JP2011168846A - Copper tube for heat exchanger having excellent fracture strength and bending workability - Google Patents
Copper tube for heat exchanger having excellent fracture strength and bending workability Download PDFInfo
- Publication number
- JP2011168846A JP2011168846A JP2010034351A JP2010034351A JP2011168846A JP 2011168846 A JP2011168846 A JP 2011168846A JP 2010034351 A JP2010034351 A JP 2010034351A JP 2010034351 A JP2010034351 A JP 2010034351A JP 2011168846 A JP2011168846 A JP 2011168846A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- tube
- orientation
- strength
- copper tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Metal Extraction Processes (AREA)
Abstract
Description
本発明は、破壊強度および曲げ加工性に優れた熱交換器用銅管に関するものである。ここで破壊強度とは、耐圧破壊強度であり、高い破壊圧力を有することである。本発明では銅合金からなる銅管も含めて銅管という。 The present invention relates to a copper tube for a heat exchanger excellent in fracture strength and bending workability. Here, the breaking strength is a pressure breaking strength and has a high breaking pressure. In the present invention, the term “copper pipe” includes a copper pipe made of a copper alloy.
例えば、エアコンの熱交換器は、主として、ヘアピン状に曲げ加工したU字形銅管と、アルミニウム又はアルミニウム合金板からなるフィン(以下、アルミニウムフィンという)から構成される。具体的には、熱交換器の伝熱部は、U字形に曲げ加工した銅管をアルミニウムフィンの貫通孔に通し、U字形銅管内に治具を挿入して拡管することにより、銅管とアルミニウムフィンとを密着させる。そして、更に、このU字形銅管の開放端を拡管(フレア加工)して、この拡管開放端部に、同じくU字形に曲げ加工したベンド銅管を挿入し、りん銅ろう等のろう材により、ベンド銅管を銅管の拡管開放端部にろう付けすることにより接続して、熱交換器が製作される。 For example, a heat exchanger of an air conditioner is mainly composed of a U-shaped copper tube bent into a hairpin shape and fins made of aluminum or an aluminum alloy plate (hereinafter referred to as aluminum fins). Specifically, the heat transfer part of the heat exchanger is obtained by passing a copper tube bent into a U shape through a through hole of an aluminum fin, inserting a jig into the U shape copper tube, and expanding the copper tube. And aluminum fins are in close contact. Further, the open end of the U-shaped copper pipe is expanded (flared), and a bent copper pipe bent into a U-shape is inserted into the expanded open end, and a brazing material such as phosphor copper braze is used. The heat exchanger is manufactured by connecting the bend copper pipe to the open end of the copper pipe by brazing.
このため、熱交換器に使用される銅管には、加工性(曲げ、拡管・フレア、縮管・絞りなど)及びろう付け性が良好であることが要求される。従って、これらの特性が良好であり、更に熱伝導率が良く、適切な強度を有するりん脱酸銅が広く使用されている。 For this reason, copper pipes used in heat exchangers are required to have good workability (bending, expansion / flare, contraction / drawing, etc.) and brazing. Accordingly, phosphorous deoxidized copper having good characteristics, good thermal conductivity, and appropriate strength is widely used.
エアコン等の熱交換器に使用する冷媒には、HCFC(ハイドロクロロフルオロカーボン)系フロンが広く使用されてきたが、HCFCはオゾン破壊係数が大きいことから、地球環境保護の点より、その値が小さいHFC(ハイドロフルオロカーボン)系フロンが使用されるようになってきた。また、給湯器、自動車用空調機器又は自動販売機等に使用される熱交換器に自然冷媒であるCO2が使用されるようになってきた。熱交換器において、これらの冷媒が使用される圧力(熱交換器の伝熱管内を流れる圧力)は凝縮器(CO2においてはガスクーラー)において最大となり、例えば、HCFC系フロンのR22では1.8MPa、HFC系フロンのR410Aでは3MPa、またCO2冷媒では7乃至10MPa(超臨界状態)程度であり、新たに採用された冷媒の運転圧力は従来冷媒R22の1.6乃至6倍程度に増大している。 HCFC (hydrochlorofluorocarbon) fluorocarbons have been widely used as refrigerants for heat exchangers such as air conditioners. However, HCFC has a low ozone depletion coefficient, so its value is small in terms of protecting the global environment. HFC (hydrofluorocarbon) -based fluorocarbons have been used. Moreover, CO2 which is a natural refrigerant has come to be used for heat exchangers used in water heaters, automotive air conditioners, vending machines and the like. In the heat exchanger, the pressure at which these refrigerants are used (pressure flowing in the heat transfer tubes of the heat exchanger) is the maximum in the condenser (gas cooler in CO2), for example, 1.8 MPa for R22 of HCFC-based Freon. The HFC-based fluorocarbon R410A is about 3 MPa and the CO2 refrigerant is about 7 to 10 MPa (supercritical state), and the operating pressure of the newly adopted refrigerant is increased to 1.6 to 6 times that of the conventional refrigerant R22. Yes.
伝熱管内を流れる冷媒の運転圧力をP、伝熱管の外径をD、伝熱管の引張り強さ(伝熱管長手方向)をσ、伝熱管の肉厚をt(内面溝付管の場合は底肉厚)とすると、これらの間には、P=2×σ×t/(D−0.8t)の関係がある。前記式を肉厚tに関して整理すると、t=(D×P)/(2×σ+0.8P)となり、伝熱管の引張り強さが大きいほど肉厚を薄くできることがわかる。実際に、伝熱管を選定する場合、前記のPに更に安全率S(通常2.5乃至4程度)を乗じた圧力に対して算出される引張り強さ及び肉厚の伝熱管を使用する。 The operating pressure of the refrigerant flowing in the heat transfer tube is P, the outer diameter of the heat transfer tube is D, the tensile strength of the heat transfer tube (longitudinal direction of the heat transfer tube) is σ, and the thickness of the heat transfer tube is t (in the case of an internally grooved tube) (Thickness of the bottom wall), there is a relationship of P = 2 × σ × t / (D−0.8t) between them. When the above formula is arranged with respect to the wall thickness t, t = (D × P) / (2 × σ + 0.8P), and it can be seen that the wall thickness can be reduced as the tensile strength of the heat transfer tube is increased. Actually, when selecting a heat transfer tube, a heat transfer tube having a tensile strength and a wall thickness calculated for a pressure obtained by multiplying the above-mentioned P by a safety factor S (usually about 2.5 to 4) is used.
りん脱酸銅製伝熱管の場合、引張り強さが小さいことから、冷媒の運転圧力の増大に対応するには管の肉厚を厚くする必要がある。また、熱交換器の組立の際、ろう付け部は800℃以上の温度に数秒乃至数十秒間加熱されるため、ろう付け部及びその近傍ではその他の部分に比べて結晶粒が粗大化し、軟化により強度が低下した状態となってしまうことから、肉厚をより厚くする必要がある。このように、伝熱管としてりん脱酸銅を使用すると、熱交換器の質量が増大し、価格が上昇することから、引張り強さが高く、加工性が優れていて、良好な熱伝導率を有する伝熱管が強く要望されるようになってきた。 In the case of a phosphorous deoxidized copper heat transfer tube, since the tensile strength is small, it is necessary to increase the thickness of the tube in order to cope with an increase in the operating pressure of the refrigerant. In addition, when assembling the heat exchanger, the brazed part is heated to a temperature of 800 ° C. or higher for several seconds to several tens of seconds. Therefore, it is necessary to make the wall thickness thicker. Thus, when phosphorous deoxidized copper is used as a heat transfer tube, the mass of the heat exchanger increases and the price increases, so the tensile strength is high, workability is excellent, and good thermal conductivity is achieved. There has been a strong demand for heat transfer tubes.
このような伝熱管の薄肉化の要望に応えるべく、りん脱酸銅に替えて、りん脱酸銅よりも強度が高い、Co−P系銅合金あるいはSn−P系銅合金などの銅合金からなる銅管が従来から種々提案されている。Sn−P系銅合金としては、Sn:0.1〜1.0%、P:0.005〜0.1%を含有し、OやHなどの不純物を規制し、Znを選択的に添加した組成からなり、更に平均結晶粒径が30μm以下であるような、熱交換器用銅管が提案されている(特許文献1、2、3、4参照)。 In order to meet the demands for reducing the thickness of such heat transfer tubes, instead of phosphorous deoxidized copper, the strength is higher than that of phosphorous deoxidized copper, and a copper alloy such as a Co—P based copper alloy or a Sn—P based copper alloy is used. Various copper pipes have been proposed. Sn—P based copper alloy contains Sn: 0.1 to 1.0%, P: 0.005 to 0.1%, restricts impurities such as O and H, and selectively adds Zn There has been proposed a copper tube for a heat exchanger having a composition as described above and having an average crystal grain size of 30 μm or less (see Patent Documents 1, 2, 3, and 4).
また、集合組織の制御としては、Sn−P系銅管(Sn−P系銅合金からなる銅管の意味)において、Goss方位の集積率を4%以下と制御することで、周方向の強度と伸びのバランスを適正に制御し、破壊圧力を向上させる方法(特許文献5参照)が開示されている。 In addition, as control of the texture, in the Sn-P copper pipe (meaning a copper pipe made of a Sn-P copper alloy), the strength in the circumferential direction is controlled by controlling the integration rate of the Goss orientation to 4% or less. And a method of appropriately controlling the balance of elongation and improving the breaking pressure (see Patent Document 5).
また、Sn−P系銅管においては、りん脱酸銅と比較して、破壊強度と引張強さ(破壊強度/引張強さ)の比を、りん脱酸銅よりも大きくすることで、高い破壊圧力と良好な曲げ加工性を兼備した熱交換器用銅管も提案されている(特許文献6参照)。 Moreover, in Sn-P type copper pipe, compared with phosphorus deoxidized copper, it is high by making ratio of fracture strength and tensile strength (fracture strength / tensile strength) larger than phosphorous deoxidized copper. A copper tube for a heat exchanger that has both a burst pressure and good bending workability has also been proposed (see Patent Document 6).
更に、Pを含有するP系銅合金からなるP系銅管において、中間焼鈍を行い、銅管の疵やひずみを除去することで、拡管加工時の割れを改善するなどの加工性を向上する方法が提案されている(特許文献7参照)。
しかしながら、前記特許文献1〜4では破壊強度と共に引張強さ(引張強度)も増加してしまう。引張強さが高くなると、延性が低下し、伝熱管の曲げ部で割れ及びしわが起こりやすくなり、その部分が基点となって所定破壊圧力より低い圧力で破壊してしまう。 However, in the said patent documents 1-4, tensile strength (tensile strength) will also increase with fracture strength. When the tensile strength is increased, the ductility is lowered and cracks and wrinkles are likely to occur at the bent portion of the heat transfer tube, and the portion becomes a base point and breaks at a pressure lower than a predetermined breaking pressure.
前記特許文献5では、管の周方向の強度と伸びを制御しているため、破壊強度および、拡管や縮管などの加工性に優れた銅管を提供することが可能である。しかし、管の軸方向の強度や伸びを制御していないため、曲げ加工時に割れ及びしわが生成してしまう。 In Patent Document 5, since the strength and elongation in the circumferential direction of the tube are controlled, it is possible to provide a copper tube excellent in fracture strength and workability such as tube expansion and contraction. However, since the strength and elongation in the axial direction of the tube are not controlled, cracks and wrinkles are generated during bending.
また、前記特許文献6、7も含めて、従来から、強度と曲げ加工性、あるいは拡管などの加工性を向上させた銅管を提供する方法が提案されているが、昨今では熱交換器用銅管の薄肉化要求が一層厳しいものとなり、更なる高強度化かつ良好な曲げ加工性が求められている。しかし、このように薄肉化された素材銅管は、厚肉の素材銅管に比して、一層曲げ加工性が低下する。 In addition, including the above-mentioned Patent Documents 6 and 7, methods for providing copper pipes with improved strength and bending workability or workability such as pipe expansion have been proposed, but recently, copper for heat exchangers has been proposed. The demand for thinner pipes is becoming more severe, and there is a demand for higher strength and better bending workability. However, the material copper pipe thinned in this way is further deteriorated in bending workability as compared with a thick material copper pipe.
本発明はかかる問題点に鑑みてなされたものであって、破壊強度および曲げ加工性に優れた熱交換器用銅管を提供することを目的とする。 This invention is made | formed in view of this problem, Comprising: It aims at providing the copper tube for heat exchangers excellent in fracture strength and bending workability.
上記目的のために、本発明熱交換器用銅管の要旨は、P:0.005〜0.1質量%を含有し、残部がCu及び不可避的不純物からなる組成を有する銅管であって、SEM−EBSP法による測定結果で、平均結晶粒径が40μm以下であり、圧延集合組織のβファイバーに属するCu方位、S方位、Brass方位の各方位の平均面積率の和が10〜25%の範囲であることとする。 For the above purpose, the gist of the copper tube for a heat exchanger of the present invention is a copper tube containing P: 0.005 to 0.1% by mass, with the balance being composed of Cu and inevitable impurities, As a result of measurement by the SEM-EBSP method, the average crystal grain size is 40 μm or less, and the sum of the average area ratios of the Cu orientation, S orientation, and Brass orientation belonging to the β fiber of the rolling texture is 10 to 25%. It is assumed that it is a range.
また、前記要旨の銅管が更にSn:0.1〜3.0質量%を含有する場合、前記平均結晶粒径が30μm以下であり、前記圧延集合組織のβファイバーに属するCu方位、S方位、Brass方位の各方位の平均面積率の和が10〜20%の範囲であることとする。これらの銅管が、PあるいはPとSnの他に、更にZn:0.01〜1.0質量%を含有しても良い。また、この銅管が、PあるいはPとSnや、これらにZnを加えた他に、更にFe、Ni、Mn、Mg、Cr、Ti、Zr及びAgからなる群から選択された1種または2種以上の元素を合計で0.07質量%未満(但し0%を含まず)含有しても良い。 Moreover, when the copper pipe of the said summary further contains Sn: 0.1-3.0 mass%, the said average crystal grain diameter is 30 micrometers or less, Cu direction which belongs to the beta fiber of the said rolling texture, S direction , The sum of the average area ratio of each direction of the Brass orientation is in the range of 10 to 20%. These copper tubes may further contain Zn: 0.01 to 1.0% by mass in addition to P or P and Sn. In addition to the addition of P or P and Sn, and Zn added thereto, the copper tube is further selected from one or two selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti, Zr and Ag. You may contain the element more than a seed | species less than 0.07 mass% in total (however, 0% is not included).
熱交換器の機内配管に圧力が加わると、銅管の周方向へ引張の力が作用し、抽伸方向に平行の亀裂が入って破壊に至る。したがって、破壊強度を向上するためには、この亀裂発生を抑制することが重要である。通常、銅管の周方向(圧延方向と直角)には、引張の力が作用しており、この状態で亀裂発生を抑制するには、銅管に局所的にひずみが集中しないことが重要である。 When pressure is applied to the in-machine piping of the heat exchanger, a tensile force acts in the circumferential direction of the copper pipe, causing cracks parallel to the drawing direction and breaking. Therefore, it is important to suppress the occurrence of cracks in order to improve the fracture strength. Usually, a tensile force acts in the circumferential direction of the copper tube (at right angles to the rolling direction). In this state, it is important that the strain is not concentrated locally on the copper tube in order to suppress cracking. is there.
これに対して、本発明者らは、P系銅管あるいはSn−P系銅管における、局所的なひずみ集中と、集合組織との関係に注目した。すなわち、前記局所的なひずみ集中に対する各方位の結晶粒の特性が異なり、これら集合組織の制御によって、前記銅管の局所的なひずみ集中が防止できるのではないかと考えた。 In contrast, the present inventors paid attention to the relationship between local strain concentration and texture in a P-based copper tube or a Sn-P-based copper tube. That is, the characteristics of crystal grains in each orientation with respect to the local strain concentration were different, and it was thought that local strain concentration of the copper tube could be prevented by controlling these textures.
各方位の結晶粒の特性からすると、特に、圧延集合組織のβファイバーに属するCu方位、S方位およびBrass方位は、活動できるすべり系が限定的であるため、これらの方位粒が集積すると、前記銅管に局所的にひずみが集中しやすい。このため、これらの方位粒の面積率を低く抑制することで、破壊強度を高くできることを知見した。 From the characteristics of the crystal grains in each orientation, in particular, the Cu orientation, S orientation and Brass orientation belonging to the β fiber of the rolling texture are limited in the active slip system. Strain tends to concentrate locally on the copper tube. For this reason, it has been found that the fracture strength can be increased by suppressing the area ratio of these oriented grains low.
これら圧延集合組織のβファイバーに属するCu方位、S方位およびBrass方位は、押出素管の圧延時に生成する集合組織であり、P系銅合金あるいはSn−P系銅合金からなる押出素管を、圧延または抽伸によって前記銅管を製造する限り、生成することが避けがたい。 The Cu orientation, S orientation, and Brass orientation belonging to the β fibers of these rolling textures are textures generated during the rolling of the extruded element pipe, and an extruded element pipe made of a P-based copper alloy or a Sn-P-based copper alloy, As long as the copper tube is manufactured by rolling or drawing, it is unavoidable to produce it.
これら圧延集合組織の各方位の結晶粒が多いと、前記銅管の圧延方向に平行な管軸方向の強度が、圧延方向に直角な管周方向の強度に比較して、高くなる。このため、破壊強度向上のために、これらの方位粒を抑制することで、必要以上に引張強さが高くなることを抑制でき、曲げ加工性も合わせて向上させることができる。 If there are many crystal grains in each orientation of the rolling texture, the strength of the copper tube in the tube axis direction parallel to the rolling direction is higher than the strength in the tube circumferential direction perpendicular to the rolling direction. For this reason, in order to improve the fracture strength, by suppressing these orientation grains, it is possible to suppress the tensile strength from becoming higher than necessary and to improve the bending workability.
この点、前記特許文献5でも、前記した通り、集合組織に注目し、押出素管製造の際の熱間押出完了までの時間を制御することで、Goss方位粒を抑制し、破壊強度を高くしている。しかし、銅管の一般的な製造方法では、前記した通り、押出後に95%以上の減面率の高い圧延および抽伸を行うため、圧延集合組織であるβファイバー方位粒が必然的に生成する。すなわち、意図的に圧延集合組織であるβファイバー方位粒を抑制しない限り、このβファイバー方位粒の面積率を抑制することは困難である。このため特許文献5では、Goss方位粒を抑制しても、βファイバーの面積率は必然的に高くなり、これに起因して、本発明が意図する破壊強度や曲げ加工性は低下していた。 In this respect, as described above, in Patent Document 5 as well, by focusing on the texture and controlling the time until the completion of hot extrusion in the production of the extruded element tube, Goss orientation grains are suppressed, and the fracture strength is increased. is doing. However, in a general method for manufacturing a copper tube, as described above, rolling and drawing with a high area reduction of 95% or more are performed after extrusion, and therefore β-fiber orientation grains, which are rolling textures, are inevitably generated. That is, unless the β fiber orientation grain which is a rolling texture is intentionally suppressed, it is difficult to suppress the area ratio of the β fiber orientation grain. For this reason, in Patent Document 5, even if Goss orientation grains are suppressed, the area ratio of β fibers is inevitably high, and due to this, the fracture strength and bending workability intended by the present invention have been reduced. .
すなわち、前記特許文献5などの従来の集合組織制御では、このβファイバー方位粒には注目しておらず、このβファイバー方位粒の破壊強度や曲げ加工性に及ぼす影響が、従来は不明確であったと推測される。 That is, in the conventional texture control such as Patent Document 5, attention is not paid to the β fiber oriented grains, and the effect of the β fiber oriented grains on the fracture strength and bending workability is not clear in the past. It is speculated that there was.
これに対して、本発明は、このβファイバー方位粒の破壊強度や曲げ加工性に及ぼす影響を解明して制御するものであり、本発明ではこのβファイバー方位粒を抑制することで、破壊強度と引張強さの比(破壊強度/引張強さあるいは破壊圧力/引張強さ)を大きくすることができ、銅管の肉厚を薄くしても、引張強さをそれほど大きくせずに、所定の破壊強度を確保することが可能になる。このため、この引張強さの余裕分だけ、管の曲げ加工性を向上することができる。すなわち、本発明は、破壊強度と引張り強さ(引張強度)の比を大きくすることで、破壊強度と曲げ加工性とのバランスを向上でき、破壊強度および曲げ加工性に優れた前記銅管を提供できる。 On the other hand, the present invention is to elucidate and control the influence of the β fiber orientation grain on the fracture strength and bending workability. In the present invention, by suppressing the β fiber orientation grain, the fracture strength is controlled. And tensile strength ratio (breaking strength / tensile strength or breaking pressure / tensile strength) can be increased. Even if the thickness of the copper tube is reduced, the tensile strength is not increased so much. It becomes possible to ensure the breaking strength of the. For this reason, the bending workability of the tube can be improved by the margin of this tensile strength. That is, the present invention can improve the balance between fracture strength and bending workability by increasing the ratio of fracture strength and tensile strength (tensile strength), and the copper tube having excellent fracture strength and bending workability. Can be provided.
したがって、例えば1.0mm以下に薄肉化され、かつ高強度なP系銅管あるいはSn−P系銅管であっても、前記熱交換器の伝熱管としての破壊強度や、素材管のこの伝熱管への良好な曲げ加工性を兼備させることができる。 Therefore, for example, even if the P-type copper pipe or Sn-P-type copper pipe thinned to 1.0 mm or less and having a high strength is used, the breaking strength as the heat transfer pipe of the heat exchanger and the transmission of the material pipe are not limited. Good bending workability to the heat pipe can be combined.
以下に、本発明の実施の形態につき、銅管の組織から、順に要件ごとに具体的に説明する。 Hereinafter, the embodiments of the present invention will be specifically described for each requirement in order from the structure of the copper tube.
銅管組織:
(平均結晶粒径)
銅管において、平均結晶粒径が小さいほど、破壊強度と曲げ加工性バランスが向上することが知られている。本発明でも、この機構を利用して、後述する集合組織制御と共に、平均結晶粒径を微細化する。すなわち、後述するSEM−EBSP法による測定結果で、Sn、Pをともに含有するCu−Sn−P合金では銅管の平均結晶粒径を30μm以下とし、Snを含有せずPを含有するCu−P合金では平均結晶粒径を40μm以下とし、各々破壊強度と曲げ加工性とのバランスを向上させる。
Copper tube structure:
(Average crystal grain size)
In copper pipes, it is known that the smaller the average crystal grain size, the better the fracture strength and bending workability balance. Also in the present invention, this mechanism is used to refine the average crystal grain size together with texture control described later. That is, in a Cu-Sn-P alloy containing both Sn and P as a result of measurement by the SEM-EBSP method described later, the average crystal grain size of the copper tube is 30 μm or less, and Cu—containing P without containing Sn. In the P alloy, the average crystal grain size is set to 40 μm or less, and the balance between fracture strength and bending workability is improved.
因みに、銅管の厚みが比較的厚い場合には、平均結晶粒径は、破壊強度と曲げ加工性バランスにあまり影響ない。しかし、軽量化、薄肉化の要求により、伝熱管の厚みが特に1.0mm以下に薄肉化された場合には、この結晶粒径の大きさの破壊強度と曲げ加工性バランスへの影響が著しく大きくなる。平均結晶粒径が前記した各上限を超えて大き過ぎると、伝熱管に加わる引張力によって亀裂が発生する際の「ひずみの集中」を避けることができず、伝熱管に亀裂が生じやすくなる。このため、運転圧力が高いHFC系フロン冷媒及び炭酸ガス冷媒用の熱交換器に銅管を使用したときに信頼性が低下する。また、結晶粒径が粗大化すると、銅管をエアコン等の熱交換器に組み込む際に曲げ加工したときに、曲げ部に割れが発生しやすくなる問題も生じる。 Incidentally, when the thickness of the copper tube is relatively thick, the average crystal grain size has little influence on the fracture strength and the bending workability balance. However, when the thickness of the heat transfer tube is reduced to 1.0 mm or less due to demands for weight reduction and thinning, the influence of the crystal grain size on the fracture strength and bending workability balance is significant. growing. If the average crystal grain size is too large beyond the above-mentioned upper limits, “strain concentration” when cracks are generated by the tensile force applied to the heat transfer tubes cannot be avoided, and cracks are likely to occur in the heat transfer tubes. For this reason, when a copper pipe is used for the heat exchanger for HFC type | system | group fluorocarbon refrigerant | coolant and carbon dioxide refrigerant with a high operating pressure, reliability falls. In addition, when the crystal grain size becomes coarse, there is a problem that when the copper tube is bent when incorporated in a heat exchanger such as an air conditioner, a crack is easily generated in the bent portion.
更に、銅管が熱交換器に加工されたとき、ろう付けによる熱影響を受けて、伝熱管の加熱された部分の結晶粒径は必ず粗大化する。これに対して、予め銅管の平均結晶粒径を前記した範囲に微細化させていないと、粗大化によって平均結晶粒径が100μmを超える可能性が高くなるり、ろう付け部において耐圧強度の低下が大きくなる。 Furthermore, when the copper tube is processed into a heat exchanger, the crystal grain size of the heated portion of the heat transfer tube is necessarily increased due to the heat effect of brazing. On the other hand, if the average crystal grain size of the copper tube is not refined in the above-mentioned range in advance, the average crystal grain size is likely to exceed 100 μm due to coarsening, or the pressure strength at the brazed portion is high. Decrease increases.
銅管集合組織:
(βファイバー方位粒の面積率)
前述のように、銅管は熱間押出後に圧延および抽伸により、95%以上減面されるため、この圧延や抽伸時に圧延集合組織であるβファイバーに属するが発達する。但し、Sn、Pをともに含有するSn−P系銅管では、Snを含有せずにPを含有するP系銅管よりも、この圧延集合組織が発達しにくく、Sn−P系銅管、P系銅管それぞれにおいて、制御すべき集合組織の範囲が若干異なる。
Copper tube texture:
(Area ratio of β fiber orientation grains)
As described above, since the copper tube is reduced by 95% or more by rolling and drawing after hot extrusion, it belongs to the β fiber which is a rolling texture at the time of rolling or drawing. However, in the Sn-P copper pipe containing both Sn and P, this rolling texture is less likely to develop than in the P copper pipe containing P without containing Sn, and Sn-P copper pipe, In each P-based copper pipe, the range of texture to be controlled is slightly different.
具体的に、Sn−P系銅管においては、圧延集合組織であるβファイバーに属するCu方位、S方位およびBrass方位の各方位の平均面積率の和が10〜20%の範囲に制御することにより、前記した通り、破壊強度と引張強さの比を大きくすることができる。このため、銅管の肉厚を薄くしても、引張強さをそれほど大きくせずに、所定の破壊強度を確保することが可能になり、この引張強さの余裕分だけ、管の曲げ加工性を向上することができる。すなわち、破壊強度と引張り強さの比を大きくすることで、破壊強度と曲げ加工性とのバランスを向上でき、高い破壊強度と良好な曲げ加工性とを兼備できる。この平均面積率の和が20%を超えた場合、局所的なひずみが発生しやすくなり、破壊強度と引張強さの比が低くなり、破壊強度と曲げ加工性のバランスが低下してしまう。一方、この平均面積率の和が10%未満であると、抽伸による加工硬化が不足して、破壊強度が低下してしまう。 Specifically, in the Sn-P-based copper pipe, the sum of the average area ratios of the Cu orientation, S orientation, and Brass orientation belonging to the β fiber that is the rolling texture is controlled within a range of 10 to 20%. Thus, as described above, the ratio between the breaking strength and the tensile strength can be increased. For this reason, even if the wall thickness of the copper pipe is reduced, it is possible to ensure a predetermined breaking strength without increasing the tensile strength so much, and bending the pipe by the margin of this tensile strength. Can be improved. That is, by increasing the ratio between the breaking strength and the tensile strength, the balance between the breaking strength and the bending workability can be improved, and both high breaking strength and good bending workability can be achieved. When the sum of the average area ratios exceeds 20%, local strain is liable to occur, the ratio of fracture strength to tensile strength is lowered, and the balance between fracture strength and bending workability is lowered. On the other hand, if the sum of the average area ratios is less than 10%, the work hardening by drawing is insufficient and the fracture strength is lowered.
これに対して、P系銅管においては、前述のようにSn−P系銅管と比較して、βファイバー方位粒が発達しやすい。このため、Cu−P系銅管においては、圧延集合組織であるβファイバーに属するCu方位、S方位およびBrass方位の各方位の平均面積率の和を10〜25%の範囲に制御することにより、前記した機構により、高い破壊強度と良好な曲げ加工性とを兼備させる。この平均面積率の和が25%を超えた場合、やはり局所的なひずみが発生しやすくなり、破壊強度と引張強さの比が低くなり、破壊強度と曲げ加工性のバランスが低下してしまう。一方、この平均面積率の和が10%未満であると、やはり、抽伸による加工硬化が不足して、破壊強度が低下してしまう。 On the other hand, in the P-based copper pipe, β fiber orientation grains are likely to develop as compared with the Sn-P-based copper pipe as described above. For this reason, in the Cu-P copper pipe, by controlling the sum of the average area ratios of the Cu, S, and Brass orientations belonging to the β fiber, which is a rolling texture, to a range of 10 to 25%. The above-described mechanism combines high fracture strength and good bending workability. When the sum of the average area ratios exceeds 25%, local strain is likely to occur, the ratio between fracture strength and tensile strength is lowered, and the balance between fracture strength and bending workability is lowered. . On the other hand, if the sum of the average area ratios is less than 10%, the work hardening by drawing is still insufficient, and the fracture strength is lowered.
(平均結晶粒径と集合組織の測定方法)
電界放出型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FESEM)に、後方散乱電子回折像[EBSP: ElectronBack Scattering (Scattered) Pattern]システムを搭載した結晶方位解析法を用いて、本発明では、製品銅合金の抽伸方向に平行な断面について、管外側表面から管内側表面までの集合組織を測定し、平均結晶粒径の測定を行なう。
(Measuring method of average grain size and texture)
By using a crystal orientation analysis method in which a backscattered electron diffraction image (EBSP: Electron Back Scattering (Scattered) Pattern) system is mounted on a field emission scanning electron microscope (FESEM), For the cross section parallel to the drawing direction of the alloy, the texture from the tube outer surface to the tube inner surface is measured, and the average crystal grain size is measured.
上記EBSP法は、FESEM の鏡筒内にセットした試料に電子線を照射してスクリーン上にEBSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。コンピュータでは、この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は3次元オイラー角として、位置座標(x、y)などとともに記録される。このプロセスが全測定点に対して自動的に行なわれるので、測定終了時には数万〜数十万点の結晶方位データが得られる In the EBSP method, an electron beam is irradiated onto a sample set in a FESEM column and the EBSP is projected onto a screen. This is taken with a high-sensitivity camera and captured as an image on a computer. In the computer, the orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. The calculated crystal orientation is recorded as a three-dimensional Euler angle together with position coordinates (x, y) and the like. Since this process is automatically performed for all measurement points, tens of thousands to hundreds of thousands of crystal orientation data can be obtained at the end of measurement.
ここで、通常の銅合金板の場合、主に、以下に示す如きCube方位、Goss方位、Brass方位、Copper方位、S方位等と呼ばれる多くの方位因子からなる集合組織を形成し、それらに応じた結晶面が存在する。これらの事実は、例えば、長島晋一編著、「集合組織」(丸善株式会社刊)や軽金属学会「軽金属」解説Vol.43、1993、P285-293などの記載されている。本発明銅管は押出・抽伸によって製造されるが、押出・抽伸による銅管の場合も、前記圧延による板材の集合組織の場合と同様に、押出素管の押出面と押出方向(押出素管を圧延加工する場合は圧延面と圧延方向)で表される。押出面は{ABC}で表現され、押出方向は<DEF>で表現される。かかる表現に基づき、前記各方位は下記の如く表現される。 Here, in the case of a normal copper alloy sheet, mainly a texture composed of many orientation factors called Cube orientation, Goss orientation, Brass orientation, Copper orientation, S orientation, etc. as shown below is formed, and according to them Crystal planes exist. These facts are described in, for example, edited by Shinichi Nagashima, “Aggregate” (published by Maruzen Co., Ltd.) and “Light Metal”, Vol. 43, 1993, P285-293, published by the Japan Institute of Light Metals. The copper pipe of the present invention is manufactured by extrusion / drawing. In the case of a copper pipe by extrusion / drawing, the extrusion surface and the extrusion direction (extrusion base pipe) of the extrusion raw pipe are the same as in the case of the texture of the plate material by rolling. In the case of rolling, the rolling surface and rolling direction). The extrusion surface is expressed by {ABC}, and the extrusion direction is expressed by <DEF>. Based on this expression, the respective directions are expressed as follows.
Cube方位{001}<100>
Goss方位{011}<100>
Rotated−Goss方位{011}<011>
Brass方位(B方位){011}<211>
Copper方位(Cu方位){112}<111>
(若しくはD方位{4 4 11}<11 11 8 >
S方位{123}<634>
B/G方位{011}<511>
B/S方位{168}<211>
P方位{011}<111>
Cube orientation {001} <100>
Goss orientation {011} <100>
Rotated-Goss orientation {011} <011>
Brass orientation (B orientation) {011} <211>
Copper orientation (Cu orientation) {112} <111>
(Or D direction {4 4 11} <11 11 8>
S orientation {123} <634>
B / G direction {011} <511>
B / S orientation {168} <211>
P direction {011} <111>
本発明においては、基本的に、これらの結晶面から±15°以内の方位のずれのものは同一の結晶面(方位因子)に属するものとする。また、隣り合う結晶粒の方位差が5°以上の結晶粒の境界を結晶粒界と定義する。 In the present invention, basically, deviations of orientation within ± 15 ° from these crystal planes belong to the same crystal plane (orientation factor). Further, a boundary between crystal grains in which the orientation difference between adjacent crystal grains is 5 ° or more is defined as a crystal grain boundary.
その上で、本発明においては、測定エリア、管軸方向1000×管周方向800μmに対して1.0μmのピッチで電子線を照射し、上記結晶方位解析法により測定した結晶粒の数をn、それぞれの測定した結晶粒径をxとした時、上記平均結晶粒径を(Σx)/nで算出する。 In addition, in the present invention, the number of crystal grains measured by the crystal orientation analysis method is set to n by irradiating an electron beam at a pitch of 1.0 μm with respect to the measurement area, tube axis direction 1000 × tube circumferential direction 800 μm. When the measured crystal grain size is x, the average crystal grain size is calculated as (Σx) / n.
また本発明においては、管軸方向1000×管周方向800μmに対して1.0μmのピッチで電子線を照射し、上記結晶方位解析法により測定した結晶方位の面積をそれぞれ測定し、測定エリアに対する、各方位の面積率(平均)を求めた。 In the present invention, the electron beam is irradiated at a pitch of 1.0 μm with respect to the tube axis direction 1000 × tube circumferential direction 800 μm, the crystal orientation areas measured by the crystal orientation analysis method are respectively measured, and the measurement area is measured. The area ratio (average) in each direction was determined.
ここで、結晶方位分布は管軸方向に分布がある可能性がある。管軸方向に何点か任意にとって平均をとることによって求める方が好ましい。 Here, the crystal orientation distribution may be distributed in the tube axis direction. It is preferable to obtain some points arbitrarily in the tube axis direction by taking an average.
銅合金組成:
以下、本発明銅管の銅合金成分組成、添加元素の添加理由及び組成限定理由などについて説明する。
Copper alloy composition:
Hereinafter, the copper alloy component composition of the copper pipe of the present invention, the reason for adding the additive element, the reason for limiting the composition, and the like will be described.
「P:0.005〜0.1質量%」
Sn、Pをともに含有するSn−P系銅管や、Snを含有せずにPを含有するP系銅管では、共通して、銅管のP含有量が0.1質量%を超えると、熱間押出時に割れが生じやすくなり、応力腐食割れ感受性が高くなると共に、熱伝導率の低下が大きくなる。また、P含有量が0.005質量%未満であると、脱酸不足により酸素量が増加してSnの酸化物が発生し、鋳塊の健全性が低下し、銅管として曲げ加工性が低下する。したがって、P含有量の範囲は0.005〜0.1質量%の範囲とする。
“P: 0.005 to 0.1 mass%”
For Sn-P copper pipes containing both Sn and P, and P copper pipes containing P without containing Sn, in common, the P content of the copper pipe exceeds 0.1% by mass. In addition, cracking is likely to occur during hot extrusion, the stress corrosion cracking susceptibility increases, and the thermal conductivity decreases greatly. Further, if the P content is less than 0.005% by mass, the amount of oxygen is increased due to insufficient deoxidation, Sn oxide is generated, the soundness of the ingot is lowered, and the bending workability as a copper pipe is reduced. descend. Therefore, the range of P content shall be 0.005-0.1 mass%.
「Sn:0.1〜3.0質量%」
Snは、前記Sn−P系銅管では必須であり、銅管の引張り強さを向上させ、結晶粒の粗大化を抑制させる効果を有し、種々の冷媒を使用する伝熱管の銅合金中に含有させた場合、りん脱酸銅管に比べて管の肉厚を薄くすることが可能になる。銅管のSn含有量が3.0質量%を超えると、鋳塊における凝固偏析が激しくなり、通常の熱間押出及び/又は加工熱処理により偏析が完全に解消しないことがあり、銅管の金属組織、機械的性質、曲げ加工性、ろう付け後の組織及び機械的性質が不均一となる。また、押出圧力が高くなり、Sn含有量が2質量%以下の銅合金と同一の押出圧力で押出成形するためには、押出温度を上げることが必要になり、それにより押出材の表面酸化が増加し、生産性の低下及び銅管の表面欠陥が増加する。一方、Snが0.1質量%未満であると、焼鈍後及びろう付け加熱後に、十分な引張強さ及び細かい結晶粒径を得ることができなくなる。したがって、Sn含有量の範囲は0.1〜3.0質量%の範囲とする。
“Sn: 0.1 to 3.0% by mass”
Sn is essential in the Sn-P-based copper pipe, has the effect of improving the tensile strength of the copper pipe and suppressing the coarsening of the crystal grains, and in the copper alloy of the heat transfer pipe using various refrigerants. When it is contained, the thickness of the tube can be made thinner than that of the phosphorus-deoxidized copper tube. If the Sn content of the copper tube exceeds 3.0% by mass, solidification segregation in the ingot becomes severe, and segregation may not be completely eliminated by normal hot extrusion and / or processing heat treatment. The structure, mechanical properties, bendability, structure after brazing and mechanical properties become non-uniform. Further, in order to perform extrusion molding at the same extrusion pressure as that of a copper alloy having an Sn content of 2% by mass or less, the extrusion temperature needs to be raised, thereby causing surface oxidation of the extruded material. Increases and decreases the productivity and surface defects of the copper tube. On the other hand, if Sn is less than 0.1% by mass, sufficient tensile strength and fine crystal grain size cannot be obtained after annealing and after brazing heating. Therefore, the range of Sn content shall be 0.1-3.0 mass%.
Zn:0.01〜1.0質量%
前記Sn−P系銅管やP系銅管では、共通して、Znを選択的に含有することにより、銅管の熱伝導率を大きく低下させることなく、強度、耐熱性及び疲れ強さを向上させることができる。また、Znの含有により、冷間圧延、抽伸及び転造等に用いる工具の磨耗を低減させることができ、抽伸プラグ及び溝付プラグ等の寿命を延命させる効果があり、生産コストの低減に寄与する。Znの含有量が0.01質量%未満であると、上述の効果が十分得られなくなる。一方、Znの含有量が1.0質量%を超えると、管の長手方向や管円周方向の引張強さが却って低下し、破壊強度に低下する。また、応力腐食割れ感受性が高くなる。従って、選択的に含有させる場合のZnの含有量は0.001〜1.0質量%とする。
Zn: 0.01-1.0 mass%
In the Sn-P-based copper pipe and the P-based copper pipe, in common, by selectively containing Zn, the strength, heat resistance and fatigue strength can be increased without greatly reducing the thermal conductivity of the copper pipe. Can be improved. In addition, the inclusion of Zn can reduce the wear of tools used for cold rolling, drawing, rolling, etc., and has the effect of extending the life of drawing plugs, grooved plugs, etc., contributing to the reduction of production costs To do. If the Zn content is less than 0.01% by mass, the above effects cannot be obtained sufficiently. On the other hand, if the Zn content exceeds 1.0% by mass, the tensile strength in the longitudinal direction of the tube and the circumferential direction of the tube is lowered, and the fracture strength is lowered. In addition, the stress corrosion cracking sensitivity is increased. Therefore, the Zn content when selectively contained is 0.001 to 1.0 mass%.
Fe、Ni、Mn、Mg、Cr、Ti、Zr及びAgからなる群から選択された1種または2種以上:
前記Sn−P系銅管やP系銅管では、共通して、Fe、Ni、Mn、Mg、Cr、Ti、Zr、Agを選択的に含有することにより、銅合金の強度、耐圧破壊強度、及び耐熱性を向上させ、結晶粒を微細化して曲げ加工性を改善することができる。ただ、これら元素の中から選択する1種または2種以上の元素の含有量が合計で0.07質量%を超えると、押出圧力が上昇するため、これらの元素を添加しないものと同一の押出力で押出を行おうとすると、熱間押出温度を上げることが必要になる。これにより、押出材の表面酸化が多くなるため、本発明の銅管において表面欠陥が多発し、特に薄肉化された銅管の伝熱管としての破壊強度を向上できない。このため、選択的に含有させる場合には、Fe、Ni、Mn、Mg、Cr、Ti、Zr、Zr及びAgからなる群から選択された1種または2種以上の元素を、含有する元素の合計の含有量で0.07質量%未満(但し0質量%を含まず)とする。前記含有量は、0.05質量%未満とすることが望ましく、0.03質量%未満とすることがより望ましい。
One or more selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti, Zr and Ag:
In the Sn-P-based copper pipe and the P-based copper pipe, in common, Fe, Ni, Mn, Mg, Cr, Ti, Zr, and Ag are selectively contained, whereby the strength of the copper alloy and the pressure breakdown strength. In addition, the heat resistance can be improved, and the crystal grain can be refined to improve the bending workability. However, if the content of one or more elements selected from these elements exceeds 0.07% by mass in total, the extrusion pressure rises, so the same pressing as that without adding these elements. When extrusion is performed with output, it is necessary to increase the hot extrusion temperature. Thereby, since the surface oxidation of the extruded material increases, surface defects frequently occur in the copper tube of the present invention, and in particular, the fracture strength of the thinned copper tube as a heat transfer tube cannot be improved. For this reason, when it is selectively contained, one or more elements selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti, Zr, Zr, and Ag are contained. The total content is less than 0.07% by mass (however, 0% by mass is not included). The content is desirably less than 0.05% by mass, and more desirably less than 0.03% by mass.
不純物:
その他の元素は不純物であり、Sn−P系銅管、P系銅管ともに、特に薄肉化された銅管の伝熱管としての破壊強度を向上させるために、含有量は極力少ない方が好ましい。しかし、これら不純物を低減するためのコストとの兼ね合いもあり、以下に、代表的な不純物元素の現実的な許容量(上限量)を示す。
impurities:
Other elements are impurities, and it is preferable that the content of Sn-P copper pipe and P copper pipe be as small as possible in order to improve the breaking strength of the thinned copper pipe as a heat transfer pipe. However, there is also a trade-off with the cost for reducing these impurities, and the practical allowable amounts (upper limit amounts) of typical impurity elements are shown below.
S:
Sn−P系銅管、P系銅管ともに、SはCuと化合物を形成して母相中に存在する。原料として用いる低品位銅地金、スクラップ等の配合割合が増加すると、Sの含有量が増える。Sは鋳塊時の鋳塊割れや熱間押出割れを助長する。また、押出材を冷間圧延したり、抽伸加工すると、Cu-S化合物が管の軸方向に伸張し、銅合金母相とCu-S化合物の界面で割れが発生しやすくなる。このため、加工中の半製品及び加工後の製品において、表面疵や割れ等になりやすく、特に薄肉化された銅管の伝熱管としての破壊強度を低下させる。また、管の曲げ加工を行う際、割れ発生の起点となり、曲げ部で割れが発生する頻度が高くなる。したがって、S含有量は0.005質量%以下、望ましくは0.003質量%以下、更に望ましくは0.0015質量%以下にする。S含有量を減らすためには、低品位のCu地金及びスクラップの使用量を少なくし、溶解雰囲気のSOxガスを低減し、適正な炉材を選定し、Mg及びCa等のSと親和性が強い元素を溶湯に微量添加する等の対策が有効である。
S:
In both the Sn-P copper pipe and the P copper pipe, S forms a compound with Cu and exists in the parent phase. When the blending ratio of low-grade copper ingots and scraps used as raw materials increases, the S content increases. S promotes ingot cracking and hot extrusion cracking during ingots. Further, when the extruded material is cold-rolled or drawn, the Cu—S compound expands in the axial direction of the tube, and cracks are likely to occur at the interface between the copper alloy matrix and the Cu—S compound. For this reason, it is easy to become a surface flaw, a crack, etc. in the half-finished product and the product after processing, and especially the fracture strength as a heat transfer tube of the thinned copper tube is reduced. Further, when the pipe is bent, it becomes a starting point of occurrence of cracks, and the frequency of occurrence of cracks at the bent portion increases. Therefore, the S content is 0.005% by mass or less, desirably 0.003% by mass or less, and more desirably 0.0015% by mass or less. In order to reduce the S content, reduce the amount of low-grade Cu ingots and scrap used, reduce the SOx gas in the melting atmosphere, select appropriate furnace materials, and have an affinity for S such as Mg and Ca. Measures such as adding trace amounts of strong elements to the molten metal are effective.
As、Bi、Sb、Pb、Se、Te等:
Sn−P系銅管、P系銅管とも、S以外の不純物元素As、Bi、Sb、Pb、Se、Te等についても同様に、鋳塊、熱間押出材、及び冷間加工材の健全性を低下させ、特に薄肉化された銅管の伝熱管としての破壊強度を低下させる。したがって、これらの元素の合計含有量(総量)は0.0015質量%以下、望ましくは0.0010質量%以下、更に望ましくは0.0005質量%以下とすることが好ましい。
As, Bi, Sb, Pb, Se, Te etc .:
Similarly for Sn-P copper pipes and P copper pipes, impurity elements other than S, such as As, Bi, Sb, Pb, Se, Te, etc. The fracture strength of the thinned copper tube as a heat transfer tube is reduced. Therefore, the total content (total amount) of these elements is preferably 0.0015% by mass or less, desirably 0.0010% by mass or less, and more desirably 0.0005% by mass or less.
O:
Sn−P系銅管、P系銅管とも、Oの含有量が0.005質量%を超えると、Cu又はSnの酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下し、特に薄肉化された銅管の伝熱管としての破壊強度を低下させる。このため、Oの含有量は好ましくは0.005質量%以下とすることが好ましい。曲げ加工性をより改善するには、Oの含有量を0.003質量%以下とすることが望ましく、0.0015質量%以下とすることが更に望ましい。
O:
For both Sn-P copper pipe and P copper pipe, if the O content exceeds 0.005% by mass, Cu or Sn oxide is caught in the ingot, and the soundness of the ingot is reduced. Reduces the breaking strength of thinned copper tubes as heat transfer tubes. For this reason, the content of O is preferably 0.005% by mass or less. In order to further improve the bending workability, the O content is desirably 0.003% by mass or less, and more desirably 0.0015% by mass or less.
H:
Sn−P系銅管、P系銅管とも、溶解鋳造時に溶湯に取り込まれる水素(H)が多くなると、凝固時に固溶量が減少した水素が鋳塊の粒界に析出し、多数のピンホールを形成し、熱間押出時に割れを発生させる。また、押出後も圧延及び抽伸加工した銅管を焼鈍すると、焼鈍時にHが粒界に濃縮し、これに起因して膨れが発生しやすくなり、特に薄肉化された銅管の伝熱管としての破壊強度を低下させる。このため、Hの含有量を0.0002質量%以下とすることが好ましい。製品歩留りも含めて、破壊強度をより向上させるには、Hの含有量を0.0001質量%以下とすることが望ましい。なお、Hの含有量を低減するには、溶解鋳造時の原料の乾燥、溶湯被覆木炭の赤熱、溶湯と接触する雰囲気の露点の低下、りん添加前の溶湯を酸化気味にする等の対策が有効である。
H:
In both Sn-P copper pipes and P copper pipes, when the amount of hydrogen (H) taken into the molten metal at the time of melting and casting increases, hydrogen whose solid solution amount has decreased during solidification precipitates at the grain boundaries of the ingot, and many pins Holes are formed and cracks are generated during hot extrusion. In addition, when a rolled and drawn copper tube is annealed even after extrusion, H is concentrated at the grain boundary during annealing, and this tends to cause blistering, particularly as a heat transfer tube of a thinned copper tube. Reduces fracture strength. For this reason, it is preferable to make content of H 0.0002 mass% or less. In order to further improve the fracture strength including the product yield, the H content is preferably 0.0001% by mass or less. In order to reduce the H content, measures such as drying of the raw material during melting and casting, red hotness of the molten-coating charcoal, reduction of the dew point of the atmosphere in contact with the molten metal, and making the molten metal before the addition of phosphorus feel oxidized It is valid.
(銅管の製造方法)
次に、本発明銅管の製造方法について、平滑管の場合を例として以下に説明する。本発明の銅管は、Sn−P系銅管、P系銅管とも、工程自体は常法により製造可能であるが、銅管の集合組織を前記した本発明規定内とするために、中間焼鈍工程を特に制御する必要がある。以下に、各工程を具体的に説明するが、特に断らない限り、Sn−P系銅管、P系銅管とも、各工程の条件とその意義とは共通している。
(Manufacturing method of copper pipe)
Next, the method for producing a copper pipe of the present invention will be described below by taking the case of a smooth pipe as an example. The copper tube of the present invention can be manufactured by a conventional method for both the Sn-P-based copper tube and the P-based copper tube, but in order to keep the texture of the copper tube within the above-mentioned provisions of the present invention, It is necessary to particularly control the annealing process. Each step will be specifically described below. Unless otherwise specified, the conditions of each step and their significance are common to the Sn-P-based copper tube and the P-based copper tube.
先ず、原料の電気銅を木炭被覆の状態で溶解し、銅が溶解した後、所定のSn−P系銅合金、P系銅合金組成となるように、合金元素を所定量添加する。この際、脱酸を兼ねてCu−15質量%P中間合金としてPを添加することが好ましい。また、Sn−P系銅合金では、Sn及びCu−P母合金の替わりに、Cu−Sn−Pの母合金を使用することもできる。これらの成分調整が終了した後、半連続鋳造により所定の寸法のビレットを作製する。得られたビレットを加熱炉で加熱し、均質化処理を行なう。なお、熱間押出前に、ビレットを750乃至950℃に1分乃至2時間程度保持して均質化による偏析改善を行うことが望ましい。 First, the raw electrolytic copper is dissolved in a charcoal-covered state, and after the copper is dissolved, a predetermined amount of alloy elements are added so as to obtain a predetermined Sn-P-based copper alloy and P-based copper alloy composition. At this time, it is preferable to add P as a Cu-15 mass% P intermediate alloy also for deoxidation. In addition, in the Sn—P based copper alloy, a Cu—Sn—P master alloy can be used instead of the Sn and Cu—P master alloy. After these component adjustments are completed, billets having predetermined dimensions are produced by semi-continuous casting. The obtained billet is heated in a heating furnace and homogenized. Before hot extrusion, it is desirable to improve segregation by homogenization by holding the billet at 750 to 950 ° C. for about 1 minute to 2 hours.
その後、ビレットにピアシングによる穿孔加工を行い、750乃至950℃で熱間押出を行う。この際、特に、Sn−P系銅管を製造する際のSnの偏析解消、及びP系銅管にも共通する製品管における組織の微細化の達成が前提として必要である。そのためには、Sn−P系銅管、P系銅管とも、熱間押出による断面減少率([穿孔されたビレットのドーナツ状の面積−熱間押出後の素管の断面積]/[穿孔されたビレットのドーナツ状の面積]×100%)を88%以上、望ましくは93%以上とし、更に熱間押出後の素管を水冷等の方法により、表面温度が300℃になるまでの冷却速度が10℃/秒以上、望ましくは15℃/秒以上、更に望ましくは20℃/秒以上となるように冷却することが好ましい。 Thereafter, the billet is perforated by piercing and hot extruded at 750 to 950 ° C. At this time, in particular, it is necessary to eliminate the segregation of Sn at the time of manufacturing the Sn-P-based copper pipe and to achieve the refinement of the structure in the product pipe common to the P-based copper pipe. For this purpose, both the Sn-P-based copper pipe and the P-based copper pipe are reduced in cross-sectional area by hot extrusion ([the donut-shaped area of the perforated billet−the cross-sectional area of the base tube after the hot extrusion] / [perforated]. The dough-shaped area of the billet] × 100%) is 88% or more, preferably 93% or more, and the raw tube after hot extrusion is cooled to a surface temperature of 300 ° C. by a method such as water cooling. It is preferable to cool so that the speed is 10 ° C./second or more, desirably 15 ° C./second or more, and more desirably 20 ° C./second or more.
次に、押出素管に圧延加工を行ない、外径と肉厚を低減させる。このときの加工率を断面減少率で92%以下とすることにより、圧延時の製品不良を低減できる。また、圧延素管に抽伸加工を行なって所定の寸法の素管を製造する。通常、抽伸加工は複数台の抽伸機を用いて行うが、各抽伸機による加工率(断面減少率)は35%以下にすることにより、素管における表面欠陥及び内部割れを低減できる。 Next, the extruded element tube is rolled to reduce the outer diameter and thickness. By setting the processing rate at this time to 92% or less in terms of the cross-sectional reduction rate, product defects during rolling can be reduced. In addition, a drawn tube is manufactured by drawing the rolled tube. Usually, drawing is performed using a plurality of drawing machines, but surface defects and internal cracks in the raw pipe can be reduced by setting the processing rate (cross-sectional reduction rate) by each drawing machine to 35% or less.
その後、中間焼鈍を2min〜1hr行う。このとき、Sn−P系銅管では350℃以上700℃未満にて、P系銅管では300℃以上650℃未満の温度範囲で行う。また、中間焼鈍の昇温速度は20℃/min以上、より好ましくは40℃/min以上が望ましい。 Thereafter, intermediate annealing is performed for 2 min to 1 hr. At this time, it is performed at a temperature range of 350 ° C. or higher and lower than 700 ° C. for a Sn—P copper tube and at a temperature range of 300 ° C. or higher and lower than 650 ° C. Further, the temperature increase rate of the intermediate annealing is preferably 20 ° C./min or more, more preferably 40 ° C./min or more.
ここで、Sn−P系銅管において、中間焼鈍温度が300℃よりも低いまたは昇温速度が20℃/minよりも遅いと、圧延集合組織であるβファイバーが発達し20%以上となり、破壊圧力と引張強さとの比(破壊強度/引張強さあるいは破壊圧力/引張強さ)が従来以下に小さくとなってしまう。同様にP系銅管においては、中間焼鈍温度が250℃よりも低いまたは昇温速度が20℃/minよりも遅いと、圧延集合組織であるβファイバーが発達し25%以上となり、破壊圧力と引張強さの比が従来以下となってしまう。したがって、破壊強度と曲げ加工性とのバランスが低下し、破壊強度および曲げ加工性に優れた前記銅管を提供できなくなる。 Here, in the Sn-P-based copper pipe, when the intermediate annealing temperature is lower than 300 ° C. or the rate of temperature increase is lower than 20 ° C./min, β-fiber, which is a rolling texture, develops to 20% or more and breaks. The ratio between the pressure and the tensile strength (breaking strength / tensile strength or breaking pressure / tensile strength) becomes smaller than before. Similarly, in a P-based copper pipe, when the intermediate annealing temperature is lower than 250 ° C. or the rate of temperature increase is lower than 20 ° C./min, β-fiber, which is a rolling texture, develops to 25% or more, The ratio of tensile strength will be below the conventional level. Therefore, the balance between the breaking strength and the bending workability is lowered, and the copper pipe excellent in breaking strength and bending workability cannot be provided.
一方、Sn−P系銅管において中間焼鈍温度が700℃以上では、結晶粒径が30μm以上と粗大となり、破壊圧力の換算応力が230MPa以下と低くなりすぎる。同様に、P系銅管においては中間焼鈍温度が650℃以上では、結晶粒径が40μm以上と粗大となり、破壊圧力の換算応力が190MPa以下と低くなりすぎる。 On the other hand, when the intermediate annealing temperature is 700 ° C. or higher in the Sn—P-based copper pipe, the crystal grain size becomes as coarse as 30 μm or more, and the converted stress of the fracture pressure becomes too low at 230 MPa or less. Similarly, in the P-based copper tube, when the intermediate annealing temperature is 650 ° C. or higher, the crystal grain size is as coarse as 40 μm or more, and the converted stress of the fracture pressure is too low as 190 MPa or less.
その後、抽伸または溝付転造加工を行って平滑管および内面溝付管を製作する。このとき、Sn−P系銅管、P系銅管とも、中間焼鈍後の断面減面率は35%以上80%以下とする。 Thereafter, a smooth tube and an internally grooved tube are manufactured by drawing or grooved rolling. At this time, the cross-sectional area reduction ratio after intermediate annealing is set to 35% or more and 80% or less for both the Sn-P copper pipe and the P copper pipe.
減面率が35%よりも低いと蓄積ひずみ量が小さく、その後の焼鈍での再結晶粒の粒径がSn−P系銅管では30μm以上、P系銅管では40μm以上となり、引張強さと破壊圧力の換算応力との比が従来以下となってしまう。一方、減面率が80%よりと高いと、圧延集合組織であるβファイバーが発達し、Sn−P系銅管では20%以上、P系銅管では25%以上と引張強さと破壊圧力の換算応力との比が従来以下となってしまう。 When the area reduction is lower than 35%, the amount of accumulated strain is small, and the grain size of the recrystallized grains in the subsequent annealing is 30 μm or more for Sn-P type copper pipes and 40 μm or more for P type copper pipes. The ratio of the burst pressure to the converted stress is below the conventional level. On the other hand, if the area reduction rate is higher than 80%, β-fiber, which is a rolling texture, develops, and the tensile strength and fracture pressure are 20% or more for Sn-P copper pipes and 25% or more for P copper pipes. The ratio with the converted stress is below the conventional level.
その後、前記抽伸素管に最終の焼鈍処理を行う。本発明の銅管を連続的に焼鈍するには、銅管コイル等の焼鈍に通常使用されるローラーハース炉、又は高周波誘導コイルに通電しながら抽伸素管を前記コイル内に通す、高周波誘導コイルによる加熱を利用することができる。 Thereafter, a final annealing process is performed on the drawn element tube. In order to continuously anneal the copper pipe of the present invention, a high-frequency induction coil in which a drawing element pipe is passed through the coil while energizing a high-frequency induction coil or a roller hearth furnace usually used for annealing a copper pipe coil or the like. Heating by can be used.
ローラーハース炉によって、本発明の銅管を製造するには、抽伸素管の実体温度が350乃至700℃となり、その温度で抽伸素管が1分乃至120分間程度加熱されるように焼鈍することが望ましい。 In order to manufacture the copper tube of the present invention using a roller hearth furnace, annealing is performed so that the actual temperature of the drawn element tube is 350 to 700 ° C., and the drawn element tube is heated for about 1 to 120 minutes at that temperature. Is desirable.
抽伸素管の実体温度が350℃より低いと完全な再結晶組織にならず、繊維状の加工組織が残存し、需要家における曲げ加工が困難になる。また、700℃を超える温度では、結晶粒が粗大化し、管の曲げ加工性が却って低下してしまう。したがって、抽伸管の実体温度が350乃至700℃の範囲で焼鈍することが望ましい。 When the body temperature of the drawn element tube is lower than 350 ° C., a complete recrystallized structure is not formed, and a fibrous processed structure remains, which makes it difficult for a customer to perform bending. Moreover, when the temperature exceeds 700 ° C., the crystal grains become coarse, and the bending workability of the tube is lowered. Therefore, it is desirable to anneal the drawing tube at a solid temperature of 350 to 700 ° C.
また、この温度範囲における加熱時間が1分より短いと、完全な再結晶組織にならないため、前記した問題が発生する。また、120分を超えて焼鈍を行っても、結晶粒径に変化がなく、焼鈍の効果は飽和してしまうため、効率が悪い。このため、前記温度範囲における加熱時間は1分乃至120分が適当である。 In addition, when the heating time in this temperature range is shorter than 1 minute, a complete recrystallized structure is not obtained, and thus the above-described problem occurs. Further, even if annealing is performed for more than 120 minutes, the crystal grain size does not change, and the effect of annealing is saturated. For this reason, the heating time in the temperature range is suitably 1 minute to 120 minutes.
この点、前記特許文献7は、拡管などの加工性を向上させることを目的として、中間焼鈍を行っている。しかし、中間焼鈍の狙いはひずみを除去し疵などを低減することであり、本発明の技術ポイントであるβファイバーの制御には着目していない。このため本発明と比較すると、中間焼鈍の昇温速度や中間焼鈍後の減面率の制御が厳しくなされておらず、βファイバーの面積率が大きく、耐破壊圧力と引張強さの比は比較的小さいと推測される。特に、中間焼鈍時の昇温速度については、通常の製法では、速くとも10℃/min程度までであり、前記した本発明において必要とされるような昇温速度(20℃/min以上)をあえて採用することはなかった。 In this respect, Patent Document 7 performs intermediate annealing for the purpose of improving workability such as tube expansion. However, the aim of intermediate annealing is to remove strain and reduce wrinkles, and does not focus on the control of β fiber, which is the technical point of the present invention. For this reason, compared with the present invention, the temperature increase rate of the intermediate annealing and the area reduction rate after the intermediate annealing are not strictly controlled, the β fiber area ratio is large, and the ratio between the fracture resistance and the tensile strength is compared. It is estimated that it is small. In particular, the rate of temperature increase during intermediate annealing is up to about 10 ° C./min at the maximum in the normal manufacturing method, and the rate of temperature increase (20 ° C./min or more) as required in the present invention described above. I never dared to adopt it.
以上が平滑管の製造方法であるが、このように焼鈍した平滑管に、必要に応じて各種加工率の抽伸加工を行い、引張り強さを向上させた加工管としてもよい。また、内面溝付管の場合は、焼鈍した平滑管に溝付転造加工を行う。このようにして、内面溝付管を製造した後、通常更に焼鈍を行う。また、このように焼鈍した内面溝付管に、必要に応じて軽加工率の抽伸加工を行い、引張り強さを向上させてもよい。 The smooth tube manufacturing method has been described above. However, the annealed smooth tube may be subjected to drawing processing at various processing rates as necessary to obtain a processed tube having improved tensile strength. Moreover, in the case of an internally grooved tube, a grooved rolling process is performed on the annealed smooth tube. Thus, after manufacturing an internally grooved pipe | tube, normally it anneals further. Further, the annealed inner surface grooved tube may be subjected to a drawing process at a light processing rate as necessary to improve the tensile strength.
以下、本発明の実施例について説明する。表1に示すように種々の化学組成や製造条件とし、組織中の集合組織を種々異ならせた種々のP系銅管、Sn−P系銅管を平滑管として製造した。 Examples of the present invention will be described below. As shown in Table 1, various P-type copper pipes and Sn-P-type copper pipes having various chemical compositions and production conditions and different textures in the structure were produced as smooth tubes.
これら銅管の管軸に平行な断面(組織)について、平均結晶粒径や集合組織数密を測定し、これら銅管の引張強さ、破壊強度についても測定、評価した。これらの結果を表2に示す。これらSn−P系銅管、P系銅管(平滑管)の具体的な製造方法や測定、評価方法は以下の通りである。 For the cross section (structure) parallel to the tube axis of these copper tubes, the average crystal grain size and texture density were measured, and the tensile strength and fracture strength of these copper tubes were also measured and evaluated. These results are shown in Table 2. Specific manufacturing methods, measurements, and evaluation methods for these Sn-P-based copper tubes and P-based copper tubes (smooth tubes) are as follows.
(平滑管の製造条件)
(a)電気銅を原料として、Sn−P系銅管は溶湯中に所定のSnを添加し、更に必要に応じて選択的な添加元素を添加した後、Cu−P母合金を添加することにより、所定組成の溶湯を作製した。P系銅管は溶湯中に所定のCu−P母合金を添加し、更に必要に応じて選択的な添加元素を添加することにより、所定組成の溶湯を作製した。これら溶製した銅合金の成分組成を、銅管の成分組成とした。
(Smooth tube manufacturing conditions)
(A) Using electrolytic copper as a raw material, Sn—P-based copper pipe is to add a predetermined Sn to the molten metal, and optionally add additional additive elements, and then add a Cu—P master alloy. Thus, a molten metal having a predetermined composition was produced. For the P-based copper tube, a predetermined Cu-P master alloy was added to the molten metal, and a selective additive element was added as necessary to prepare a molten metal having a predetermined composition. The component composition of these molten copper alloys was defined as the component composition of the copper tube.
(b)鋳造温度1200℃で、直径300mm×長さ6500mmの鋳塊を半連続鋳造し、得られた鋳塊から、長さ450mmのビレットを切り出した。 (B) An ingot having a diameter of 300 mm and a length of 6500 mm was semi-continuously cast at a casting temperature of 1200 ° C., and a billet having a length of 450 mm was cut out from the obtained ingot.
(c)ビレットをビレットヒーターで650℃に加熱した後、加熱炉(インダクションヒーター)で950℃に加熱し、950℃に到達した後2分経過後、加熱炉から取り出し、熱間押出機で、ビレット中心に直径80mmのピアシング加工を施した後、直ちに(遅滞なく)、同じ熱間押出機で、外径96mm、肉厚9.5mmの押出素管を作製した(断面減少率:96.6%)。熱間押出後の押出素管の300℃までの平均冷却速度は40℃/秒とした。 (C) After heating the billet to 650 ° C. with a billet heater, the billet is heated to 950 ° C. with a heating furnace (induction heater). After reaching 950 ° C., after 2 minutes, the billet is taken out from the heating furnace, Immediately after the piercing process with a diameter of 80 mm at the center of the billet (without delay), an extruded element tube having an outer diameter of 96 mm and a wall thickness of 9.5 mm was produced with the same hot extruder (cross-sectional reduction rate: 96.6). %). The average cooling rate to 300 ° C. of the extruded tube after hot extrusion was 40 ° C./second.
(d)押出素管を圧延して、外径35mm、肉厚2.3mmの圧延素管を作製し、圧延素管を、1回の抽伸工程における断面減少率が35%以下になるように、引き抜き抽伸加工を行い、外径22mm、肉厚1.2mm〜外径12mm、肉厚0.95mmとした。 (D) The extruded element tube is rolled to produce a rolled element tube having an outer diameter of 35 mm and a wall thickness of 2.3 mm, and the rolling element tube has a cross-sectional reduction rate of 35% or less in one drawing process. Then, drawing and drawing were performed to obtain an outer diameter of 22 mm, a wall thickness of 1.2 mm to an outer diameter of 12 mm, and a wall thickness of 0.95 mm.
(e)加熱炉(インダクションヒーター)で300乃至700℃に加熱し、この温度にて30分保持し、冷却帯を通過させて室温まで徐冷し、供試材とした。 (E) Heated to 300 to 700 ° C. in a heating furnace (induction heater), held at this temperature for 30 minutes, passed through a cooling zone, gradually cooled to room temperature, and used as a test material.
(g)この際、発明例は、これら中間焼鈍の加熱速度は20℃/分以上のできるだけ速い冷却速度とした。これらの中間焼鈍温度、中間焼鈍での加熱温度を表1に示す。 (G) In this case, in the inventive examples, the heating rate of these intermediate annealings was set to the fastest possible cooling rate of 20 ° C./min or more. These intermediate annealing temperatures and heating temperatures in the intermediate annealing are shown in Table 1.
(h)引き抜き抽伸加工を行い、外径9.52mm、肉厚0.80mmとし、断面減面率を種々変更した銅管を作成した。このときの断面減面率を表1に示す。 (H) Drawing and drawing were performed to obtain a copper tube having an outer diameter of 9.52 mm, a wall thickness of 0.80 mm, and various cross-sectional area reduction rates. Table 1 shows the cross-sectional area reduction ratio.
(i)焼鈍炉にて、還元性ガス雰囲気中で、前記抽伸管を450乃至580℃に加熱し(平均昇温速度12℃/分)、この温度に30乃至120分保持し、冷却帯を通過させて室温まで徐冷し、供試材とした。 (I) In an annealing furnace, the drawing tube is heated to 450 to 580 ° C. in an reducing gas atmosphere (average rate of temperature increase of 12 ° C./min), maintained at this temperature for 30 to 120 minutes, and a cooling zone is formed. The sample was allowed to pass through and slowly cooled to room temperature to obtain a test material.
これら製造した銅管(外径9.52mm、肉厚0.80mm)の平均結晶粒径、βファイバーに属するCu方位、S方位およびBrass方位の各方位の面積率などの組織、引張強さ、破壊強度などの機械的な特性を表2に示す。また参考データとして、Goss方位粒の面積率を表2に記載する。なお、前記表1において、発明例、比較例の各例ともに、共通して、銅管のS含有量は0.005質量%以下、As、Bi、Sb、Pb、Se、Teの合計含有量(総量)は0.0005質量%以下、Oの含有量は0.003質量%以下、Hの含有量は0.0001質量%以下であった。 Mean crystal grain size of these manufactured copper tubes (outer diameter: 9.52 mm, wall thickness: 0.80 mm), structures such as area ratios of Cu orientation, S orientation and Brass orientation belonging to β fiber, tensile strength, Table 2 shows mechanical properties such as fracture strength. As reference data, the area ratio of Goss orientation grains is shown in Table 2. In Table 1, the S content of the copper tube is 0.005% by mass or less in common with each of the examples of the invention and the comparative example, and the total content of As, Bi, Sb, Pb, Se, Te The (total amount) was 0.0005% by mass or less, the O content was 0.003% by mass or less, and the H content was 0.0001% by mass or less.
(集合組織)
前記製造した銅管の集合組織における、平均結晶粒径、βファイバーに属するCu方位、S方位およびBrass方位の各方位の面積率などは前記したSEMにEBSPシステムを搭載した結晶方位解析法により測定した。
(Gathering organization)
The average grain size, the Cu orientation belonging to the β fiber, the area ratio of each orientation of the S orientation and the Brass orientation, etc. in the texture of the manufactured copper tube are measured by the crystal orientation analysis method in which the EBSP system is mounted on the SEM. did.
(引張試験)
前記供試材の引張試験は、JIS11号試験片を用いて、5882型インストロン社製万能試験機により、室温、試験速度10.0mm/min、GL=50mmの条件で、引張強さ(MPa)を測定した。同一条件の試験片を3本試験し、それらの平均値を採用した。
(Tensile test)
A tensile test (MPa) was performed on the specimen under the conditions of room temperature, test speed 10.0 mm / min, GL = 50 mm, using a JIS No. 11 test piece and a 5882 type Instron universal testing machine. ) Was measured. Three test pieces under the same conditions were tested, and the average value thereof was adopted.
(破壊強度)
前記製造した銅管から300mmの長さの銅管を試験用に採取して、銅管の一方の端部を金属製治具(ボルト)にて耐圧的に閉塞した。そして、もう一方の開放側端部から、ポンプにて管内に負荷される水圧を徐々に高めていき(昇圧速度:1.5MPa/秒程度)、完全に管が破裂する際の水圧(MPa)を、ブルドン管式圧力計で読み取り、伝熱管の破壊強度(耐圧強度、耐圧性能、破壊圧力)とした。この試験を同一銅管に対して5回(試験管5個に対して)行い、各水圧(MPa)の平均値を破壊強度とした。また破壊強度から銅管の肉厚や外径の影響を取り除いた、換算応力を求めた。ここで換算応力σは、破壊強度をP、銅管の外径をD、銅管の肉厚をtとしたとき下記の式から求めた。
σ=P×(D−0.8t)/(2×t)
(destruction strength)
A copper tube having a length of 300 mm was collected for testing from the manufactured copper tube, and one end of the copper tube was closed in a pressure-resistant manner with a metal jig (bolt). Then, from the other open side end, the water pressure loaded into the pipe by the pump is gradually increased (pressure increase rate: about 1.5 MPa / second), and the water pressure (MPa) when the pipe completely ruptures. Was read with a Bourdon tube pressure gauge and used as the breaking strength (pressure resistance, pressure resistance, breaking pressure) of the heat transfer tube. This test was performed five times on the same copper tube (for five test tubes), and the average value of each water pressure (MPa) was taken as the fracture strength. Moreover, the conversion stress which remove | eliminated the influence of the thickness and outer diameter of a copper pipe from fracture strength was calculated | required. Here, the converted stress σ was obtained from the following equation when the fracture strength was P, the outer diameter of the copper tube was D, and the thickness of the copper tube was t.
σ = P × (D−0.8t) / (2 × t)
(強度−加工性バランスの評価)
前記特許文献6に開示されているように、破壊強度と引張強さの比が高いほど、強度と加工性のバランスが良いと推測される。そこで、破壊強度から求めた換算応力と、引張強さの比が大きいほど、強度-加工性バランスが優れているとして評価した。
(Evaluation of strength-workability balance)
As disclosed in Patent Document 6, it is presumed that the higher the ratio between fracture strength and tensile strength, the better the balance between strength and workability. Therefore, the larger the ratio between the converted stress obtained from the fracture strength and the tensile strength, the better the strength-workability balance.
(発明例)
(Sn−P系銅管)
表1、2に示すとおり、発明例1〜13は化学組成および製造条件が本発明範囲内で適正であるので、βファイバーに属するCu方位、S方位およびBrass方位の各方位の面積率の和は10〜20%の範囲に制御されている。このため破壊強度と引張強さの比が0.90以上と比較例よりも高い。
(Invention example)
(Sn-P copper pipe)
As shown in Tables 1 and 2, since Invention Examples 1 to 13 have appropriate chemical compositions and production conditions within the scope of the present invention, the sum of the area ratios of the Cu, S, and Brass orientations belonging to the β fiber. Is controlled in the range of 10 to 20%. Therefore, the ratio between the breaking strength and the tensile strength is 0.90 or higher, which is higher than that of the comparative example.
(比較例)
(Sn−P系銅管)
比較例、1、2、4、5は本発明組成範囲内の合金であるにもかかわらず、製造条件が適切な範囲にないため、βファイバーに属するCu方位、S方位およびBrass方位の各方位の面積率の和が20%以上と高くなり、このため破壊強度と引張強さの比が0.90未満と発明例よりも低くなる。
(Comparative example)
(Sn-P copper pipe)
Although Comparative Examples 1, 2, 4, and 5 are alloys within the composition range of the present invention, since the manufacturing conditions are not in an appropriate range, each of the Cu orientation, S orientation, and Brass orientation belonging to the β fiber. The sum of the area ratios is as high as 20% or more. For this reason, the ratio between the breaking strength and the tensile strength is less than 0.90, which is lower than that of the invention example.
比較例3および6はβファイバーに属するCu方位、S方位およびBrass方位の各方位の面積率の和は適正な範囲であるにもかかわらず、製造条件が適切な範囲にないため、結晶粒径が30μm以上となり、換算応力が230MPa以下と低くなってしまう。 In Comparative Examples 3 and 6, since the sum of the area ratios of the Cu orientation, S orientation, and Brass orientation belonging to the β fiber is in an appropriate range, the manufacturing conditions are not in an appropriate range. Becomes 30 μm or more, and the converted stress becomes as low as 230 MPa or less.
比較例7、8はSn、P含有量が規定範囲よりも多すぎるため、押出が出来ない(押出不可能)または押出時に割れが発生している。また、比較例9はP含有量が規定範囲よりも少なすぎるため、換算応力が230MPa以下と低くすぎる。 In Comparative Examples 7 and 8, the Sn and P contents are too much greater than the specified range, so that extrusion cannot be performed (extrusion is impossible) or cracks are generated during extrusion. In Comparative Example 9, since the P content is too much less than the specified range, the converted stress is too low at 230 MPa or less.
また、比較例10はZn含有量が高すぎるため、βファイバーに属するCu方位、S方位およびBrass方位の各方位の面積率の和が20%以上となり、このため破壊強度と引張強さの比が0.90未満と低くなる。 Moreover, since the Zn content is too high in Comparative Example 10, the sum of the area ratios of each of the Cu, S, and Brass orientations belonging to the β fiber is 20% or more. Therefore, the ratio between the fracture strength and the tensile strength. Is as low as less than 0.90.
(発明例)
(P系銅管)
表1、2に示すとおり、発明例14〜25は化学組成および製造条件が本発明範囲内で適正であるので、βファイバーに属するCu方位、S方位およびBrass方位の各方位の面積率の和は10〜25%の範囲に制御されている。このため破壊強度と引張強さの比が0.85以上と比較例よりも高い。
(Invention example)
(P-type copper pipe)
As shown in Tables 1 and 2, since the inventive compositions 14 to 25 have appropriate chemical compositions and production conditions within the scope of the present invention, the sum of the area ratios of the Cu, S, and Brass orientations belonging to the β fiber. Is controlled in the range of 10 to 25%. For this reason, the ratio of the breaking strength and the tensile strength is 0.85 or higher, which is higher than that of the comparative example.
(比較例)
(P系銅管)
比較例11〜14は本発明組成範囲内の合金であるにもかかわらず、製造条件が適切な範囲にないため、βファイバーに属するCu方位、S方位およびBrass方位の各方位の面積率の和が25%以上と高くなり、このため破壊強度と引張強さの比が0.85未満と発明例よりも低くなる。また、比較例15は本発明組成範囲内の合金であるにもかかわらず、減面率が低すぎるため、結晶粒径が40μm以上となり、このため破壊強度が190MPaよりも小さい。
(Comparative example)
(P-type copper pipe)
Although Comparative Examples 11 to 14 are alloys within the composition range of the present invention, since the manufacturing conditions are not in an appropriate range, the sum of the area ratios of the Cu, S, and Brass orientations belonging to the β fiber. Is as high as 25% or more. For this reason, the ratio of fracture strength to tensile strength is less than 0.85, which is lower than that of the inventive examples. Further, although Comparative Example 15 is an alloy within the composition range of the present invention, the area reduction rate is too low, so the crystal grain size is 40 μm or more, and the fracture strength is smaller than 190 MPa.
比較例16は、前記比較例8と同様、P含有量が規定範囲よりも多すぎるため、押出時に割れが発生している。また、比較例17は、前記比較例9と同様、P含有量が規定範囲よりも少なすぎるため、結晶粒径が40μmよりも大きくなり、このため破壊強度が190MPaよりも小さい。 In Comparative Example 16, as in Comparative Example 8, since the P content is too much than the specified range, cracks occur during extrusion. In Comparative Example 17, as in Comparative Example 9, since the P content is too much less than the specified range, the crystal grain size is larger than 40 μm, and the fracture strength is smaller than 190 MPa.
以上の結果から、新たな冷媒の高い運転圧力に、薄肉化されても耐用可能である、破壊強度、加工性バランスに優れた銅管を得るための、本発明の成分組成、強度、集合組織の規定、更には、この集合組織を得るための好ましい製造条件の意義が裏付けられる。 From the above results, the component composition, strength, and texture of the present invention for obtaining a copper tube excellent in fracture strength and workability balance that can be used even when thinned due to a high operating pressure of a new refrigerant. Further, the significance of preferable production conditions for obtaining this texture is supported.
以上説明したように、本発明によれば、曲げ加工性に優れた、薄肉化および高強度化された素材Sn−P系銅管およびその製造方法を提供できる。この結果、この素材Sn−P系銅管を冷間加工して用いる熱交換器用伝熱管などに好適に適用することができる。 As described above, according to the present invention, it is possible to provide a material Sn-P-based copper pipe that is excellent in bending workability and is thinned and strengthened and a method for manufacturing the same. As a result, the material Sn-P-based copper pipe can be suitably applied to a heat exchanger heat transfer pipe used by cold working.
Claims (4)
The copper pipe further contains one or more elements selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti, Zr and Ag in total less than 0.07% by mass (provided that 0% is included) The copper tube for heat exchangers of any one of Claims 1 thru | or 3 to contain.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010034351A JP5464659B2 (en) | 2010-02-19 | 2010-02-19 | Copper tube for heat exchanger with excellent fracture strength and bending workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010034351A JP5464659B2 (en) | 2010-02-19 | 2010-02-19 | Copper tube for heat exchanger with excellent fracture strength and bending workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011168846A true JP2011168846A (en) | 2011-09-01 |
JP5464659B2 JP5464659B2 (en) | 2014-04-09 |
Family
ID=44683258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010034351A Expired - Fee Related JP5464659B2 (en) | 2010-02-19 | 2010-02-19 | Copper tube for heat exchanger with excellent fracture strength and bending workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5464659B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014189804A (en) * | 2013-03-26 | 2014-10-06 | Kobe Steel Ltd | High strength copper alloy tube and manufacturing method therefor |
KR20150003679A (en) * | 2013-07-01 | 2015-01-09 | 가부시키가이샤 코벨코 마테리아루 도칸 | Phosphorus dioxidized copper tube for heat exchanger |
JP2015017300A (en) * | 2013-07-10 | 2015-01-29 | 古河電気工業株式会社 | Secondary battery current collector copper alloy rolled foil and method for producing the same |
JP2015017302A (en) * | 2013-07-10 | 2015-01-29 | 古河電気工業株式会社 | Secondary battery current collector copper alloy rolled foil and method for producing the same |
JP2015113487A (en) * | 2013-12-11 | 2015-06-22 | 三菱伸銅株式会社 | Phosphorus deoxidized copper plate excellent in brazability and press workability, and method for manufacturing the same |
JP2015203127A (en) * | 2014-04-11 | 2015-11-16 | 三菱伸銅株式会社 | Cu-Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN HALF ETCHING PROPERTY AND METHOD FOR PRODUCING THE SAME |
WO2016072339A1 (en) * | 2014-11-05 | 2016-05-12 | 株式会社Uacj | Pipe with grooved inner surface for heat exchanger, and process for producing same |
CN111041271A (en) * | 2019-11-29 | 2020-04-21 | 宁波乌中材料科学研究中心有限公司 | Copper-tin-titanium alloy with good hot forging performance |
WO2022244244A1 (en) * | 2021-05-21 | 2022-11-24 | 株式会社原田伸銅所 | Phosphor bronze alloy and article using same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001096338A (en) * | 1999-09-27 | 2001-04-10 | Mitsui Eng & Shipbuild Co Ltd | Method of manufacturing copper tube for refrigerator or air-conditioner |
JP2003268467A (en) * | 2002-03-18 | 2003-09-25 | Kobe Steel Ltd | Copper alloy tube for heat exchanger |
JP2004211115A (en) * | 2002-12-27 | 2004-07-29 | Kobe Steel Ltd | Method for producing copper pipe |
JP2006083465A (en) * | 2004-08-17 | 2006-03-30 | Kobe Steel Ltd | Copper alloy sheet for electric and electronic parts having bendability |
JP2008255381A (en) * | 2007-03-30 | 2008-10-23 | Kobelco & Materials Copper Tube Inc | Heat resistant and high strength copper alloy tube for heat exchanger |
JP2009102690A (en) * | 2007-10-23 | 2009-05-14 | Kobelco & Materials Copper Tube Inc | Copper alloy tube for heat exchanger having excellent fracture strength |
-
2010
- 2010-02-19 JP JP2010034351A patent/JP5464659B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001096338A (en) * | 1999-09-27 | 2001-04-10 | Mitsui Eng & Shipbuild Co Ltd | Method of manufacturing copper tube for refrigerator or air-conditioner |
JP2003268467A (en) * | 2002-03-18 | 2003-09-25 | Kobe Steel Ltd | Copper alloy tube for heat exchanger |
JP2004211115A (en) * | 2002-12-27 | 2004-07-29 | Kobe Steel Ltd | Method for producing copper pipe |
JP2006083465A (en) * | 2004-08-17 | 2006-03-30 | Kobe Steel Ltd | Copper alloy sheet for electric and electronic parts having bendability |
JP2008255381A (en) * | 2007-03-30 | 2008-10-23 | Kobelco & Materials Copper Tube Inc | Heat resistant and high strength copper alloy tube for heat exchanger |
JP2009102690A (en) * | 2007-10-23 | 2009-05-14 | Kobelco & Materials Copper Tube Inc | Copper alloy tube for heat exchanger having excellent fracture strength |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014189804A (en) * | 2013-03-26 | 2014-10-06 | Kobe Steel Ltd | High strength copper alloy tube and manufacturing method therefor |
KR101627919B1 (en) | 2013-07-01 | 2016-06-07 | 가부시키가이샤 코벨코 마테리아루 도칸 | Phosphorus dioxidized copper tube for heat exchanger |
KR20150003679A (en) * | 2013-07-01 | 2015-01-09 | 가부시키가이샤 코벨코 마테리아루 도칸 | Phosphorus dioxidized copper tube for heat exchanger |
CN104278170A (en) * | 2013-07-01 | 2015-01-14 | 株式会社科倍可菱材料 | Phosphorus deoxidized copper for heat exchanger |
JP2015010264A (en) * | 2013-07-01 | 2015-01-19 | 株式会社コベルコ マテリアル銅管 | Phosphorus deoxidized copper pipe for heat exchanger |
JP2015017300A (en) * | 2013-07-10 | 2015-01-29 | 古河電気工業株式会社 | Secondary battery current collector copper alloy rolled foil and method for producing the same |
JP2015017302A (en) * | 2013-07-10 | 2015-01-29 | 古河電気工業株式会社 | Secondary battery current collector copper alloy rolled foil and method for producing the same |
JP2015113487A (en) * | 2013-12-11 | 2015-06-22 | 三菱伸銅株式会社 | Phosphorus deoxidized copper plate excellent in brazability and press workability, and method for manufacturing the same |
JP2015203127A (en) * | 2014-04-11 | 2015-11-16 | 三菱伸銅株式会社 | Cu-Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN HALF ETCHING PROPERTY AND METHOD FOR PRODUCING THE SAME |
WO2016072339A1 (en) * | 2014-11-05 | 2016-05-12 | 株式会社Uacj | Pipe with grooved inner surface for heat exchanger, and process for producing same |
JP2016089217A (en) * | 2014-11-05 | 2016-05-23 | 株式会社Uacj | Tube with internal groove for heat exchanger and manufacturing method therefor |
CN107109531A (en) * | 2014-11-05 | 2017-08-29 | 株式会社Uacj | Heat exchanger inner face grooved pipe and its manufacture method |
CN111041271A (en) * | 2019-11-29 | 2020-04-21 | 宁波乌中材料科学研究中心有限公司 | Copper-tin-titanium alloy with good hot forging performance |
WO2022244244A1 (en) * | 2021-05-21 | 2022-11-24 | 株式会社原田伸銅所 | Phosphor bronze alloy and article using same |
Also Published As
Publication number | Publication date |
---|---|
JP5464659B2 (en) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5464659B2 (en) | Copper tube for heat exchanger with excellent fracture strength and bending workability | |
JP4630323B2 (en) | Copper alloy tube for heat exchangers with excellent fracture strength | |
JP4629080B2 (en) | Copper alloy tube for heat exchanger | |
JP4694527B2 (en) | Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same | |
JP2003268467A (en) | Copper alloy tube for heat exchanger | |
JP5534777B2 (en) | Copper alloy seamless pipe | |
JP5111922B2 (en) | Copper alloy tube for heat exchanger | |
JP4818179B2 (en) | Copper alloy tube | |
JP5078368B2 (en) | Method for producing copper alloy tube for heat exchanger | |
JP5107841B2 (en) | Copper alloy tube for heat exchangers with excellent bending workability | |
JP5499300B2 (en) | Copper alloy tube for heat exchanger | |
JP5078410B2 (en) | Copper alloy tube | |
JP5960672B2 (en) | High strength copper alloy tube | |
JP6034727B2 (en) | High strength copper alloy tube | |
JP5638999B2 (en) | Copper alloy tube | |
JP5602707B2 (en) | High strength copper tube with excellent strength after brazing | |
JP5639025B2 (en) | Copper alloy tube | |
JP5336296B2 (en) | Copper alloy tube for heat exchangers with excellent workability | |
JP5792696B2 (en) | High strength copper alloy tube | |
JP5033051B2 (en) | Copper alloy tube for heat exchangers with excellent softening resistance | |
JP2017036468A (en) | Copper alloy tube | |
JP5544591B2 (en) | Copper alloy tube | |
JP2013189664A (en) | Copper alloy tube | |
JP2011094176A (en) | Copper alloy seamless tube | |
JP2011094175A (en) | Copper alloy seamless tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120816 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5464659 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |