Nothing Special   »   [go: up one dir, main page]

JP2011080780A - Particulate detection element - Google Patents

Particulate detection element Download PDF

Info

Publication number
JP2011080780A
JP2011080780A JP2009231182A JP2009231182A JP2011080780A JP 2011080780 A JP2011080780 A JP 2011080780A JP 2009231182 A JP2009231182 A JP 2009231182A JP 2009231182 A JP2009231182 A JP 2009231182A JP 2011080780 A JP2011080780 A JP 2011080780A
Authority
JP
Japan
Prior art keywords
detection
resistor
particulate
gas
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009231182A
Other languages
Japanese (ja)
Inventor
Takashi Sawada
高志 澤田
Takashi Araki
貴司 荒木
Hideaki Ito
英明 伊藤
Shinya Teranishi
真哉 寺西
Hiroshige Matsuoka
弘芝 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2009231182A priority Critical patent/JP2011080780A/en
Publication of JP2011080780A publication Critical patent/JP2011080780A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particulate detection element simply constituted so as to detect PM contained in gas to be measured, having no insensitive period and enhanced in reliability. <P>SOLUTION: The particulate detection element 10 is equipped with: a detection part 100 exposed to the gas to be measured and constituted by providing a pair of detection electrodes 11 and 12, which are opposed to each other at a predetermined interval, on the surface of an electric insulating heat-resistant substrate 13; and a detection means 21 for detecting electric resistor R<SB>X</SB>changed corresponding to the amount of the conductive fine particles deposited between the detection electrodes 11 and 12 of the detection part 100, and detects PM in the gas to be measured. A resistor 20 having a predetermined resistance value R<SB>FIX</SB>is provided in parallel to the electric resistor R<SB>X</SB>formed on the detection part 100 as a resistor for eliminating the insensitive period. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車用内燃機関の排気系等に使用され、被測定ガス中に含まれる導電性微粒子の検知に適したパティキュレート検出素子に関する。   The present invention relates to a particulate detection element that is used in an exhaust system of an internal combustion engine for automobiles and is suitable for detecting conductive fine particles contained in a gas to be measured.

近年、コモンレール式燃料噴射システム、過給器システム、酸化触媒、ディーゼルパティキュレートフィルタ(DPF)、選択触媒還元(SCR)システム、排気再循環(EGR)システム等を組み合わせて、ディーゼル機関やガソリンリーンバーン機関等の燃焼排気中に含まれる窒素酸化物(NOx)、粒状物質(PM)、未燃炭化水素(HC)等の環境負荷物質の低減が図られている。
このようなシステムに用いられるDPFは、一般に、耐熱性に優れ、かつ、無数の細孔を有する多孔質セラミックスを素材としたハニカム構造とされ、多孔質の隔壁に存在する細孔中にPMを捕捉し、PMが堆積して細孔に目詰まりを起こして圧力損失が高くなると、バーナや発熱体等で加熱したり、機関の燃焼爆発後に少量の燃料を噴射するポスト噴射等によりDPF内に高温の燃焼排気を導入したりして、DPFを加熱し、DPF内に捕集されたPMを燃焼除去して再生できる構成とされている。
内燃機関の燃焼効率をさらに向上すべく、このようなDPFの再生時期の判断や、DPFの劣化、破損等を検出する車載式故障診断装置(オンボードダイアグノーシス、OBD)や、内燃機関のフィードバック制御等において、燃焼排気中に含まれるPMを高精度で連続的に検出できる検出手段が必要とされている。
In recent years, diesel engines and gasoline lean burn have been combined with common rail fuel injection systems, supercharger systems, oxidation catalysts, diesel particulate filters (DPFs), selective catalytic reduction (SCR) systems, exhaust gas recirculation (EGR) systems, etc. Reduction of environmentally hazardous substances such as nitrogen oxides (NOx), particulate matter (PM), unburned hydrocarbons (HC), etc., contained in combustion exhaust gas from engines and the like.
The DPF used in such a system generally has a honeycomb structure made of porous ceramics having excellent heat resistance and countless pores, and PM is contained in the pores existing in the porous partition walls. When trapped, PM accumulates, clogs the pores and the pressure loss increases, it is heated in the DPF by a burner or a heating element, or by a post injection that injects a small amount of fuel after the combustion explosion of the engine. The DPF is heated by introducing high-temperature combustion exhaust, and the PM collected in the DPF is burned and removed to be regenerated.
In order to further improve the combustion efficiency of the internal combustion engine, such a DPF regeneration timing judgment, on-board diagnosis (OBD) for detecting deterioration, breakage, etc. of the DPF, feedback of the internal combustion engine In control and the like, there is a need for detection means that can continuously detect PM contained in combustion exhaust gas with high accuracy.

燃焼排気中のPMの検出手段として、特許文献1には、耐熱性及び電気絶縁性を有する基板の表面に一対の電極を形成し、該電極間を検出部とし、前記基板の裏面及び/又は内部に発熱体を形成し、該基板上の検出部を形成する前記電極、検出部及び端子部を除く導電部を気密で電気絶縁物質よりなる保護層で被覆し、該検出部と保護層との境界付近の発熱体の発熱密度を該検出部の発熱密度より高くし、該検出部の温度を400℃以上で且つ600℃以下に加熱することを特徴とするスモーク濃度センサが開示されている。   As a means for detecting PM in combustion exhaust gas, Patent Document 1 discloses that a pair of electrodes is formed on the surface of a substrate having heat resistance and electrical insulation, and a gap between the electrodes is used as a detection unit. A heating element is formed inside, and the conductive portion excluding the electrode, the detection portion, and the terminal portion forming the detection portion on the substrate is covered with a protective layer made of an airtight and electrically insulating material, and the detection portion, the protective layer, A smoke density sensor is disclosed in which the heat generation density of a heating element in the vicinity of the boundary is made higher than the heat generation density of the detection unit, and the temperature of the detection unit is heated to 400 ° C. or more and 600 ° C. or less. .

ところが、特許文献1にあるような、従来のスモーク濃度センサでは、導電性のスモークの堆積により変化する一対の電極間の電気抵抗を電子回路により検出しているが、スモークが堆積していない状態では一対の電極間は絶縁状態であるので、スモークの堆積によって一対の電極間の電気抵抗が徐々に低下し電子回路によって電気抵抗が検出できるようになるまでに不感期間が存在する。   However, in the conventional smoke concentration sensor as disclosed in Patent Document 1, the electrical resistance between the pair of electrodes that changes due to the deposition of conductive smoke is detected by an electronic circuit, but the smoke is not deposited. In this case, since the pair of electrodes is in an insulated state, the electric resistance between the pair of electrodes gradually decreases due to the deposition of smoke, and there is a dead period until the electric resistance can be detected by the electronic circuit.

このような不感期間の問題を解消する方法として、特許文献2には、ガスセンサ向けセンサ素子及びセンサ素子の作動方法として、混合気に晒される少なくとも2つの電極(1)、(2)とこれらの電極を支持する1つの基板(3)とを有し、混合ガス中の粒子を定量するためのガスセンサ、特にカーボン向けセンサ素子に関するものであって、前記基板(3)と前記電極(1)、(2)との間に1つの導電性ベース(4)が設けられており、さらに、前記電極(1)、(2)は、導電性ベース(4)によって互いに電気的に接続されているセンサ素子及びこのセンサ素子を用いて混合ガス中の微粒子を定量するための方法が記載されている。   As a method for solving the problem of such a dead period, Patent Document 2 discloses, as a sensor element for a gas sensor and a method for operating the sensor element, at least two electrodes (1) and (2) exposed to an air-fuel mixture and these A gas sensor for quantifying particles in a mixed gas, particularly a sensor element for carbon, the substrate (3), the electrode (1), (2) is provided with one conductive base (4), and the electrodes (1) and (2) are electrically connected to each other by the conductive base (4). An element and a method for quantifying fine particles in a mixed gas using the sensor element are described.

ところが、特許文献2にあるように、2つの電極間を互いに電気的に接続する導電性ベースを設けた場合、導電性ベースの電気抵抗を極めて狭い範囲で精度良く調整しなければならず、製造が困難である。加えて、長期の使用によって電極材料が導電性ベース内に拡散するマイグレーション現象を引起し、導電性ベースの電気抵抗が変化し、検出精度が不安定となる虞もある。さらに、検出抵抗と導電性ベースの電気抵抗との両方が温度変化の影響を受けるので、両者について温度補正する必要があるため基準が定まらず完全に温度補正することが困難である。   However, as disclosed in Patent Document 2, when a conductive base that electrically connects two electrodes to each other is provided, the electrical resistance of the conductive base must be accurately adjusted within a very narrow range. Is difficult. In addition, a migration phenomenon in which the electrode material diffuses into the conductive base due to long-term use may occur, the electrical resistance of the conductive base may change, and the detection accuracy may become unstable. Furthermore, since both the detection resistor and the electrical resistance of the conductive base are affected by the temperature change, it is necessary to correct the temperature of both, so that the reference is not determined and it is difficult to completely correct the temperature.

そこで、かかる実情に鑑み、本願発明は、簡易な構成により被測定ガス中に含まれる導電性の微粒子(パティキュレート、PM)を検出するパティキュレート検出素子であって、不感期間がなく、信頼性の高いパティキュレート検出素子を提供することを目的とする。   Therefore, in view of such circumstances, the present invention is a particulate detection element that detects conductive fine particles (particulates, PM) contained in a gas to be measured with a simple configuration, and has no dead time and reliability. It is an object of the present invention to provide a particulate detecting element having a high level.

第1の発明では、被測定ガスに晒され、電気絶縁性耐熱基板の表面に所定の間隙を設けて対向する一対の検出電極を設けた検出部と、該検出部の上記検出電極間に堆積する導電性微粒子の量に応じて変化する電気抵抗を検出する検出手段とを具備し、被測定ガス中の導電性微粒子を検出するパティキュレート検出素子において、所定の抵抗値を有する抵抗体を上記検出部に形成される電気抵抗に対して並列に設ける(請求項1)。   In the first aspect of the invention, the detector is provided with a pair of detection electrodes that are exposed to the gas to be measured and is opposed to each other with a predetermined gap provided on the surface of the electrically insulating heat-resistant substrate, and is deposited between the detection electrodes of the detector A particulate detecting element for detecting conductive fine particles in a gas to be measured, wherein the resistor having a predetermined resistance value is provided in the particulate detection element. It is provided in parallel with the electric resistance formed in the detection part.

第1の発明によれば、検出部に堆積する導電性微粒子が少なく検出抵抗が高い状態であっても、検出抵抗に対して並列に介装された所定の抵抗値を有する抵抗体によって、検出抵抗と該抵抗体との合成抵抗が下がり、検出抵抗の僅かな変化に対しても検出が可能となるので不感期間が解消される。したがって、センサとしての信頼性が向上する。加えて、被測定ガス中の導電性粒子の有無だけでなく、その存在量を精度良く計測することも可能となるので、センサとしての用途範囲も広がる。   According to the first aspect of the present invention, even when there are few conductive fine particles deposited on the detection portion and the detection resistance is high, the detection is performed by the resistor having a predetermined resistance value interposed in parallel with the detection resistance. The combined resistance of the resistor and the resistor decreases, and even a slight change in the detection resistance can be detected, so the dead period is eliminated. Therefore, the reliability as a sensor is improved. In addition, it is possible to accurately measure not only the presence or absence of conductive particles in the gas to be measured but also their abundance, so the range of applications as a sensor is expanded.

第2の発明では、不感期間解消用に設けた上記抵抗体を、被測定ガスの温度変化の影響を受けない熱的安定環境下に載置する(請求項2)。   In the second invention, the resistor provided for eliminating the dead period is placed in a thermally stable environment that is not affected by the temperature change of the gas to be measured.

本発明によれば、不感期間解消用に設けた上記抵抗体が被測定ガスの温度変化の影響を受けないので、上記検出部に堆積する導電性粒子によって形成される電気抵抗だけを温度補正すればよく、補正が容易であり、パティキュレート検出素子の信頼性がさらに向上する。   According to the present invention, since the resistor provided for eliminating the dead period is not affected by the temperature change of the gas to be measured, only the electric resistance formed by the conductive particles deposited on the detection unit can be temperature-corrected. The correction is easy, and the reliability of the particulate detection element is further improved.

具体的には、第3の発明のように、不感期間解消用に設けた上記抵抗体の電気抵抗を、100Ω以上1MΩ以下とする(請求項3)。このような範囲に不感期間解消用に設けた上記抵抗体の電気抵抗を設定することによって、上記検出電極間に堆積する導電性微粒子の量に応じて検出抵抗が数10MΩから1kΩ程度の範囲で変化したときに、上記検出手段によって検出される検出電流が一定以上の値に引き上げられ、検出が容易となるので不感期間が解消され、信頼性の高いパティキュレート検出素子が実現できる。
本発明の範囲をはずれ、100Ωより低い抵抗体を介装した場合には、検出抵抗の変化が相対的に小さくなり、検出精度が低下し、1MΩより高い抵抗体を介装した場合には、検出電流が上記検出手段の検出限界以下となり、不感期間が解消されない。
Specifically, as in the third invention, the electrical resistance of the resistor provided for eliminating the dead period is set to 100Ω or more and 1MΩ or less (claim 3). By setting the electric resistance of the resistor provided for eliminating the dead period in such a range, the detection resistance is in the range of several tens MΩ to 1 kΩ depending on the amount of conductive fine particles deposited between the detection electrodes. When changed, the detection current detected by the detection means is raised to a certain value or more, and detection becomes easy, so the dead time is eliminated and a highly reliable particulate detection element can be realized.
When a resistor lower than 100Ω is interposed outside the scope of the present invention, the change in detection resistance is relatively small, the detection accuracy is reduced, and when a resistor higher than 1 MΩ is interposed, The detection current is below the detection limit of the detection means, and the dead time is not eliminated.

さらに具体的には、第4の発明のように、不感期間解消用に設けた上記抵抗体は、金属、金属酸化物、金属化合物、炭素、炭素化合物の少なくともいずれか1つを含む単体又は複合体によって実現できる(請求項4)。   More specifically, as in the fourth invention, the resistor provided for eliminating the dead period is a simple substance or a composite containing at least one of metal, metal oxide, metal compound, carbon, and carbon compound. It can be realized by the body (claim 4).

本発明の第1の実施形態におけるパティキュレート検出素子の概要を示す展開斜視図。FIG. 2 is a developed perspective view showing an outline of the particulate detection element according to the first embodiment of the present invention. 本発明の第1の実施形態におけるパティキュレート検出素子を有するパティキュレート検出センサの概要を示す断面図。Sectional drawing which shows the outline | summary of the particulate detection sensor which has a particulate detection element in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるパティキュレート検出素子に適用可能な抵抗検出手段の例を示す等価回路図。The equivalent circuit diagram which shows the example of the resistance detection means applicable to the particulate detection element in the 1st Embodiment of this invention. 本発明の第2の実施形態におけるパティキュレート検出素子の概要を示す展開斜視図。The expansion | deployment perspective view which shows the outline | summary of the particulate detection element in the 2nd Embodiment of this invention. 本発明の第3の実施形態におけるパティキュレート検出素子の概要を示す展開斜視図。The expansion | deployment perspective view which shows the outline | summary of the particulate detection element in the 3rd Embodiment of this invention. 従来のパティキュレート検出素子の問題点を示す特性図。The characteristic view which shows the problem of the conventional particulate detection element. 本発明の効果を比較例とともに示す特性図。The characteristic view which shows the effect of this invention with a comparative example.

本発明の第1の実施形態におけるパティキュレート検出素子10は、例えば、ディーゼル内燃機関から排出される燃焼排気中に含まれる粒子状物質(PM)を捕集するディーゼルパティキュレートフィルタ(DPF)の故障診断(OBD)や、DPFの再生制御を行うべく、燃焼排気中のPM、特に、導電性微粒子を検出するパティキュレート検出センサ1に用いられる。
本発明のパティキュレート検出素子10の特徴は、所定の間隙を設けて対向する一対の検出電極11、12の間に堆積するPMの量によって変化する電気抵抗Rを検出して、被測定ガス中のPMを検出するものであって、不感期間解消用抵抗として所定の電気抵抗RFIXを有する抵抗体20を検出抵抗Rに対して並列となるように設けることによって、抵抗体20の電気抵抗RFIXと検出抵抗Rとの合成抵抗RSUM(=RFIX・R/(RFIX+R))を低くし、合成抵抗RSUMを検出する時にパティキュレート検出素子10に流れる検出電流ISENを検出する検出手段の検出限界以上に引上げ、不感期間を解消するものである。
The particulate detection element 10 according to the first embodiment of the present invention is, for example, a failure of a diesel particulate filter (DPF) that collects particulate matter (PM) contained in combustion exhaust discharged from a diesel internal combustion engine. In order to perform diagnosis (OBD) and DPF regeneration control, it is used in a particulate detection sensor 1 for detecting PM in combustion exhaust gas, in particular, conductive fine particles.
Features of the particulate detection device 10 of the present invention detects the electrical resistance R X which varies with the amount of PM deposited between the pair of detection electrodes 11 and 12 facing with a predetermined gap, the measurement gas a detects the PM in, by providing such a parallel with the detection resistor R X a resistor 20 having a predetermined electrical resistance R FIX as dead time eliminated resistance, electrical resistor 20 resistor R FIX and the detection resistor R X and the combined resistance R SUM of (= R FIX · R X / (R FIX + R X)) was low, the detection current flowing through the particulate detection device 10 when detecting the combined resistance R SUM It raises beyond the detection limit of the detection means for detecting I SEN to eliminate the dead period.

本発明の第1の実施形態におけるパティキュレート検出素子10及びこれを含むパティキュレート検出センサ1の概要について図1から図4を参照して説明する。
図1に示すように、パティキュレート検出素子10は、アルミナ等の電気絶縁性耐熱材料をドクターブレード法、プレス成形法、CIP、HIP等の公知の方法により平板状に形成した電気絶縁性耐熱基板13と、電気絶縁性耐熱基板13上に所定の距離を離隔して設けた一対の検出電極11、12と、検出電極11、12と外部の電気抵抗計測手段とを導通させるリード部111、121及び端子部112、122と、本発明の要部であり、検出電極間に堆積するPMによって形成される検出抵抗Rに対して並列となるようにリード部111、121間に接続された所定の抵抗値RFIXを有する不感時間解消用抵抗20と、検出電極11、12によって形成される検出部を所定の温度に加熱して、検出抵抗を安定化したり、検出部に堆積したPMを加熱除去したりするための通電により発熱する発熱体140と、発熱体140と図略の通電制御装置とを接続する一対の発熱体リード部141a、141bと、発熱体端子部143a、143bと、電気絶縁性耐熱基板15と、絶縁性耐熱基板15を貫通し発熱体リード部141a、141bと発熱体端子部143a、143bとを導通するスルーホール電極142a、142bと、によって構成されている。
なお、リード部112、121間を短絡するように堆積するPMから、リード部111、121の電気絶縁性を確保するために、リード部121、121の表面を覆うように電気絶縁性耐熱材料を用いて絶縁性耐熱保護層を形成しても良い。
不感時間解消用抵抗20には、金属、金属酸化物、金属化合物、炭素、炭素化合物のいずれか1以上を含む単体又は複合体からなる抵抗体が用いられる。本実施形態においては、電気絶縁性耐熱基板13の表面に実装可能なチップ抵抗を用いた例を示す。
また、不感時間解消用抵抗20は、電気絶縁性耐熱基板13の基端側で、被測定ガスの温度変化の影響を受け難い熱的に安定した位置に配設されている。
An outline of the particulate detection element 10 and the particulate detection sensor 1 including the particulate detection element 10 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
As shown in FIG. 1, the particulate detection element 10 is an electrically insulating heat-resistant substrate in which an electrically insulating heat-resistant material such as alumina is formed into a flat plate by a known method such as a doctor blade method, a press molding method, CIP, or HIP. 13, a pair of detection electrodes 11, 12 provided on the electrically insulating heat-resistant substrate 13 at a predetermined distance, and lead portions 111, 121 for electrically connecting the detection electrodes 11, 12 and external electrical resistance measuring means. and a terminal portion 112, 122, a main part of the present invention, the predetermined connected between leads 111 and 121 so as to be parallel with the detection resistor R X formed by PM depositing between the detecting electrode between the resistance value dead time eliminated resistor 20 having R FIX, by heating the detection portion formed by the detection electrodes 11 and 12 to a predetermined temperature, or to stabilize the detection resistor, to the detection unit A heating element 140 that generates heat by energization for heating and removing the accumulated PM, a pair of heating element lead portions 141a and 141b that connect the heating element 140 and an energization control device (not shown), and a heating element terminal portion 143a. , 143b, an electrically insulating heat-resistant substrate 15, and through-hole electrodes 142a and 142b penetrating the insulating heat-resistant substrate 15 and conducting the heating element lead portions 141a and 141b and the heating element terminal portions 143a and 143b. ing.
In order to secure the electrical insulation of the lead parts 111 and 121 from the PM deposited so as to short-circuit between the lead parts 112 and 121, an electrically insulating heat resistant material is covered so as to cover the surface of the lead parts 121 and 121. An insulating heat-resistant protective layer may be formed by using it.
As the dead time eliminating resistor 20, a resistor composed of a single substance or a complex containing at least one of metal, metal oxide, metal compound, carbon, and carbon compound is used. In the present embodiment, an example using a chip resistor that can be mounted on the surface of the electrically insulating heat-resistant substrate 13 is shown.
The dead time elimination resistor 20 is disposed on the base end side of the electrically insulating heat-resistant substrate 13 at a thermally stable position that is not easily affected by the temperature change of the gas to be measured.

図2を参照して、本発明のパティキュレート検出素子10を有するパティキュレート検出センサ1について説明する。
パティキュレート検出センサ1は、パティキュレート検出素子10を内側に挿入保持する略筒状のインシュレータ40と、流路壁60に固定され、インシュレータ40を保持すると共に、パティキュレート検出素子10の検出部を被測定流路600内の所定の位置に保持するハウジング50と、ハウジング50の先端側に設けられ、パティキュレート検出素子10の検出部を保護するカバー体30と、ハウジング50の基端側に設けられ、接続金具113、123を介してパティキュレート検出素子10の端子部112、122に接続され、検出部100に捕集・堆積されたPM量に応じて変化する検出電極11、12間の検出電気抵抗Rを外部の電気抵抗検出手段に伝達する一対の信号線114、124と、パティキュレート検出素子10に内蔵された発熱体140と発熱体端子部143a、143b、接続金具144a、144bを介して接続される一対の導通線145a、145bとを、封止部材70を介して基端側で固定する略筒状のケーシング80とによって構成されている。カバー体30には、PMを含む被測定ガスを検出部100に導入・導出するための被測定ガス入出孔310、311が適宜穿設されている。
なお、本実施形態においては、パティキュレート検出素子10の長手軸方向に対して直交する方向に伸びる複数の櫛歯状に形成した検出電極11、12を対向させて一対の電極を形成した例を示したが、本発明において一対の検出電極11、12の形状を特に限定するものではなく、検出電極11、12を、パティキュレート検出素子10の長手軸方向に伸びる複数の櫛歯状に形成し、これらを所定の間隙を設けて対向させて一対の電極としても良いし、検出電極11、12を略渦巻状に形成し、所定の間隙を設けて対向させて一対の電極としても良い。
With reference to FIG. 2, the particulate detection sensor 1 having the particulate detection element 10 of the present invention will be described.
The particulate detection sensor 1 is fixed to the substantially cylindrical insulator 40 that inserts and holds the particulate detection element 10 inside, and the flow path wall 60, holds the insulator 40, and includes a detection unit of the particulate detection element 10. A housing 50 that is held at a predetermined position in the measured channel 600, a cover body 30 that is provided on the distal end side of the housing 50 and protects the detection portion of the particulate detection element 10, and a proximal end side of the housing 50. Detection between the detection electrodes 11 and 12 that is connected to the terminal portions 112 and 122 of the particulate detection element 10 via the connection fittings 113 and 123 and changes according to the amount of PM collected and deposited on the detection portion 100 a pair of signal lines 114 and 124 for transmitting electrical resistance R X to the outside of the electrical resistance detecting means, particulate sensing element 1 The heating element 140 built in 0, the heating element terminal portions 143a and 143b, and the pair of conductive wires 145a and 145b connected via the connection fittings 144a and 144b are fixed on the base end side via the sealing member 70. And a substantially cylindrical casing 80. The cover body 30 is appropriately provided with measurement gas inlet / outlet holes 310 and 311 for introducing / extracting the measurement gas containing PM to / from the detection unit 100.
In the present embodiment, an example in which a pair of electrodes are formed by opposing a plurality of comb-like detection electrodes 11 and 12 extending in a direction orthogonal to the longitudinal axis direction of the particulate detection element 10. Although shown, the shape of the pair of detection electrodes 11 and 12 is not particularly limited in the present invention, and the detection electrodes 11 and 12 are formed in a plurality of comb teeth extending in the longitudinal axis direction of the particulate detection element 10. These electrodes may be opposed to each other with a predetermined gap, or the detection electrodes 11 and 12 may be formed in a substantially spiral shape and may be opposed to each other with a predetermined gap.

図3を参照して、本発明のパティキュレート検出素子10の検出部100に堆積したPMによって変化する電気抵抗Rの測定原理について説明する。
被測定ガス流路800内に載置される検出電極11、12の間に堆積したPM量に由来する検出抵抗Rと所定の抵抗値RFIXを有する不感時間解消用抵抗20とは、リード部111、121を介して並列に接続されており、上流側は、所定の検出用電圧に調整された電圧源VDDに接続され、下流側には、不感期間解消用抵抗体20と検出抵抗Rとの合成抵抗RSUMを検出する抵抗検出手段21が設けられている。
抵抗検出手段21は、例えば所定の抵抗値Rを有するシャント抵抗22を設け、差動増幅手段23によってシャント抵抗22の両端の電位差(VIN−VREF)から、シャント抵抗22に流れる電流、即ち、合成抵抗RSUMに流れる検出電流ISENを検出できる構成となっている。
不感期間解消用抵抗体20の抵抗値RFIXは既知であるので、抵抗検出手段21によって検出された合成抵抗RSUMの変化からPM量由来検出抵抗Rの値を精度良く算出できる。
なお、不感期間解消用抵抗体20は、被測定ガスの温度変化の影響を受けない熱的安定環境下に載置されているので、特に温度補正する必要がないが、検出抵抗Rは、被測定ガスの温度変化の影響を受けるので、検出精度を高めるために、被測定ガスの温度に応じて温度補正するのが望ましい。
また、本発明において、抵抗検出手段21は、本実施形態に限定するものではなく、不感期間解消用抵抗体20の既知抵抗RFIXとPM量由来検出抵抗Rとの合成抵抗RSUMの変化を検出できるものであれば、如何なる形式のものでも良い。
Referring to FIG. 3, description will be given of a measurement principle of electrical resistance R X which varies with PM deposited in the detection unit 100 of the particulate detection device 10 of the present invention.
The detection resistor R X and dead time eliminated resistor 20 having a predetermined resistance value R FIX derived from accumulated PM amount between the detection electrodes 11 and 12 to be placed on the measurement gas flow channel 800, leads The upstream side is connected to a voltage source V DD adjusted to a predetermined detection voltage, and the dead side elimination resistor 20 and the detection resistor are connected to the downstream side. resistance detection means 21 for detecting the combined resistance R SUM and R X are provided.
The resistance detection unit 21 includes, for example, a shunt resistor 22 having a predetermined resistance value RS, and a current flowing through the shunt resistor 22 from the potential difference (V IN −V REF ) at both ends of the shunt resistor 22 by the differential amplifier 23. That is, the detection current I SEN flowing through the combined resistor R SUM can be detected.
Since dead period resistance R FIX rid resistor 20 is known, the value of PM amount from the detection resistor R X can be accurately calculated from the detected change in the combined resistance R SUM by the resistance detection means 21.
The dead time elimination resistor 20 is placed in a thermally stable environment that is not affected by the temperature change of the gas to be measured. Therefore, the temperature does not need to be corrected, but the detection resistor RX is Since it is affected by the temperature change of the gas to be measured, it is desirable to correct the temperature according to the temperature of the gas to be measured in order to improve the detection accuracy.
Further, in the present invention, the resistance detection means 21 is not limited to this embodiment, the change in the combined resistance R SUM of the known resistor R FIX and PM amount from the detection resistor R X dead time eliminated resistor 20 Any type may be used as long as it can be detected.

ここで、図4を参照して、従来のパティキュレート検出素子の問題点について説明する。従来のパティキュレート検出素子は、電気絶縁性耐熱基板の表面に所定の間隙を隔てて形成した一対の検出電極間に被測定ガス中に含まれる導電性のカーボンなどからなるPMが堆積していくと、PMによって検出電極間に導通経路が形成され、電極間の電気抵抗値が徐々に低下していくので、これを計測することによってPM量を算出しようとするものである。
図4は、一定速度でPM量を増加したときの、検出電極間の電気抵抗値の変化を示すものである。
ところが、図4に示すように、検出電極間にPMが堆積していないときには、略絶縁状態であるので、検出電極間の電気抵抗は、数10MΩ以上となっており、PMの堆積に伴って、徐々に電気抵抗値が下がるが、数MΩ以下となるまでは、検出用の電流がほとんど流れず、電気抵抗値を測定することができない不感期間tdが存在する。
この不感期間tdが長いと、パティキュレート検出素子を上述のようにOBDに使用しようとしたときに、異常の検出までに時間が掛かかる虞があり、センサとしての信頼性に欠ける。
Here, with reference to FIG. 4, the problem of the conventional particulate detection element will be described. In the conventional particulate detection element, PM made of conductive carbon or the like contained in the gas to be measured is deposited between a pair of detection electrodes formed on the surface of the electrically insulating heat-resistant substrate with a predetermined gap therebetween. Then, a conduction path is formed between the detection electrodes by PM, and the electric resistance value between the electrodes gradually decreases. Therefore, the amount of PM is calculated by measuring this.
FIG. 4 shows changes in the electrical resistance value between the detection electrodes when the PM amount is increased at a constant speed.
However, as shown in FIG. 4, when PM is not deposited between the detection electrodes, it is in a substantially insulated state, so the electrical resistance between the detection electrodes is several tens of MΩ or more. The electric resistance value gradually decreases, but until the value becomes several MΩ or less, a detection current hardly flows and there is a dead period td in which the electric resistance value cannot be measured.
If this dead period td is long, when the particulate detection element is used for OBD as described above, it may take time to detect an abnormality, and the reliability as a sensor is lacking.

図5を参照して本発明の効果について説明する。図5は、一定の割合で被測定ガス中の導電性粒子の量を増加させたときの検出電流ISENの変化を示す特性図で、実施例1として、不感期間解消用抵抗体20の抵抗値を1MΩに設定した場合の検出電流ISENの変化を示し、実施例2として、不感期間解消用抵抗体20の抵抗値を100Ωに設定した場合の検出電流ISENの変化を示し、比較例として、不感期間解消抵抗20を設けていない場合の検出電流ISENの変化を示す。
図5に示すように、不感期間解消用抵抗体20の抵抗値RFIXを100Ω以上1MΩ以下の範囲で設定すると、検出対象である検出抵抗Rが数10MΩから1MΩ程度まで変化する間であっても、検出電流ISENは、検出手段21の検出限界である5μA以上にシフトされるので、容易に検出できるようになり、不感期間tdが解消される。
また、不感期間解消用抵抗体20の抵抗値RFIXを100Ωより低くすると、検出電流ISENに対して、検出抵抗Rの変化による電流変化が相対的に小さくなり、検出精度が却って低下し、不感期間解消用抵抗体20の抵抗値RFIXを1MΩより高くすると、検出電流ISENが検出限界を以下となるので、不感期間tdの解消ができない。
The effect of the present invention will be described with reference to FIG. FIG. 5 is a characteristic diagram showing a change in the detected current I SEN when the amount of conductive particles in the gas to be measured is increased at a constant rate. As Example 1, the resistance of the dead-period eliminating resistor 20 is shown. shows the change in the detected current I SEN when the value is set to 1 M.OMEGA, as example 2, illustrates the change in the detected current I SEN when the resistance value of the dead time eliminated generating resistor 20 was set to 100 [Omega, Comparative example The change of the detection current I SEN when the dead time elimination resistor 20 is not provided is shown.
As shown in FIG. 5, when the resistance value R FIX dead time eliminated resistor 20 set at 1MΩ below the range of 100 [Omega, there between the detection resistor R X to be detected is changed from a few 10MΩ to about 1MΩ However, the detection current I SEN is shifted to 5 μA or more, which is the detection limit of the detection means 21, so that it can be easily detected, and the dead period td is eliminated.
Further, if the resistance value R FIX dead time eliminated resistor 20 to lower than 100 [Omega, the detected current I SEN, detecting the resistance change current change due to the R X is relatively small, the detection accuracy is rather deteriorated If the resistance value R FIX of the dead period eliminating resistor 20 is set higher than 1 MΩ, the detection current I SEN becomes the detection limit or less, and thus the dead period td cannot be eliminated.

図6を参照して、本発明の第2の実施形態におけるパティキュレート検出素子10aについて説明する。上記実施形態においては、不感期間解消用抵抗体20を、電気絶縁性耐熱基板13上に実装する構成としたが、リード部111、121間を渡って接続され、検出抵抗Rに対して並列となるものであれば、図6に示すように、不感期間解消用抵抗体20aをパティキュレート素子10の外部に設けた構成としても良い。この際、本図に示すようにリード付き抵抗を用いてもよいし、上記実施形態に示した様なチップ抵抗を検出手段21側に載置するようにしても良い。 With reference to FIG. 6, the particulate detection element 10a in the 2nd Embodiment of this invention is demonstrated. In the above embodiment, the dead time eliminated resistor 20, a configuration of mounting on the electrically insulating heat substrate 13, is connected across between leads 111 and 121, parallel to the detection resistor R X As shown in FIG. 6, the dead time elimination resistor 20 a may be provided outside the particulate element 10 as shown in FIG. 6. At this time, a resistor with a lead may be used as shown in the figure, or a chip resistor as shown in the above embodiment may be placed on the detection means 21 side.

図7を参照して、本発明の第3の実施形態におけるパティキュレート検出素子10bについて説明する。上記実施形態においいては、不感期間解消用抵抗体20、20aとして、チップ抵抗やリード付き抵抗等の別体の固定抵抗器を用いた例を示したが、図7に示すように、電気絶縁性基板13の表面にスクリーン印刷等によって、リード部111、121間を渡るようにして不感期間解消用抵抗体20bを形成し、表面を電気絶縁性耐熱保護層200によってその表面を覆う構成としても良い。   With reference to FIG. 7, a particulate detection element 10b according to a third embodiment of the present invention will be described. In the above embodiment, an example in which a separate fixed resistor such as a chip resistor or a lead-attached resistor is used as the dead period eliminating resistor 20, 20a has been shown. However, as shown in FIG. The insensitive period eliminating resistor 20b is formed on the surface of the conductive substrate 13 by screen printing or the like so as to cross between the lead portions 111 and 121, and the surface is covered with the electrically insulating heat-resistant protective layer 200. good.

本発明は上記実施形態に限定するものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、上記実施形態においては、自動車エンジン等の内燃機関に搭載されるパティキュレート検出センサを例に説明したが、本発明のパティキュレート検出センサは、車載用に限定されるものではなく、火力発電所等の大規模プラントにおけるパティキュレート検出の用途にも利用可能である。
The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
For example, in the above-described embodiment, the particulate detection sensor mounted on an internal combustion engine such as an automobile engine has been described as an example. However, the particulate detection sensor of the present invention is not limited to being mounted on a vehicle. It can also be used for particulate detection in large-scale plants such as plants.

1 パティキュレート検出センサ
10 パティキュレート検出素子
100 検出部
11、12 検出電極
111、121 リード部
112、122 端子部
113、113 接続金具
114、114 信号線
13、15 電気絶縁性耐熱基板
140 発熱体
141a、141b 発熱体リード部
142a、142b スルーホール電極
143a、143b 発熱体端子部
144a、144b 接続金具
145a、145b 通電線
td 不感期間
20 不感期間解消用抵抗体
FIX 所定の抵抗値(不感期間解消用抵抗体)
21 抵抗検出手段
検出抵抗
30 カバー体
310、311 被測定ガス入出孔
40 インシュレータ
50 ハウジング
60 ケーシング
70 封止部材
80 被測定ガス流路壁
800 被測定ガス流路
DESCRIPTION OF SYMBOLS 1 Particulate detection sensor 10 Particulate detection element 100 Detection part 11,12 Detection electrode 111,121 Lead part 112,122 Terminal part 113,113 Connection metal fitting 114,114 Signal line 13,15 Electrical insulation heat-resistant board 140 Heat generating body 141a , 141b Heating element lead portions 142a, 142b Through-hole electrodes 143a, 143b Heating element terminal portions 144a, 144b Connecting metal fittings 145a, 145b Conductive line td Dead period 20 Dead period eliminating resistor R FIX Predetermined resistance value (for dead period eliminating) Resistor)
21 resistance detecting means R X detecting resistor 30 cover 310 311 the measurement gas and out hole 40 insulator 50 housing 60 housing 70 sealing member 80 measured gas flow path walls 800 measurement gas channel

特開昭59−197847号公報JP 59-197847 A 独国出願公開第102006042605号明細書German Published Application No. 102006042605

Claims (4)

電気絶縁性耐熱基板の表面に所定の間隙を設けて対向する一対の検出電極を設けて検出部とし、該検出部に捕集され上記検出電極間に堆積する導電性微粒子の量によって変化する電気抵抗を検出して、被測定ガス中の導電性微粒子を検出するパティキュレート検出素子において、電気絶縁性耐熱基板の表面に所定の間隙を設けて対向する一対の検出電極を設けた検出部と、該検出部の上記検出電極間に堆積する導電性微粒子の量に応じて変化する電気抵抗を検出する検出手段とを具備し、被測定ガス中の導電性微粒子を検出するパティキュレート検出素子において、
所定の抵抗値を有する抵抗体を上記検出部に形成される電気抵抗に対して並列に設けたことを特徴とするパティキュレート検出素子。
A pair of detection electrodes facing each other with a predetermined gap provided on the surface of the electrically insulating heat-resistant substrate is used as a detection unit, and the electricity varies depending on the amount of conductive fine particles collected by the detection unit and deposited between the detection electrodes. In a particulate detection element that detects resistance and detects conductive fine particles in a gas to be measured, a detection unit provided with a pair of detection electrodes facing each other with a predetermined gap provided on the surface of the electrically insulating heat-resistant substrate; In the particulate detection element for detecting the conductive fine particles in the gas to be measured, comprising a detecting means for detecting an electric resistance that changes in accordance with the amount of the conductive fine particles deposited between the detection electrodes of the detection unit,
A particulate detection element, wherein a resistor having a predetermined resistance value is provided in parallel to an electric resistance formed in the detection unit.
不感期間解消用に設けた上記抵抗体を、被測定ガスの温度変化の影響を受けない熱的安定環境下に載置した請求項1に記載のパティキュレート検出素子。   The particulate detection element according to claim 1, wherein the resistor provided for eliminating the dead period is placed in a thermally stable environment that is not affected by a temperature change of the gas to be measured. 不感期間解消用に設けた上記抵抗体の電気抵抗が、100Ω以上1MΩ以下である請求項1又は2に記載のパティキュレート検出素子。   The particulate detection element according to claim 1 or 2, wherein an electric resistance of the resistor provided for eliminating the dead period is 100Ω or more and 1MΩ or less. 不感期間解消用に設けた上記抵抗体は、金属、金属酸化物、金属化合物、炭素、炭素化合物の少なくともいずれか1つを含む単体又は複合体によって形成した請求項1ないし3のいずれかに記載のパティキュレート検出素子。   4. The resistor according to claim 1, wherein the resistor provided for eliminating the dead period is formed of a single substance or a composite containing at least one of a metal, a metal oxide, a metal compound, carbon, and a carbon compound. Particulate detection element.
JP2009231182A 2009-10-05 2009-10-05 Particulate detection element Withdrawn JP2011080780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231182A JP2011080780A (en) 2009-10-05 2009-10-05 Particulate detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231182A JP2011080780A (en) 2009-10-05 2009-10-05 Particulate detection element

Publications (1)

Publication Number Publication Date
JP2011080780A true JP2011080780A (en) 2011-04-21

Family

ID=44074982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231182A Withdrawn JP2011080780A (en) 2009-10-05 2009-10-05 Particulate detection element

Country Status (1)

Country Link
JP (1) JP2011080780A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233874A (en) * 2011-04-21 2012-11-29 Denso Corp Particulate matter detector and method for correcting particulate matter detector
CN103575628A (en) * 2012-08-02 2014-02-12 株式会社电装 Particle material detection element, particle material detection sensor having the element, and method making the element
CN105074421A (en) * 2013-03-06 2015-11-18 贺利氏传感技术有限公司 Method for producing a soot sensor with a laser beam
CN106461529A (en) * 2014-06-16 2017-02-22 株式会社电装 Particulate matter detection sensor
EP2541228A3 (en) * 2011-06-27 2017-06-28 Delphi Technologies, Inc. Particulate matter detection and method for operating a particulate matter sensor
KR101860455B1 (en) 2016-10-25 2018-05-23 세종공업 주식회사 Particulater matter detection sensor
KR101860817B1 (en) 2016-10-25 2018-05-25 세종공업 주식회사 Particulater matter detection sensor using porous substrate
JP2020520459A (en) * 2017-05-19 2020-07-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Resistive particle sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233874A (en) * 2011-04-21 2012-11-29 Denso Corp Particulate matter detector and method for correcting particulate matter detector
EP2541228A3 (en) * 2011-06-27 2017-06-28 Delphi Technologies, Inc. Particulate matter detection and method for operating a particulate matter sensor
CN103575628A (en) * 2012-08-02 2014-02-12 株式会社电装 Particle material detection element, particle material detection sensor having the element, and method making the element
CN105074421A (en) * 2013-03-06 2015-11-18 贺利氏传感技术有限公司 Method for producing a soot sensor with a laser beam
CN106461529A (en) * 2014-06-16 2017-02-22 株式会社电装 Particulate matter detection sensor
KR101860455B1 (en) 2016-10-25 2018-05-23 세종공업 주식회사 Particulater matter detection sensor
KR101860817B1 (en) 2016-10-25 2018-05-25 세종공업 주식회사 Particulater matter detection sensor using porous substrate
JP2020520459A (en) * 2017-05-19 2020-07-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Resistive particle sensor
JP7009510B2 (en) 2017-05-19 2022-01-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Resistance type particle sensor

Similar Documents

Publication Publication Date Title
JP5223905B2 (en) Particulate matter detection element
JP2011080780A (en) Particulate detection element
US20120085146A1 (en) Particulate matter detection sensor
JP2012127907A (en) Particulate matter detection sensor
JP2006266961A (en) Soot sensor
US8182665B2 (en) Sensor element for gas sensors and method for operating same
JP2011080942A (en) Particulate detection sensor
JP2012047722A (en) Particulate matter detection sensor and method for determining abnormality of the sensor
KR101862417B1 (en) Soot sensor system
JP5201193B2 (en) Particulate matter detection sensor
JP2011203093A (en) Gas sensor, and disconnection detection method thereof
JP6672066B2 (en) Particulate matter sensor and exhaust gas purification system using the same
JP2011232065A (en) Gas sensor
JP5606356B2 (en) Particulate matter detector
JP2012012960A (en) Particulate matter detection sensor
JP2009144577A (en) Failure determination device for particulate filter
JP2017180119A (en) Catalyst deterioration diagnosis method and catalyst deterioration diagnosis system
US20110081276A1 (en) Particulate sensing element and particulate sensor having the particulate sensing element
JP2016108982A (en) Catalyst deterioration diagnostic system and catalyst deterioration diagnostic method
JP2011080926A (en) Particulate detecting element
JP4574411B2 (en) Wrinkle detection sensor and wrinkle detection method
US20100051458A1 (en) Carbon quantity detecting sensor with increased detecting precision
JP6421617B2 (en) Particulate matter detection sensor and particulate matter detection device
KR20190141995A (en) Particulater matter detection sensor
JP2012068148A (en) Particulate material detection sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108