明図である。図6中、ガスケットとガスセパレータとの接触部に加えられる締結圧は、白抜きの矢印で示しており、締結圧に対してガスケットにおいてガスセパレータに対して生じる反力は、ハッチを付した矢印で示している。図6(A)に示すように、セパレータ凸部上にガスケットを配置する場合には、線状凸部の頭頂部近傍の位置においてガスケットの厚みが抑えられているため、ガスケットと接触するいずれのガスセパレータとの間においても、ガスケットにおいて強い反力が生じ、セル内ガス流路におけるシール性を充分に確保することができる。これに対して、図6(B)に示すように、セパレータ凸部を形成しない平坦面上にガスケットを配置する場合には、線状凸部の頭頂部近傍の位置においてガスケットの厚みが特に厚くなるため、線状凸部とは反対側の面では、ガスケットからガスセパレータに生じる反力が弱くなってしまう。
また、ガスセパレータ30,31に設けられたガス流路面側に凸であるセパレータ凸部70,71は、既述したように表裏反転する形状であるため、各ガスセパレータの裏面には凹部が形成されている。図4(B)では、セパレータ凸部70の裏面形状としての凹部80の位置が、一点鎖線で示されている。また、図5(B)では、セパレータ凸部71の裏面形状としての凹部81が、一点鎖線で示されている。なお、ガスセパレータ30では、冷媒流路側に凸であるセパレータ凸部74の裏側形状として、ガス流路面側に凹部が形成されているが、この凹部上には、ガスケット32に形成された第3線状凸部62が配置されているため、図4(A)においてこの凹部は表わされていない。
既述したように、シーリングプレート33,36は、セル内ガス流路をシールすると共に、セル内ガス流路と、このセル内ガス流路に対応するガスセパレータとを連通させる部材である。シーリングプレート33は、セル内燃料ガス流路と燃料ガスマニホールド(孔部56あるいは59)とを連通させる。また、シーリングプレート36は、セル内酸化ガス流路と酸化ガスマニホールド(孔部50〜55)とを連通させる。図7は、シーリングプレート36が表わされた図1と同様に、シーリングプレート33が配置される様子を表わす断面模式図である。図7は、孔部59およびその近傍の様子を表わしており、図7に示す断面の位置は、7−7断面として図2(A)に示されている。図1および図7では、ガスマニホールドを流れる酸化ガス(図1中のO2)あるいは燃料ガス(図7中のH2)がセル内ガス流路へと流れ込む様子を、白抜きの矢印で示している。
シーリングプレート33,36には、上記したセル内ガス流路とマニホールドとを連通可能となるように、複数の連通孔38が形成されている。図8は、図1に示したシーリングプレート36の様子を表わす側面図であり、図1において酸化ガスの流れ方向を表わした矢印と同じ方向からシーリングプレート36を見た様子を表わしている。図8に示したシーリングプレート36には、セル内酸化ガス流路と孔部51とを連通させるための平行な複数の連通孔38が形成されている。他のシーリングプレート36および33にも、同様に、ガスマニホールドとセル内ガス流路との間のガス流れ方向と平行に、複数の連通孔が形成されている。
ここで、シーリングプレート33,36は、燃料電池10を構成する各部材を積層して全体を締結する際に、締結圧によって連通孔38が潰れない程度の剛性を有する部材によって構成されている。具体的には、シーリングプレート33,36は、例えば、燃料電池10の運転温度で充分に安定なプラスチック等の樹脂、あるいは、樹脂コーティングされた薄板状金属によって構成することができる。樹脂材料を用いる場合には、例えば射出成形によってシーリングプレート33,36の形状に成形すればよい。連通孔38は、成形の後に、例えば、切削加工等に形成することができる。なお、ガスセパレータ30,31において、シーリングプレート33,36が配置される箇所には、セパレータ凸部70,71が設けられていないため、シーリングプレート33,36に形成された連通孔38において、これらのセパレータ凸部によってガスの流れが抑制されることがない。
なお、ガスケット32,34,35は、燃料電池10の締結時に、隣接部材との間でシーリングのための反力を生じる弾性を有すると共に、燃料電池10の運転温度で充分に安定な部材によって構成すればよい。このようなガスケットの材料としては、ゴムや、熱可塑性エラストマーを用いることができる。ゴムとしては、例えば、シリコン系ゴム、ポリイソブチレン(PIB、ブチルゴム)、アクリルゴム、天然ゴム、フッ素系ゴム、EPM、EPDMなどのエチレン・プロピレン系ゴム、ニトリルブタジエンゴム(NBR)、ウレタンゴム、クロロスルホン化ポリエチレン(CSN)、塩素化ポリエチレン(CPE)、多硫化ゴム、エピクロロヒドリンゴム(CO、CEO)を用いることができる。熱可塑性エラストマーとしては、例えば、スチレン系エラストマーやフッ素系エラストマーを用いることができる。ガスケット32,34,35もまた、例えば射出成形によって形成すればよい。
このようにして作製したシーリングプレート33,36およびガスケット32,34,35は、燃料電池10の組み立てに先立って、ガスセパレータ30,31上の所定の位置に固着させておけばよい。ガスセパレータ30,31において、各ガスケットおよびシーリングプレートが配置される箇所には所定の凹凸形状が形成されているため、このようなガスセパレータの凹凸形状にガスケットおよびシーリングプレートを嵌め込むことにより、ガスケットおよびシーリングプレートの固着を行なうことができる。あるいは、ガスケットおよびシーリングプレートをガスセパレータに固着させる際の信頼性を高めるために、接着剤を用いて固着させることとしても良い。いずれの場合であっても、ガスケットおよびシーリングプレートとガスセパレータとが、対応する凹凸形状を有することにより、容易に位置合わせして、両者を固着させることができる。さらに、ガスケットおよびシーリングプレートは、ガスセパレータ30,31と別体で形成するのではなく、一体で形成しても良い。すなわち、ガスケットあるいはシーリングプレートに対応する形状を有する金型内に、ガスセパレータ30,31を配置して、射出成形を行なってガスケットあるいはシーリングプレートを形成することにより、ガスケットあるいはシーリングプレートをガスセパレータ30,31と一体形成することもできる。
C.冷媒の脇流れ抑制に係る構成:
燃料電池10においては、既述したように、ガスセパレータ30,31において、ガスケットに設けた線状凸部と重なる位置に、セパレータ凸部70,71を設けており、ガスセパレータ30,31の冷媒流路面側には、上記セパレータ凸部の裏返し形状としての凹部80,81が形成されている。ここで、隣り合う単セル15間に形成されるセル間冷媒流路では、冷媒流路形成部25の外周と、ガスケット34との間に、空隙が形成される。このような空隙を冷媒が流れる際の流路抵抗は、一般に、冷媒流路形成部25内の細孔を冷媒が流れる際の流路抵抗よりも小さくなる。特に、冷媒流路形成部25の外周とガスケット34との間の空隙に凹部80,81が形成されている場合には、流路抵抗の小さい空隙において冷媒の流路断面積が大きくなることにより、冷媒がさらに流れやすくなる。このように、冷媒流路形成部25の外周に形成される空隙を流れる冷媒(以下、冷媒流路形成部25の外周を冷媒が流れることを、冷媒の脇流れという)の流量が増加すると、冷媒流路形成部25内部を流れる冷媒流量が相対的に減少する。本実施例では、このような冷媒の脇流れを抑制するために、冷媒流路形成部25の外周の空隙に、冷媒脇流れ抑制部を設けている。
燃料電池10においては、既述したように、ガスセパレータ30,31において、ガスケットに設けた線状凸部と重なる位置に、セパレータ凸部70,71を設けており、ガスセパレータ30,31の冷媒流路面側には、上記セパレータ凸部の裏返し形状としての凹部80,81が形成されている。ここで、隣り合う単セル15間に形成されるセル間冷媒流路では、冷媒流路形成部25の外周と、ガスケット34との間に、空隙が形成される。このような空隙を冷媒が流れる際の流路抵抗は、一般に、冷媒流路形成部25内の細孔を冷媒が流れる際の流路抵抗よりも小さくなる。特に、冷媒流路形成部25の外周とガスケット34との間の空隙に凹部80,81が形成されている場合には、流路抵抗の小さい空隙において冷媒の流路断面積が大きくなることにより、冷媒がさらに流れやすくなる。このように、冷媒流路形成部25の外周に形成される空隙を流れる冷媒(以下、冷媒流路形成部25の外周を冷媒が流れることを、冷媒の脇流れという)の流量が増加すると、冷媒流路形成部25内部を流れる冷媒流量が相対的に減少する。本実施例では、このような冷媒の脇流れを抑制するために、冷媒流路形成部25の外周の空隙に、冷媒脇流れ抑制部を設けている。
ガスセパレータ30上において、第1線状凸部60と重なるセパレータ凸部70の裏側構造である凹部80には、独立の部材である冷媒脇流れ抑制部40が配置されている(図1および図4(B)参照)。凹部80は、冷媒流路形成部25の外周とガスケット34との間において、ガスセパレータ30の長手方向の辺(辺aおよび辺b)に沿って延出する形状に形成されており、冷媒脇流れ抑制部40は、上記長手方向の辺の中央部近傍に配置されている。図1に示すように、冷媒脇流れ抑制部40は、凹部80の内壁面形状に沿う形状に形成された先端部を、凹部80に嵌め込むことによって配置されている。冷媒脇流れ抑制部40の他端は、ガスセパレータ30に対向するガスセパレータ31に接しているが、接しないこととしても良い。ただし、冷媒脇流れ抑制部40の他端がガスセパレータ31に接する場合には、冷媒脇流れ抑制部40の高さは、燃料電池10の締結時に、冷媒流路形成部25にかかる締結圧を低減させない高さとすることが望ましい。これにより、冷媒脇流れ抑制部40に起因する接触抵抗の増大を抑制することができる。また、冷媒脇流れ抑制部40は、締結時にガスケット34よりも大きな反力を発生しないことが望ましい。これにより、冷媒脇流れ抑制部40を設けることに起因するセル間冷媒流路におけるシール性の低下を抑制できる。このような冷媒脇流れ抑制部40は、金属板や樹脂プレート等、燃料電池10の運転温度で安定な種々の材料から成る部材によって構成することができる。冷媒脇流れ抑制部40を、燃料電池10を構成する他の部材とは別体の独立した部材とすることで、冷媒脇流れ抑制部40の構成材料の選択の自由度を高めることができる。例えば、ゴムや熱可塑性エラストマー等から成る弾性部材を用いれば、冷媒脇流れ抑制部40をガスセパレータ30上の所定の位置に嵌め込んで保持する動作が容易となる。また、樹脂製の部材を用いる場合には、冷媒脇流れ抑制部40に起因する燃料電池10の重量増加を抑制することができる。さらに、冷媒脇流れ抑制部40を独立の部材で構成することにより、燃料電池10の組み立ての際に、ガスセパレータ30上に冷媒脇流れ抑制部40を配置した後に冷媒流路形成部25を積層する場合には、冷媒脇流れ抑制部40が配置された位置よりもガスセパレータ30の中央部よりの位置に冷媒流路形成部25を配置すればよい。そのため、冷媒流路形成部25を配置する際の位置合わせが容易になる効果が得られる。
同様に、ガスセパレータ31上において、第2線状凸部61と重なる位置に設けたセパレータ凸部71の裏側構造である凹部81には、独立の部材である冷媒脇流れ抑制部42が配置されている。図9は、冷媒脇流れ抑制部42が配置された位置に対応する図3(B)の9−9断面であって、孔部50と孔部51との間の領域の近傍の様子を表わす断面模式図である。ここで、9−9断面には、冷媒脇流れ抑制部40は設けられていないが、図9では、冷媒脇流れ抑制部40に対応する位置を、破線で示している。また、図3(B)および図5(B)においては、冷媒脇流れ抑制部42の平面的な配置を示している。ガスセパレータ31には、孔部50と51、孔部51と52、孔部53と54、孔部54と55の間の領域の近傍において、凹部81が形成されており(図5(B)参照)、この凹部81に嵌め込まれるように、冷媒脇流れ抑制部42が配置されている(図9参照)。図9に示す冷媒脇流れ抑制部42は、ガスセパレータ30には当接しない形状であるが、ガスセパレータ30に当接する形状としても良い。また、冷媒脇流れ抑制部42は、既述した冷媒脇流れ抑制部40と同様に種々の材料から成る部材により構成することが可能であるが、弾性部材によって構成すれば、凹部81に嵌め込んで保持する動作が容易となる。なお、冷媒脇流れ抑制部40,42は、接着剤を用いてガスセパレータ30,31上に接着しても良い。
燃料電池10を組み立てる際には、ガスセパレータ30,31上の所定の位置に、ガスケット32,34,35、および、シーリングプレート33,36を固着させると共に、冷媒脇流れ抑制部40,42を嵌め込む。そして、このようなガスセパレータ30,31と、MEA20、ガス拡散層21,22、ガス流路形成部23,24、および冷媒流路形成部25を、順次積層する。このように、単セル15の積層体を作製する際には、その両端部の各々に、出力端子を備える集電板と、絶縁板と、エンドプレートとが配置される。そして、エンドプレートの両側から所定の押圧力を加えつつ、燃料電池10全体の締結が行なわれ、燃料電池10が完成する。
以上のように構成された本実施例の燃料電池10によれば、ガスセパレータ30,31のガス流路面側に設けられたセパレータ凸部70,71上に重なるように、ガスケット32,35あるいはシーリングプレート33,36に設けた線状凸部60,61を配置しているため、線状凸部60,61におけるシール性を高めることができる。また、燃料電池10では、積層方向に重なる冷媒シールの位置の方が、積層方向に重なるガスシールの位置よりも、ガスセパレータの外周寄りに設けられているため、ガスが流れて電気化学反応が起こりうる領域全体を、効率良く冷却することができる。このような燃料電池10において、本実施例では、ガスセパレータ30,31の冷媒流路面側に、セパレータ凸部70,71の裏側構造である凹部80,81に冷媒脇流れ抑制部40,42が設けられているため、シール性を高めるためにセパレータ凸部70,71を設けたことに起因する冷媒の脇流れの増大を抑えることができる。冷媒の脇流れを抑制することにより、冷媒流路形成部25内を流れる冷媒流量を相対的に増加させることができるため、冷媒による燃料電池10の冷却効率を向上させることができる。
ここで、セル間冷媒流路では、冷媒は、冷媒供給マニホールドを構成する孔部57から、冷媒排出マニホールドを構成する孔部58へと流れる。そのため、セル間冷媒流路における脇流れは、孔部56,50,51,52に沿う流れと、孔部53,54,55,59に沿う流れとが生じる。図10は、冷媒が流れる様子を、ガスセパレータ30の冷媒流路面上において示す説明図である。図10では、冷媒の脇流れの様子を、破線の矢印で示している。また、図10では、冷媒流路形成部25内を流れる冷媒を、孔部57から孔部58へと向かう白抜き矢印によって表わしている。
セル間冷媒流路を冷媒が流れる際の圧損の内、冷媒流路形成部25内を冷媒が流れる際の圧損をΔP1、冷媒流路形成部25の外周に形成される空隙を冷媒が脇流れする際の圧損をΔP2とすると(図10参照)、冷媒流路形成部25内を通過する(発電領域を流れる)冷媒の流量を確保するためには、「ΔP1<ΔP2」とする必要がある。本実施例では、シール性を高めるためにセパレータ凸部70,71を設けたことにより、その裏側構造としての凹部80,81において冷媒流路の断面積が大きくなる。このような凹部80,81に冷媒脇流れ抑制部40,42を設けることにより、冷媒が脇流れする際の圧損ΔP2の低下を抑制することができる。冷媒脇流れ抑制部40,42の形状は、「ΔP1<ΔP2」を実現できる形状であれば良く、これにより、冷媒流路形成部25内を流れる冷媒流量を確保する効果を得ることができる。
ガスセパレータ30,31の冷媒流路面側に設けられた凹部の内、特に凹部80は、ガスセパレータ30の長手方向の辺(辺aあるいは辺b)に沿って連続して設けられているため、流路抵抗を小さくして冷媒の脇流れを増大させる作用が強い。したがって、凹部80における長手方向に延出する部位に設けられた冷媒脇流れ抑制部40は、特に、冷媒の脇流れを抑制する効果が高い。ただし、ガスセパレータ31の長手方向の辺の近傍において互いに離間して設けられた凹部81もまた、冷媒流路の断面積が部分的に大きくなることにより、脇流れをし易くする作用を有する。そのため、凹部81に設ける冷媒脇流れ抑制部42によっても、冷媒の脇流れを抑制する高い効果が得られる。
また、冷媒脇流れ抑制部40,42を設けることにより、さらに、発電領域全体における冷媒流量を均一化して、発電領域内で冷却効率を均一化させることができ、燃料電池の性能を向上させる効果が得られる。すなわち、冷媒脇流れ抑制部40,42は、冷媒流路形成部材の外周とガスケット34との間に形成される空隙の内、凹部80,81の一部分だけに設けられるため、冷媒は、冷媒脇流れ抑制部40,42が設けられていない外周部の空隙内へと容易に広がることができる。そして、空隙には冷媒脇流れ抑制部40,42が設けられているため、空隙内に広がった冷媒は、その後、冷媒流路形成部25内へと流入する。このように、冷媒が、外周部の空隙内に一旦広がった後に冷媒流路形成部25へと流入する経路をとり易くなることより、発電領域全体における冷媒流量を均一化することができる。例えば、冷媒マニホールドの位置関係によっては、発電領域内において、冷媒流量に不均一が生じる。特に、本実施例では、2つの冷媒マニホールドは対角の近傍にあるため、冷媒脇流れ抑制部を設けない場合には、孔部57から孔部58へと冷媒が流れる際には、発電領域における残余の角部の近傍では冷媒流量が相対的に少なくなる。このような燃料電池10の冷媒流路形成部25の外周部空隙において、冷媒を流入し易くする凹部80,81が設けられると共に、セパレータ長手方向に形成された空隙の中ほどに冷媒脇流れ抑制部40,42が設けられることにより、冷媒脇流れ抑制部40内において、上記残余の角部の近傍における冷媒流量を相対的に増加させることができる。
なお、冷媒流路形成部25を作製する際に、冷媒流路形成部25外周の空隙に起因する冷媒の脇流れを抑えるには、一般に、冷媒流路形成部25を精度良く作製し、冷媒流路形成部25の外周とガスケット34の内周との間の空隙をできるだけ小さくする必要が生じる。しかしながら本実施例では、冷媒脇流れ抑制部40,42によって脇流れを抑制しているため、冷媒流路形成部25の製造の精度を高める必要がなく、製造コストの削減が可能になる。
また、本実施例の燃料電池10によれば、上記した冷媒脇流れ抑制部40,42に係る効果に加えて、さらに、以下に示す種々の効果を奏する。本実施例の燃料電池10によれば、燃料電池の積層の動作の際に確保すべきシール性を、物理的なシールのみにより実現することができる。具体的には、シールのための線状凸部が形成されたガスケットおよびシーリングプレートを、予めガスセパレータ30,31の所定の位置に固着させておけば、このようなガスセパレータを、MEA20等の他の部材と共に所定の順序で重ね合わせて、最終的に全体を締結するだけで、流路のシールを行なうことができる。ここで、各ガスマニホールドとセル内ガス流路との接続は、シーリングプレートに設けられた連通孔38によって確保されており、第1ないし第3線状凸部は、全体として連続して発電領域全周を囲む形状に形成されている。このように、発電領域全周を囲む形状の線状凸部でMEA20を挟むことによってガスシール性を確保するため、各部材の積層時に接着などの特別な動作を行なう必要がなく、燃料電池の組付けを容易に行なうことができる。特に、ガスケットおよびシーリングプレートのガスセパレータへの固着の際に接着剤を用いない場合には、燃料電池全体で接着剤を用いる必要が無くなり、接着剤の劣化による接着性の低下に起因するシール性の低下を抑えることができる。
また、燃料電池10によれば、セル内ガス流路のシールを、第1線状凸部60と第2線状凸部61との接触部、および、第2線状凸部61と第3線状凸部62との間の接触部の2カ所で確保する2重シールとすることにより、ガスシールの信頼性を高めることができる。なお、図1に示す燃料電池10では、MEA20は、第2線状凸部61と第1線状凸部60によって挟まれると共に、第2線状凸部61と第3線状凸部62によっても挟まれることとしたが、異なる構成としても良い。第2線状凸部61と第1線状凸部60には挟まれるが、第2線状凸部61と第3線状凸部62には挟まれないこととしても良い。MEA20を挟んでいなくても、第2線状凸部61と第3線状凸部62とがさらに接することにより、2重シールにしてガスシールの信頼性を高める効果を得ることができる。さらに、本実施例では、このようなシールのための線状凸部間の接触部を、各線状凸部の頭頂部近傍の側面に設け、頭頂部における点(あるいは線)による接触ではなく、面による接触としている。そのため、ガスケットやシーリングプレートを固着したガスセパレータを積層する際に、線状凸部の頭頂部でシール性を確保する場合ほどには、位置合わせを厳密に行なう必要がなく、積層の動作を容易化することができる。また、このように面による接触でシール性を確保する燃料電池10においては、燃料電池10の使用中にガスセパレータ間に僅かな位置ずれが生じたとしても、各線状凸部間の接触部において締結圧が損なわれ難いため、必要な締結圧を確保して高いシール性を維持することが可能になる。
なお、第1実施例では、凹部80に冷媒脇流れ抑制部40を設け、凹部81に冷媒脇流れ抑制部42を設けたが、異なる構成としても良い。例えば、冷媒脇流れ抑制部40と42のうちのいずれかのみを設けることとしても良い。あるいは、冷媒脇流れ抑制部42を設ける場合に、セパレータの長手方向の辺(辺aあるいは辺b)に沿って並ぶ2つの冷媒脇流れ抑制部42の内の、いずれか一方のみを設けることとしても良い。辺aあるいは辺bに沿う脇流れを抑えるためには、各辺について少なくとも一つの冷媒脇流れ抑制部を設ければよい。また、冷媒脇流れ抑制部40,42の頭頂部は、凹部80,81の内壁面に沿う(接する)形状ではなく、内壁面との間に空隙が形成される形状であっても良い。冷媒脇流れ抑制部40,42を凹部80,81に嵌め込んで保持することができれば、セパレータを積層して燃料電池を組み付ける動作を容易化する効果が得られる。いずれの構成であっても、冷媒脇流れ抑制部を設けることにより、冷媒流路形成部25内を冷媒が流れる際の圧損をΔP1よりも、冷媒流路形成部25の外周に形成される空隙を冷媒が脇流れする際の圧損をΔP2を高めることができれば、第1実施例と同様の効果が得られる。
D.第2実施例:
燃料電池10では、ガスセパレータ30,31間に形成される冷媒が流れる空隙に、ガスセパレータとは別体の冷媒脇流れ抑制部40,42を配置したが、異なる構成としても良い。以下に、異なる構成の冷媒脇流れ抑制部を備える実施例について、順次説明する。
燃料電池10では、ガスセパレータ30,31間に形成される冷媒が流れる空隙に、ガスセパレータとは別体の冷媒脇流れ抑制部40,42を配置したが、異なる構成としても良い。以下に、異なる構成の冷媒脇流れ抑制部を備える実施例について、順次説明する。
図11は、第2実施例の燃料電池110の構成を表わす断面模式図である。燃料電池110は、冷媒脇流れ抑制部に係る部分以外の構成は、燃料電池10と同じであり、燃料電池10と共通する部分には同じ参照番号を付して詳しい説明は省略する。燃料電池110は、隣り合う一方のガスセパレータの一部分によって冷媒脇流れ抑制部を構成しており、ガスセパレータ31に代えて、ガスセパレータ131を備えている。ガスセパレータ131においては、燃料電池10において冷媒脇流れ抑制部40が配置された位置と同じ位置に、冷媒流路面側に凸であって表裏反転する形状に形成され、ガスセパレータ30の凹部80の内壁面に沿った形状の、冷媒脇流れ抑制凸部140が形成されている。
以上のように構成された燃料電池110においても、冷媒脇流れ抑制凸部140を設けて、冷媒流路形成部25内を冷媒が流れる際の圧損ΔP1よりも、冷媒流路形成部25の外周に形成される空隙を冷媒が脇流れする際の圧損ΔP2を高めることにより、第1実施例と同様の効果が得られる。このとき、冷媒脇流れ抑制凸部140は、その頭頂部が凹部80の内壁面に当接するように形成されている必要はなく、冷媒が脇流れする際の圧損を充分に高めることができれば、凸部の高さがより低くても良い。
また、燃料電池110によれば、冷媒脇流れ抑制部を、冷媒脇流れ抑制凸部としてガスセパレータと一体で形成するため、第1実施例に比べて部品点数を抑えることができる。さらに、燃料電池110の組み立て時には、ガスセパレータ131の冷媒脇流れ抑制凸部140を、ガスセパレータ30の凹部80に嵌め込めばよいため、ガスセパレータ131とガスセパレータ30との間の位置合わせを容易化することができる。
なお、図11では、冷媒脇流れ抑制部40に対応する冷媒脇流れ抑制凸部140のみを設けているが、冷媒脇流れ抑制凸部140に加えて、あるいは冷媒脇流れ抑制凸部140に代えて、冷媒流路側に凸となる同様の冷媒脇流れ抑制凸部142を、ガスセパレータ30において冷媒脇流れ抑制部42と同じ位置に設けることとしても良い。
E.第3実施例:
図12は、第3実施例の燃料電池210の構成を、図1と同様の位置において示した断面模式図である。燃料電池210は、冷媒脇流れ抑制部に係る部分以外の構成は、燃料電池10と同じであり、燃料電池10と共通する部分には同じ参照番号を付して詳しい説明は省略する。図12は、図1と同様の位置における断面の様子を表わしている。燃料電池210は、ガスケット34に代えてガスケット234を備えており、冷媒流路側に設けられたガスケット234の一部分によって冷媒脇流れ抑制部を構成している。ガスケット234においては、燃料電池10において冷媒脇流れ抑制部40が配置された位置と同じ位置に、発電領域側に延出して設けられ、ガスセパレータ30の凹部80を塞ぐと共に、ガスセパレータ31側に凸である、冷媒脇流れ抑制部240が形成されている。図13は、ガスセパレータ30の冷媒流路側に配置され、冷媒脇流れ抑制部240が形成されたガスケット234の構成を表わす平面図である。図12および図13では、ガスケット234における冷媒脇流れ抑制部240である部分を、破線で囲んで示している。
図12は、第3実施例の燃料電池210の構成を、図1と同様の位置において示した断面模式図である。燃料電池210は、冷媒脇流れ抑制部に係る部分以外の構成は、燃料電池10と同じであり、燃料電池10と共通する部分には同じ参照番号を付して詳しい説明は省略する。図12は、図1と同様の位置における断面の様子を表わしている。燃料電池210は、ガスケット34に代えてガスケット234を備えており、冷媒流路側に設けられたガスケット234の一部分によって冷媒脇流れ抑制部を構成している。ガスケット234においては、燃料電池10において冷媒脇流れ抑制部40が配置された位置と同じ位置に、発電領域側に延出して設けられ、ガスセパレータ30の凹部80を塞ぐと共に、ガスセパレータ31側に凸である、冷媒脇流れ抑制部240が形成されている。図13は、ガスセパレータ30の冷媒流路側に配置され、冷媒脇流れ抑制部240が形成されたガスケット234の構成を表わす平面図である。図12および図13では、ガスケット234における冷媒脇流れ抑制部240である部分を、破線で囲んで示している。
以上のように構成された燃料電池210においても、冷媒脇流れ抑制部240を設けて、冷媒流路形成部25内を冷媒が流れる際の圧損ΔP1よりも、冷媒流路形成部25の外周に形成される空隙を冷媒が脇流れする際の圧損ΔP2を高めることにより、第1実施例と同様の効果が得られる。このとき、冷媒脇流れ抑制部240は、図12に示すように凹部80上に形成される空間全体を塞ぐように形成する必要はなく、凹部80上の空間の少なくとも一部を塞いでいれば良く、冷媒が脇流れする際の圧損を充分に高めることができれば良い。また、燃料電池210によれば、冷媒脇流れ抑制部240を、ガスケット234と一体で形成するため、第1実施例に比べて部品点数を抑える効果が得られる。
なお、冷媒脇流れ抑制部240は、図12,13に示した形状以外にも、種々の変形が可能である。例えば、図12では、冷媒脇流れ抑制部240は、ガスセパレータ31に当接する凸部を有しているが、この凸部においてシール性を確保する必要はないため、上記凸部は、ガスセパレータ30に接しないこととしても良い。あるいは、冷媒脇流れ抑制部240に加えて、あるいは冷媒脇流れ抑制部240に代えて、ガスセパレータ31の凹部81上の空間の少なくとも一部を塞ぐ冷媒脇流れ抑制部242を、ガスケット234と一体で設けることとしても良い。また、ガスケット234の凸形状を、積層方向に逆転する向きに配置しても良い。具体的には、ガスセパレータ30にセパレータ凸部74を設けることなく、ガスケット234をガスセパレータ31上に配置し、第5線状凸部64がガスセパレータ30に当接する形状としても良い。このような場合であっても、ガスケット234と一体で、凹部80と凹部81の少なくとも一方上の空間の少なくとも一部を塞ぐ冷媒脇流れ抑制部を設けるならば、第3実施例と同様の効果を得ることができる。
F.第4実施例:
図14は、第4実施例の燃料電池310の構成を、図1と同様の位置において示した断面模式図である。燃料電池310は、冷媒脇流れ抑制部に係る部分以外の構成は、燃料電池10と同じであり、燃料電池10と共通する部分には同じ参照番号を付して詳しい説明は省略する。燃料電池310は、冷媒流路形成部25に代えて冷媒流路形成部325を備えており、冷媒流路形成部325の一部分によって冷媒脇流れ抑制部を構成している。冷媒流路形成部325においては、燃料電池10において冷媒脇流れ抑制部40が配置された位置と同じ位置に、冷媒流路形成部325の外周をセパレータ外周側に延出して凹部80上の空間を塞ぐように形成された、冷媒脇流れ抑制部340が設けられている。図15は、ガスセパレータ30の冷媒流路側に配置され、冷媒脇流れ抑制部340が形成された冷媒流路形成部325の構成を表わす平面図である。図14および図15では、冷媒流路形成部325における冷媒脇流れ抑制部340である部分を、破線で囲んで示している。
図14は、第4実施例の燃料電池310の構成を、図1と同様の位置において示した断面模式図である。燃料電池310は、冷媒脇流れ抑制部に係る部分以外の構成は、燃料電池10と同じであり、燃料電池10と共通する部分には同じ参照番号を付して詳しい説明は省略する。燃料電池310は、冷媒流路形成部25に代えて冷媒流路形成部325を備えており、冷媒流路形成部325の一部分によって冷媒脇流れ抑制部を構成している。冷媒流路形成部325においては、燃料電池10において冷媒脇流れ抑制部40が配置された位置と同じ位置に、冷媒流路形成部325の外周をセパレータ外周側に延出して凹部80上の空間を塞ぐように形成された、冷媒脇流れ抑制部340が設けられている。図15は、ガスセパレータ30の冷媒流路側に配置され、冷媒脇流れ抑制部340が形成された冷媒流路形成部325の構成を表わす平面図である。図14および図15では、冷媒流路形成部325における冷媒脇流れ抑制部340である部分を、破線で囲んで示している。
冷媒流路形成部325を、例えば波板状の金属部材により構成する場合には、まず、波板状に成形する前の金属平板から、打ち抜き加工等により、冷媒脇流れ抑制部340に対応する位置に冷媒脇流れ抑制部340となる突出部を設けた、全体として四角形状の部材を作製する。その後、用意した部材をプレス加工して、波板状に加工する。上記突出部については、さらにプレス加工によって折り曲げを行なうことで、凹部80に嵌り込む形状の冷媒脇流れ抑制部340を形成することができる。あるいは、平板状の多孔質体によって冷媒流路形成部325を形成する場合には、四角形状の多孔質体とは別体で用意した部材を、多孔質体に接着や嵌め込みによって固着させることによって、冷媒脇流れ抑制部340を形成しても良い。
以上のように構成された燃料電池310においても、冷媒脇流れ抑制部340を設けて、冷媒流路形成部325内を冷媒が流れる際の圧損ΔP1よりも、冷媒流路形成部325の外周に形成される空隙を冷媒が脇流れする際の圧損ΔP2を高めることにより、第1実施例と同様の効果が得られる。このとき、冷媒脇流れ抑制部340は、図14に示すように凹部80上に形成される空間全体を塞ぐように形成する必要はなく、凹部80上の空間の少なくとも一部を塞ぐことによって、冷媒が脇流れする際の圧損を充分に高めることができれば良い。また、燃料電池310によれば、冷媒脇流れ抑制部340を冷媒流路形成部325と一体で形成するため、第1実施例に比べて部品点数を抑えることができる。さらに、燃料電池310の組み立て時には、冷媒流路形成部325の冷媒脇流れ抑制部340を、ガスセパレータ30の凹部80に嵌め込めばよいため、ガスセパレータ30に対して冷媒流路形成部325を位置合わせしつつ積層する動作を、容易化することができる。
なお、冷媒流路形成部325に設ける冷媒脇流れ抑制部は、図14,15に示した形状以外にも、種々の変形が可能である。例えば、冷媒脇流れ抑制部340に加えて、あるいは冷媒脇流れ抑制部340に代えて、ガスセパレータ31の凹部81上の空間の少なくとも一部を塞ぐ冷媒脇流れ抑制部342を、冷媒流路形成部325と一体で設けることとしても良い。
G.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
G1.変形例1:
第1ないし第3実施例では、ガスセパレータの長手方向の辺(辺aおよび辺b)における冷媒の脇流れを抑制するために、長手方向の辺の各々について冷媒脇流れ抑制部を設けたが、異なる構成としても良い。冷媒脇流れ抑制部は、冷媒マニホールドの配置に応じて、セル間冷媒流路となる面内を冷媒が流れる際の脇流れを抑制可能となる位置に設ければよい。例えば、発電領域の一の角部の近傍に、冷媒供給マニホールドとなる孔部と冷媒排出マニホールドとなる孔部とが配置されて、冷媒が冷媒流路内において発電領域の外周に沿って旋回するように流れる場合には、冷媒脇流れ抑制部は、発電領域の外周の1カ所に設ければよい。冷媒流路形成部の外周と、セル間冷媒流路をシールするガスケットのシール位置との間であって、セル間冷媒流路への冷媒の出入り口から離間した位置に、ガスシール性を高めるためのセパレータ凸部の裏返し形状としての凹部が形成されている場合には、このような凹部に冷媒脇流れ抑制部を設けることにより、冷媒の脇流れを抑制する効果が得られる。セル間冷媒流路における冷媒入り口部から冷媒出口部に向かって冷媒が脇流れする経路において、冷媒脇流れ抑制部が設けられていればよい。
第1ないし第3実施例では、ガスセパレータの長手方向の辺(辺aおよび辺b)における冷媒の脇流れを抑制するために、長手方向の辺の各々について冷媒脇流れ抑制部を設けたが、異なる構成としても良い。冷媒脇流れ抑制部は、冷媒マニホールドの配置に応じて、セル間冷媒流路となる面内を冷媒が流れる際の脇流れを抑制可能となる位置に設ければよい。例えば、発電領域の一の角部の近傍に、冷媒供給マニホールドとなる孔部と冷媒排出マニホールドとなる孔部とが配置されて、冷媒が冷媒流路内において発電領域の外周に沿って旋回するように流れる場合には、冷媒脇流れ抑制部は、発電領域の外周の1カ所に設ければよい。冷媒流路形成部の外周と、セル間冷媒流路をシールするガスケットのシール位置との間であって、セル間冷媒流路への冷媒の出入り口から離間した位置に、ガスシール性を高めるためのセパレータ凸部の裏返し形状としての凹部が形成されている場合には、このような凹部に冷媒脇流れ抑制部を設けることにより、冷媒の脇流れを抑制する効果が得られる。セル間冷媒流路における冷媒入り口部から冷媒出口部に向かって冷媒が脇流れする経路において、冷媒脇流れ抑制部が設けられていればよい。
G2.変形例2:
第1ないし第3実施例では、セル内ガス流路をシールするために、一方のガスセパレータ上に2本の線状凸部を形成し、他方のガスセパレータ上に、上記2本の線状凸部の双方と接する1本の線状凸部を形成したが、異なる構成としても良い。例えば、双方のガスセパレータの互いに重なる位置に、単一の線状凸部を設け、各々の線状凸部の頭頂部同士を、MEA20を介して接触させることにより、セル内ガス流路をシールしても良い。ガスシール性を高めるためにガスセパレータにおいて線状凸部と重なる位置に設けるセパレータ凸部は、少なくとも一方のガスセパレータに設ければ良く、上記セパレータ凸部の裏側形状としての凹部に冷媒脇流れ抑制部を設けるならば、セパレータ凸部に起因する冷媒の脇流れを抑制する同様の効果が得られる。燃料電池においては、積層方向におけるガスシールの位置よりも、積層方向における冷媒シールの位置の方が、ガスセパレータの外周寄りである場合に、ガスシールのための線状凸部と重なるセパレータ凸部をガスセパレータに表裏反転する形状に形成するならば、冷媒の脇流れが促進され得る。このような場合に、セパレータ凸部の裏側に冷媒脇流れ抑制部を設ければ、実施例と同様の効果が得られる。
第1ないし第3実施例では、セル内ガス流路をシールするために、一方のガスセパレータ上に2本の線状凸部を形成し、他方のガスセパレータ上に、上記2本の線状凸部の双方と接する1本の線状凸部を形成したが、異なる構成としても良い。例えば、双方のガスセパレータの互いに重なる位置に、単一の線状凸部を設け、各々の線状凸部の頭頂部同士を、MEA20を介して接触させることにより、セル内ガス流路をシールしても良い。ガスシール性を高めるためにガスセパレータにおいて線状凸部と重なる位置に設けるセパレータ凸部は、少なくとも一方のガスセパレータに設ければ良く、上記セパレータ凸部の裏側形状としての凹部に冷媒脇流れ抑制部を設けるならば、セパレータ凸部に起因する冷媒の脇流れを抑制する同様の効果が得られる。燃料電池においては、積層方向におけるガスシールの位置よりも、積層方向における冷媒シールの位置の方が、ガスセパレータの外周寄りである場合に、ガスシールのための線状凸部と重なるセパレータ凸部をガスセパレータに表裏反転する形状に形成するならば、冷媒の脇流れが促進され得る。このような場合に、セパレータ凸部の裏側に冷媒脇流れ抑制部を設ければ、実施例と同様の効果が得られる。
G3.変形例3:
第1ないし第3実施例では、燃料電池を固体高分子形燃料電池としたが、異なる構成としても良い。MEAを挟持する一対のガスセパレータの各々にガスケットを設け、ガスケットによってMEAを挟むことによってガス流路のシールが可能となる燃料電池であれば、本発明を適用して同様の効果を得ることができる。
第1ないし第3実施例では、燃料電池を固体高分子形燃料電池としたが、異なる構成としても良い。MEAを挟持する一対のガスセパレータの各々にガスケットを設け、ガスケットによってMEAを挟むことによってガス流路のシールが可能となる燃料電池であれば、本発明を適用して同様の効果を得ることができる。
10,110,210,310…燃料電池
15…単セル
20…MEA
21,22…ガス拡散層
23,24…ガス流路形成部
25,325…冷媒流路形成部
30,31,131…ガスセパレータ
32,34,35,234…ガスケット
33,36…シーリングプレート
38…連通孔
40,42,240,242,340,342…冷媒脇流れ抑制部
50〜59…孔部
60…第1線状凸部
61…第2線状凸部
62…第3線状凸部
63…第4線状凸部
70,71,74…セパレータ凸部
80,81…凹部
140,142…冷媒脇流れ抑制凸部
15…単セル
20…MEA
21,22…ガス拡散層
23,24…ガス流路形成部
25,325…冷媒流路形成部
30,31,131…ガスセパレータ
32,34,35,234…ガスケット
33,36…シーリングプレート
38…連通孔
40,42,240,242,340,342…冷媒脇流れ抑制部
50〜59…孔部
60…第1線状凸部
61…第2線状凸部
62…第3線状凸部
63…第4線状凸部
70,71,74…セパレータ凸部
80,81…凹部
140,142…冷媒脇流れ抑制凸部
Claims (9)
- 電解質膜と該電解質膜の両面に形成された電極とを備える膜−電極接合体と、前記膜−電極接合体を挟持する位置に配置され、前記膜−電極接合体との間でガス流路を形成する一対のセパレータと、を備える複数の単セルを積層して成る燃料電池であって、
隣接する各々の単セルが備えるセパレータ間に配置されて、冷媒流路となる空間の一部を形成する冷媒流路形成部材と、
前記膜−電極接合体の外周部に沿って、前記一対のセパレータ間に配置されたガス流路シール部と、
隣接する各々の単セルが備えるセパレータの双方に接するように設けられて前記冷媒流路をシールする冷媒流路シール部と、
を備え、
前記一対のセパレータの少なくとも一方は、前記ガス流路シール部と接する位置に、表裏裏返しとなる形状であって前記膜−電極接合体側に凸であるセパレータ凸部を有し、
前記ガス流路シール部は、前記一対のセパレータの一方に接着して設けられ、第1のガスシール凸部を有する第1のガス流路シール部材と、前記一対のセパレータの他方に接着して設けられ、第2のガスシール凸部を有する第2のガス流路シール部材と、を備え、前記第1のガスシール凸部および前記第2のガスシール凸部によって前記膜−電極接合体を挟むことによって、前記膜−電極接合体の両面に形成される前記ガス流路をシールし、
前記第1のガスシール凸部と前記第2のガスシール凸部の少なくとも一方は、前記セパレータ凸部に沿う形状に形成され、
前記冷媒流路シール部が、前記隣り合うセパレータの双方に接する冷媒シール位置は、前記第1のガスシール凸部と前記第2のガスシール凸部が前記膜−電極接合体を挟むガスシール位置よりも、前記セパレータの外周側に配置されており、
前記冷媒流路において、前記セパレータ凸部の裏返し構造である凹部が形成する空間の少なくとも一部を塞ぐ冷媒脇流れ抑制部が設けられている
燃料電池。 - 請求項1記載の燃料電池であって、
前記冷媒脇流れ抑制部は、前記凹部内に嵌め込まれた独立の部材から成る
燃料電池。 - 請求項1記載の燃料電池であって、
前記冷媒脇流れ抑制部は、前記セパレータ凸部が形成されたセパレータと前記冷媒流路を介して隣り合うセパレータにおいて、前記セパレータ凸部の裏返し構造である前記凹部の凹面に対して凸となるように設けた突出部である
燃料電池。 - 請求項1記載の燃料電池であって、
前記冷媒脇流れ抑制部は、前記冷媒流路シール部と一体で形成されている
燃料電池。 - 請求項1記載の燃料電池であって、
前記冷媒脇流れ抑制部は、前記冷媒流路形成部材の外周の一部を延出させることによって形成されている
燃料電池。 - 請求項1ないし5いずれか記載の燃料電池であって、
前記冷媒脇流れ抑制部が設けられた前記凹部は、前記冷媒流路形成部材の外周と前記冷媒流路シール部との間であって、前記冷媒流路への前記冷媒の流入部、および、前記冷媒流路からの前記冷媒の流出部から、離間した位置に設けられている
燃料電池。 - 請求項1ないし6いずれか記載の燃料電池であって、
前記第1および第2のガスシール凸部は、前記膜−電極接合体で電気化学反応が進行する発電領域の外周全体を囲むように形成され、
前記第1のガスシール部材は、前記一対のセパレータの一方と前記膜−電極接合体との間に形成される第1のガスの流路への前記第1のガスの流入部、および、前記第1のガス流路からの前記第1のガスの流出部において、前記第1のガスの通り道となる第1の連通孔が形成されており、
前記第2のガスシール部材は、前記一対のセパレータの他方と前記膜−電極接合体との間に形成される第2のガスの流路への前記第2のガスの流入部、および、前記第2のガス流路からの前記第2のガスの流出部において、前記第2のガスの通り道となる第2の連通孔が形成されている
燃料電池。 - 請求項7記載の燃料電池であって、
前記第2のガスシール凸部の頭頂部は、前記第1のガスシール凸部の頭頂部よりも、前記発電領域の外周から離間した位置に配置されており、
前記第1のガスシール凸部と前記第2のガスシール凸部とは、各々の凸部の頭頂部近傍の側面において、前記膜−電極接合体を介して接する
燃料電池。 - 請求項8記載の燃料電池であって、
前記第1のガスシール部材は、さらに、前記第2のガスシール凸部よりも前記発電領域の外周全体から離間した位置に、前記発電領域の外周全体を囲むように形成された第3のガスシール凸部を備え、
前記第2のガスシール凸部と前記第3のガスシール凸部とは、各々の凸部の頭頂部近傍の側面において互いに接する
燃料電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010092127A JP2011222393A (ja) | 2010-04-13 | 2010-04-13 | 燃料電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010092127A JP2011222393A (ja) | 2010-04-13 | 2010-04-13 | 燃料電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011222393A true JP2011222393A (ja) | 2011-11-04 |
Family
ID=45039104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010092127A Pending JP2011222393A (ja) | 2010-04-13 | 2010-04-13 | 燃料電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011222393A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104170135A (zh) * | 2012-03-15 | 2014-11-26 | 日产自动车株式会社 | 燃料电池堆 |
WO2017013710A1 (ja) * | 2015-07-17 | 2017-01-26 | 日産自動車株式会社 | 燃料電池スタック |
US9843055B2 (en) | 2013-11-11 | 2017-12-12 | Toyota Jidosha Kabushiki Kaisha | Separator for use in fuel cell, and fuel cell |
JP2020123497A (ja) * | 2019-01-30 | 2020-08-13 | トヨタ自動車株式会社 | 燃料電池スタック |
JP2021173347A (ja) * | 2020-04-27 | 2021-11-01 | Necプラットフォームズ株式会社 | 部品のシーリング構造及びシーリング方法 |
KR20230115365A (ko) * | 2022-01-26 | 2023-08-03 | 한국자동차연구원 | 연료전지 장치 |
-
2010
- 2010-04-13 JP JP2010092127A patent/JP2011222393A/ja active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015514280A (ja) * | 2012-03-15 | 2015-05-18 | 日産自動車株式会社 | 燃料電池スタック |
US9680168B2 (en) | 2012-03-15 | 2017-06-13 | Nissan Motor Co., Ltd. | Fuel cell stack |
CN104170135A (zh) * | 2012-03-15 | 2014-11-26 | 日产自动车株式会社 | 燃料电池堆 |
DE112014005137B4 (de) | 2013-11-11 | 2023-08-31 | Toyota Jidosha Kabushiki Kaisha | Für eine Brennstoffzelle verwendeter Separator und Brennstoffzelle |
US9843055B2 (en) | 2013-11-11 | 2017-12-12 | Toyota Jidosha Kabushiki Kaisha | Separator for use in fuel cell, and fuel cell |
WO2017013710A1 (ja) * | 2015-07-17 | 2017-01-26 | 日産自動車株式会社 | 燃料電池スタック |
CN107851815A (zh) * | 2015-07-17 | 2018-03-27 | 日产自动车株式会社 | 燃料电池组 |
JPWO2017013710A1 (ja) * | 2015-07-17 | 2018-05-24 | 日産自動車株式会社 | 燃料電池スタック |
US10340533B2 (en) | 2015-07-17 | 2019-07-02 | Nissan Motor Co., Ltd. | Fuel cell stack |
JP2020123497A (ja) * | 2019-01-30 | 2020-08-13 | トヨタ自動車株式会社 | 燃料電池スタック |
JP7103249B2 (ja) | 2019-01-30 | 2022-07-20 | トヨタ自動車株式会社 | 燃料電池スタック |
JP2021183872A (ja) * | 2020-04-27 | 2021-12-02 | Necプラットフォームズ株式会社 | 部品のシーリング構造及びシーリング方法 |
JP7099764B2 (ja) | 2020-04-27 | 2022-07-12 | Necプラットフォームズ株式会社 | 部品のシーリング構造及びシーリング方法 |
JP2021173347A (ja) * | 2020-04-27 | 2021-11-01 | Necプラットフォームズ株式会社 | 部品のシーリング構造及びシーリング方法 |
KR20230115365A (ko) * | 2022-01-26 | 2023-08-03 | 한국자동차연구원 | 연료전지 장치 |
KR102700630B1 (ko) * | 2022-01-26 | 2024-08-30 | 한국자동차연구원 | 연료전지 장치 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6118225B2 (ja) | 燃料電池用樹脂枠付き電解質膜・電極構造体 | |
CN109713344B (zh) | 发电单电池 | |
JP5790083B2 (ja) | 燃料電池セル | |
CN110224154B (zh) | 装备框架的膜电极组件及其生产方法,以及燃料电池 | |
JP6968746B2 (ja) | 燃料電池用セパレータ部材及び燃料電池スタック | |
JP4634933B2 (ja) | 燃料電池 | |
CN107293767B (zh) | 燃料电池堆 | |
CN109980240B (zh) | 发电单电池 | |
JP5708614B2 (ja) | セルモジュール、および、燃料電池スタック | |
CN109962257B (zh) | 发电单电池 | |
JP2011222393A (ja) | 燃料電池 | |
CN112018407A (zh) | 燃料电池 | |
JP2008171613A (ja) | 燃料電池 | |
JP6493549B2 (ja) | 燃料電池スタック | |
JP6663901B2 (ja) | 燃料電池 | |
JP2018181604A (ja) | ガスケットおよびそれを用いた燃料電池スタック | |
JP2019169462A (ja) | 燃料電池スタック | |
JP5144226B2 (ja) | 燃料電池 | |
JP2016146313A (ja) | バイポーラプレート及びダイレクトメタノール型燃料電池 | |
JP7183328B2 (ja) | 発電セル及び樹脂枠付き電解質膜・電極構造体 | |
JP4929647B2 (ja) | 燃料電池 | |
CN109659579B (zh) | 燃料电池用接合隔板以及燃料电池堆 | |
JP2012016877A (ja) | 燃料電池用ガスケット成形金型 | |
JP2007250432A (ja) | 燃料電池 | |
JP7031379B2 (ja) | 燃料電池スタック |