Nothing Special   »   [go: up one dir, main page]

JP5602707B2 - High strength copper tube with excellent strength after brazing - Google Patents

High strength copper tube with excellent strength after brazing Download PDF

Info

Publication number
JP5602707B2
JP5602707B2 JP2011244946A JP2011244946A JP5602707B2 JP 5602707 B2 JP5602707 B2 JP 5602707B2 JP 2011244946 A JP2011244946 A JP 2011244946A JP 2011244946 A JP2011244946 A JP 2011244946A JP 5602707 B2 JP5602707 B2 JP 5602707B2
Authority
JP
Japan
Prior art keywords
strength
mass
copper
content
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011244946A
Other languages
Japanese (ja)
Other versions
JP2013100579A (en
Inventor
久郎 宍戸
雅人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011244946A priority Critical patent/JP5602707B2/en
Publication of JP2013100579A publication Critical patent/JP2013100579A/en
Application granted granted Critical
Publication of JP5602707B2 publication Critical patent/JP5602707B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、空調機や給湯器等の熱交換器に用いられる銅管に関し、特に高温でのろう付け処理後においても高強度を有する銅管に関する。   The present invention relates to a copper tube used in a heat exchanger such as an air conditioner or a water heater, and more particularly to a copper tube having high strength even after brazing at a high temperature.

一般に、熱交換器の熱媒体を流通させる管には、熱伝導率および加工性に優れる、銅管(銅または銅合金からなる管をいう)が適用される。例えば空調機の熱交換器は、板状のアルミニウムフィンを多数重ねて、これに蛇行する銅管を貫通させた構造である。このような熱交換器を製造するためには、まず、銅管をヘアピン状に曲げ加工してU字形銅管とし、両端共にアルミニウムフィンに形成した貫通孔に通し、内側から治具により拡管してアルミニウムフィンの貫通孔の縁に形成されているフィンカラーに密着させる。アルミニウムフィンに貫通させた複数のU字形銅管は、端(開放端)を拡管して、別のU字形銅管(リターンベンド銅管)の端を挿入されることで互いに連結され、連結部をりん銅ろう等のろう材でろう付けされることにより接合される。   In general, a copper pipe (referred to as a pipe made of copper or a copper alloy) having excellent thermal conductivity and workability is applied to the pipe through which the heat medium of the heat exchanger flows. For example, a heat exchanger of an air conditioner has a structure in which a large number of plate-like aluminum fins are stacked and a copper pipe meandering is passed therethrough. In order to manufacture such a heat exchanger, first, a copper tube is bent into a hairpin shape to form a U-shaped copper tube, both ends of which are passed through through holes formed in aluminum fins, and expanded from the inside with a jig. Then, it is brought into close contact with the fin collar formed at the edge of the through hole of the aluminum fin. A plurality of U-shaped copper pipes penetrating through the aluminum fins are connected to each other by expanding the end (open end) and inserting the end of another U-shaped copper pipe (return bend copper pipe). Are joined by brazing with a brazing material such as phosphor copper brazing.

また、エコキュート(関西電力株式会社の登録商標)の愛称で知られる自然冷媒ヒートポンプ給湯機は、水を流通させる配管(水配管)に、冷媒とするCO2を流通させるための銅管(CO2冷媒管)を螺旋状に巻き付けた構造である。したがって、まず、銅管を螺旋状に加工してこれに水配管を通し、CO2冷媒管が巻き付けられた状態の水配管をコの字型に加工した後、りん銅ろう(例えばJISZ3264、BCuP−2)による炉中ろう付けで一括ろう付けすることにより、水配管とCO2冷媒管とが密着される。さらに、水配管、CO2冷媒管等を同じく銅管の機内配管を用いて、アキュームレーターおよびコンプレッサー等とろう付けすることにより接続して製造される。 Further, a natural refrigerant heat pump water heater known by the nickname of Ecocute (registered trademark of Kansai Electric Power Co., Inc.) has a copper pipe (CO 2 ) for circulating CO 2 as a refrigerant in a pipe (water pipe) through which water is circulated. The refrigerant pipe is spirally wound. Therefore, first, a copper pipe is processed into a spiral shape, a water pipe is passed through the copper pipe, a water pipe around which a CO 2 refrigerant pipe is wound is processed into a U shape, and then a phosphor copper braze (for example, JISZ3264, BCuP The water pipe and the CO 2 refrigerant pipe are brought into close contact with each other by performing the brazing in the furnace according to -2). Further, it is manufactured by connecting a water pipe, a CO 2 refrigerant pipe, and the like by brazing with an accumulator, a compressor, and the like, using a copper pipe inside the machine.

このように、熱交換器に用いられる銅管は、熱伝導率や曲げ加工性の他に、ろう付け性が良好であることが要求される。したがって、これらの特性が良好であり、適切な強度を有するりん脱酸銅が広く使用されている。一方、近年は、省資源化の観点から、銅管の薄肉化および長寿命化が求められ、これらの要求を満足するために、過酷な内圧に長期間耐え得る強度を有する銅管が求められている。   Thus, the copper tube used for the heat exchanger is required to have good brazing properties in addition to thermal conductivity and bending workability. Therefore, phosphorus deoxidized copper having good characteristics and appropriate strength is widely used. On the other hand, in recent years, from the viewpoint of resource saving, thinning and long life of copper pipes are required, and in order to satisfy these demands, copper pipes having strength that can withstand severe internal pressure for a long period of time are required. ing.

例えば、特許文献1〜3には、Pの他にCo,Sn,Zn,Ni等を所定量含有し、不可避的不純物であるO,H等を規制した銅合金で形成されることで強度、特にろう付け後の強度を向上させた銅管が開示されている。さらに特許文献1〜3は、組織についても制御した銅管としている。すなわち特許文献1,2においては、結晶粒径を所定値以下として曲げ加工性を向上させ、特許文献3においては、微細析出物の分散した所定の粒径の再結晶粒を有して疲労強度を向上させている。   For example, Patent Documents 1 to 3 include a predetermined amount of Co, Sn, Zn, Ni and the like in addition to P, and are formed of a copper alloy that regulates inevitable impurities such as O and H. In particular, a copper tube with improved strength after brazing is disclosed. Further, Patent Documents 1 to 3 use a copper tube with controlled structure. That is, in Patent Documents 1 and 2, bending workability is improved by setting the crystal grain size to a predetermined value or less. In Patent Document 3, fatigue strength is obtained by having recrystallized grains having a predetermined grain size in which fine precipitates are dispersed. Has improved.

特許第3794971号公報Japanese Patent No. 3794971 特開2008−255379号公報JP 2008-255379 A 特許第4228166号公報Japanese Patent No. 4228166

一方、近年では、ろう付けにおいて、作業性を向上させるために従来よりも高温で行われるようになっている。しかしながら、耐熱性に優れるCu−Co−P系の銅合金からなる銅管においても、特に800℃以上の高温でのろう付け処理を行うと強度が大きく低下するという問題がある。   On the other hand, in recent years, brazing is performed at a higher temperature than before in order to improve workability. However, even a copper tube made of a Cu—Co—P copper alloy having excellent heat resistance has a problem that the strength is greatly reduced, particularly when brazing is performed at a high temperature of 800 ° C. or higher.

本発明はかかる問題に鑑みてなされたものであって、その目的は、薄肉化され、さらに800℃以上の高温でのろう付け処理後であっても、十分な強度を有する高強度銅管を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a high-strength copper tube that has a sufficient strength even after being thinned and brazed at a high temperature of 800 ° C. or higher. It is to provide.

前記課題を解決するために、本発明に係るろう付け後の強度に優れた高強度銅管は、Co:0.13〜0.30質量%、P:0.03〜0.10質量%を含有し、前記Coの含有量が前記Pの含有量の2.5倍以上であって、残部がCuおよび不可避的不純物からなり、前記不可避的不純物として、S:0.005質量%以下、O:0.005質量%以下、H:0.0002質量%以下に規制された銅合金を押出成形してなる。そして、管軸に沿った断面における平均結晶粒径が30μm以下であり、比抵抗から算出される析出物が0.20〜0.30質量%であって、前記析出物のすべてに対して前記断面の肉厚方向中心部における円相当径3〜50nmの析出物が面積率で50%以上であることを特徴とする。さらに、前記銅合金は、Ni:0.005〜0.20質量%を含有してもよく、この場合は、前記Niの含有量は前記Coの含有量以下とし、前記Coと前記Niの合計の含有量が前記Pの含有量の2.5倍以上であればよい。   In order to solve the above problems, a high-strength copper tube excellent in strength after brazing according to the present invention has Co: 0.13-0.30 mass%, P: 0.03-0.10 mass%. And the content of Co is 2.5 times or more of the content of P, and the balance is made of Cu and inevitable impurities. As the inevitable impurities, S: 0.005% by mass or less, O : Extrusion molding of copper alloy regulated to 0.005 mass% or less, H: 0.0002 mass% or less. And the average crystal grain diameter in the cross section along a pipe axis is 30 micrometers or less, and the precipitate calculated from specific resistance is 0.20-0.30 mass%, Comprising: It is said with respect to all the said precipitates. A precipitate having a circle-equivalent diameter of 3 to 50 nm in the central portion in the thickness direction of the cross section is 50% or more in area ratio. Furthermore, the copper alloy may contain Ni: 0.005 to 0.20% by mass. In this case, the content of Ni is not more than the content of Co, and the total of Co and Ni It is sufficient that the content of is 2.5 times or more of the content of P.

このように、CoおよびP、あるいはさらにNiを所定範囲で含有し、さらにCo,NiをPに対して所定比以上とした銅合金で形成することにより、Co−P化合物または(Co,Ni)−P化合物を適量析出させることができ、さらに前記の析出量および析出物の大きさを制限することにより、強度、さらには高温でのろう付け後の強度を高くすることができる。そして、銅合金に不可避的に含有するS,O,Hの許容量を規制し、また結晶粒径を所定値以下に制限することにより、押出時や曲げ加工時における割れを防止することができる。   Thus, Co and P, or further containing Ni in a predetermined range, and further forming a Co-P compound or (Co, Ni) by using a copper alloy containing Co and Ni in a predetermined ratio or more with respect to P. An appropriate amount of the -P compound can be precipitated, and further, by restricting the amount of precipitation and the size of the precipitate, the strength and further the strength after brazing at a high temperature can be increased. And by restricting the allowable amount of S, O, and H inevitably contained in the copper alloy and limiting the crystal grain size to a predetermined value or less, it is possible to prevent cracking during extrusion or bending. .

さらに、前記銅合金は、Fe,Mn,Mg,Cr,Ti,Zr,Agから選択された1種以上を合計0.10質量%未満含有してもよい。これらの金属を合計で所定範囲含有させることで、その析出物により、Co−P化合物と同様にろう付け後も含めて強度が向上する。   Further, the copper alloy may contain one or more selected from Fe, Mn, Mg, Cr, Ti, Zr, and Ag in total less than 0.10% by mass. By containing these metals in a predetermined range in total, the precipitates improve the strength including after brazing as in the case of the Co-P compound.

さらに、前記銅合金は、Sn:0.05〜1.0質量%、Zn:0.005〜1.0質量%の少なくとも1種を含有してもよい。このように、銅合金にSn,Znを所定範囲で含有させることで、強度や耐熱性が向上する。   Furthermore, the said copper alloy may contain at least 1 sort (s) of Sn: 0.05-1.0 mass% and Zn: 0.005-1.0 mass%. Thus, strength and heat resistance are improved by including Sn and Zn in a predetermined range in the copper alloy.

本発明に係るろう付け後の強度に優れた高強度銅管によれば、薄肉化され、さらに800℃以上の高温でのろう付け処理後であっても、十分な強度を有するため、省資源化およびろう付け作業性が向上し、また熱交換器として長期間の使用に耐え得るので、コストが低減する。   According to the high-strength copper pipe excellent in strength after brazing according to the present invention, it is thinned and has sufficient strength even after brazing treatment at a high temperature of 800 ° C. or higher, thus saving resources. And the brazing workability is improved, and since it can withstand long-term use as a heat exchanger, the cost is reduced.

以下、本発明に係るろう付け後の強度に優れた高強度銅管について、詳細に説明する。
本発明に係るろう付け後の強度に優れた高強度銅管(以下、単に高強度銅管という)は、熱交換器、例えば空調機やヒートポンプ給湯機の熱媒体を流通させる配管に適用され、平滑管、内面溝付管等の用途に応じた形状および寸法とするが、特に限定するものではない。はじめに、本発明に係る高強度銅管を形成する銅合金について説明する。
Hereinafter, the high-strength copper pipe excellent in strength after brazing according to the present invention will be described in detail.
A high-strength copper pipe excellent in strength after brazing according to the present invention (hereinafter simply referred to as a high-strength copper pipe) is applied to a heat exchanger, for example, a pipe for circulating a heat medium of an air conditioner or a heat pump water heater, Although it is set as the shape and dimension according to uses, such as a smooth tube and an internal grooved tube, it does not specifically limit. First, the copper alloy forming the high-strength copper tube according to the present invention will be described.

〔銅合金〕
本発明に係る高強度銅管を形成する銅合金は、Co:0.13〜0.30質量%、P:0.03〜0.10質量%を含有し、Coの含有量がPの含有量の2.5倍以上であって、残部がCuおよび不可避的不純物からなり、前記不可避的不純物として、S:0.005質量%以下、O:0.005質量%以下、H:0.0002質量%以下に規制される。以下、この銅合金を構成する各要素について説明する。
〔Copper alloy〕
The copper alloy forming the high-strength copper tube according to the present invention contains Co: 0.13 to 0.30 mass%, P: 0.03 to 0.10 mass%, and the Co content is P. More than 2.5 times the amount, and the balance is made of Cu and inevitable impurities, and as the inevitable impurities, S: 0.005 mass% or less, O: 0.005 mass% or less, H: 0.0002 It is regulated to less than mass%. Hereinafter, each element which comprises this copper alloy is demonstrated.

(Co:0.13〜0.30質量%)
Coは、銅合金中でPとの化合物(適宜、Co−P化合物という)を生成、析出させる。この化合物(析出物)は、高強度銅管の引張強さ等の強度を向上させる効果を有し、また、ろう付けのための熱処理において、結晶粒の粗大化を抑制するピンニング粒子として作用するため、熱処理による強度低下を抑制し、特に800℃以上の高温でのろう付け処理後の強度を確保する。また、Co−P化合物は、熱間押出や中間焼鈍においても析出して、結晶粒の粗大化を抑制するため、ろう付け前の高強度銅管の結晶粒径を所定値以下とすることができる。これらの効果はCo−P化合物の析出量が多いほど向上し、Coの含有量が0.13質量%未満では、析出量が少なく、前記効果が十分に得られない。一方、Coの含有量が0.30質量%を超えると、Co−P化合物が過剰に析出するため、強度が過大となって、伸びが低下して加工性が不足したり、熱間押出等にて変形抵抗が過大となって割れを生じる虞がある。したがって、Coの含有量は0.13質量%以上0.30質量%以下とする。
(Co: 0.13-0.30 mass%)
Co produces and precipitates a compound with P (suitably referred to as a Co—P compound) in a copper alloy. This compound (precipitate) has the effect of improving the strength such as the tensile strength of a high-strength copper tube, and also acts as pinning particles that suppress the coarsening of crystal grains in heat treatment for brazing. Therefore, strength reduction due to heat treatment is suppressed, and in particular, strength after brazing treatment at a high temperature of 800 ° C. or higher is ensured. In addition, the Co—P compound is precipitated even during hot extrusion and intermediate annealing, and the crystal grain size of the high-strength copper tube before brazing may be set to a predetermined value or less in order to suppress coarsening of crystal grains. it can. These effects improve as the amount of precipitation of the Co—P compound increases. When the Co content is less than 0.13% by mass, the amount of precipitation is small, and the above effects cannot be obtained sufficiently. On the other hand, if the Co content exceeds 0.30% by mass, the Co—P compound is excessively precipitated, resulting in excessive strength, resulting in a decrease in elongation and insufficient workability, hot extrusion, etc. There is a possibility that the deformation resistance becomes excessive and cracking occurs. Therefore, the Co content is set to 0.13 mass% or more and 0.30 mass% or less.

(P:0.03〜0.10質量%)
Pは、一般に銅合金の脱酸のために添加される。さらに本発明に係る高強度銅管においては、Pは銅合金中でCoとの化合物(Co−P化合物)を生成、析出させ、前記の通り強度を向上させる効果を有する。Pの含有量が0.03質量%未満では、Co−P化合物の析出量が少なく、前記効果が十分に得られない。一方、Pの含有量が0.10質量%を超えると、加工性が低下して、熱間加工や冷間加工において割れが生じる虞がある。したがって、Pの含有量は0.03質量%以上0.10質量%以下とする。
(P: 0.03-0.10 mass%)
P is generally added for deoxidation of copper alloys. Furthermore, in the high-strength copper pipe according to the present invention, P has an effect of generating and precipitating a compound with Co (Co—P compound) in a copper alloy and improving the strength as described above. If the P content is less than 0.03 mass%, the amount of Co-P compound deposited is small, and the above effects cannot be obtained sufficiently. On the other hand, when the content of P exceeds 0.10% by mass, workability is deteriorated, and there is a possibility that cracking may occur in hot working or cold working. Therefore, the P content is set to 0.03% by mass or more and 0.10% by mass or less.

(Co/P質量比:2.5以上)
前記の通り、本発明に係る高強度銅管においては、CoとPとの化合物(Co−P化合物)が十分に析出することにより、高温でのろう付け処理後も含めて強度を向上させる。特に高温でのろう付け処理後の強度が高い高強度銅管について、TEM(透過型電子顕微鏡)による観察および抽出残渣分析を詳細に行った結果、Co2P(リン化二コバルト)が析出していることが明らかとなった。Co2PにおけるPに対するCoの質量比(Co/P)は約3.8である。銅合金に含有されるCo,Pについて、質量比(Co/P)が3.8から大きく減少して2.5未満になると、CoおよびPの各含有量が前記の範囲であっても、Pに対してCoが不足して、Co2Pを十分に析出せずに前記効果が十分に得られない。したがって、Coの含有量はPの含有量の2.5倍以上とし、好ましくは3.0倍以上である。なお、後記するように、銅合金にNiを含有させる場合は、Coは、Niとの合計の含有量がPの含有量の2.5倍以上であればよい。
(Co / P mass ratio: 2.5 or more)
As described above, in the high-strength copper tube according to the present invention, the compound of Co and P (Co—P compound) is sufficiently precipitated, so that the strength is improved even after brazing at a high temperature. As a result of detailed observation of TEM (transmission electron microscope) and extraction residue analysis of high strength copper tube with high strength after brazing treatment at high temperature in particular, Co 2 P (dicobalt phosphide) was precipitated. It became clear that. The mass ratio of Co to P in Co 2 P (Co / P) is about 3.8. For the Co and P contained in the copper alloy, when the mass ratio (Co / P) is greatly reduced from 3.8 to less than 2.5, even if each content of Co and P is within the above range, Co is insufficient with respect to P, and Co 2 P is not sufficiently precipitated, so that the above effect cannot be obtained sufficiently. Therefore, the Co content is 2.5 times or more, preferably 3.0 times or more the P content. As will be described later, when Ni is contained in the copper alloy, the total content of Co may be 2.5 times or more of the content of P with Ni.

(S:0.005質量%以下)
Sは、銅合金中においてCuとの化合物として母相中に存在する。Sの含有量が多くなると、銅合金の鋳造時の鋳塊割れや、熱間押出時の割れが増加する。そして、これらの割れが発生しなくても、このようなSを多く含有する銅合金の押出材を冷間圧延、抽伸すると、材料内部のCu−S化合物が管の軸方向に伸張し、Cu−S化合物界面で割れが生じ易い。これにより、加工時や加工後の製品(銅管)において、表面疵や割れ等が発生して製品の歩留りを低下させる。あるいは、銅管に曲げ加工を行う際に、割れ発生の起点となり、曲げ部で割れが発生し易い。したがって、Sの含有量は0.005質量%以下に規制し、好ましくは0.003質量%以下、さらに好ましくは0.0015質量%以下である。
(S: 0.005 mass% or less)
S exists in the parent phase as a compound with Cu in the copper alloy. When the S content increases, ingot cracking during the casting of the copper alloy and cracking during hot extrusion increase. And even if these cracks do not occur, when a copper alloy extruded material containing a large amount of S is cold-rolled and drawn, the Cu-S compound inside the material expands in the axial direction of the tube, and Cu Cracking is likely to occur at the -S compound interface. As a result, surface flaws, cracks, etc. occur in the product (copper pipe) during and after processing, thereby reducing the product yield. Or when bending a copper pipe, it becomes a starting point of a crack generation | occurrence | production and a crack is easy to generate | occur | produce in a bending part. Therefore, the S content is regulated to 0.005 mass% or less, preferably 0.003 mass% or less, and more preferably 0.0015 mass% or less.

Sは、銅地金およびスクラップ等の原料やスクラップに付着する油から、また、溶解鋳造雰囲気(フラックス、溶湯と接触する雰囲気中のSOxガス、炉材等)から比較的容易に溶湯中に取り込まれる。したがって、銅合金におけるSの含有量を0.005質量%以下に抑えるためには、低品位のCu地金およびスクラップの使用量を低減し、溶解雰囲気のSOxガスを低減し、適正な炉材を選定し、MgおよびCa等のSと親和性が強い元素を溶湯に微量添加する等の対策が有効である。   S is relatively easily taken into the molten metal from raw materials such as copper bullion and scrap and oil adhering to the scrap, and from the melt casting atmosphere (flux, SOx gas in the atmosphere in contact with the molten metal, furnace material, etc.) It is. Therefore, in order to keep the S content in the copper alloy to 0.005% by mass or less, the amount of low-grade Cu metal and scrap is reduced, the SOx gas in the melting atmosphere is reduced, and the appropriate furnace material And measures such as adding a trace amount of an element having strong affinity for S, such as Mg and Ca, to the molten metal are effective.

なお、S以外の不純物元素As,Bi,Sb,Pb,Se,Teも鋳塊、熱間押出材、および冷間加工材の健全性を低下させ、また銅管の曲げ加工性を損なうことから、できるだけ低減させることが好ましい。これらの元素も前記Sと同様の方法で低減させることができ、合計の含有量は、好ましくは0.0015質量%以下、より好ましくは0.0010質量%以下、さらに好ましくは0.0005質量%以下である。   In addition, impurity elements As, Bi, Sb, Pb, Se, and Te other than S also reduce the soundness of the ingot, the hot extruded material, and the cold work material, and impair the bending workability of the copper tube. It is preferable to reduce as much as possible. These elements can also be reduced in the same manner as S, and the total content is preferably 0.0015% by mass or less, more preferably 0.0010% by mass or less, and further preferably 0.0005% by mass. It is as follows.

(O:0.005質量%以下)
O(酸素)が銅合金中に存在すると、Cu、あるいは含有する場合はSnの酸化物が生成して、これらの酸化物が鋳塊に巻き込まれて鋳塊の健全性が低下し、製造された銅管の曲げ加工性が低下する虞がある。したがって、Oの含有量は0.005質量%以下に規制し、高強度銅管の曲げ加工性をより向上させるために、好ましくは0.003質量%以下、さらに好ましくは0.0015質量%以下とする。銅合金へのOの取り込みを抑制するためには、原料の電気銅の溶解時に還元雰囲気とすればよい。
(O: 0.005 mass% or less)
When O (oxygen) is present in the copper alloy, Cu or Sn oxides are produced when they are contained, and these oxides are rolled into the ingot to reduce the soundness of the ingot. There is a possibility that the bending workability of the copper pipe is lowered. Therefore, the O content is limited to 0.005% by mass or less, and in order to further improve the bending workability of the high-strength copper tube, it is preferably 0.003% by mass or less, more preferably 0.0015% by mass or less. And In order to suppress the incorporation of O into the copper alloy, a reducing atmosphere may be used at the time of dissolution of the raw electrolytic copper.

(H:0.0002質量%以下)
H(水素)は銅合金の溶解鋳造時に溶湯に取り込まれ、多くなると、鋳塊中にピンホールを生じたり、Hが粒界に濃化等の状態で存在して、熱間押出時に割れを発生させる。そして、熱間押出時に割れが発生しなくても、Hを多く含有する銅合金の押出材は、焼鈍時に粒界にHの膨れが発生し易く、製品歩留が低下する。したがって、Hの含有量は0.0002質量%以下に規制し、製品歩留りをより向上させるために、好ましくは0.0001質量%以下とする。銅合金へのHの取り込みを抑制するためには、溶解鋳造時の原料を乾燥させたり、溶湯と接触する雰囲気の露点を低下させたり、P(Cu−P合金)添加前の溶湯を酸化気味にする等の対策が有効である。
(H: 0.0002 mass% or less)
H (hydrogen) is taken into the molten metal at the time of copper alloy melting and casting, and when it increases, pinholes are formed in the ingot, or H is present in a concentrated state at the grain boundaries, causing cracks during hot extrusion. generate. And even if a crack does not generate | occur | produce at the time of hot extrusion, the extrusion material of the copper alloy containing much H tends to generate | occur | produce the H of a grain boundary at the time of annealing, and a product yield falls. Therefore, the H content is limited to 0.0002 mass% or less, and is preferably 0.0001 mass% or less in order to further improve the product yield. In order to suppress the incorporation of H into the copper alloy, the raw material during melting and casting is dried, the dew point of the atmosphere in contact with the molten metal is reduced, or the molten metal before the addition of P (Cu-P alloy) is oxidized. Measures such as making it effective are effective.

本発明に係る銅合金管を形成する銅合金は、前記成分にさらにNi:0.005〜0.20質量%を含有してもよく、このとき、NiとCoの合計の含有量はPの含有量の2.5倍以上とする。また、本発明に係る銅合金管を形成する銅合金は、前記成分にさらに、Fe,Mn,Mg,Cr,Ti,Zr,Agから選択された1種以上を合計0.10質量%未満含有してもよく、あるいは、Sn:0.05〜1.0質量%、Zn:0.005〜1.0質量%の少なくとも1種を含有してもよい。   The copper alloy forming the copper alloy tube according to the present invention may further contain Ni: 0.005 to 0.20% by mass in the above components. At this time, the total content of Ni and Co is P. The content is 2.5 times or more. In addition, the copper alloy forming the copper alloy tube according to the present invention further contains one or more selected from Fe, Mn, Mg, Cr, Ti, Zr, and Ag in addition to the above components in total less than 0.10% by mass. Or you may contain at least 1 sort (s) of Sn: 0.05-1.0 mass% and Zn: 0.005-1.0 mass%.

(Ni:0.005〜0.20質量%、かつCoの含有量以下)
((Co+Ni)/P質量比:2.5以上)
Niは、銅合金中でCo,Pとの三元化合物(適宜、(Co,Ni)−P化合物という)を生成、析出させる。この(Co,Ni)−P化合物は、Co−P化合物と同様に、高強度銅管の強度を向上させ、また熱処理においてピンニング粒子として作用してろう付け後強度を確保する効果を有する。したがって、Niは、Coの含有量を増大させることなく、強度をいっそう向上させることができる。Co,Ni,Pを含有する銅合金からなり、特に高温でのろう付け処理後の強度が高い高強度銅管について、TEM(透過型電子顕微鏡)による観察および抽出残渣分析を詳細に行った結果、(Co,Ni)2Pが析出していることが明らかとなった。すなわち、Niを含有させることで、Co2PのCoがNiに一部置換される形となる。また、NiはCoと原子量が近いので、(Co,Ni)2PにおけるPに対するCoとNiとの合計の質量比((Co+Ni)/P)は約3.8であるといえる。したがって、Co,Pを含有する銅合金と同様に、質量比((Co+Ni)/P)が3.8から大きく減少して2.5未満になると、Co,Ni,Pの各含有量が前記の範囲であっても、Pに対してCo,Niが不足して、Co2Pや(Co,Ni)2Pを十分に析出せずに前記効果が十分に得られない。
(Ni: 0.005 to 0.20% by mass and less than Co content)
((Co + Ni) / P mass ratio: 2.5 or more)
Ni generates and precipitates a ternary compound with Co and P (appropriately referred to as (Co, Ni) -P compound) in a copper alloy. This (Co, Ni) -P compound has the effect of improving the strength of a high-strength copper tube and ensuring the strength after brazing by acting as pinning particles in the heat treatment, like the Co-P compound. Therefore, Ni can further improve the strength without increasing the Co content. Result of detailed observation of TEM (transmission electron microscope) and extraction residue analysis of high strength copper tube made of copper alloy containing Co, Ni, P, especially high strength after brazing at high temperature , (Co, Ni) 2 P was found to be precipitated. That is, by including Ni, Co in the Co 2 P is partially substituted with Ni. Further, since Ni has an atomic weight close to that of Co, it can be said that the total mass ratio ((Co + Ni) / P) of Co and Ni to P in (Co, Ni) 2 P is about 3.8. Therefore, as in the case of the copper alloy containing Co and P, when the mass ratio ((Co + Ni) / P) is greatly reduced from 3.8 to less than 2.5, the contents of Co, Ni, and P are increased as described above. Even within this range, Co and Ni are insufficient with respect to P, and Co 2 P and (Co, Ni) 2 P are not sufficiently precipitated, so that the above effect cannot be obtained sufficiently.

(Co,Ni)−P化合物を十分に析出させて前記効果を得るために、Niの含有量は0.005質量%以上とすることが好ましい。一方、Niの含有量が0.20質量%を超えると、(Co,Ni)−P化合物が過剰に析出するため強度が過大となって伸びが低下して、加工性が不足する。また、NiがCoを超えて多くなると、生成するPの三元化合物が、Coに対してNiが多い組成の(Ni,Co)−P化合物になり易く、析出物が固溶温度の低いNi−P化合物(Ni2P)の性質に近付き、ろう付け処理にて溶融し易いため、ピンニング粒子としての効果が小さい。したがって、Niの含有量は、0.20質量%以下、かつCoの含有量以下とし、さらに、Coの含有量との合計でPの含有量の2.5倍以上とし、好ましくは3.0倍以上である。 In order to sufficiently precipitate the (Co, Ni) -P compound and obtain the above effect, the Ni content is preferably 0.005% by mass or more. On the other hand, if the Ni content exceeds 0.20% by mass, the (Co, Ni) -P compound is excessively precipitated, so that the strength is excessive and the elongation is lowered, resulting in insufficient workability. Further, when Ni increases beyond Co, the resulting ternary compound of P is likely to be a (Ni, Co) -P compound having a composition with more Ni than Co, and the precipitate has a low solid solution temperature. The effect as pinning particles is small because it approaches the properties of the -P compound (Ni 2 P) and is easily melted by brazing. Therefore, the Ni content is 0.20% by mass or less and the Co content or less, and the total content with Co is 2.5 times or more the P content, preferably 3.0%. It is more than double.

(Fe,Mn,Mg,Cr,Ti,Zr,Ag:合計0.10質量%未満)
Fe,Mn,Mg,Cr,Ti,Zr,Agはそれぞれ、単体で、またはFe2P,Mn32等のPとの化合物として析出することで、前記のCo−P化合物等と同様に、高強度銅管の強度およびろう付け後の強度を向上させる効果がある。一方、これらの元素が合計で0.10質量%以上含有されると、熱間押出における熱間変形抵抗が高くなり、当該元素を含有しない銅合金と同一の押出圧力とするためには熱間押出温度を高くする必要があり、高温で押出材の表面酸化が増加し、生産性の低下や銅管の表面欠陥が増加する。したがって、Fe,Mn,Mg,Cr,Ti,Zr,Agから選択された1種以上の含有量は合計で0.10質量%未満とする。
(Fe, Mn, Mg, Cr, Ti, Zr, Ag: less than 0.10% in total)
Each of Fe, Mn, Mg, Cr, Ti, Zr, and Ag precipitates as a single substance or as a compound with P such as Fe 2 P, Mn 3 P 2 , and the like, similarly to the Co—P compound and the like. There is an effect of improving the strength of the high-strength copper tube and the strength after brazing. On the other hand, when these elements are contained in a total of 0.10% by mass or more, the hot deformation resistance in hot extrusion increases, and in order to obtain the same extrusion pressure as that of the copper alloy not containing the elements, It is necessary to increase the extrusion temperature, and the surface oxidation of the extruded material increases at a high temperature, resulting in a decrease in productivity and a surface defect of the copper tube. Accordingly, the total content of one or more selected from Fe, Mn, Mg, Cr, Ti, Zr, and Ag is less than 0.10% by mass.

(Sn:0.05〜1.0質量%)
Snは、銅合金中で固溶硬化によって引張強さを向上させ、また、高強度銅管の焼鈍やろう付けによる熱影響に対して結晶粒度の粗大化が抑制されて耐熱性が向上する。これらの効果を得るために、Snの含有量は0.05質量%以上とすることが好ましい。一方、Snの含有量が1.0質量%を超えると、鋳塊における凝固偏析が激しくなって、通常の熱間押出や加工熱処理において偏析が完全に解消しないことがあり、銅管の組織、機械的性質、曲げ加工性、ろう付け後の組織および機械的性質の不均一が生じる。また、熱間押出における熱間変形抵抗が高くなり、Snの含有量が1.0質量%以下の銅合金と同一の押出圧力とするためには熱間押出温度を高くする必要があり、高温で押出材の表面酸化が増加し、生産性の低下や銅管の表面欠陥が増加する。したがって、Snの含有量は1.0質量%以下とする。
(Sn: 0.05 to 1.0% by mass)
Sn improves the tensile strength by solid solution hardening in a copper alloy, and also suppresses the coarsening of the crystal grain size against the thermal effects of annealing and brazing of a high-strength copper tube, thereby improving the heat resistance. In order to obtain these effects, the Sn content is preferably 0.05% by mass or more. On the other hand, if the Sn content exceeds 1.0% by mass, solidification segregation in the ingot becomes severe, and segregation may not be completely eliminated in normal hot extrusion or processing heat treatment, Mechanical properties, bending workability, texture after brazing, and non-uniformity of mechanical properties occur. In addition, the hot deformation resistance in hot extrusion is increased, and in order to obtain the same extrusion pressure as a copper alloy having a Sn content of 1.0 mass% or less, it is necessary to increase the hot extrusion temperature. As a result, the surface oxidation of the extruded material increases, resulting in decreased productivity and surface defects on the copper tube. Therefore, the Sn content is 1.0% by mass or less.

(Zn:0.005〜1.0質量%)
Znは、銅合金の強度、耐熱性、および疲労強度を向上させる効果を有する。また、Znを含有することにより、高強度銅管のろう付けにおいてりん銅ろう等のろう材の濡れ性を向上させる。さらに、Znを含有することにより、冷間圧延、抽伸、転造等に用いる工具の磨耗を低減させて、抽伸プラグや溝付プラグ等を長寿命化する効果があり、生産コストの低減に寄与する。また、高強度銅管の熱交換器への組立てにおいても、曲げ加工時のマンドレルの磨耗を低減し、さらにアルミニウムフィンの貫通孔のフィンカラーに密着させる際の拡管加工時の拡管ビュレットの磨耗も低減することができる。これらの効果を得るために、Znの含有量は0.005質量%以上とすることが好ましい。一方、Znの含有量が1.0質量%を超えると、応力腐食割れ感受性が高くなる。したがって、Znの含有量は1.0質量%以下とする。
(Zn: 0.005 to 1.0 mass%)
Zn has the effect of improving the strength, heat resistance, and fatigue strength of the copper alloy. In addition, inclusion of Zn improves the wettability of a brazing material such as phosphor copper brazing when brazing a high-strength copper tube. Furthermore, containing Zn has the effect of reducing the wear of tools used for cold rolling, drawing, rolling, etc., extending the life of drawing plugs and grooved plugs, etc., contributing to the reduction of production costs To do. In addition, when assembling a high-strength copper tube into a heat exchanger, the wear of the mandrel during bending is reduced, and the wear of the expanded burette during expansion of the tube when closely contacting the fin collar of the aluminum fin through-hole is also reduced. Can be reduced. In order to obtain these effects, the Zn content is preferably 0.005% by mass or more. On the other hand, when the Zn content exceeds 1.0 mass%, the stress corrosion cracking sensitivity becomes high. Therefore, the Zn content is 1.0% by mass or less.

〔高強度銅管の組織〕
本発明に係る高強度銅管は、管軸に沿った断面における平均結晶粒径が30μm以下である。また、比抵抗から算出される析出物の析出量が0.20〜0.30質量%であって、析出物のすべてに対して前記断面の肉厚方向中心部における円相当径3〜50nmの析出物が面積率で50%以上である。
[High-strength copper tube structure]
The high-strength copper pipe according to the present invention has an average crystal grain size of 30 μm or less in a cross section along the pipe axis. Moreover, the precipitation amount of the precipitate calculated from the specific resistance is 0.20 to 0.30% by mass, and the equivalent circle diameter of 3 to 50 nm in the central portion in the thickness direction of the cross section with respect to all the precipitates. The deposit is 50% or more in area ratio.

(平均結晶粒径:30μm以下)
銅管をU字形にする曲げ加工においては、U字の外周側に負荷される塑性歪みは、曲げ半径が小さいほど、また薄肉化された銅管ほど大きくなる。銅管は、前記外周に該当する部位に大きな結晶粒が存在すると、結晶粒界が破壊の起点となって割れが発生し易い。また、銅管は熱交換器に組み立てられて内部に静水圧を作用させると、管軸直交断面における周方向に、すなわち肉厚と直交する方向に力が加わる。これにより、薄肉化された銅管においては、内側表面の疵や微細な割れ、または内部の微細な割れ等の欠陥、あるいは硫化物等の介在物を起点にして割れが発生し得て、結晶粒が大きいと亀裂が伝播して破壊に至る。銅管の管軸方向と肉厚方向とを含む断面、すなわち管軸に沿った断面における平均結晶粒径が30μmを超えていると、特に大きな結晶粒により、曲げ加工時に割れを生じたり、あるいはろう付け処理時にさらに大きくなって、熱交換器に組み立てられた後に破壊の原因となる虞がある。したがって、高強度銅管は、管軸に沿った断面における平均結晶粒径を30μm以下とし、好ましくは20μm以下である。結晶粒径は、銅合金の成分を前記の範囲とし、さらに後記の高強度銅管の製造方法によって制御することができる。平均結晶粒径は、肉厚方向における全体の結晶粒の粒径の平均であり、例えば、管軸を含む面で高強度銅管を切断して断面を研磨して観察面とし、肉厚方向に沿って複数視野を選んで光学顕微鏡で観察して、JISH0501に記載されている比較法で結晶粒径を測定し、平均値を算出して得られる。
(Average crystal grain size: 30 μm or less)
In bending a copper tube into a U shape, the plastic strain applied to the outer periphery of the U shape increases as the bending radius decreases and the thinner the copper tube. In a copper tube, when large crystal grains are present at a portion corresponding to the outer periphery, the crystal grain boundary is the starting point of fracture, and cracking is likely to occur. Moreover, when a copper pipe is assembled in a heat exchanger and hydrostatic pressure is applied to the inside, a force is applied in the circumferential direction in the cross section perpendicular to the pipe axis, that is, in the direction perpendicular to the wall thickness. As a result, in the thinned copper pipe, cracks can occur starting from defects such as wrinkles and fine cracks on the inner surface, fine cracks inside, or inclusions such as sulfides, If the grain is large, cracks propagate and break. If the average crystal grain size in the cross section including the pipe axis direction and the thickness direction of the copper pipe, that is, the cross section along the pipe axis exceeds 30 μm, cracks may occur during bending due to particularly large crystal grains, or There is a risk that it will become larger during the brazing process and cause damage after being assembled into a heat exchanger. Therefore, the high-strength copper tube has an average crystal grain size in a section along the tube axis of 30 μm or less, preferably 20 μm or less. The crystal grain size can be controlled by the method for producing a high-strength copper tube described below, with the components of the copper alloy within the above range. The average crystal grain size is the average grain size of all the crystal grains in the thickness direction. For example, a high-strength copper tube is cut on the surface including the tube axis and the cross section is polished to obtain an observation surface. A plurality of visual fields are selected along with the optical microscope and observed with an optical microscope, the crystal grain size is measured by a comparison method described in JISH0501, and an average value is calculated.

(析出物:比抵抗に基づく算出値0.20〜0.30質量%)
本発明に係る高強度銅管における析出物は、主にCo−P化合物を指し、銅合金がNiを含有する場合はさらに(Co,Ni)−P化合物を、銅合金がFe,Mn,Mg,Cr,Ti,Zr,Agを含有する場合はさらにこれらの元素の単体またはPとの化合物を指し、析出物の量(析出量)とはこれらすべての合計量を指す。これらの析出物は、前記の通り、析出量が多いほど高強度銅管の強度、特にろう付け後の強度を向上させる。銅合金の鋳造時に調整したCo,Ni等のすべてが析出すると限らないことから、本発明においては、銅合金の成分のみならず、高強度銅管における析出量を、後記するように比抵抗に基づいて算出し、管理することにより、十分な強度の高強度銅管とする。析出量が0.20質量%未満では、ろう付け後強度向上の効果が十分に得られない。一方、析出量が0.30質量%を超えると、強度が過大となって伸びが低下して、加工性が不足する。したがって、高強度銅管における析出物は、0.20質量%以上0.30質量%以下とする。析出物は、銅合金の成分、特にCo,Ni,Pの各含有量を質量比も含めて前記の範囲とし、さらに後記の高強度銅管の製造条件によって制御することができる。
(Precipitate: calculated value based on specific resistance 0.20 to 0.30 mass%)
The precipitate in the high-strength copper pipe according to the present invention mainly refers to a Co—P compound. When the copper alloy contains Ni, the (Co, Ni) —P compound is further included, and the copper alloy is Fe, Mn, Mg. , Cr, Ti, Zr, and Ag further refer to a single element of these elements or a compound with P, and the amount of precipitate (precipitation amount) refers to the total amount of all of these. As described above, these precipitates improve the strength of the high-strength copper tube, particularly the strength after brazing, as the amount of precipitation increases. In the present invention, not only the components of the copper alloy but also the amount of precipitation in the high-strength copper tube is reduced to the specific resistance as will be described later. By calculating and managing based on this, a high-strength copper tube with sufficient strength is obtained. If the amount of precipitation is less than 0.20% by mass, the effect of improving the strength after brazing cannot be sufficiently obtained. On the other hand, when the amount of precipitation exceeds 0.30 mass%, strength will become excessive and elongation will fall and workability will become insufficient. Therefore, the precipitate in the high-strength copper tube is 0.20 mass% or more and 0.30 mass% or less. Precipitates can be controlled in accordance with the production conditions of the high-strength copper tube, which will be described later, with the contents of the copper alloy components, particularly the contents of Co, Ni, and P, including the mass ratio within the above range.

Lindeらによって銅合金の比抵抗と銅合金中の固溶元素の関係が報告されており、固溶している元素の濃度による銅の比抵抗(単位:Ω・cm)の変化量(増加量)Δρは、下式(1)で表すことができる。
Δρ=Σ(Ci・Δρi) ・・・(1)
Ciはi番目の固溶元素の濃度(質量%)である。Δρiはi番目の固溶元素の電気抵抗に及ぼす寄与度で、Co,Ni,P,Sn,Zn,Fe,Mn,Mg,Cr,Ti,Agについて、ΔρCo=6.0、ΔρNi=1.1、ΔρP=7.0、ΔρSn=3.1、ΔρZn=0.3、ΔρFe=9.3、ΔρMn=2.9、ΔρMg=0.8、ΔρCr=4.0、ΔρTi=16.0、ΔρAg=0.6(単位:×10-6Ω・cm/質量%)である。なお、Zrについては、本発明に係る高強度銅管を形成する銅合金の成分の範囲では、導電率にほとんど影響しないため、比抵抗の変化量Δρの算出において無視することができる。
Linde et al. Have reported the relationship between the specific resistance of copper alloy and the solid solution elements in the copper alloy, and the amount of change (increase) in the specific resistance of copper (unit: Ω · cm) depending on the concentration of the solid solution element. ) Δρ can be expressed by the following equation (1).
Δρ = Σ (Ci · Δρi) (1)
Ci is the concentration (mass%) of the i-th solid solution element. Δρi is the contribution to the electric resistance of the i-th solid solution element. For Co, Ni, P, Sn, Zn, Fe, Mn, Mg, Cr, Ti, and Ag, Δρ Co = 6.0, Δρ Ni = 1.1, Δρ P = 7.0, Δρ Sn = 3.1, Δρ Zn = 0.3, Δρ Fe = 9.3, Δρ Mn = 2.9, Δρ Mg = 0.8, Δρ Cr = 4 0.0, Δρ Ti = 16.0, Δρ Ag = 0.6 (unit: × 10 −6 Ω · cm / mass%). Note that Zr can be ignored in the calculation of the specific resistance change Δρ because it hardly affects the conductivity in the range of the components of the copper alloy forming the high-strength copper tube according to the present invention.

ここで、本発明に係る高強度銅管を形成する銅合金の成分の範囲では、Sn,Znは化合物を生成しないため、銅合金におけるSn,Znの含有量(鋳造時の添加量)が、そのまま固溶Sn量(CSn)、固溶Zn量(CZn)となる。一方、化合物(析出物)を生成するCo,Ni,Pは、それぞれ銅合金における含有量から析出量を減じた値が固溶量(CCo,CNi,CP)となる。また、Fe,Mn,Mg,Cr,Ti,Zr,Agは、それぞれ一部が固溶するが、本発明に係る高強度銅管を形成する銅合金の成分の範囲では含有量が少ないため、いずれも含有量の20%が固溶すると近似して計算することができる。したがって、本発明に係る高強度銅管において、比抵抗の変化量Δρは下式(2)で表すことができる。
Δρ=(Co含有量−Co析出量)・ΔρCo+(Ni含有量−Ni析出量)・ΔρNi+(P含有量−P析出量)・ΔρP+CSn・ΔρSn+CZn・ΔρZn+0.2×[(Fe含有量)・ΔρFe+(Mn含有量)・ΔρMn+(Mg含有量)・ΔρMg+(Cr含有量)・ΔρCr+(Ti含有量)・ΔρTi+(Ag含有量)・ΔρAg] ・・・(2)
Here, in the range of the components of the copper alloy that forms the high-strength copper tube according to the present invention, Sn and Zn do not form a compound, so the content of Sn and Zn in the copper alloy (addition amount at the time of casting) The solid solution Sn amount (C Sn ) and the solid solution Zn amount (C Zn ) are obtained as they are. On the other hand, for Co, Ni, and P that form a compound (precipitate), the value obtained by subtracting the precipitation amount from the content in the copper alloy is the solid solution amount (C Co , C Ni , C P ). In addition, Fe, Mn, Mg, Cr, Ti, Zr, and Ag are partially dissolved, but the content is small in the range of the components of the copper alloy that forms the high-strength copper tube according to the present invention. In any case, it can be calculated by approximating that 20% of the content is dissolved. Therefore, in the high-strength copper tube according to the present invention, the specific resistance change Δρ can be expressed by the following equation (2).
Δρ = (Co content−Co precipitation amount) · Δρ Co + (Ni content−Ni precipitation amount) · Δρ Ni + (P content−P precipitation amount) · Δρ P + C Sn · Δρ Sn + C Zn · Δρ Zn + 0.2 × [(Fe content), Δρ Fe + (Mn content), Δρ Mn + (Mg content), Δρ Mg + (Cr content), Δρ Cr + (Ti content), Δρ Ti + (Ag content) ・ Δρ Ag ] (2)

比抵抗の変化量Δρは、純銅の比抵抗と、銅合金からなる銅管を測定した比抵抗との差として得られる。Δρiは既知の定数である。Co,Ni,Pの各含有量およびSn,Zn,Fe,Mn,Mg,Cr,Ti,Agの各固溶量は、銅合金の成分より明らかである。そして、前記の通り、析出物Co2P、(Co,Ni)2Pの組成より、これらの化合物におけるCo,Ni,Pの質量比について、Co/Pまたは(Co+Ni)/Pを3.8であると仮定することができ、さらに(Co,Ni)2PにおけるNi/Coを1/8であると仮定することができる。以上より、Co,Ni,Pのそれぞれの固溶量および析出量を算出して、析出量の和を銅管におけるCo−P化合物や(Co,Ni)−P化合物の析出量として得ることができる。さらに、Fe,Mn,Mg,Cr,Ti,Zr,Agは、含有量の80%が析出すると仮定することができるので、これらの含有量に0.8を乗ずることで析出量が近似される。なお、これらの元素は、Pとの化合物を生成するものは比較的少ないため、前記化合物に含まれるPは無視することができる。以上、得られた析出量を加算すれば、すべての析出物の析出量が算出される。 The change Δρ in specific resistance is obtained as the difference between the specific resistance of pure copper and the specific resistance measured from a copper tube made of a copper alloy. Δρi is a known constant. Each content of Co, Ni, P and each solid solution amount of Sn, Zn, Fe, Mn, Mg, Cr, Ti, and Ag are clear from the components of the copper alloy. As described above, from the composition of the precipitates Co 2 P and (Co, Ni) 2 P, the Co / P or (Co + Ni) / P ratio is 3.8 with respect to the mass ratio of Co, Ni, and P in these compounds. And Ni / Co in (Co, Ni) 2 P can be assumed to be 1/8. From the above, it is possible to calculate the respective solid solution amounts and precipitation amounts of Co, Ni, and P, and obtain the sum of the precipitation amounts as the precipitation amounts of the Co—P compound and (Co, Ni) —P compound in the copper pipe. it can. Furthermore, since Fe, Mn, Mg, Cr, Ti, Zr, and Ag can be assumed to precipitate 80% of their contents, the amount of precipitation can be approximated by multiplying these contents by 0.8. . Since these elements produce relatively few compounds with P, P contained in the compounds can be ignored. As mentioned above, if the precipitation amount obtained is added, the precipitation amount of all the precipitates is calculated.

(析出物サイズ分布:円相当径3〜50nmの析出物が面積率50%以上)
Co−P化合物や(Co,Ni)−P化合物等の析出物は、前記の通り、ろう付けのための熱処理において、結晶粒の粗大化を抑制するピンニング粒子として作用することで熱処理による強度低下を抑制し、ろう付け後の強度を向上させる。しかし、微小な析出物、具体的には、管軸に沿った断面(管軸方向と肉厚方向とを含む断面)において円相当径3nm未満の析出物、すなわち直径3nmの円の面積よりも断面積の小さい析出物は、ろう付け処理にて溶融するのでピンニング粒子として作用しない。一方、直径50nmを超える析出物が多い場合、個数としては少なく、分布が不十分であるため、結晶粒の粗大化を抑制する効果が低下する。したがって、肉厚方向中心部の前記析出物において、円相当径3〜50nmのものが半分以上、すなわち断面の肉厚方向中心部における面積率で50%以上とし、好ましくは60%以上である。肉厚方向中心部とは、具体的には、肉厚方向1/2の部位を中心として肉厚の55〜70%に相当する範囲を指す。このような析出物のサイズ分布は、後記の高強度銅管の製造条件によって制御することができる。
(Precipitate size distribution: precipitates with equivalent circle diameter of 3 to 50 nm are area ratios of 50% or more)
As described above, precipitates such as Co-P compounds and (Co, Ni) -P compounds act as pinning particles that suppress the coarsening of crystal grains in the heat treatment for brazing, thereby reducing the strength due to the heat treatment. Suppresses and improves the strength after brazing. However, a fine precipitate, specifically, a precipitate having an equivalent circle diameter of less than 3 nm in a cross section along the tube axis (a cross section including the tube axis direction and the thickness direction), that is, the area of a circle having a diameter of 3 nm. The precipitate having a small cross-sectional area melts in the brazing process and therefore does not act as pinning particles. On the other hand, when the number of precipitates having a diameter exceeding 50 nm is large, the number is small and the distribution is insufficient, so that the effect of suppressing the coarsening of the crystal grains decreases. Therefore, in the precipitates in the central part in the thickness direction, the equivalent circle diameter of 3 to 50 nm is more than half, that is, the area ratio in the central part in the thickness direction of the cross section is 50% or more, preferably 60% or more. Specifically, the central portion in the thickness direction refers to a range corresponding to 55 to 70% of the thickness centering on a portion in the thickness direction 1/2. The size distribution of such precipitates can be controlled by the manufacturing conditions of the high-strength copper tube described later.

析出物のサイズ分布は、管軸を含む面で高強度銅管を切断して断面を研磨し、肉厚方向における前記中心部の範囲から、好ましくは複数視野を選んでTEM(透過型電子顕微鏡)で観察することができる。そして、TEM画像を画像解析ソフトにて解析して、析出物のそれぞれの面積を測定し、面積から円換算にて直径(円相当径)を導出して、解析範囲におけるすべての析出物の総面積に対して、円相当径3nm以上50nm以下の析出物の合計面積の割合を算出すればよい。   The size distribution of the precipitates is determined by cutting a high-strength copper tube on the surface including the tube axis, polishing the cross section, and preferably selecting a plurality of fields of view from the range of the central portion in the thickness direction. ). Then, the TEM image is analyzed by image analysis software, the area of each precipitate is measured, the diameter (equivalent circle diameter) is derived from the area in terms of a circle, and the total of all the precipitates in the analysis range is calculated. What is necessary is just to calculate the ratio of the total area of the precipitates having an equivalent circle diameter of 3 nm to 50 nm with respect to the area.

〔高強度銅管の製造方法〕
次に、本発明に係る高強度銅管の製造方法の一例を示す。本発明に係る高強度銅管は、公知の銅管と同様に、鋳造、熱間押出、圧延、抽伸、最終焼鈍にて製造することができるが、結晶粒や析出物を制御するため、さらに以下の条件とすることが好ましい。
[Method of manufacturing high-strength copper pipe]
Next, an example of the manufacturing method of the high intensity | strength copper pipe which concerns on this invention is shown. The high-strength copper pipe according to the present invention can be manufactured by casting, hot extrusion, rolling, drawing, and final annealing, as well as known copper pipes, but in order to control crystal grains and precipitates, The following conditions are preferable.

はじめに、原料の電気銅を溶解し、銅が溶解した後、Co、さらにNi,Sn,Zn等をそれぞれ所定量添加し、さらに脱酸のために15質量%程度のPを含有する銅合金を添加し、溶湯を成分調整した後、半連続鋳造により所定の寸法のビレットを製造する。次に、ビレットを680〜800℃に加熱し、必要に応じて偏析改善のために0.1〜2時間程度保持して均質化処理を行う。   First, electrolytic copper as a raw material is dissolved. After copper is dissolved, a predetermined amount of Co, Ni, Sn, Zn, etc. is added, and a copper alloy containing about 15% by mass of P for deoxidation. After adding and adjusting the components of the molten metal, billets having predetermined dimensions are produced by semi-continuous casting. Next, the billet is heated to 680 to 800 ° C., and if necessary, is maintained for about 0.1 to 2 hours to improve segregation and homogenization is performed.

加熱されたビレットに穿孔加工を行い、750〜980℃で熱間押出により押出素管とし、水冷等により急速冷却する。本発明に係る高強度銅管は、押出後にCoを固溶させ、また再結晶による結晶粒の粗大化を防止するために、押出素管の表面温度が300℃になるまで冷却速度10℃/秒以上で急速冷却することが好ましい。前記冷却速度は、好ましくは15℃/秒以上、さらに好ましくは20℃/秒以上である。また、熱間押出の加工率すなわち、(穿孔されたビレットの断面積−押出素管の断面積)/穿孔されたビレットの断面積×100(%)は、80%以上とすることが好ましく、90%以上とすることがさらに好ましい。   The heated billet is subjected to perforation, and is formed into an extruded raw tube by hot extrusion at 750 to 980 ° C., and then rapidly cooled by water cooling or the like. The high-strength copper tube according to the present invention has a cooling rate of 10 ° C./until the surface temperature of the extruded element tube reaches 300 ° C. in order to dissolve Co after extrusion and prevent coarsening of crystal grains due to recrystallization. It is preferable to rapidly cool in seconds. The cooling rate is preferably 15 ° C./second or more, more preferably 20 ° C./second or more. The processing rate of hot extrusion, that is, (cross-sectional area of perforated billet−cross-sectional area of extruded pipe) / cross-sectional area of perforated billet × 100 (%) is preferably 80% or more, More preferably, it is 90% or more.

押出素管を圧延加工して圧延素管とする。このときの加工率は、加工時の製品不良を低減するために、断面減少率で95%以下とすることが好ましく、90%以下とすることがさらに好ましい。   The extruded element tube is rolled into a rolled element tube. The processing rate at this time is preferably 95% or less, more preferably 90% or less in terms of the cross-sectional reduction rate, in order to reduce product defects during processing.

圧延素管を抽伸加工して所定の寸法の抽伸管(平滑管)とする。ここで、まず粗抽伸加工を行って、400〜700℃にて5分間〜1時間保持して中間焼鈍を行うことにより、析出物を分散させる。中間焼鈍温度が400℃未満では析出量が不足し、一方、700℃を超えると析出物が粗大化して個数が不足する。さらにその後に抽伸加工を行って抽伸管とする。ここで、通常、抽伸加工は何台かの抽伸機を用いるが、各抽伸機による加工率(断面減少率)を40%以下にすることにより、表面欠陥や内部割れを低減することができる。そして、抽伸管を500〜750℃で5分間〜1時間程度保持して最終焼鈍を行うことにより、加工硬化した抽伸管を軟質化させて曲げ加工等を可能とすることに加え、さらに析出物を分散させる。なお、中間焼鈍後の抽伸加工に代えて、溝付転造加工を行って内面溝付管としてもよい。   The rolling raw pipe is drawn to obtain a drawn pipe (smooth pipe) having a predetermined size. Here, first, rough drawing is performed, and the intermediate is annealed at 400 to 700 ° C. for 5 minutes to 1 hour to disperse the precipitates. If the intermediate annealing temperature is less than 400 ° C., the amount of precipitation is insufficient. On the other hand, if it exceeds 700 ° C., the precipitates become coarse and the number is insufficient. After that, a drawing process is performed to obtain a drawing tube. Here, several drawing machines are usually used for the drawing process, but surface defects and internal cracks can be reduced by setting the processing rate (cross-sectional reduction rate) by each drawing machine to 40% or less. Then, by holding the drawing tube at 500 to 750 ° C. for about 5 minutes to 1 hour and performing final annealing, in addition to softening the work-hardened drawing tube and enabling bending, etc., further precipitates To disperse. Instead of the drawing process after the intermediate annealing, a grooved rolling process may be performed to form an internally grooved tube.

このように、2回の焼鈍を行うことにより、所望の析出状態とすることができる。特に抽伸加工における中間焼鈍は、通常の製造方法においては行わなかったり、あるいは抽伸し易くするために歪みを減少させる目的で行うため、析出物を分散させるためには温度や時間が不十分な場合がある。圧延素管や抽伸管を連続的に焼鈍するには、銅管コイル等の焼鈍に通常使用されるローラーハース炉、または高周波誘導コイルに通電しながら、抽伸管等を前記コイル内に通す、高周波誘導コイルによる加熱を利用することができる。   Thus, it can be set as a desired precipitation state by performing annealing twice. In particular, the intermediate annealing in the drawing process is not performed in the normal manufacturing method, or is performed for the purpose of reducing distortion in order to facilitate the drawing, so that the temperature and time are insufficient to disperse the precipitate. There is. In order to continuously anneal a rolling raw tube and a drawing tube, a high-frequency induction coil is passed through the drawing tube while energizing a roller hearth furnace or a high-frequency induction coil normally used for annealing a copper tube coil, etc. Heating by induction coil can be used.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例によって制限を受けるものではなく、請求項に示した範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. It should be noted that the present invention is not limited by this embodiment, and can be implemented with appropriate modifications within the scope of the claims, all of which are included in the technical scope of the present invention. The

〔高強度銅管作製〕
供試材として銅管を以下の工程により作製した。
電気銅を原料とした溶湯中に、表1および表2に示す成分にしたがい、Ni等を添加した後、Cu−P合金を添加して、鋳造温度1200℃で、直径300mm、長さ3000mmの鋳塊を半連続鋳造した。鋳塊から長さ475mmのビレットを切り出し、均質化処理としてビレットを680〜800℃の範囲に加熱して1時間保持した後、熱間押出して、外径100mm、肉厚10mmの押出素管を作製し、水冷にて表面温度が300℃になるまで冷却速度20℃/秒以上で急速冷却した。この押出素管を圧延し、さらに粗抽伸した後、中間焼鈍として供試材No.1〜17,20〜31は600℃で、供試材No.18,19,33,34は表2に示す温度で、1時間保持した。中間焼鈍後、さらに抽伸して、外径9.52mm、肉厚0.80mmの平滑管を作製した。なお、供試材No.32については中間焼鈍を行わずに連続して抽伸し、表2の中間焼鈍温度を「−」で表す。平滑管を、最終焼鈍として600℃で30分間保持し、銅管を作製した。また、途中の工程にて不具合により作製を中断したものは、以下の測定および評価を行わず、表1の測定値等の欄を「−」で表す。また、表1の供試材No.9については、表2にも併記する。
[High strength copper tube production]
A copper tube was produced as a test material by the following steps.
In accordance with the components shown in Table 1 and Table 2, in the molten metal made from electrolytic copper, after adding Ni or the like, a Cu-P alloy is added, and the casting temperature is 1200 ° C., the diameter is 300 mm, and the length is 3000 mm. The ingot was semi-continuously cast. A billet having a length of 475 mm was cut out from the ingot, and the billet was heated in the range of 680 to 800 ° C. and held for 1 hour as a homogenization process, and then hot extruded to obtain an extruded element tube having an outer diameter of 100 mm and a wall thickness of 10 mm. This was rapidly cooled at a cooling rate of 20 ° C./second or more until the surface temperature reached 300 ° C. by water cooling. After this extruded raw tube was rolled and further subjected to rough drawing, specimen No. 1 was used as intermediate annealing. Nos. 1 to 17 and 20 to 31 are 600 ° C. Nos. 18, 19, 33 and 34 were held at the temperatures shown in Table 2 for 1 hour. After the intermediate annealing, drawing was further performed to produce a smooth tube having an outer diameter of 9.52 mm and a wall thickness of 0.80 mm. The test material No. About 32, it draws continuously, without performing intermediate annealing, and the intermediate annealing temperature of Table 2 is represented by "-". The smooth tube was held at 600 ° C. for 30 minutes as the final annealing to produce a copper tube. Moreover, what interrupted production by the malfunction in the process in the middle does not perform the following measurement and evaluation, and represents the column of the measured value etc. of Table 1 by "-". In addition, the test material No. 9 is also shown in Table 2.

作製した銅管について、以下の方法で、平均結晶粒径、析出物の析出量、析出物における円相当径3nm以上50nm以下の面積率を測定し、表1および表2に示す。   With respect to the produced copper tube, the average crystal grain size, the precipitation amount of the precipitate, and the area ratio of the equivalent circle diameter of 3 nm to 50 nm in the precipitate are measured by the following methods and are shown in Tables 1 and 2.

(平均結晶粒径)
銅管を、管軸を含む面で切断して断面を研磨して観察面とした。肉厚方向における全体から3視野を光学顕微鏡で観察して、JISH0501に記載されている比較法で結晶粒径を測定し、平均値を算出した。
(Average crystal grain size)
The copper tube was cut along the surface including the tube axis, and the cross section was polished to obtain an observation surface. Three visual fields from the whole in the thickness direction were observed with an optical microscope, the crystal grain size was measured by the comparative method described in JISH0501, and the average value was calculated.

(比抵抗に基づく析出物の測定)
銅管について、GE Inspection Technologies社製「Hocking Autosigma 3000」にて比抵抗を測定し、純銅の比抵抗を1.68×10-6Ω・cmとして比抵抗の変化量Δρを算出した。得られた比抵抗の変化量Δρおよび銅合金の成分より、式(2)に基づいて、Co,Ni,Pの各析出量(Co−P化合物または(Co,Ni)−P化合物における量)を算出した。Co,Ni,P,Sn,Znの各固溶元素の電気抵抗に及ぼす寄与度を、ΔρCo=6.0、ΔρNi=1.1、ΔρP=7.0、ΔρSn=3.1、ΔρZn=0.3、ΔρFe=9.3、ΔρMn=2.9、ΔρMg=0.8、ΔρCr=4.0、ΔρTi=16.0、ΔρAg=0.6(単位:×10-6Ω・cm/質量%)とした。また、前記化合物におけるCo,Ni,Pの質量比について、Co/Pまたは(Co+Ni)/Pを3.8とし、さらにNiを含有する場合はNi/Coを1/8、ただしNiの含有量がCoよりも多い供試材はNi,Co各含有量の比と同値と仮定した。また、Fe,Mn,Mg,Cr,Ti,Zr,Agは含有量の80%が析出すると仮定し、これらの元素およびCo,Ni,Pの各析出量の合計を析出量とした。
(Measurement of precipitates based on specific resistance)
The specific resistance of the copper pipe was measured with “Hocking Autosigma 3000” manufactured by GE Inspection Technologies, and the specific resistance change Δρ was calculated by setting the specific resistance of pure copper to 1.68 × 10 −6 Ω · cm. From the obtained specific resistance change Δρ and the copper alloy component, the amount of each precipitation of Co, Ni, and P (amount in the Co—P compound or (Co, Ni) —P compound) based on the formula (2) Was calculated. The contribution of each solid solution element of Co, Ni, P, Sn, and Zn to the electric resistance is represented by Δρ Co = 6.0, Δρ Ni = 1.1, Δρ P = 7.0, Δρ Sn = 3.1. , Δρ Zn = 0.3, Δρ Fe = 9.3, Δρ Mn = 2.9, Δρ Mg = 0.8, Δρ Cr = 4.0, Δρ Ti = 16.0, Δρ Ag = 0.6 ( (Unit: × 10 −6 Ω · cm / mass%). Further, regarding the mass ratio of Co, Ni, and P in the compound, Co / P or (Co + Ni) / P is set to 3.8, and when Ni is further contained, Ni / Co is 1/8, however, the content of Ni It was assumed that the specimen with more than Co had the same value as the ratio of Ni and Co contents. Further, assuming that 80% of the content of Fe, Mn, Mg, Cr, Ti, Zr, and Ag is precipitated, the total amount of these elements and each of Co, Ni, and P was defined as the amount of precipitation.

(析出物のサイズ分布)
銅管を、管軸を含む面で切断して断面を研磨して観察面とした。TEMにて倍率×150000で観察し、肉厚方向1/2の部位を中心として肉厚の70%に相当する範囲から、700nm×800nmの視野を肉厚方向に沿って3視野、画像写真を撮影した。画像写真を画像解析ソフトにて解析して、析出物のそれぞれの面積を測定し、面積から円相当径を導出して、画像におけるすべての析出物の総面積に対して、円相当径3nm以上50nm以下の析出物の合計面積の割合を算出し、さらに3視野の平均値を算出した。
(Size distribution of precipitates)
The copper tube was cut along the surface including the tube axis, and the cross section was polished to obtain an observation surface. Observed with a TEM at a magnification of × 150,000, and from a range corresponding to 70% of the thickness centering on a portion in the thickness direction 1/2, three fields of view along the thickness direction, 700 nm × 800 nm, and an image photograph I took a picture. Analyze the image with image analysis software, measure the area of each precipitate, derive the equivalent circle diameter from the area, and the equivalent circle diameter of 3 nm or more with respect to the total area of all the precipitates in the image The ratio of the total area of precipitates of 50 nm or less was calculated, and the average value of three fields of view was calculated.

〔評価〕
作製した銅管について、曲げ加工性、強度として引張強さ、ろう付け後強度として熱処理後の引張強さ、耐応力腐食割れ性を、以下の通り評価した。
[Evaluation]
About the produced copper pipe, bending workability, tensile strength as strength, tensile strength after heat treatment as strength after brazing, and stress corrosion cracking resistance were evaluated as follows.

(曲げ加工性)
銅管を、曲げピッチ25mm(管軸における曲げ半径が12.5mm)のU字形に曲げ加工し、外側表面の曲げ部を目視にて観察した。各仕様10本について行い、割れや亀裂が観察されたものが5本以下であれば合格とし、10本すべてに割れ等のないものを「○」、割れ等が観察されたものが1本以上5本以下を「△」、6本以上を不合格として「×」と表1および表2に示す。
(Bending workability)
The copper tube was bent into a U shape with a bending pitch of 25 mm (bending radius at the tube axis was 12.5 mm), and the bent portion on the outer surface was visually observed. The test was conducted for 10 specifications, and if 5 or less cracks or cracks were observed, the test was accepted. All 10 specimens were “O”, and one or more cracks were observed. Tables 1 and 2 show “X” with 5 or less as “Δ” and 6 or more as “failed”.

(強度)
銅管を切り出して、JIS11号引張試験片を各仕様2本作製した。この試験片をJISZ2241に準じて引張試験を室温にて行った。詳しくは、5882型インストロン社製万能試験機により、試験速度10.0mm/分、GL=50mmで、引張強さを測定した。2回の平均値を表1および表2に示す。合格基準は、引張強さ240MPa以上とする。
(Strength)
The copper tube was cut out to produce two JIS No. 11 tensile test pieces. The test piece was subjected to a tensile test at room temperature according to JISZ2241. Specifically, the tensile strength was measured at a test speed of 10.0 mm / min and GL = 50 mm using a 5882 type Instron universal testing machine. The average of the two times is shown in Tables 1 and 2. The acceptance criterion is a tensile strength of 240 MPa or more.

(ろう付け後強度)
ろう付け処理を模擬して、800℃、850℃の2通りの温度で10分間の熱処理をした銅管について、前記引張試験と同様の方法で引張強さを測定した。それぞれの熱処理温度について2回の平均値を表1および表2に示す。合格基準は、引張強さ230MPa以上とする。
(Strength after brazing)
Simulating the brazing treatment, the tensile strength of a copper tube subjected to heat treatment for 10 minutes at two temperatures of 800 ° C. and 850 ° C. was measured in the same manner as in the tensile test. Tables 1 and 2 show the average values of the two times for each heat treatment temperature. The acceptance criterion is a tensile strength of 230 MPa or more.

(耐応力腐食割れ性)
以下の方法で応力腐食割れ試験を実施した。銅管を長さ75mmに切り出して試験片とし、この試験片を脱脂、乾燥した後、JISK8085に規定するアンモニア水を等量の純水で希釈した11.8%以上のアンモニア水を入れたデシケーターに、液面から50mmの距離を空けた高さ位置に固定して収容し、アンモニア雰囲気中に常温で2時間保持した。その後、試験片を銅管の元の外径の50%まで径方向に押しつぶした。この試験片を目視で観察して外周面の割れの有無を判定した。割れのないものを合格として「○」、割れの発生したものを「×」で、表1および表2に示す。
(Stress corrosion cracking resistance)
The stress corrosion cracking test was carried out by the following method. A copper tube is cut out to a length of 75 mm to make a test piece. After the test piece is degreased and dried, a desiccator containing 11.8% or more of ammonia water diluted with an equal amount of pure water as defined in JIS K8085. And fixed at a height of 50 mm away from the liquid surface and stored in an ammonia atmosphere at room temperature for 2 hours. Thereafter, the test piece was crushed in the radial direction to 50% of the original outer diameter of the copper tube. The test piece was visually observed to determine the presence or absence of cracks on the outer peripheral surface. Tables 1 and 2 show “O” when the crack is not passed and “X” when the crack is generated.

Figure 0005602707
Figure 0005602707

Figure 0005602707
Figure 0005602707

表1および表2に示すように、供試材No.1〜19は、銅合金の成分、結晶粒径、および析出物の分布がいずれも本発明の範囲の実施例であり、強度、曲げ加工性、耐応力腐食割れ性がいずれも良好で、特に850℃の高温でのろう付け処理による強度の低下が抑制された。   As shown in Table 1 and Table 2, the test material No. Nos. 1 to 19 are examples in which the components of the copper alloy, the crystal grain size, and the distribution of precipitates are all within the scope of the present invention, and the strength, bending workability, and stress corrosion cracking resistance are all good. A decrease in strength due to brazing at a high temperature of 850 ° C. was suppressed.

これに対して、供試材No.20〜31は、銅合金の成分が本発明の範囲外の比較例である。供試材No.20,22は、Co,Pがそれぞれ不足したため、Co−P化合物が不足し、さらに円相当径3nm未満の小さな析出物が多かった。特に析出量が少ない供試材No.22は、強度が低く、熱処理によりいっそう低下し、さらに熱間押出や中間焼鈍においてもピンニング粒子となる析出物も少ないために結晶粒が粗大化した。供試材No.20も、850℃の熱処理により強度が大きく低下した。反対に、供試材No.21はCoが過剰であるために高温下でもCo−P化合物が析出し、熱間押出にて変形抵抗が過大となって割れを生じた。供試材No.23はPが過剰であるため、熱間押出にて割れを生じた。   On the other hand, the test material No. 20 to 31 are comparative examples in which the components of the copper alloy are outside the scope of the present invention. Specimen No. In Nos. 20 and 22, since Co and P were insufficient, the Co—P compound was insufficient, and there were many small precipitates having an equivalent circle diameter of less than 3 nm. In particular, the specimen No. No. 22 was low in strength, further decreased by heat treatment, and further, there were few precipitates that became pinning particles even during hot extrusion or intermediate annealing, so the crystal grains became coarse. Specimen No. No. 20 was greatly reduced in strength by heat treatment at 850 ° C. On the other hand, the test material No. In No. 21, since Co was excessive, a Co—P compound was precipitated even at a high temperature, and the deformation resistance was excessively increased by hot extrusion to cause cracking. Specimen No. No. 23 was cracked by hot extrusion because P was excessive.

供試材No.24,25は、NiがCoを超えて含有されるため、Coが本発明の範囲である供試材No.25も含めて、析出量は本発明の範囲であっても析出した(Co,Ni)−P化合物がNi過剰となって、850℃の熱処理においてピンニング粒子として作用せず、その後の強度が大きく低下した。供試材No.26はSnが過剰であるため、熱間変形抵抗が高くなって熱間押出をすることができなかった。供試材No.27はZnが過剰であるため、応力腐食割れ感受性が高くなった。供試材No.28はCrが過剰であるため、過剰な析出物により強度が過大となって、曲げ加工性が低下した。   Specimen No. Nos. 24 and 25 contain Ni in excess of Co, so that Co is within the scope of the present invention. Even if the precipitation amount is within the range of the present invention, including 25, the precipitated (Co, Ni) -P compound becomes Ni-excess and does not act as pinning particles in the heat treatment at 850 ° C., and the strength after that is large. Declined. Specimen No. In No. 26, Sn was excessive, so that the hot deformation resistance was high and hot extrusion could not be performed. Specimen No. In No. 27, since Zn was excessive, the stress corrosion cracking sensitivity was high. Specimen No. In No. 28, since Cr is excessive, the strength is excessive due to excessive precipitates, and bending workability is deteriorated.

供試材No.29,31は不可避的不純物S,Hがそれぞれ規定を超えて含有されるため、熱間押出にて割れを生じた。供試材No.30は不可避的不純物Oが規定を超えて含有されるため、曲げ加工性が低下した。   Specimen No. Nos. 29 and 31 contained unavoidable impurities S and H in excess of the specifications, and thus cracks were generated by hot extrusion. Specimen No. No. 30 contained inevitable impurities O exceeding the specified range, so that bending workability was lowered.

供試材No.32〜34は、銅合金の成分は供試材No.9と同一で本発明の範囲であるが、析出物の分布、あるいはさらに結晶粒径が本発明の範囲外の比較例である。供試材No.32は抽伸加工時に中間焼鈍を行わず、また供試材No.33は抽伸加工における歪みを除去するための一般的な中間焼鈍で温度が低かったため、それぞれ(Co,Ni)−P化合物が十分に析出せず、強度が、当初は高いが850℃の熱処理により大きく低下した。一方、供試材No.34は、中間焼鈍温度が高かったため、結晶粒および析出物が粗大化して、強度が低下した。   Specimen No. Nos. 32-34 are the components of the copper alloy, specimen No. This is a comparative example that is the same as 9 and within the scope of the present invention, but the distribution of precipitates or the crystal grain size is outside the scope of the present invention. Specimen No. No. 32 does not perform intermediate annealing during the drawing process. No. 33 was a general intermediate annealing for removing strain in the drawing process, and the temperature was low. Therefore, each of the (Co, Ni) -P compounds was not sufficiently precipitated, and the strength was initially high, but by heat treatment at 850 ° C. It was greatly reduced. On the other hand, the test material No. In No. 34, since the intermediate annealing temperature was high, the crystal grains and precipitates were coarsened, and the strength decreased.

Claims (4)

銅合金を押出成形してなる高強度銅管であって、
前記銅合金は、Co:0.13〜0.30質量%、P:0.03〜0.10質量%を含有し、前記Coの含有量が前記Pの含有量の2.5倍以上であって、残部がCuおよび不可避的不純物からなり、前記不可避的不純物として、S:0.005質量%以下、O:0.005質量%以下、H:0.0002質量%以下に規制され、
管軸に沿った断面における平均結晶粒径が30μm以下であり、比抵抗から算出される析出物が0.20〜0.30質量%であって、前記析出物のすべてに対して前記断面の肉厚方向中心部における円相当径3〜50nmの析出物が面積率で50%以上であることを特徴とするろう付け後の強度に優れた高強度銅管。
A high-strength copper tube formed by extruding a copper alloy,
The copper alloy contains Co: 0.13-0.30 mass%, P: 0.03-0.10 mass%, and the Co content is 2.5 times or more of the P content. And the balance consists of Cu and inevitable impurities, and the inevitable impurities are regulated to S: 0.005 mass% or less, O: 0.005 mass% or less, H: 0.0002 mass% or less,
The average crystal grain size in the cross section along the tube axis is 30 μm or less, and the precipitate calculated from the specific resistance is 0.20 to 0.30 mass%, and the cross section of the cross section with respect to all the precipitates A high-strength copper tube excellent in strength after brazing, wherein a precipitate having an equivalent circle diameter of 3 to 50 nm in the central portion in the thickness direction is 50% or more in area ratio.
前記銅合金がさらに、Ni:0.005〜0.20質量%を含有し、前記Niの含有量が前記Coの含有量以下、前記Coと前記Niの合計の含有量が前記Pの含有量の2.5倍以上であることを特徴とする請求項1に記載のろう付け後の強度に優れた高強度銅管。   The copper alloy further contains Ni: 0.005 to 0.20 mass%, the Ni content is equal to or less than the Co content, and the total content of the Co and the Ni is the P content. The high-strength copper tube having excellent strength after brazing according to claim 1, wherein the strength is 2.5 times or more. 前記銅合金がさらに、Fe,Mn,Mg,Cr,Ti,Zr,Agから選択された1種以上を合計0.10質量%未満含有することを特徴とする請求項1または請求項2に記載のろう付け後の強度に優れた高強度銅管。   The copper alloy further contains at least one selected from Fe, Mn, Mg, Cr, Ti, Zr, and Ag in a total amount of less than 0.10% by mass. High strength copper tube with excellent strength after brazing. 前記銅合金がさらに、Sn:0.05〜1.0質量%、Zn:0.005〜1.0質量%の少なくとも1種を含有することを特徴とする請求項1ないし請求項3のいずれか一項に記載のろう付け後の強度に優れた高強度銅管。   The copper alloy further contains at least one of Sn: 0.05 to 1.0 mass% and Zn: 0.005 to 1.0 mass%. A high-strength copper tube excellent in strength after brazing according to claim 1.
JP2011244946A 2011-11-08 2011-11-08 High strength copper tube with excellent strength after brazing Expired - Fee Related JP5602707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011244946A JP5602707B2 (en) 2011-11-08 2011-11-08 High strength copper tube with excellent strength after brazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011244946A JP5602707B2 (en) 2011-11-08 2011-11-08 High strength copper tube with excellent strength after brazing

Publications (2)

Publication Number Publication Date
JP2013100579A JP2013100579A (en) 2013-05-23
JP5602707B2 true JP5602707B2 (en) 2014-10-08

Family

ID=48621430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011244946A Expired - Fee Related JP5602707B2 (en) 2011-11-08 2011-11-08 High strength copper tube with excellent strength after brazing

Country Status (1)

Country Link
JP (1) JP5602707B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5960672B2 (en) * 2013-11-25 2016-08-02 株式会社神戸製鋼所 High strength copper alloy tube
JP6063592B1 (en) 2016-05-13 2017-01-18 三芳合金工業株式会社 Copper alloy tube excellent in high temperature brazing and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4387027B2 (en) * 2000-03-07 2009-12-16 三菱伸銅株式会社 Pitting corrosion resistant copper base alloy tubing
JP4818179B2 (en) * 2007-03-29 2011-11-16 株式会社コベルコ マテリアル銅管 Copper alloy tube
JP5111922B2 (en) * 2007-03-30 2013-01-09 株式会社コベルコ マテリアル銅管 Copper alloy tube for heat exchanger
JP5078410B2 (en) * 2007-03-30 2012-11-21 株式会社コベルコ マテリアル銅管 Copper alloy tube

Also Published As

Publication number Publication date
JP2013100579A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP4629080B2 (en) Copper alloy tube for heat exchanger
JP5145331B2 (en) High strength and high thermal conductivity copper alloy tube and method for producing the same
JP4694527B2 (en) Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
TWI422691B (en) High strength and high conductivity copper alloy tube, rod, wire
JP5464659B2 (en) Copper tube for heat exchanger with excellent fracture strength and bending workability
JP5111922B2 (en) Copper alloy tube for heat exchanger
JP5534777B2 (en) Copper alloy seamless pipe
JP4817693B2 (en) Copper alloy tube for heat exchanger and manufacturing method thereof
JP4818179B2 (en) Copper alloy tube
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP6034727B2 (en) High strength copper alloy tube
JP5602707B2 (en) High strength copper tube with excellent strength after brazing
JP5960672B2 (en) High strength copper alloy tube
JP5107841B2 (en) Copper alloy tube for heat exchangers with excellent bending workability
JP5078410B2 (en) Copper alloy tube
JP5499300B2 (en) Copper alloy tube for heat exchanger
JP6244588B2 (en) Copper alloy seamless pipe for heat transfer tubes
JP5638999B2 (en) Copper alloy tube
JP5792696B2 (en) High strength copper alloy tube
JP5639025B2 (en) Copper alloy tube
JP6402043B2 (en) High strength copper alloy tube
JP5336296B2 (en) Copper alloy tube for heat exchangers with excellent workability
JP2014173155A (en) Copper alloy seamless pipe for supplying water and hot water
JP5544591B2 (en) Copper alloy tube
JP2013189664A (en) Copper alloy tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140820

R150 Certificate of patent or registration of utility model

Ref document number: 5602707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees