Nothing Special   »   [go: up one dir, main page]

JP2011118033A - カラーフィルタおよび液晶表示装置 - Google Patents

カラーフィルタおよび液晶表示装置 Download PDF

Info

Publication number
JP2011118033A
JP2011118033A JP2009273404A JP2009273404A JP2011118033A JP 2011118033 A JP2011118033 A JP 2011118033A JP 2009273404 A JP2009273404 A JP 2009273404A JP 2009273404 A JP2009273404 A JP 2009273404A JP 2011118033 A JP2011118033 A JP 2011118033A
Authority
JP
Japan
Prior art keywords
pigment
color filter
red
group
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009273404A
Other languages
English (en)
Inventor
Atsushi Yamauchi
淳 山内
Nozomi Nawa
希 名輪
Koichi Minato
港  浩一
Mie Shimizu
美絵 清水
Hideaki Hagiwara
英聡 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009273404A priority Critical patent/JP2011118033A/ja
Publication of JP2011118033A publication Critical patent/JP2011118033A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】赤色着色画素層の厚み方向位相差値を負に制御した、同一の光学補償膜を使用しても光学補償が十分になされるカラーフィルタを提供することを目的とした。
【解決手段】赤色画素の、波長620nmにおけるリタデーションが負になるように、リタデーション調整剤として平面構造基を有する有機化合物と一つ以上の架橋性基を有する有機化合物を含有し、前記有機化合物がスチレン化合物およびその重合性化合物から選択される1種以上を選択した有機化合物である赤色着色組成物の硬化物から形成されていることを特徴とするカラーフィルタである。
【選択図】無し

Description

本発明は、赤色着色画素の厚み方向位相差を最適化したカラーフィルタ、およびこれを備えることで位相差補償がされた液晶表示装置に関する。
液晶表示装置は、液晶分子の持つ複屈折性を利用した表示素子であり、液晶セル、偏光素子および光学補償層から構成される。液晶表示装置は光源の種類により、光源を内部に備える構造である透過型と、外部の光源を利用する構造である反射型の2つに大別される。透過型液晶表示装置では、偏光素子を液晶セルの両側に取り付け、一枚または二枚の光学補償層を液晶セルと偏光素子との間に配置した構成からなる。また、反射型液晶表示装置では、反射板、液晶セル、一枚の光学補償層、そして一枚の偏光素子の順に配置する。
液晶セルには、二枚の基板に狭持された棒状液晶性分子が配向して封入されており、液晶に接する側の基板面の両方もしくは片方に形成された電極層に電圧を加えることにより、棒状液晶性分子の配向状態を変化させて光の透過/遮光をスイッチングするしくみとなっている。
前記液晶セルは、棒状液晶性分子の配向状態の違いで、TN(Twisted Nematic)、IPS(In-Plane Switching)、FLC(Ferroelectric Liquid Crystal)、OCB(Optically Compensated Bend)、STN(Supper Twisted Nematic)、VA(Vertically Aligned)、HAN(Hybrid Aligned Nematic)タイプと称されることがある。
ところで、光学補償層としては様々なものが提案されているが、例えば、高コントラストな表示が可能なVA(垂直配向)モード液晶表示装置では、光軸が基板に垂直で、負の複屈折異方性を有する位相差フィルム(負のCプレート)と、光軸が基板に水平で、正の複屈折異方性を有する位相差フィルム(正のAプレート)が併用されている。
近年、液晶表示装置は、その薄型ゆえの省スペース性や軽量性、また省電力性などが評価されテレビ視聴機としても急速な広がりを見せると同時に、輝度、コントラストや全方位の視認性などの表示性能をより高めることが強く要求されるようになっている。
具体的には、テレビ用途としては、より高コントラスト、広視野角表示が可能なノーマリーブラックモードのIPSやVAの液晶表示装置が特に好まれて使用されることが多く、上述した光学補償層も、正面から見た時の黒表示時の色付きや、斜めから見たときの色ずれが最小となるように最適な値に設計されたものが使用されることがほとんどであった。
液晶表示装置に用いられる偏光素子、液晶自体、配向膜、保護層のような部材に比べて、カラーフィルタのリタデーションは比較的小さいものであったために、これまでこの問題は重視されていなかったが、高コントラストや広い視野角特性が要求される液晶テレビなどでは無視できないレベルとなってきた。
特に2000、あるいは5000以上の高コントラストの液晶表示装置では、要求される黒表示の画質に高いものが求められ、カラーフィルタ自体のリタデーションが問題となってきた。
通常、光学設計は緑色を中心として行われるため、赤色・青色と緑色の着色画素層のリタデーション(以下、Rth(R)、Rth(G)、Rth(B)と称する)が大きく異なると漏れ光
として斜め視認性に問題が生じてしまうのである。通常、緑色波長を基準にして光の波長に対して単調な波長分散性を示す光学補償層を用いて赤色と青色の光学補償がなされるが、この特性の光学補償層では、補償されるべき各色での厚み方向位相差値が(正負も含めて)余りに不揃いであると、近時求められる高度な表示品質のレベルで補償することができなくなる。したがって、Rth(R)<Rth(G)<Rth(B)またはRth(R)>Rth(G)>Rth(B)の関係を満たす方が光学補償が容易となるので望ましい。
しかし、汎用顔料であるPG36の場合、0>Rth(G)、青色顔料であるPB15:6ではRth(B)>0であるため、現状ではRth(B)>0>Rth(G)という状況となる。赤色光は緑色光より波長が長いので、対応するRth(R)も単調に減少するように0>Rth(G)>Rth(R)という関係を満たす必要があるが、従来の赤色着色画素はRth(R)>0の場合が多く、Rth(B)>0>Rth(G)>Rth(R)の関係を満たすことが困難であった。したがって、赤色着色画素についてはRth(R)<0を満たすことが可能な赤色顔料が求められていると言える。
これに対しては、着色顔料を含有した膜中に平面構造基を有する高分子を含有させるかまたは着色顔料を含有した膜中に、高分子と正負逆の複屈折率をもつ複屈折低減粒子を含有させることで、カラーフィルタのもつリタデーション量を低減させる試みがなされている(例えば、特許文献1,2)。
ところが、カラーフィルタのもつ厚み方向位相差値は、用いる顔料種によって大きく異なることや、また該顔料の微細化や分散による影響、あるいはマトリックス樹脂(たとえばアクリル樹脂やカルド樹脂など)による影響によって変動することを本発明者らは見出しており、これら高分子薄膜や複屈折低減粒子を含有させる方法だけでは十分な効果が得られず、Rth(R)を負にすることができなかった。
特開2000-187114号公報 特開2008-185985号公報
そこで、本発明は、赤色着色画素、緑色着色画素、青色着色画素の厚み方向位相差を、それぞれRth(R)、Rth(G)、Rth(B)と記すと、これがRth(R)<Rth(G)<Rth(B)の関係を確実に満たしたカラーフィルタを提供することを目的とした。
請求項1に記載の発明は、透明基板上に、赤色画素、緑色画素、および青色画素を配置したカラーフィルタにおいて、前記赤色画素が、負のリタデーションをもつ着色組成物の硬化物から形成されていることを特徴とするカラーフィルタとしたものである。
請求項2に記載の発明は、前記赤色着色組成物が、リタデーション調整剤として平面構造基を有する有機化合物を含有することを特徴とするカラーフィルタとしたものである。
請求項3に記載の発明は、前記赤色着色組成物が、リタデーション調整剤として一つ以上の架橋性基を有する化合物を含有することを特徴とするカラーフィルタとしたものである。
請求項4に記載の発明は、前記有機化合物が、スチレン化合物およびその重合性化合物から選択される1種以上を選択した有機化合物であることを特徴とするカラーフィルタと
したものである。
請求項5に記載の発明は、前記スチレン化合物が、下記の化学式で示される有機化合物であることを特徴とする請求項1から請求項4のいずれか1項に記載のカラーフィルタ
としたものである。
Figure 2011118033
請求項6に記載の発明は、請求項1から請求項4のいずれか1項に記載のカラーフィルタを用いたことを特徴とする液晶表示装置である。
以上、本発明によれば、
赤色着色画素の厚み方向位相差を負にすることで、青色着色画素、緑色着色画素、赤色着色画素の厚み方向位相差をこの順で単調減少させることが可能となった。したがって、これらの着色画素からなるカラーフィルタを備えた液晶パネルにおいては、位相差補償膜を該パネルに外付けすることで容易に位相差補償が可能となる。
また、このカラーフィルタと位相差補償膜を備える液晶表示装置は、各着色画素の表示領域を通過する光の偏光状態にばらつきがRth(R)<Rth(G)<Rth(B)となるため低減し、表示面観察方向(法線方向)のみでなく、観察方向からおよそ45度ずれた斜め方向からの観察においても着色がなく、かつ正面(表示面法線方向)視認性の良い表示装置となる。
本発明の一実施の形態に係るカラーフィルタを示す概略断面視の図である。 本発明のカラーフィルタを備えた液晶表示装置の一例を示す概略断面視の図である。
以下、本発明の実施の形態につき説明する。
先ず、各着色画素層の厚み方向位相差値は、少なくとも赤色(R)・緑色(G)および青色(B)の3色の着色画素を備えたカラーフィルタに、分光エリプソメータなどの位相差測定装置を用いて3次元屈折率を測定することで得られることに留意する。
例えば、赤色着色画素では620nm、緑色着色画素では550nm、青色着色画素では450nmの波長で、正面と入射角45度の少なくとも2方向からの光で位相差測定を行い、Nx、Ny、Nzの3次元屈折率を得たのち、以下に示す式1より厚み方向位相差値(Rth)を算出する。
Rth={(Nx+Ny)/2-Nz}×d (式1)
式中、Nx、Nyはそれぞれ着色画素面内のx、y方向の屈折率、Nzは厚み方向の屈折率である。dは、着色画素層の厚み(nm)である。ここで正の複屈折異方性とは、NxがNZ≧Nx=Nyを満たす場合であり、上記式1よりRth<0となるため、負のリタデーションを示すようになる。
この際、測定する基板がカラーフィルタである場合は、R・G・Bの単一着色画素層のみを透過するように加工されたマスクを介して測定することで着色画素層ごとの位相差値を求めることができる。
すなわち、620nmの波長の光を入射光として使用した場合は、赤色着色画素のみに起因する位相差値、550nmの場合は、緑色着色画素のみに起因する位相差値、450n
mの場合は、青色着色画素のみに起因する位相差値としてそれぞれ単一着色画素層のおおよその値を見積もることができる。
なお、測定する基板がR・G・Bのうちいずれかの単一着色画素層(透明基板に単色のカラーフィルタ着色組成物の塗膜を形成した構成)である場合は、マスクを介することなく位相差の測定が可能となる。
次に、リタデーション調整剤について説明する。
リタデーション調整剤とは、カラーフィルタ着色組成物を、透明基板や反射性基板、半導体基板上に着色塗膜として形成する場合に、カラーフィルタの厚み方向の位相差を調整するために添加する材料のことである。特に斜め視認性を改善する目的で、必要であれば、2色以上のカラーフィルタ着色組成物に添加することができる。
リタデーション調整剤として使用する化合物は、1000あるいは3000以上の高いコントラストを確保するには分散性の良い有機化合物であることが望ましい。無機物などの粒子形状のものも採用可能であるが、光散乱性や消偏性の観点から避けたほうが良い。
以下に記載のリタデーション調整剤は、後述する透明樹脂や透明樹脂前駆体に有機顔料を分散する着色組成物(もしくは赤色着色組成物)に添加することで、リタデーションを負にする可能性をもつ有機物である。
有機物からなるリタデーション調整剤は平面構造基を有し、芳香族環を1つ以上有するものであり、単環式炭化水素では、フェニル基、クメニル基、メシチル基、トリル基、キシリル基、ベンジル基、スチレン基、フェネチル基、スチリル基、シンナミル基、トリチル基など、多環式炭化水素ではペンタレニル基、インデニル基、ナフチル基、ビフェニレン基、アセナフチレン基、フルオレン基、フェナントリル基、アントラセン基、トリフェニレン基、ピレン基、ナフタセン基、ペンタフェン基、ペンタセン基、テトラフェニレン基、トリナフチレン基などの公知の化合物を使用することができる。ヘテロ単環化合物では、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピラジニル基、トリアジン基など、ヘテロ多環化合物では、インドリジニル基、イソインドリル基、インドリル基、プリニル基、キノリル基、イソキノリル基、フタラジニル基、ナフチリジニル基、キノキサリニル基、シノリニル基、カルバゾリル基、カルボリニル基、アクリジニル基、ポルフィリン基などの公知の化合物が例示でき、これらは、炭化水素基、ハロゲン基などの置換基を有するものであってもよい。
上記の平面構造基に付属する少なくとも1つ以上の架橋性基としては、不飽和重合性基または官能基または熱重合性基であることが好ましく、エポキシ基がさらに好ましく用いられる。
また、不飽和重合性基では、エチレン性不飽和重合性基であることがさらに好ましく、また、−CHNHCOCH=CH、−CHNHCO(CHCH=CH(CHCH、−OCO(C)O(CHCH=CHなども好適に用いられる。
これらの架橋性基は、平面構造基に少なくとも1つ以上の水酸基等の反応性官能基を有する場合に、グリシジル(メタ)アクリレート、2−(メタ)アクリロイルオキシイソシアネート、トリレン−2、4−ジイソシアネート等の上記反応性官能基と反応する官能基およびエチレン性不飽和基を有する化合物を公知の方法で反応させることによって容易に得られる。
本発明では前記化合物をリタデーション調整剤として検討した結果、スチレン化合物が加熱段階で赤色着色画素中にて膜収縮を緩和し、正の複屈折異方性を有することを発見し、Rth(R)<0となることを見出した。
次に本発明になるカラーフィルタについて説明する。
本発明のカラーフィルタは、図1に示すようにガラス基板上に遮光層であるブラックマトリクスを具備し、少なくとも赤色(R)・緑色(G)および青色(B)の3色の着色画素を備えている。
尚、これら3色に限らず、さらに、補色の組み合わせでも良く、あるいは補色や他色を含んだ3色以上の多色のカラーフィルタであっても良い。
赤色画素には、例えば、C.I.Pigment Red 7、14、41、48:2、48:3、48:4、81:1、81:2、81:3、81:4、146、168、177、178、179、184、185、187、200、202、208、210、246、254、255、264、270、272、279等の赤色顔料を用いることができ、黄色顔料や橙色顔料を併用することもできる。
黄色顔料としては、C.I. PigmentYellow 1、2、3、4、5、6、10、12、13、14、15、16、17、18、24、31、32、34、35、35:1、36、36:1、37、37:1、40、42、43、53、55、60、61、62、63、65、73、74、77、81、83、93、94、95、97、98、100、101、104、106、108、109、110、113、114、115、116、117、118、119、120、123、126、127、128、129、147、151、152、153、154、155、156、161、162、164、166、167、168、169、170、171、172、173、174、175、176、177、179、180、181、182、187、188、193、194、199、198、213、214等が挙げられる。橙色顔料としては、C.I.Pigment Orange 36、43、51、55、59、61、71、73等が挙げられる。
赤色画素が、これら顔料のなかでジケトピロロピロール系赤色顔料、アントラキノン系赤色顔料のうち1種類以上を含む場合には、任意のRthを得ることが容易になるため好ましい。なぜなら、ジケトピロロピロール系赤色顔料は、その微細化処理を工夫することにより、Rthを正負のどちらにすることも可能でその絶対値もある程度制御可能であり、また、アントラキノン系赤色顔料は、微細化処理に関わらず0に近いRthを得やすいためである。
その使用量は、顔料の合計重量を基準として、ジケトピロロピロール系赤色顔料を10〜90重量%、アントラキノン系赤色顔料を5〜70重量%とすることが、画素の色相や明度、膜厚、コントラスト等の点から好ましく、特に、コントラストに着目した場合、ジケトピロロピロール系赤色顔料を25〜75重量%、アントラキノン系赤色顔料を30〜60重量%とすることがより好ましい。
また、赤色画素には色相を調整する目的で黄色顔料や橙色顔料を含有させることができるが、高コントラスト化の点からアゾ金属錯体系黄色顔料を用いることが好ましい。
その使用量は、顔料の合計重量を基準として5〜25重量%であることが好ましく、5重量%未満の場合には、充分な明度向上などの色相調整ができず、30重量%を超える場合には、色相が黄味にシフトし過ぎるため、色再現性は悪くなる。
上記において、ジケトピロロピロール系赤色顔料としては、C.I.Pigment Red 254、アントラキノン系赤色顔料としては、C.I.Pigment Red177、アゾ金属錯体系黄色顔料としてはC.I.PigmentYellow 150が、優れた耐光性、耐熱性、透明性、および着色力等の点から好適である。
また、無機顔料としては、黄色鉛、亜鉛黄、べんがら(赤色酸化鉄(III))、カドミウム赤、群青、紺青、酸化クロム緑、コバルト緑等の金属酸化物粉、金属硫化物粉、金属粉等が挙げられる。
無機顔料は、彩度と明度のバランスを取りつつ良好な塗布性、感度、現像性等を確保するために、有機顔料と組み合わせて用いられる。さらに、調色のため、耐熱性を低下させない範囲内で染料を含有させることができる。
着色画素に含まれる顔料は、カラーフィルタの高輝度化、高コントラスト化を実現させるため、微細化されていることが好ましく、平均一次粒子径が小さいことが好ましい。顔料の平均一次粒子径は、顔料を透過型電子顕微鏡で撮り、その写真の画像解析により算出できる。
顔料の平均一次粒子径は、40nm以下であることが好ましく、より好ましくは30nm以下であり、更に好ましくは20nm以下である。また、平均一次粒子径は5nm以上であることが好ましい。顔料の平均一次粒子径が上限値より大きい場合には、液晶表示装置の黒表示時の視認性が悪い。また、下限値より小さい場合は、顔料分散が難しくなり、着色組成物としての安定性を保ち、流動性を確保することが困難になる。その結果、カラーフィルタの輝度、色特性が悪化する。特に、平均一次粒子径が40μmを超える有機顔料は、正面視認性に悪影響を与える。
また、透明基板上に形成された各色画素を2枚の偏光板の間に挟み、一方の偏光板側からバックライトを当てて、他方の偏光板を透過した光を輝度計にて測定し、偏光板が平行状態における光の輝度(Lp)と直交状態における光の輝度(Lc)の比より算出されるコントラストCは、C=Lp/Lcより算出され、CSは着色画素がない基板のみ、CRは赤色画素、CGは緑色画素、CBは青色画素のコントラストを表す場合、CR/CS>0.45、かつ、CG/CS>0.45、かつ、CB/CS>0.45を満たす場合に、液晶表示装置の黒表示時の正面視認性が優れたものとなる。
顔料の平均一次粒子径および厚み方向位相差を制御する手段としては、顔料を機械的に粉砕して一次粒子径および粒子形状を制御する方法(磨砕法と呼ぶ)、良溶媒に溶解したものを貧溶媒に投入して所望の一次粒子径および粒子形状の顔料を析出させる方法(析出法と呼ぶ)、および合成時に所望の一次粒子径および粒子形状の顔料を製造する方法(合成析出法と呼ぶ)等がある。使用する顔料の合成法や化学的性質等により、個々の顔料について適当な方法を選択して行うことができる。
以下に、それぞれの方法について説明するが、本発明のカラーフィルタを構成する着色画素層に含まれる顔料の一次粒子径および粒子形状の制御方法は、上記方法のいずれを用いてもよい。
磨砕法は、顔料をボールミル、サンドミルまたはニーダーなどを用いて、食塩等の水溶性の無機塩などの磨砕剤およびそれを溶解しない水溶性有機溶剤とともに機械的に混練(以下、この処理をソルトミリングと呼ぶ)した後、無機塩と有機溶剤を水洗除去し、乾燥することにより所望の一次粒子径および粒子形状の顔料を得る方法である。ただし、ソルトミリング処理により、顔料が結晶成長する場合があるため、処理時に上記有機溶剤に少なくとも一部溶解する固形の樹脂や顔料分散剤を加えて、結晶成長を防ぐ方法が有効である。
顔料と無機塩の比率は、無機塩の比率が多くなると顔料の微細化効率は良くなるが、顔料の処理量が少なくなるために生産性が低下する。
一般的には、顔料が1重量部に対して無機塩を1〜30重量部、好ましくは2〜20重量部用いるのが良い。また、上記水溶性有機溶剤は、顔料と無機塩とが均一な固まりとなるように加えるもので、顔料と無機塩との配合比にもよるが、通常は顔料1重量部に対して0.5〜30重量部の量で用いられる。
上記磨砕法についてさらに具体的には、顔料と水溶性の無機塩の混合物に湿潤剤として少量の水溶性有機溶剤を加え、ニーダー等で強く練り込んだ後、この混合物を水中に投入し、ハイスピードミキサー等で攪拌しスラリー状とする。次に、このスラリーを濾過、水洗して乾燥することにより、所望の一次粒子径および粒子形状の顔料を得ることができる。
析出法は、顔料を適当な良溶媒に溶解させたのち、貧溶媒と混ぜ合わせて、所望の一次粒子径および粒子形状の顔料を析出させる方法で、溶媒の種類や量、析出温度、析出速度などにより一次粒子径の大きさおよび粒子形状が制御できる。
一般に顔料は溶媒に溶けにくいため、使用できる溶媒は限られるが、例として濃硫酸、ポリリン酸、クロロスルホン酸などの強酸性溶媒または液体アンモニア、ナトリウムメチラートのジメチルホルムアミド溶液などの塩基性溶媒などが知られている。
本法の代表例としては、酸性溶剤に顔料を溶解させた溶液を他の溶媒中に注入し、再析出させて微細粒子を得るアシッドペースティング法がある。工業的にはコストの観点から硫酸溶液を水に注入する方法が一般的である。
硫酸濃度は特に限定されないが、95〜100重量%が好ましい。顔料に対する硫酸の使用量は特に限定されないが、少ないと溶液粘度が高くハンドリングが悪くなり、逆に多すぎると顔料の処理効率が低下するため、顔料に対して3〜10重量倍の硫酸を用いることが好ましい。
なお、顔料は完全溶解している必要はない。溶解時の温度は0〜50℃が好ましく、これ以下では硫酸が凍結する恐れがあり、かつ溶解度も低くなる。高温すぎると副反応が起こりやすくなる。
注入される水の温度は1〜60℃が好ましく、この温度以上で注入を始めると硫酸の溶解熱で沸騰して作業が危険である。これ以下の温度では凍結してしまう。注入にかける時間は顔料1部に対して0.1〜30分が好ましい。時間が長くなるほど一次粒子径は大きくなる傾向がある。
顔料の一次粒子径および粒子形状の制御は、アシッドペースティング法などの析出法とソルトミリング法などの磨砕法を組み合わせた手法を選択することにより、顔料の整粒度合を考慮しつつ行うことができ、さらにはこのとき分散体としての流動性も確保できることからより好ましい。
ソルトミリング時あるいはアシッドペースティング時には、一次粒子径および粒子形状制御に伴う顔料の凝集を防ぐために、下記に示す色素誘導体や樹脂型顔料分散剤、界面活性剤等の分散助剤を併用することもできる。また、一次粒子径および粒子形状制御を2種類以上の顔料を共存させた形で行うことにより、単独では分散が困難な顔料であっても安定な分散体として仕上げることができる。
特殊な析出法としてロイコ法がある。フラバントロン系、ペリノン系、ペリレン系、インダントロン系等の建染染料系顔料は、アルカリ性ハイドロサルファイトで還元すると、キノン基がハイドロキノンのナトリウム塩(ロイコ化合物)になり水溶性になる。この水溶液に適当な酸化剤を加えて酸化することにより、水に不溶性の一次粒子径の小さな顔料を析出させることができる。
合成析出法は、顔料を合成すると同時に所望の一次粒子径および粒子形状の顔料を析出させる方法である。しかし、生成した微細顔料を溶媒中から取り出す場合、顔料粒子が凝集して大きな二次粒子になっていないと一般的な分離法である濾過が困難になるため、通
常、二次凝集が起きやすい水系で合成されるアゾ系等の顔料に適用されている。
さらに、顔料の一次粒子径および粒子形状を制御する手段として、顔料を高速のサンドミル等で長時間分散すること(顔料を乾式粉砕する、いわゆるドライミリング法)により、顔料の一次粒子径を小さくすると同時に分散することも可能である。
以下には、本発明のカラーフィルタの各色画素を形成するために用いられる着色組成物について説明する。
各色画素を形成するために用いられる着色組成物に含まれる顔料担体は、顔料を分散させるものであり、透明樹脂、その前駆体、またはそれらの混合物により構成される。
透明樹脂は、可視光領域の400〜700nmの全波長領域において透過率が好ましくは80%以上、より好ましくは95%以上の樹脂である。
透明樹脂には、熱可塑性樹脂、熱硬化性樹脂、および感光性樹脂が含まれ、その前駆体には、放射線照射により硬化して透明樹脂を生成するモノマーもしくはオリゴマーが含まれ、これらを単独でまたは2種以上混合して用いることができる。
顔料担体は、着色組成物中の顔料100重量部に対して、30〜700重量部、好ましくは60〜450重量部の量で用いることができる。
また、透明樹脂とその前駆体との混合物を顔料担体として用いる場合には、透明樹脂は、着色組成物中の顔料100重量部に対して、20〜400重量部、好ましくは50〜250重量部の量で用いることができる。
また、透明樹脂の前駆体は、着色組成物中の顔料100重量部に対して、10〜300重量部、好ましくは10〜200重量部の量で用いることができる。
熱可塑性樹脂としては、例えば, ブチラール樹脂、スチレンーマレイン酸共重合体、塩素化ポリエチレン、塩素化ポリプロピレン、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリウレタン系樹脂、ポリエステル樹脂、アクリル系樹脂、アルキッド樹脂、ポリスチレン樹脂、ポリアミド樹脂、ゴム系樹脂、環化ゴム系樹脂、セルロース類、ポリブタジエン、ポリエチレン、ポリプロピレン、ポリイミド樹脂等が挙げられる。
また、熱硬化性樹脂としては、例えば、エポキシ樹脂、ベンゾグアナミン樹脂、ロジン変性マレイン酸樹脂、ロジン変性フマル酸樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂等が挙げられる。
感光性樹脂としては、水酸基、カルボキシル基、アミノ基等の反応性の置換基を有する線状高分子にイソシアネート基、アルデヒド基、エポキシ基等の反応性置換基を有する(メタ)アクリル化合物やケイヒ酸を反応させて、(メタ)アクリロイル基、スチリル基等の光架橋性基を該線状高分子に導入した樹脂が用いられる。
また、スチレン−無水マレイン酸共重合物やα−オレフィン−無水マレイン酸共重合物等の酸無水物を含む線状高分子をヒドロキシアルキル(メタ)アクリレート等の水酸基を有する(メタ)アクリル化合物によりハーフエステル化したものも用いられる。
透明樹脂の前駆体であるモノマーおよびオリゴマーとしては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、メラミン(メタ)アクリレート、エポキシ(メタ)アクリレート等の各種アクリル酸エステルおよびメタクリル酸エステル、(メタ)アクリル酸、スチレン、酢酸ビニル、(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、アクリロニトリル等が挙げられる。これらは、単独でまたは2種類以上混合して用いることができる。
着色組成物には、該組成物を紫外線照射により硬化する場合には、光重合開始剤等が添加される。
光重合開始剤としては、4−フェノキシジクロロアセトフェノン、4−t−ブチル−ジ
クロロアセトフェノン、ジエトキシアセトフェノン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン等のアセトフェノン系光重合開始剤、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール等のベンゾイン系光重合開始剤、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド等のベンゾフェノン系光重合開始剤、チオキサントン、2−クロロチオキサントン、2−メチルチオキサントン、イソプロピルチオキサントン、2,4−ジイソプロピルチオキサントン等のチオキサントン系光重合開始剤、2,4,6−トリクロロ−s−トリアジン、2−フェニル−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−メトキシフェニル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(p−トリル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−ピペロニル−4,6−ビス(トリクロロメチル)−s−トリアジン、2,4−ビス(トリクロロメチル)−6−スチリル−s−トリアジン、2−(ナフト−1−イル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロロメチル)−s−トリアジン、2,4−トリクロロメチル−(ピペロニル)−6−トリアジン、2,4−トリクロロメチル(4’−メトキシスチリル)−6−トリアジン等のトリアジン系光重合開始剤、ボレート系光重合開始剤、カルバゾール系光重合開始剤、イミダゾール系光重合開始剤等が用いられる。
光重合開始剤は、着色組成物中の顔料100重量部に対して、5〜200重量部、好ましくは10〜150重量部の量で用いることができる。
上記光重合開始剤は、単独あるいは2種以上混合して用いるが、増感剤として、α−アシロキシエステル、アシルフォスフィンオキサイド、メチルフェニルグリオキシレート、ベンジル、9,10−フェナンスレンキノン、カンファーキノン、エチルアンスラキノン、4,4’−ジエチルイソフタロフェノン、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、4,4’−ジエチルアミノベンゾフェノン等の化合物を併用することもできる。
増感剤は、光重合開始剤100重量部に対して、0.1〜60重量部の量で含有させることができる。
さらに、着色組成物には、連鎖移動剤としての働きをする多官能チオールを含有させることができる。多官能チオールは、チオール基を2個以上有する化合物であればよく、例えば、ヘキサンジチオール、デカンジチオール 、1,4−ブタンジオールビスチオプロピオネート、1,4−ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリス(3−メルカプトブチレート)、ペンタエリスリトールテトラキス
チオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、トリメルカプトプロピオン酸トリス(2−ヒドロキシエチル)イソシアヌレート、1,4−ジメチルメルカプトベンゼン、2、4、6−トリメルカプト−s−トリアジン、2−(N,N−ジブチルアミノ)−4,6−ジメルカプト−s−トリアジン等が挙げられる。これらの多官能チオールは、1種または2種以上混合して用いることができる。
多官能チオールは、着色組成物中の顔料100重量部に対して、0.2〜150重量部、好ましくは0.2〜100重量部の量で用いることができる。
さらに、顔料を充分に顔料担体中に分散させ、ガラス基板等の透明基板上に乾燥膜厚が0.2〜5μmとなるように塗布してフィルタセグメントを形成することを容易にするために溶剤を含有させることができる。溶剤としては、例えばシクロヘキサノン、エチルセロソルブアセテート、ブチルセロソルブアセテート、1−メトキシ−2−プロピルアセテート、ジエチレングリコールジメチルエーテル、エチルベンゼン、エチレングリコールジエチルエーテル、キシレン、エチルセロソルブ、メチル−nアミルケトン、プロピレングリコールモノメチルエーテル、トルエン、メチルエチルケトン、酢酸エチル、メタノール、エタノール、イソプロピルアルコール、ブタノール、イソブチルケトン、石油系溶剤等が挙げられ、これらを単独でもしくは混合して用いる。
溶剤は、着色組成物中の顔料100重量部に対して、800〜4000重量部、好ましくは1000〜2500重量部の量で用いることができる。
着色組成物は、1種または2種以上の顔料を、必要に応じて上記光重合開始剤と共に、顔料担体および有機溶剤中に三本ロールミル、二本ロールミル、サンドミル、ニーダー、アトライター等の各種分散手段を用いて製造することができる。また、2種以上の顔料を含む着色組成物は、各顔料を別々に顔料担体および有機溶剤中に微細に分散したものを混合して製造することもできる。
顔料を顔料担体および有機溶剤中に分散する際には、適宜、樹脂型顔料分散剤、界面活性剤、顔料誘導体等の分散助剤を含有させることができる。
分散助剤は、顔料の分散に優れ、分散後の顔料の再凝集を防止する効果が大きいので、分散助剤を用いて顔料を顔料担体および有機溶剤中に分散してなる着色組成物を用いた場合には、透明性に優れたカラーフィルタが得られる。分散助剤は、着色組成物中の顔料100重量部に対して、0.1〜40重量部、好ましくは0.1〜30重量部の量で用いることができる。
樹脂型顔料分散剤としては、顔料に吸着する性質を有する顔料親和性部位と、顔料担体と相溶性のある部位とを有し、顔料に吸着して顔料の顔料担体への分散を安定化する働きをするものである。
樹脂型顔料分散剤として具体的には、ポリウレタン、ポリアクリレートなどのポリカルボン酸エステル、不飽和ポリアミド、ポリカルボン酸、ポリカルボン酸(部分)アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩、水酸基含有ポリカルボン酸エステルや、これらの変性物、ポリ(低級アルキレンイミン)と遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミドやその塩などの油性分散剤、(メタ)アクリル酸−スチレン共重合体、(メタ)アクリル酸−(メタ)アクリル酸エステル共重合体、スチレン−マレイン酸共重合体、ポリビニルアルコール、ポリビニルピロリドンなどの水溶性樹脂や水溶性高分子化合物、ポリエステル系、変性ポリアクリレート系、エチレンオキサイド/プロピレンオキサイド付加化合物、燐酸エステル系等が用いられ、これらは単独でまたは2種以上を混合して用いることができる。
界面活性剤としては、ポリオキシエチレンアルキルエーテル硫酸塩、ドデシルベンゼン
スルホン酸ナトリウム、スチレン−アクリル酸共重合体のアルカリ塩、アルキルナフタリンスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、ラウリル硫酸モノエタノールアミン、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ステアリン酸モノエタノールアミン、ステアリン酸ナトリウム、ラウリル硫酸ナトリウム、スチレン−アクリル酸共重合体のモノエタノールアミン、ポリオキシエチレンアルキルエーテルリン酸エステルなどのアニオン性界面活性剤;ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンソルビタンモノステアレート、ポリエチレングリコールモノラウレートなどのノニオン性界面活性剤;アルキル4級アンモニウム塩やそれらのエチレンオキサイド付加物などのカオチン性界面活性剤;アルキルジメチルアミノ酢酸ベタインなどのアルキルベタイン、アルキルイミダゾリンなどの両性界面活性剤が挙げられ、これらは単独でまたは2種以上を混合して用いることができる。
色素誘導体は、有機色素に置換基を導入した化合物であり、用いる顔料の色相に近いものが好ましいが、添加量が少なければ色相の異なるものを用いても良い。有機色素には、一般に色素とは呼ばれていないナフタレン系、アントラキノン系等の淡黄色の芳香族多環化合物も含まれる。色素誘導体としては、特開昭63−305173号公報、特公昭57−15620号公報、特公昭59−40172号公報、特公昭63−17102号公報、特公平5−9469号公報等に記載されているものを使用できる。特に、塩基性基を有する色素誘導体は、顔料の分散効果が大きいため、好適に用いられる。これらは単独でまたは2種類以上を混合して用いることができる。
着色組成物には、組成物の経時粘度を安定化させるために貯蔵安定剤を含有させることができる。貯蔵安定剤としては、例えばベンジルトリメチルクロライド、ジエチルヒドロキシアミンなどの4級アンモニウムクロライド、乳酸、シュウ酸などの有機酸およびそのメチルエーテル、t−ブチルピロカテコール、テトラエチルホスフィン、テトラフェニルフォスフィンなどの有機ホスフィン、亜リン酸塩等が挙げられる。貯蔵安定剤は、着色組成物中の顔料100重量部に対して、0.1〜10重量部の量で含有させることができる。
また、着色組成物には、基板との密着性を高めるためにシランカップリング剤等の密着向上剤を含有させることもできる。
シランカップリング剤としては、ビニルトリス(β−メトキシエトキシ)シラン、ビニルエトキシシラン、ビニルトリメトキシシラン等のビニルシラン類、γ−メタクリロキシプロピルトリメトキシシラン等の(メタ)アクリルシラン類、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)メチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)メチルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン等のエポキシシラン類、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジエトキシシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリエトキシシラン等のアミノシラン類、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン等のチオシラン類等が挙げられる。シランカップリング剤は、着色組成物中の顔料100重量部に対して、0.01〜100重量部の量で含有させることができる。
着色組成物は、グラビアオフセット用印刷インキ、水無しオフセット印刷インキ、イン
クジェット用インキ、シルクスクリーン印刷用インキ、溶剤現像型あるいはアルカリ現像型着色レジストの形態で調製することができる。着色レジストは、熱可塑性樹脂、熱硬化性樹脂または感光性樹脂と、モノマーと、光重合開始剤と、有機溶剤とを含有する組成物中に色素を分散させたものである。
顔料は、着色組成物の全固形分量を基準(100重量%)として5〜70重量%の割合で含有されることが好ましい。より好ましくは、20〜50重量%の割合で含有され、その残部は、顔料担体により提供される樹脂質バインダーから実質的になる。
着色組成物は、遠心分離、焼結フィルタ、メンブレンフィルタ等の手段にて、5μm以上の粗大粒子、好ましくは1μm以上の粗大粒子、さらに好ましくは0.5μm以上の粗大粒子および混入した塵の除去を行うことが好ましい。
本発明のカラーフィルタ中の赤色画素、緑色画素、および青色画素は、透明基板上に、印刷法またはフォトリソグラフィー法により、上記の各色着色組成物を用いて形成される。
透明基板としては、ソーダ石灰ガラス、低アルカリ硼珪酸ガラス、無アルカリアルミノ硼珪酸ガラスなどのガラス板や、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレンテレフタレートなどの樹脂板が用いられる。また、ガラス板や樹脂板の表面には、液晶パネル化後の液晶駆動のために、酸化インジウム、酸化錫、酸化亜鉛、酸化アンチモンなどの金属酸化物の組み合わせからなる透明電極が形成されていてもよい。
印刷法による各色フィルタセグメントの形成は、上記各種の印刷インキとして調製した着色組成物の印刷と乾燥を繰り返すだけでパターン化ができるため、カラーフィルタの製造法としては、低コストで量産性に優れている。さらに、印刷技術の発展により高い寸法精度および平滑度を有する微細パターンの印刷を行うことができる。印刷を行うためには、印刷の版上にて、あるいはブランケット上にてインキが乾燥、固化しないような組成とすることが好ましい。また、印刷機上でのインキの流動性の制御も重要であり、分散剤や体質顔料によるインキ粘度の調整を行うこともできる。
フォトリソグラフィー法により各色画素を形成する場合は、上記溶剤現像型あるいはアルカリ現像型着色レジストとして調製した着色組成物を、透明基板上に、スプレーコートやスピンコート、スリットコート、ロールコート等の塗布方法により、乾燥膜厚が0.2〜10μmとなるように塗布する。
塗布膜を乾燥させる際には、減圧乾燥機、コンベクションオーブン、IRオーブン、ホットプレート等を使用してもよい。必要により乾燥された膜には、この膜と接触あるいは非接触状態で設けられた所定のパターンを有するマスクを通して紫外線露光を行う。
その後、溶剤またはアルカリ現像液に浸漬するかもしくはスプレーなどにより現像液を噴霧して未硬化部を除去して所望のパターンを形成したのち、同様の操作を他色について繰り返してカラーフィルタを製造することができる。
さらに、着色レジストの重合を促進するため、必要に応じて加熱を施すこともできる。フォトリソグラフィー法によれば、上記印刷法より精度の高いカラーフィルタが製造できる。
現像に際しては、アルカリ現像液として炭酸ナトリウム、水酸化ナトリウム等の水溶液が使用され、ジメチルベンジルアミン、トリエタノールアミン等の有機アルカリを用いることもできる。また、現像液には、消泡剤や界面活性剤を添加することもできる。現像処理方法としては、シャワー現像法、スプレー現像法、ディップ(浸漬)現像法、パドル(液盛り)現像法等を適用することができる。
なお、紫外線露光感度を上げるために、上記着色レジストを塗布乾燥後、水溶性あるいはアルカリ水溶性樹脂、例えばポリビニルアルコールや水溶性アクリル樹脂等を塗布乾燥し
酸素による重合阻害を防止する膜を形成した後、紫外線露光を行うこともできる。
本発明のカラーフィルタは、上記方法の他に電着法、転写法、インクジェット法などにより製造することができる。なお、電着法は、透明基板上に形成した透明導電膜を利用して、コロイド粒子の電気泳動により各色フィルタセグメントを透明導電膜の上に電着形成することでカラーフィルタを製造する方法である。
また、転写法は剥離性の転写ベースシートの表面に、あらかじめカラーフィルタ層を形成しておき、このカラーフィルタ層を所望の透明基板に転写させる方法である。
次に、本発明のカラーフィルタを備えた液晶表示装置について説明する。
図2は、本発明のカラーフィルタを備えた液晶表示装置の概略断面図である。図2に示す装置4は、ノート型パソコン用のTFT駆動型液晶表示装置の典型例であって、離間対向して配置された一対の透明基板5および6を備え、それらの間には、液晶(LC)が封入されている。
本発明には、TN(Twisted Nematic)、STN(Super Twisted Nematic)、IPS(In-Plane switching)、VA(Vertical Alignment)、OCB(Optically Compensated Birefringence)等の液晶配向モードの液晶を適用できる。
第1の透明基板5の内面には、TFT(薄膜トランジスタ)アレイ7が形成されており、その上には例えばITOからなる透明電極層8が形成されている。透明電極層8の上には、配向層9が設けられている。また、透明基板5の外面には、位相差フィルムを構成に含む偏光板10が形成されている。
他方、第2の透明基板6の内面には、本発明のカラーフィルタ11が形成されている。カラーフィルタ11を構成する赤色、緑色および青色のフィルタセグメントは、ブラックマトリックス(図示せず)により分離されている。カラーフィルタ11を覆って、必要に応じて透明保護膜(図示せず)が形成され、さらにその上に、例えばITOからなる透明電極層12が形成され、透明電極層12を覆って配向層13が設けられている。また、透明基板6の外面には、偏光板14が形成されている。なお、偏光板10の下方には、三波長ランプ15を備えたバックライトユニット16が設けられている。
このように本実施の形態によれば、より高コントラストなカラーフィルタを得るために、用いる顔料種を特定することや、該顔料を微細化することで、カラーフィルタを構成する赤色、緑色、および青色の着色画素層の厚み方向位相差値が凹凸に変化する状態になる可能性があっても、少なくとも1つ以上の平面構造基と、該平面構造基の少なくとも2箇所以上の異なる部位に光重合性基もしくは熱重合性基を有するリタデーション調整剤を用いることで、該厚み方向位相差値が単調に変化するように最適な値に調整可能なカラーフィルタ用着色組成物を提供することが可能となる。
さらに、上記に記載の材料でカラーフィルタ用着色組成物を組成しカラーフィルタを作製することで、Rth(R)<Rth(G)<0<Rth(B)の関係にある単調に厚み方向位相差が変化するカラーフィルタを得ることができる。
さらに、光学補償層および他の構成部材の光学的特徴、特にリタデーションの波長分散の特徴に適するように、本発明のカラーフィルタを用いて液晶ディスプレイを作製した場合、各着色画素の表示領域を通過する光の偏光状態にばらつきが生じないため、斜め方向からの視野角表示に優れた液晶表示装置を得ることができる。
さらにいうと斜め方向からの視野角補償を施された黒表示となるため、斜め方向から見た場合、カラーシフトを低減し、かつニュートラルな黒色が再現でき、非常に優れた表示特
性を呈することができる。
以下、本発明の実施の形態について具体的な実施例を挙げて記載するが、本発明は下記実施例に限定されるものではない。また、本発明で用いる材料は光に対して極めて敏感であるため、自然光などの不要な光による感光を防ぐ必要がある。
なお、実施例および比較例中、「部」とは「重量部」を意味する。また、顔料の記号はカラーインデックスナンバーを示し、例えば、「PR254」は「C.I.Pigment
Red 254」を、「PY150」は「C.I.Pigment Yellow 150」を表す。
[赤色顔料1(R−1)]
赤色顔料1にはC.I Pigment Red 254、チバ・スペシャルティ・ケミカルズ社製「IR GAPHOR RED B-CF」を用いた。
[黄色顔料]
BAYER社製「FANCHON FAST YELLOW Y-5688」(C.I. PIGMENT Yellow 150)を黄色顔料3(Y-3)とする。
[黄色顔料2(Y−2)]
黄色顔料1を160部、塩化ナトリウム1600部、およびジエチレングリコール(東京化成社製)270部をステンレス製ガロンニーダー(井上製作所社製)に仕込み、60℃で15時間混錬した。
次に、この混合物を約5リットルの温水に投入し、約70℃に加熱しながらハイスピードミキサーで約1時間攪拌してスラリー状とした後、濾過し、水洗して塩化ナトリウムおよびジエリレングリコールを除き、80℃で24時間乾燥し、157部のスルトミリング処理顔料(黄色顔料2)を得た。
[緑色顔料]
ハロゲン化銅フタロシアニン系緑色顔料PG36(東洋インキ製造社製「リオノールグリーン6YK」)を用いた。
[青色顔料]
銅フタロシアニン系青色顔料PB15:6(東洋インキ製造社製「リオノールブルーES」)を用いた。
[顔料分散体の調製]
着色剤として赤色顔料1/黄色顔料1=65/35(重量比)混合物20部、分散剤としてBYK2001を5部(固形分換算)、溶媒としてプロピレングリコールモノメチルエーテルアセテート75部を、ビーズミルにより処理して、顔料分散液(RP-1)を調製した。
着色剤として赤色顔料1/黄色顔料2=65/35(重量比)混合物20部、分散剤としてBYK2001を5部(固形分換算)、溶媒としてプロピレングリコールモノメチルエーテルアセテート75部を、ビーズミルにより処理して、顔料分散液(RP-2)を調製した。
着色剤としてC.I.ピグメントグリーン36/C.I.ピグメントイエロー150=50/50(重量比)混合物20部、分散剤としてソルスパース24000を5部(固形
分換算)、溶媒としてプロピレングリコールモノメチルエーテルアセテート75部を、ビー
ズミルにより処理して、顔料分散液(GP−1)を調製した。
着色剤としてC.I.ピグメントブルー15:6/C.I.ピグメントバイオレット23=96/4(重量比)混合物20部、分散剤としてアジスパーPB821を5部(固形分換算)、溶媒としてプロピレングリコールモノメチルエーテルアセテート75部を、ビーズミルにより処理して、顔料分散液(BP−1)を調製した。
スチレン系リタデーション調整材料として、図3に示した骨格を有するスチレン‐マレイン酸系樹脂のリタデーション調整剤を用いた。
Figure 2011118033
[着色組成物(以下、レジストという)の調製]
次いで、最終的に表1に示す組成(重量比)の混合物を均一に撹拌混合した後、1μmのフィルタで濾過して各レジストを得た。
Figure 2011118033
[塗膜作製]
基板として、厚みが0.7 mmの溶融成形アルミノケイ酸薄板ガラスを準備し、洗浄を行なった後、次に、基板上にブラックマトリックスが形成された上に、上記のパターン形成用フォトレジストをスピンコート法により塗布し、減圧乾燥を行なった後、紫外線光源による照射線量が100mJ/cm になるよう露光を行ない、露光後、温度; 230℃、および加熱時間;60分間の条件でポストベークを行ない、厚みが2μmの赤色塗膜を形成した。
次に、各塗膜の色度、分光透過率、厚み方向位相差値の測定結果について記す。
[色度、分光透過率]
XYZ表色系色度図における色度は、分光光度計(OTSUKA LCF-1100M)を用いて測定した。表1に示した各レジストより作製された各色塗膜の色度を表2に示す。
Figure 2011118033
[厚み方向位相差値Rth]
厚み方向位相差値は、透過型分光エリプソメータ(日本分光社製「M−220」)を用いて、塗膜を形成した基板の法線方向から45°傾けた方位より、400nmから700nmの範囲で5nmおきの波長で測定し、エリプソパラメータであるδを得た。△=δ/360×λより位相差値△(λ)を算出し、この値を用いて、3次元屈折率を算出し、下記式1より厚み方向位相差値(Rth)を算出した。但し、赤色着色画素では620nmの波長で測定を行った。
Rth={(Nx+Ny)/2-Nz}×d (式1)
Nx、d等は先述した値であり、NxをNx≧Nyとする遅相軸とする。
表1に示した各レジストより作製された各色塗膜の厚み方向位相差値Rthを表2に示す。表2の結果から、リタデーション調整剤を含む着色剤組成物を用いて形成した塗膜では、リタデーション調整剤をアクリル樹脂溶液で置き換える量が多いほど、スチレン化合物が加熱段階で赤色着色画素中にて膜収縮を緩和し、正の複屈折異方性が発現し、厚み方向位相差値がリタデーション調整剤を含まない着色剤組成物を用いて形成した塗膜と比較し
てマイナス化していた。
[カラーフィルタの作製]
表1に示した各色レジストを組み合わせて、下記に示す方法により、カラーフィルタを
作製した。
まず、赤色レジスト(RR−1)をスピンコート法により、予めブラックマトリックスが形成されてあるガラス基板に塗工した後、クリーンオーブン中で、70℃で20分間プリベークした。次いで、この基板を室温に冷却後、超高圧水銀ランプを用い、フォトマスクを介して紫外線を露光した。
その後、この基板を23℃の炭酸ナトリウム水溶液を用いてスプレー現像した後、イオン交換水で洗浄し、風乾した。さらに、クリーンオーブン中で、230℃で30分間ポストベークを行い、基板上にストライプ状の赤色画素を形成した。
次に、緑色レジスト(GR−1)を使用し、同様に緑色画素を形成し、さらに、青色レジスト(BR−1)を使用し、青色画素を形成し、カラーフィルタを得た。各色画素の形成膜厚はいずれも2.0μmであった。
赤色レジストを(RR−3)から(RR−5)に代えた以外は、実施例1と同様にして、カラーフィルタを得た。
赤色レジストを(RR−3)から(RR−5)に代えた以外は、実施例1と同様にして、カラーフィルタを得た。
[比較例1]
赤色レジストを(RR−3)から(RR−1)に代えた以外は、実施例1と同様にして、カラーフィルタを得た。
[比較例2]
赤色レジストを(RR−3)から(RR−4)に代えた以外は、実施例1と同様にして、カラーフィルタを得た。
[液晶表示装置の作製]
得られたカラーフィルタ上に、透明ITO電極層を形成し、その上にポリイミド配向層
を形成した。このガラス基板の他方の表面に偏光板を形成した。
他方、別の(第2の)ガラス基板の一方の表面にTFTアレイおよび画素電極を形成し、他方の表面に偏光板を形成した。こうして準備された2つのガラス基板を電極層同士が対面するよう対向させ、スペーサビーズを用いて両基板の間隔を一定に保ちながら位置合わせし、液晶組成物注入用開口部を残すように周囲を封止剤で封止した。
開口部から液晶組成物を注入し、開口部を封止した。偏光板には適正化された光学補償層を設けた。このようにして作製した液晶表示装置をバックライトユニットと組み合わせて液晶パネルを得た。
[液晶表示装置の黒表示時の視認性評価]
作製した液晶表示装置を黒表示させ、液晶パネルの法線方向(正面)および法線方向か
ら45°傾けた方位(斜め)より漏れてくる光(直交透過光;漏れ光)の量を目視観察した。評価ランクは次の通りであり、結果を表3に示す。
実施例1に示すように、赤色がリタデーション調整剤を含む着色剤組成物を用い、形成されているので、得られたカラーフィルタを液晶表示装置に用いることで、斜め方向の視認性が良好な液晶表示装置を得ることができる。
実施例2ないし3では、リタデーション調整剤を含むものの、厚み方向の位相差の値が小さいため、赤色画素、緑色画素および青色画素の厚み方向の位相差のバランスが良くないため、斜め方向において色ずれが生じ、視認性が不良となっている。また、比較例1ないし2から得られるカラーフィルタでは、赤色がリタデーション調整剤を含む着色剤組成物を用い、形成されていないので、赤色画素、緑色画素、および青色画素の厚み方向の位相差のバランスが良くないため、斜め方向において色ずれが生じ、視認性が不良となる。
スチレンをリタデーション調整剤として用いる場合に、厚み方向の熱収縮を考慮するとアクリル樹脂分を全量置き換える必要性があることを発見した。
Figure 2011118033
1・・・ガラス基板
2・・・ブラックマトリックス
3・・・着色画素
4・・・液晶表示装置
5、6・・・透明基板
7・・・TFTアレイ
8、12・・・透明電極
9、13・・・配向層
10、14・・・偏光板
11・・・カラーフィルタ
15・・・三波長ランプ
16・・・バックライトユニット

Claims (6)

  1. 透明基板上に、赤色画素、緑色画素、および青色画素を配置したカラーフィルタにおいて、前記赤色画素が、波長620nmにおけるリタデーションが負の値である赤色着色組成物の硬化物から形成されていることを特徴とするカラーフィルタ。
  2. 前記赤色着色組成物が、リタデーション調整剤として平面構造基を有する有機化合物を含有することを特徴とする請求項1に記載のカラーフィルタ。
  3. 前記赤色着色組成物が、リタデーション調整剤として一つ以上の架橋性基を有する有機化合物であることを特徴とする請求項1又は請求項2に記載のカラーフィルタ。
  4. 前記有機化合物が、スチレン化合物およびその重合性化合物から選択される1種以上を選択した有機化合物であることを特徴とする請求項1から請求項3のいずれか1項に記載のカラーフィルタ。
  5. 前記スチレン化合物が、下記の化学式で示される有機化合物であることを特徴とする、請求項1から請求項4のいずれか1項に記載のカラーフィルタ。
    Figure 2011118033
  6. 請求項1から請求項4のいずれか1項に記載のカラーフィルタを用いたことを特徴とする液晶表示装置。
JP2009273404A 2009-12-01 2009-12-01 カラーフィルタおよび液晶表示装置 Pending JP2011118033A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009273404A JP2011118033A (ja) 2009-12-01 2009-12-01 カラーフィルタおよび液晶表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009273404A JP2011118033A (ja) 2009-12-01 2009-12-01 カラーフィルタおよび液晶表示装置

Publications (1)

Publication Number Publication Date
JP2011118033A true JP2011118033A (ja) 2011-06-16

Family

ID=44283476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009273404A Pending JP2011118033A (ja) 2009-12-01 2009-12-01 カラーフィルタおよび液晶表示装置

Country Status (1)

Country Link
JP (1) JP2011118033A (ja)

Similar Documents

Publication Publication Date Title
JP4306736B2 (ja) カラーフィルタ、カラーフィルタ用着色組成物、および液晶表示装置
JP4967644B2 (ja) カラーフィルタおよび液晶表示装置
JP5446415B2 (ja) 液晶表示装置
JP5428198B2 (ja) カラーフィルタおよび液晶表示装置
JP5045126B2 (ja) カラーフィルタおよび液晶表示装置
JP4848262B2 (ja) カラーフィルタの評価方法、カラーフィルタおよび液晶表示装置
JP4930394B2 (ja) 液晶表示装置
JP4465293B2 (ja) カラーフィルタおよびこれを備えた液晶表示装置
JP5589842B2 (ja) 液晶表示装置
JP2008185986A (ja) カラーフィルタおよび液晶表示装置
JP2010145787A (ja) カラーフィルタ基板及びそれを用いた液晶表示装置
JP5449985B2 (ja) カラーフィルタ、及びそのカラーフィルタを備える液晶表示装置
JP2010231003A (ja) リターデイション基板の製造方法
JP4938406B2 (ja) カラーフィルタおよびこれを備えた液晶表示装置
JP2010032870A (ja) カラーフィルタおよび液晶表示装置
JP5223465B2 (ja) カラーフィルタおよび液晶表示装置
JP4961981B2 (ja) カラーフィルタ、カラーフィルタを備える液晶表示装置およびカラーフィルタの測定装置
JP2011013274A (ja) 液晶表示装置用カラ−フィルタ及びカラーフィルタ用赤色着色組成物
JP5174212B2 (ja) カラーフィルタおよび液晶表示装置
JP2011118033A (ja) カラーフィルタおよび液晶表示装置
JP2013105010A (ja) カラーフィルタ用感光性着色組成物、液晶表示装置用カラーフィルタ及び液晶表示装置
JP2012088475A (ja) カラーフィルタおよび液晶表示装置
JP2009180783A (ja) 液晶表示装置及びそれに用いるカラーフィルタ
JP5003669B2 (ja) 赤色着色組成物、赤色着色塗膜、それを用いたカラーフィルタ、及び液晶表示装置
JP4769649B2 (ja) 赤色着色膜、赤色着色組成物、カラーフィルタおよび液晶表示装置