Nothing Special   »   [go: up one dir, main page]

JP2011080634A - Refrigerating cycle device and hot-water heating device - Google Patents

Refrigerating cycle device and hot-water heating device Download PDF

Info

Publication number
JP2011080634A
JP2011080634A JP2009231660A JP2009231660A JP2011080634A JP 2011080634 A JP2011080634 A JP 2011080634A JP 2009231660 A JP2009231660 A JP 2009231660A JP 2009231660 A JP2009231660 A JP 2009231660A JP 2011080634 A JP2011080634 A JP 2011080634A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
bypass
condenser
supercooling heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009231660A
Other languages
Japanese (ja)
Other versions
JP5411643B2 (en
Inventor
Shigeo Aoyama
繁男 青山
Shunji Moriwaki
俊二 森脇
Noriho Okaza
典穂 岡座
Yasuhiko Isayama
安彦 諌山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009231660A priority Critical patent/JP5411643B2/en
Priority to CN201010539415.8A priority patent/CN102032699B/en
Priority to EP10186449.4A priority patent/EP2320164A3/en
Publication of JP2011080634A publication Critical patent/JP2011080634A/en
Application granted granted Critical
Publication of JP5411643B2 publication Critical patent/JP5411643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device, and a hot-water heating device using the same, capable of performing an operation of high efficiency in a high heating load operation such as a heating operation at a low outside air temperature. <P>SOLUTION: This refrigerating cycle device 1 includes a refrigerant circuit 2 provided with a condenser 22 and a supercooling heat exchanger 23, and a bypass passage 3 passing through the supercooling heat exchanger 23. In the bypass passage 3, dryness of the refrigerant flowing out form the supercooling heat exchanger 23 is adjusted. A ratio of a heat exchanging amount between the refrigerant decompressed by the supercooling heat exchanger 23 in the bypass passage 3 and the refrigerant passing through the refrigerant circuit 2 to a heat exchanging amount between the refrigerant flowing into the condenser 22 and a heated fluid in the condenser 22 is kept within a prescribed range by properly configuring the supercooling heat exchanger 23 even in the operation with the adjustment of dryness. As a result, the supercooling effect of the supercooling heat exchanger 23 can be secured. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷媒を過冷却する冷凍サイクル装置およびこの冷凍サイクル装置を用いた温水暖房装置に関する。   The present invention relates to a refrigeration cycle apparatus for supercooling refrigerant and a hot water heater using the refrigeration cycle apparatus.

従来、冷媒回路の凝縮器の下流側に過冷却熱交換器が設けられ、この過冷却熱交換器に膨張させた冷媒を流入させることにより凝縮器から流出した冷媒を過冷却する冷凍サイクル装置が知られている。例えば、特許文献1には、図6に示すような冷凍サイクル装置100が開示されている。   2. Description of the Related Art Conventionally, there has been provided a refrigeration cycle apparatus in which a supercooling heat exchanger is provided on the downstream side of a condenser in a refrigerant circuit, and the refrigerant flowing out of the condenser is supercooled by allowing the expanded refrigerant to flow into the supercooling heat exchanger. Are known. For example, Patent Document 1 discloses a refrigeration cycle apparatus 100 as shown in FIG.

この冷凍サイクル装置100は、冷媒を循環させる冷媒回路110と、バイパス路120とを備えている。冷媒回路110は、圧縮機111、凝縮器112、過冷却熱交換器113、主膨張弁114および蒸発器115が配管により環状に接続されて構成されている。バイパス路120は、凝縮器112と過冷却熱交換器113の間で冷媒回路110から分岐し、過冷却熱交換器113を経由して蒸発器115と圧縮機111の間で冷媒回路110につながっている。また、バイパス路120には、過冷却熱交換器113よりも上流側にバイパス膨張弁121が設けられている。   The refrigeration cycle apparatus 100 includes a refrigerant circuit 110 that circulates refrigerant and a bypass passage 120. The refrigerant circuit 110 is configured by connecting a compressor 111, a condenser 112, a supercooling heat exchanger 113, a main expansion valve 114, and an evaporator 115 in an annular shape by piping. The bypass 120 is branched from the refrigerant circuit 110 between the condenser 112 and the supercooling heat exchanger 113 and connected to the refrigerant circuit 110 between the evaporator 115 and the compressor 111 via the supercooling heat exchanger 113. ing. The bypass passage 120 is provided with a bypass expansion valve 121 upstream of the supercooling heat exchanger 113.

そして、特許文献1には、冷凍能力の向上を図るために、凝縮器112に流れる全冷媒流量に対するバイパス路120に流れるバイパス冷媒流量の比(バイパス比)を1%以上25%以下の範囲となるようにバイパス膨張弁121を制御することが記載されている。   And in patent document 1, in order to improve a refrigerating capacity, the ratio (bypass ratio) of the bypass refrigerant | coolant flow volume which flows into the bypass path 120 with respect to the total refrigerant | coolant flow volume which flows into the condenser 112 is the range of 1% or more and 25% or less. It is described that the bypass expansion valve 121 is controlled as described above.

特許第4036288号公報Japanese Patent No. 4036288

ところで、上記のような冷凍サイクル装置において高効率な運転を実現するには、過冷却熱交換器において、バイパス路を流れる冷媒を過熱(スーパーヒート)せず、かつ、冷媒回路を流れる冷媒を所定の状態まで過冷却することが好ましい。これを実現するには、過冷却熱交換器が適切に構成される必要がある。この点、特許文献1には、過冷却熱交換器の構成について特に記載されていない。   By the way, in order to realize high-efficiency operation in the refrigeration cycle apparatus as described above, in the supercooling heat exchanger, the refrigerant flowing in the refrigerant circuit is not overheated (superheated) and the refrigerant flowing in the refrigerant circuit is predetermined. It is preferable to supercool to this state. To achieve this, the subcooling heat exchanger needs to be properly configured. In this regard, Patent Document 1 does not particularly describe the configuration of the supercooling heat exchanger.

本発明は、このような事情に鑑み、適切に構成された過冷却熱交換器を備え、高効率な運転が可能な冷凍サイクル装置、およびこの冷凍サイクル装置を用いた温水暖房装置を提供することを目的とする。   In view of such circumstances, the present invention provides a refrigeration cycle apparatus that includes an appropriately configured supercooling heat exchanger and that can be operated with high efficiency, and a hot water heater using the refrigeration cycle apparatus. With the goal.

本発明の発明者らは、鋭意研究の結果、バイパス路において過冷却熱交換器から流出する冷媒の乾き度を0.8以上1.0未満に保てば、高いCOP(Coefficient of Performance)が得られることを見出した。しかしながら、乾き度がそのような範囲に収まるように制御した場合には、過冷却熱交換器の容量によっては、外気温度が低く、かつ、凝縮器に求められる加熱能力が増大したときに、冷媒回路を流れる冷媒の過冷却が不十分となったり過剰になったりすることがある。本発明はこのような観点からなされたものである。   As a result of intensive studies, the inventors of the present invention have a high COP (Coefficient of Performance) if the dryness of the refrigerant flowing out of the supercooling heat exchanger in the bypass passage is kept at 0.8 or more and less than 1.0. It was found that it can be obtained. However, when the dryness is controlled to fall within such a range, depending on the capacity of the supercooling heat exchanger, when the outside air temperature is low and the heating capacity required for the condenser is increased, the refrigerant The supercooling of the refrigerant flowing through the circuit may become insufficient or excessive. The present invention has been made from such a viewpoint.

すなわち、本発明は、圧縮機、凝縮器、過冷却熱交換器、主膨張手段および蒸発器が環状に接続された冷媒回路と、前記過冷却熱交換器と前記主膨張手段の間または前記凝縮器と前記過冷却熱交換器の間で、前記冷媒回路から分岐し、前記過冷却熱交換器を経由して前記蒸発器と前記圧縮機の間で前記冷媒回路につながるバイパス路と、前記バイパス路の前記過冷却熱交換器よりも上流側に設けられたバイパス膨張手段とを備え、前記過冷却熱交換器は、前記バイパス路において当該過冷却熱交換器から流出する冷媒の乾き度が0.8以上1.0未満となるように前記バイパス膨張手段の開度が調整されたときに、前記凝縮器において当該凝縮器に流入する冷媒と被加熱流体との間の熱交換量に対する前記過冷却熱交換器での前記バイパス路で減圧された冷媒と前記凝縮器から流出した冷媒との間の熱交換量の比率が、0.2以上0.8以下となるように構成されている、冷凍サイクル装置を提供する。   That is, the present invention relates to a refrigerant circuit in which a compressor, a condenser, a supercooling heat exchanger, a main expansion means and an evaporator are connected in an annular shape, and between the supercooling heat exchanger and the main expansion means or the condensation. A bypass path that branches from the refrigerant circuit between the evaporator and the supercooling heat exchanger, and connects to the refrigerant circuit between the evaporator and the compressor via the supercooling heat exchanger, and the bypass Bypass expansion means provided on the upstream side of the supercooling heat exchanger of the passage, and the supercooling heat exchanger has a dryness of the refrigerant flowing out of the supercooling heat exchanger in the bypass passage of 0 When the opening degree of the bypass expansion means is adjusted so as to be 0.8 or more and less than 1.0, the excess of the heat exchange amount between the refrigerant flowing into the condenser and the heated fluid in the condenser is determined. The bypass path in the cooling heat exchanger The ratio of the amount of heat exchange between the refrigerant flowing out of the condenser and the decompressed refrigerant is configured such that 0.2 to 0.8, to provide a refrigeration cycle device.

また、本発明は、加熱手段により生成した温水を暖房に利用する温水暖房装置であって、前記加熱手段として上記の冷凍サイクル装置を備える、温水暖房装置を提供する。   Moreover, this invention is a hot water heating apparatus which utilizes the warm water produced | generated by the heating means for heating, Comprising: The hot water heating apparatus provided with said refrigeration cycle apparatus as said heating means is provided.

上記によれば、過冷却熱交換器が適切に構成されているので、バイパス路において過冷却熱交換器から流出する冷媒の乾き度を0.8以上1.0未満に保ったときに、外気温度が低くかつ凝縮器に求められる加熱能力が増大したとしても、冷媒回路を流れる冷媒を適切な状態に過冷却することができる。したがって、本発明によれば、高効率な運転を実現することができる。   According to the above, since the supercooling heat exchanger is appropriately configured, when the dryness of the refrigerant flowing out from the supercooling heat exchanger in the bypass passage is kept at 0.8 or more and less than 1.0, the outside air Even if the temperature is low and the heating capacity required for the condenser is increased, the refrigerant flowing through the refrigerant circuit can be supercooled to an appropriate state. Therefore, according to the present invention, highly efficient operation can be realized.

本発明の一実施形態に係る冷凍サイクル装置の概略構成図1 is a schematic configuration diagram of a refrigeration cycle apparatus according to an embodiment of the present invention. 蒸発器入口での冷媒の乾き度と熱交換比率の相関図であり、(a)は冷媒としてR407Cを用いたときを示し、(b)は冷媒としてR410Aを用いたときを示す。It is a correlation diagram of the dryness of the refrigerant | coolant in an evaporator inlet, and a heat exchange ratio, (a) shows the time of using R407C as a refrigerant | coolant, (b) shows the time of using R410A as a refrigerant | coolant. 冷媒としてR407Cを用いたときの冷凍サイクル装置のモリエル線図であり、(a)は蒸発器の入口での冷媒の乾き度が0.55のときを示し、(b)は蒸発器の入口での冷媒の乾き度が0のときを示す。It is a Mollier diagram of the refrigeration cycle apparatus when R407C is used as a refrigerant, (a) shows when the dryness of the refrigerant at the inlet of the evaporator is 0.55, (b) shows at the inlet of the evaporator. When the dryness of the refrigerant is zero. 冷媒としてR410Aを用いたときの冷凍サイクル装置のモリエル線図であり、(a)は蒸発器の入口での冷媒の乾き度が0.45のときを示し、(b)は蒸発器の入口での冷媒の乾き度が0のときを示す。It is a Mollier diagram of a refrigeration cycle apparatus when using R410A as a refrigerant, (a) shows when the dryness of the refrigerant at the inlet of the evaporator is 0.45, (b) is at the inlet of the evaporator. When the dryness of the refrigerant is zero. 外気温度と熱交換比率の、凝縮器における冷媒の凝縮温度ごとの相関図Correlation diagram of ambient temperature and heat exchange ratio for each refrigerant condensation temperature in the condenser 従来の冷凍サイクル装置の概略構成図Schematic configuration diagram of a conventional refrigeration cycle apparatus

図1に、本発明の一実施形態に係る冷凍サイクル装置1を示す。この冷凍サイクル装置1は、冷媒を循環させる冷媒回路2と、バイパス路3と、制御装置4とを備えている。冷媒としては、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、または単一冷媒等を用いることができる。   FIG. 1 shows a refrigeration cycle apparatus 1 according to an embodiment of the present invention. The refrigeration cycle apparatus 1 includes a refrigerant circuit 2 that circulates refrigerant, a bypass path 3, and a control device 4. As the refrigerant, for example, a non-azeotropic refrigerant mixture such as R407C, a pseudo-azeotropic refrigerant mixture such as R410A, or a single refrigerant can be used.

冷媒回路2は、圧縮機21、凝縮器22、過冷却熱交換器23、主膨張弁24および蒸発器25が配管により環状に接続されて構成されている。本実施形態では、蒸発器25と圧縮機21の間に、気液分離を行うサブアキュムレータ26および主アキュムレータ27が設けられている。また、冷媒回路2には、通常運転とデフロスト運転を切り換えるための四方弁28が設けられている。   The refrigerant circuit 2 is configured by connecting a compressor 21, a condenser 22, a supercooling heat exchanger 23, a main expansion valve 24, and an evaporator 25 in a ring shape by piping. In the present embodiment, a sub-accumulator 26 and a main accumulator 27 that perform gas-liquid separation are provided between the evaporator 25 and the compressor 21. The refrigerant circuit 2 is provided with a four-way valve 28 for switching between normal operation and defrost operation.

本実施形態では、冷凍サイクル装置1が、加熱手段により生成した温水を暖房に利用する温水暖房装置の加熱手段を構成しており、凝縮器22が、冷媒と水との間で熱交換を行わせて水を加熱する熱交換器となっている。具体的には、凝縮器22に供給管71と回収管72が接続されており、供給管71を通じて凝縮器22に水が供給され、凝縮器22で加熱された水(温水)が回収管72を通じて回収されるようになっている。回収管72により回収された水(温水)は、例えばラジエータ等の暖房機に直接的または貯湯タンクを介して送られ、これにより暖房が行われる。   In the present embodiment, the refrigeration cycle apparatus 1 constitutes heating means of a hot water heating apparatus that uses hot water generated by the heating means for heating, and the condenser 22 exchanges heat between the refrigerant and water. It is a heat exchanger that heats water. Specifically, a supply pipe 71 and a recovery pipe 72 are connected to the condenser 22. Water is supplied to the condenser 22 through the supply pipe 71, and water (hot water) heated by the condenser 22 is recovered in the recovery pipe 72. It has come to be collected through. The water (warm water) recovered by the recovery pipe 72 is sent directly or via a hot water storage tank to a heater such as a radiator, for example, thereby heating.

バイパス路3は、過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐し、過冷却熱交換器23を経由して蒸発器25と圧縮機21の間で冷媒回路2につながっている。本実施形態では、サブアキュムレータ26と主アキュムレータ27の間でバイパス路3が冷媒回路2につながっている。また、バイパス路3には、過冷却熱交換器23よりも上流側にバイパス膨張弁31が設けられている。   The bypass path 3 branches from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24, and enters the refrigerant circuit 2 between the evaporator 25 and the compressor 21 via the supercooling heat exchanger 23. linked. In the present embodiment, the bypass 3 is connected to the refrigerant circuit 2 between the sub accumulator 26 and the main accumulator 27. The bypass passage 3 is provided with a bypass expansion valve 31 on the upstream side of the supercooling heat exchanger 23.

通常運転では、圧縮機21から吐出された冷媒が四方弁28を介して凝縮器22に送られ、デフロスト運転では、圧縮機21から吐出された冷媒が四方弁28を介して蒸発器25に送られる。図1では、通常運転時の冷媒の流れ方向を矢印で示している。以下、通常運転における冷媒の状態変化を説明する。   In the normal operation, the refrigerant discharged from the compressor 21 is sent to the condenser 22 via the four-way valve 28, and in the defrost operation, the refrigerant discharged from the compressor 21 is sent to the evaporator 25 via the four-way valve 28. It is done. In FIG. 1, the direction of refrigerant flow during normal operation is indicated by arrows. Hereinafter, the state change of the refrigerant in the normal operation will be described.

圧縮機21から吐出された高圧冷媒は、凝縮器22に流入し、凝縮器22を通過する水に放熱する。凝縮器22から流出した高圧冷媒は、過冷却熱交換器23に流入し、バイパス膨張弁31で減圧された低圧冷媒によって過冷却される。過冷却熱交換器23から流出した高圧冷媒は、主膨張弁24側とバイパス膨張弁31側とに分流する。   The high-pressure refrigerant discharged from the compressor 21 flows into the condenser 22 and radiates heat to the water passing through the condenser 22. The high-pressure refrigerant flowing out of the condenser 22 flows into the supercooling heat exchanger 23 and is supercooled by the low-pressure refrigerant decompressed by the bypass expansion valve 31. The high-pressure refrigerant that has flowed out of the supercooling heat exchanger 23 is divided into the main expansion valve 24 side and the bypass expansion valve 31 side.

主膨張弁24側に分流した高圧冷媒は、主膨張弁24によって減圧されて膨張した後に、蒸発器25に流入する。蒸発器25に流入した低圧冷媒は、ここで空気から吸熱する。一方、バイパス膨張弁31側に分流した高圧冷媒は、バイパス膨張弁31によって減圧されて膨張した後に、過冷却熱交換器23に流入する。過冷却熱交換器23に流入した低圧冷媒は、凝縮器22から流出した高圧冷媒によって加熱される。その後、過冷却熱交換器23から流出した低圧冷媒は、蒸発器25から流出した低圧冷媒と合流し、再度圧縮機21に吸入される。   The high-pressure refrigerant branched to the main expansion valve 24 side is decompressed and expanded by the main expansion valve 24 and then flows into the evaporator 25. Here, the low-pressure refrigerant flowing into the evaporator 25 absorbs heat from the air. On the other hand, the high-pressure refrigerant branched to the bypass expansion valve 31 side is decompressed and expanded by the bypass expansion valve 31 and then flows into the supercooling heat exchanger 23. The low-pressure refrigerant that has flowed into the supercooling heat exchanger 23 is heated by the high-pressure refrigerant that has flowed out of the condenser 22. Thereafter, the low-pressure refrigerant that has flowed out of the supercooling heat exchanger 23 merges with the low-pressure refrigerant that has flowed out of the evaporator 25, and is sucked into the compressor 21 again.

本実施形態の冷凍サイクル装置1の構成は、低外気温度時に圧縮機21に吸入される冷媒の圧力が低下して冷媒循環量が減少し、これにより凝縮器22の加熱能力が低下することを防止するためのものである。これを実現するには、過冷却により蒸発器25でのエンタルピ差を増大させるとともに、バイパス路3によって冷媒をバイパスさせることにより、冷媒回路2の低圧側部分を流れる吸熱効果の小さい気相冷媒の量を抑え、これにより冷媒回路2の低圧側部分での圧力損失を低減させることが重要である。冷媒回路2の低圧側部分での圧力損失が低減すれば、その分圧縮機21に吸入される冷媒の圧力が上昇して比体積が減少するため、冷媒循環量が増加する。また、蒸発器25でのエンタルピ差を増大させれば、バイパスにより蒸発器25を通過する冷媒の質量流量が低下したとしても、蒸発器25での吸熱量を確保することができる。すなわち、冷媒の過冷却度およびバイパス量を調整すれば、凝縮器22の加熱能力向上効果と冷凍サイクル装置1のCOP向上効果の双方が得られる。   The configuration of the refrigeration cycle apparatus 1 of the present embodiment is that the pressure of the refrigerant sucked into the compressor 21 at the low outside air temperature decreases and the refrigerant circulation amount decreases, thereby reducing the heating capacity of the condenser 22. It is for preventing. In order to realize this, the difference in enthalpy in the evaporator 25 is increased by supercooling, and the refrigerant is bypassed by the bypass passage 3, so that the gas-phase refrigerant having a small endothermic effect flowing through the low-pressure side portion of the refrigerant circuit 2 is obtained. It is important to reduce the amount and thereby reduce the pressure loss at the low pressure side portion of the refrigerant circuit 2. If the pressure loss in the low pressure side portion of the refrigerant circuit 2 is reduced, the pressure of the refrigerant sucked into the compressor 21 is increased by that amount, and the specific volume is reduced, so that the refrigerant circulation amount is increased. Moreover, if the enthalpy difference in the evaporator 25 is increased, even if the mass flow rate of the refrigerant passing through the evaporator 25 is reduced by bypass, the heat absorption amount in the evaporator 25 can be secured. That is, by adjusting the degree of refrigerant supercooling and the amount of bypass, both the heating capacity improvement effect of the condenser 22 and the COP improvement effect of the refrigeration cycle apparatus 1 can be obtained.

本実施形態では、過冷却熱交換器23は、バイパス路3において過冷却熱交換器23から流出する冷媒の乾き度が0.8以上1.0未満となるように主膨張弁24およびバイパス膨張弁31の開度が調整されたときに、凝縮器22における凝縮器22に流入する冷媒と水との間の熱交換量Qcに対する過冷却熱交換器23におけるバイパス路3で減圧された冷媒と凝縮器22から流出した冷媒との間の熱交換量Qscの比率である熱交換比率Qsc/Qcが、0.2以上0.8以下となる伝熱面積を有するように設計されている。   In the present embodiment, the supercooling heat exchanger 23 includes the main expansion valve 24 and the bypass expansion so that the dryness of the refrigerant flowing out from the supercooling heat exchanger 23 in the bypass passage 3 is 0.8 or more and less than 1.0. When the opening degree of the valve 31 is adjusted, the refrigerant decompressed in the bypass passage 3 in the supercooling heat exchanger 23 with respect to the heat exchange amount Qc between the refrigerant flowing into the condenser 22 and the water in the condenser 22 The heat exchange ratio Qsc / Qc, which is the ratio of the heat exchange amount Qsc with the refrigerant flowing out of the condenser 22, is designed to have a heat transfer area of 0.2 or more and 0.8 or less.

本構成によれば、過冷却熱交換器23の伝熱面積が適切に設定されているので、バイパス路3において過冷却熱交換器23から流出する冷媒の乾き度を0.8以上1.0未満に保ったときに、外気温度が低くかつ凝縮器22に求められる加熱能力が増大したとしても、冷媒回路2を流れる冷媒を適切な状態に過冷却することができる。   According to this configuration, since the heat transfer area of the supercooling heat exchanger 23 is appropriately set, the dryness of the refrigerant flowing out of the supercooling heat exchanger 23 in the bypass passage 3 is set to 0.8 or more and 1.0. Even when the outside air temperature is low and the heating capacity required for the condenser 22 is increased, the refrigerant flowing through the refrigerant circuit 2 can be supercooled to an appropriate state.

例えば、冷媒としてR407Cを用いた場合には、外気温度AT=−25℃、凝縮器22での冷媒の凝縮温度Tc=70℃の条件では、図2(a)に示すとおり、熱交換比率Qsc/Qcが0.2以上0.8以下の範囲であれば、蒸発器25に流入する冷媒の乾き度Xeiは0以上0.55以下の範囲に収まり、さらに、図3(a)(b)に示すとおり、蒸発器25に流入する冷媒の乾き度Xeiが0以上0.55以下であれば、過冷却熱交換器23から流出する冷媒が過冷却状態になる。同様に、冷媒としてR410Aを用いた場合にも、外気温度AT=−25℃、凝縮器22での冷媒の凝縮温度Tc=60℃の条件では、図2(b)および、図4(a)(b)から、熱交換比率Qsc/Qcが0.2以上0.8以下の範囲であれば、過冷却熱交換器23から流出する冷媒が過冷却状態になる。よって、本実施形態では、熱交換比率Qsc/Qcが0.2以上0.8以下の範囲になるように、過冷却熱交換器23の伝熱面積を規定した。なお、図3および図4でPcは凝縮器22を通過する冷媒の圧力を、Psは蒸発器25を通過する冷媒の圧力を指す。   For example, when R407C is used as the refrigerant, the heat exchange ratio Qsc as shown in FIG. 2 (a) under the conditions of the outside air temperature AT = −25 ° C. and the refrigerant condensation temperature Tc = 70 ° C. in the condenser 22 If / Qc is in the range of 0.2 to 0.8, the dryness Xei of the refrigerant flowing into the evaporator 25 falls within the range of 0 to 0.55, and further, FIGS. If the dryness Xei of the refrigerant flowing into the evaporator 25 is 0 or more and 0.55 or less, the refrigerant flowing out of the supercooling heat exchanger 23 is in a supercooled state. Similarly, when R410A is used as the refrigerant, the conditions of the outside air temperature AT = −25 ° C. and the refrigerant condensation temperature Tc = 60 ° C. in the condenser 22 are shown in FIGS. 2B and 4A. From (b), if the heat exchange ratio Qsc / Qc is in the range of 0.2 to 0.8, the refrigerant flowing out of the supercooling heat exchanger 23 enters a supercooled state. Therefore, in this embodiment, the heat transfer area of the supercooling heat exchanger 23 is defined so that the heat exchange ratio Qsc / Qc is in the range of 0.2 to 0.8. 3 and 4, Pc indicates the pressure of the refrigerant passing through the condenser 22, and Ps indicates the pressure of the refrigerant passing through the evaporator 25.

より好ましい態様では、過冷却熱交換器23は、バイパス路3において過冷却熱交換器23から流出する冷媒の乾き度を0.8以上1.0未満に保ったときに、熱交換比率Qsc/Qcが、0.2以上0.7以下となる伝熱面積を有する。このようになっていれば、冷媒としてR410Aを用いたときの乾き度Xeiを0以上0.45以下に保つことができ、過冷却熱交換器23から流出する冷媒が過冷却状態になる(図2(b)および図4(a)(b)参照)。   In a more preferred aspect, the supercooling heat exchanger 23 has a heat exchange ratio Qsc / when the dryness of the refrigerant flowing out of the supercooling heat exchanger 23 in the bypass passage 3 is maintained at 0.8 or more and less than 1.0. Qc has a heat transfer area of 0.2 or more and 0.7 or less. If it becomes like this, dryness Xei when using R410A as a refrigerant | coolant can be maintained at 0 or more and 0.45 or less, and the refrigerant | coolant which flows out from the supercooling heat exchanger 23 will be in a supercooled state (FIG. 2 (b) and FIGS. 4 (a) and 4 (b)).

次に制御装置4が行う制御について説明する。   Next, control performed by the control device 4 will be described.

図1に示すように、バイパス路3には、過冷却熱交換器23に流入する冷媒の温度(流入温度)Tbiを検出する入口温度センサ61と、過冷却熱交換器23から流出する冷媒の温度(流出温度)Tboを検出する出口温度センサ62が設けられている。制御装置4は、各種のセンサ61,62で検出される検出値等に基づいて、圧縮機21の回転数、四方弁28の切り換え、ならびに主膨張弁24およびバイパス膨張弁31の開度を制御する。   As shown in FIG. 1, the bypass 3 has an inlet temperature sensor 61 that detects the temperature (inflow temperature) Tbi of the refrigerant flowing into the supercooling heat exchanger 23, and the refrigerant flowing out of the supercooling heat exchanger 23. An outlet temperature sensor 62 for detecting temperature (outflow temperature) Tbo is provided. The control device 4 controls the rotational speed of the compressor 21, switching of the four-way valve 28, and the opening degrees of the main expansion valve 24 and the bypass expansion valve 31 based on detection values detected by the various sensors 61 and 62. To do.

本実施形態では、制御装置4は、通常運転時に、バイパス路3において過冷却熱交換器23から流出する冷媒の乾き度が0.8以上1.0未満になるように、主膨張弁24およびバイパス膨張弁31を制御する。このとき、過冷却熱交換器23の伝熱面積を適切に設定しているので、熱交換比率Qsc/Qcが0.2以上0.8以下になる。   In the present embodiment, the control device 4 controls the main expansion valve 24 and the main expansion valve 24 so that the dryness of the refrigerant flowing out of the supercooling heat exchanger 23 in the bypass passage 3 is 0.8 or more and less than 1.0 during normal operation. The bypass expansion valve 31 is controlled. At this time, since the heat transfer area of the supercooling heat exchanger 23 is appropriately set, the heat exchange ratio Qsc / Qc is 0.2 or more and 0.8 or less.

なお、過冷却熱交換器23の伝熱面積に限らず、例えば、凝縮器22に圧力センサまたは温度センサを配設して凝縮器22の凝縮温度を求め、凝縮器22の出口に温度センサを配設し、その差温である凝縮器22の出口側における過冷却度を1〜5K程度に保ちながら、かつ、過冷却熱交換器23から流出する冷媒の乾き度を0.8以上1.0未満になるように、主膨張弁24およびバイパス膨張弁31を制御すれば、熱交換比率Qsc/Qcは0.2以上0.8以下になるように制御できる。   The heat transfer area of the supercooling heat exchanger 23 is not limited, and for example, a pressure sensor or a temperature sensor is provided in the condenser 22 to obtain the condensation temperature of the condenser 22, and a temperature sensor is provided at the outlet of the condenser 22. The degree of dryness of the refrigerant flowing out of the supercooling heat exchanger 23 is maintained at 0.8 to 1 while maintaining the supercooling degree on the outlet side of the condenser 22, which is the difference temperature, at about 1 to 5K. If the main expansion valve 24 and the bypass expansion valve 31 are controlled so as to be less than 0, the heat exchange ratio Qsc / Qc can be controlled to be 0.2 or more and 0.8 or less.

なお、バイパス路3において過冷却熱交換器23から流出する冷媒の乾き度が0.8以上1.0未満になるように、主膨張弁24およびバイパス膨張弁31を制御することで、過冷却熱交換器23の過冷却効果を最大限まで確保できるため、蒸発器25の入口〜出口間における冷媒エンタルピ差を拡大できる。同時に、蒸発器25入口における冷媒の湿り度を大きくできるため、蒸発器25における無意味な圧力損失増大を抑制、すなわち圧縮機21の吸入圧力上昇を図れ、冷媒流量の増大、凝縮(加熱)能力の増大を図ることが可能となる。   In addition, the subcooling is controlled by controlling the main expansion valve 24 and the bypass expansion valve 31 so that the dryness of the refrigerant flowing out from the supercooling heat exchanger 23 in the bypass passage 3 is 0.8 or more and less than 1.0. Since the supercooling effect of the heat exchanger 23 can be ensured to the maximum, the refrigerant enthalpy difference between the inlet and outlet of the evaporator 25 can be expanded. At the same time, since the wettability of the refrigerant at the inlet of the evaporator 25 can be increased, an increase in meaningless pressure loss in the evaporator 25 can be suppressed, that is, the suction pressure of the compressor 21 can be increased, the refrigerant flow rate can be increased, and the condensation (heating) ability Can be increased.

具体的には、制御装置4は、流入温度Tbiと、流出温度Tboとが略等しくなるように、主膨張弁24およびバイパス膨張弁31を制御する。   Specifically, the control device 4 controls the main expansion valve 24 and the bypass expansion valve 31 so that the inflow temperature Tbi and the outflow temperature Tbo are substantially equal.

なお、入口温度センサ61の代わりに、圧力センサをバイパス路3における過冷却熱交換器23出口、または、蒸発器25と圧縮機21との間に設置し、この圧力センサで検出される圧力に基づいて、バイパス路3において過冷却熱交換器23から流出する冷媒の乾き度が0.8以上1.0未満になるように、主膨張弁24およびバイパス膨張弁31を制御してもよい。   In place of the inlet temperature sensor 61, a pressure sensor is installed at the outlet of the supercooling heat exchanger 23 in the bypass passage 3 or between the evaporator 25 and the compressor 21, and the pressure detected by this pressure sensor is set. Based on this, the main expansion valve 24 and the bypass expansion valve 31 may be controlled so that the dryness of the refrigerant flowing out from the supercooling heat exchanger 23 in the bypass passage 3 is 0.8 or more and less than 1.0.

具体的には、圧力センサで検出される圧力から飽和温度を求めて、流出温度Tboが飽和温度になるように制御すればよい。   Specifically, the saturation temperature may be obtained from the pressure detected by the pressure sensor and controlled so that the outflow temperature Tbo becomes the saturation temperature.

一般に、外気温度ATが低くなるほど、蒸発器25における蒸発圧力が低下するため、過冷却熱交換器23における過冷却度が同一の場合、蒸発器25に流入する冷媒の乾き度が大きくなり、すなわち蒸発に寄与しない冷媒ガス成分が多くなるため、蒸発器による吸熱能力が低下してしまう。そのような場合、制御装置4により、図5に示すとおり、外気温度ATが低いほど、熱交換比率Qsc/Qcが大きくなるように主膨張弁24およびバイパス膨張31を制御することが好ましい。   In general, the lower the outside air temperature AT, the lower the evaporation pressure in the evaporator 25. Therefore, when the degree of supercooling in the supercooling heat exchanger 23 is the same, the dryness of the refrigerant flowing into the evaporator 25 increases. Since there are many refrigerant gas components that do not contribute to evaporation, the heat absorption capability of the evaporator is reduced. In such a case, it is preferable to control the main expansion valve 24 and the bypass expansion 31 so that the heat exchange ratio Qsc / Qc increases as the outside air temperature AT decreases as shown in FIG.

このようにすれば、過冷却熱交換器23出口における過冷却度を大きくでき、蒸発器25に流入する冷媒のエンタルピを低下させることにより、熱交換比率Qsc/Qcが小さい場合に比べて、蒸発器25における冷媒のエンタルピ変化量の拡大、すなわち吸熱能力の増大が図れる。その結果、外気温度AT低下時において、蒸発器25に流入する冷媒のエンタルピ上昇に伴う蒸発器25での冷媒の吸熱量の減少分を補完することができる。なお、外気温度ATは例えば外気温センサで検出すればよい。   In this way, the degree of supercooling at the outlet of the supercooling heat exchanger 23 can be increased, and by reducing the enthalpy of the refrigerant flowing into the evaporator 25, evaporation can be performed compared to the case where the heat exchange ratio Qsc / Qc is small. The amount of change in the enthalpy of the refrigerant in the vessel 25 can be increased, that is, the endothermic capacity can be increased. As a result, when the outside air temperature AT is lowered, it is possible to compensate for the decrease in the heat absorption amount of the refrigerant in the evaporator 25 due to the increase in the enthalpy of the refrigerant flowing into the evaporator 25. The outside air temperature AT may be detected by an outside air temperature sensor, for example.

また、冷媒の凝縮温度Tcが高くなるほど、蒸発器25の入口における冷媒のエンタルピが同一の場合、過冷却熱交換器23出口における過冷却度を大きくする必要があり、そのためには過冷却熱交換器23の熱交換量を、凝縮器22における熱交換量に対して大きくする必要がある。そのような場合、図5に示すとおり、凝縮器22での冷媒の凝縮温度Tcが高くなるほど、熱交換比率Qsc/Qcが大きくなるように主膨張弁24およびバイパス膨張31を制御することが好ましい。   Further, when the refrigerant condensing temperature Tc is higher, when the enthalpy of the refrigerant at the inlet of the evaporator 25 is the same, the degree of supercooling at the outlet of the supercooling heat exchanger 23 needs to be increased. It is necessary to increase the heat exchange amount of the condenser 23 with respect to the heat exchange amount in the condenser 22. In such a case, as shown in FIG. 5, it is preferable to control the main expansion valve 24 and the bypass expansion 31 such that the heat exchange ratio Qsc / Qc increases as the refrigerant condensation temperature Tc in the condenser 22 increases. .

このようにすれば、過冷却熱交換器23の熱交換量が、凝縮器22における熱交換量に対して大きくなり、蒸発器25入口における冷媒のエンタルピを低下させることができ、熱交換比率Qsc/Qcが小さい場合に比べて、蒸発器25における冷媒のエンタルピ変化量の拡大、すなわち吸熱能力の増大が図れる。その結果、凝縮温度Tcの上昇に起因する、蒸発器25に流入する冷媒のエンタルピ上昇に伴う、蒸発器25での冷媒の吸熱量の減少分を補完することができる。   In this way, the heat exchange amount of the supercooling heat exchanger 23 becomes larger than the heat exchange amount in the condenser 22, and the enthalpy of the refrigerant at the inlet of the evaporator 25 can be reduced, and the heat exchange ratio Qsc Compared with the case where / Qc is small, the refrigerant enthalpy change amount in the evaporator 25 can be increased, that is, the heat absorption capacity can be increased. As a result, it is possible to compensate for a decrease in the heat absorption amount of the refrigerant in the evaporator 25 due to an increase in the enthalpy of the refrigerant flowing into the evaporator 25 due to an increase in the condensation temperature Tc.

なお、凝縮温度Tcは流出温度Tboを採用すればよい。   The condensation temperature Tc may be the outflow temperature Tbo.

なお、バイパス路3は、必ずしも過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐している必要はなく、凝縮器22と過冷却熱交換器23の間で冷媒回路2から分岐していてもよい。   The bypass passage 3 does not necessarily have to branch from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24, and the refrigerant circuit 2 between the condenser 22 and the supercooling heat exchanger 23. You may branch from.

さらに、本発明の主膨張手段およびバイパス膨張手段は、必ずしも膨張弁である必要はなく、膨張する冷媒から動力を回収する膨張機であってもよい。この場合、例えば、膨張機と連結された発電機によって負荷を変化させることにより、膨張機の回転数を制御すればよい。   Furthermore, the main expansion means and bypass expansion means of the present invention are not necessarily expansion valves, and may be an expander that recovers power from the expanding refrigerant. In this case, for example, the rotational speed of the expander may be controlled by changing the load with a generator connected to the expander.

また、凝縮器22で加熱される被加熱流体は、必ずしも水である必要はなく、空気であってもよい。すなわち、本発明は空調装置にも適用可能である。   Further, the fluid to be heated that is heated by the condenser 22 is not necessarily water, and may be air. That is, the present invention can also be applied to an air conditioner.

本発明は、冷凍サイクル装置によって水を加熱し、その水を暖房に利用する温水暖房装置に特に有用である。   The present invention is particularly useful for a hot water heating apparatus in which water is heated by a refrigeration cycle apparatus and the water is used for heating.

1 冷凍サイクル装置
2 冷媒回路
21 圧縮機
22 凝縮器
23 過冷却熱交換器
24 主膨張弁(主膨張手段)
25 蒸発器
3 バイパス路
31 バイパス膨張弁(バイパス膨張手段)
4 制御装置
61 入口温度センサ
62 出口温度センサ
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle apparatus 2 Refrigerant circuit 21 Compressor 22 Condenser 23 Supercooling heat exchanger 24 Main expansion valve (main expansion means)
25 Evaporator 3 Bypass path 31 Bypass expansion valve (bypass expansion means)
4 control device 61 inlet temperature sensor 62 outlet temperature sensor

Claims (8)

圧縮機、凝縮器、過冷却熱交換器、主膨張手段および蒸発器が環状に接続された冷媒回路と、
前記過冷却熱交換器と前記主膨張手段の間または前記凝縮器と前記過冷却熱交換器の間で前記冷媒回路から分岐し、前記過冷却熱交換器を経由して前記蒸発器と前記圧縮機の間で前記冷媒回路につながるバイパス路と、
前記バイパス路の前記過冷却熱交換器よりも上流側に設けられたバイパス膨張手段と、
を備え、
前記過冷却熱交換器は、前記バイパス路において当該過冷却熱交換器から流出する冷媒の乾き度が0.8以上1.0未満となるように前記バイパス膨張手段の開度が調整されたとき、前記凝縮器における当該凝縮器に流入する冷媒と被加熱流体との間の熱交換量に対する前記過冷却熱交換器における前記バイパス膨張手段で減圧された冷媒と前記凝縮器から流出した冷媒との間の熱交換量の比率である熱交換比率が、0.2以上0.8以下となるように構成されている、
冷凍サイクル装置。
A refrigerant circuit in which a compressor, a condenser, a supercooling heat exchanger, a main expansion means and an evaporator are connected in an annular shape;
Branch from the refrigerant circuit between the supercooling heat exchanger and the main expansion means or between the condenser and the supercooling heat exchanger, and via the supercooling heat exchanger, the evaporator and the compression A bypass that leads to the refrigerant circuit between the machines,
Bypass expansion means provided on the upstream side of the subcooling heat exchanger of the bypass path;
With
When the opening degree of the bypass expansion means is adjusted so that the dryness of the refrigerant flowing out from the supercooling heat exchanger in the bypass passage is 0.8 or more and less than 1.0 in the bypass passage The refrigerant depressurized by the bypass expansion means in the supercooling heat exchanger and the refrigerant flowing out of the condenser with respect to the heat exchange amount between the refrigerant flowing into the condenser and the fluid to be heated in the condenser The heat exchange ratio, which is the ratio of the amount of heat exchange between, is configured to be 0.2 or more and 0.8 or less,
Refrigeration cycle equipment.
前記バイパス路において前記過冷却熱交換器から流出する冷媒の乾き度が0.8以上1.0未満になるように、前記バイパス膨張手段を制御する制御装置をさらに備える、
請求項1に記載の冷凍サイクル装置。
A control device for controlling the bypass expansion means such that the dryness of the refrigerant flowing out of the supercooling heat exchanger in the bypass passage is 0.8 or more and less than 1.0;
The refrigeration cycle apparatus according to claim 1.
前記バイパス路において前記過冷却熱交換器に流入する冷媒の温度を検出する入口温度センサと、
前記バイパス路において前記過冷却熱交換器から流出する冷媒の温度を検出する出口温度センサと、をさらに備え、
前記制御装置は、前記出口温度センサで検出される温度が前記入口温度センサで検出される温度と略等しくなるように前記バイパス膨張手段を制御する、
請求項2に記載の冷凍サイクル装置。
An inlet temperature sensor for detecting the temperature of the refrigerant flowing into the supercooling heat exchanger in the bypass path;
An outlet temperature sensor for detecting the temperature of the refrigerant flowing out of the supercooling heat exchanger in the bypass path,
The control device controls the bypass expansion means so that a temperature detected by the outlet temperature sensor is substantially equal to a temperature detected by the inlet temperature sensor;
The refrigeration cycle apparatus according to claim 2.
前記バイパス路において前記過冷却熱交換器から流出する冷媒の温度を検出する出口温度センサと、
前記圧縮機に吸入される冷媒の圧力を検出する圧力センサと、をさらに備え、
前記制御装置は、前記出口温度センサで検出される温度が前記圧力センサで検出される圧力から求められる飽和温度になるように、前記バイパス制御手段を制御する、
請求項2に記載の冷凍サイクル装置。
An outlet temperature sensor for detecting the temperature of the refrigerant flowing out of the supercooling heat exchanger in the bypass path;
A pressure sensor for detecting the pressure of the refrigerant sucked into the compressor,
The control device controls the bypass control means so that a temperature detected by the outlet temperature sensor becomes a saturation temperature obtained from a pressure detected by the pressure sensor;
The refrigeration cycle apparatus according to claim 2.
前記制御装置は、外気温度が低くなるほど前記熱交換比率が大きくなるように前記バイパス膨張手段を制御する、請求項2〜4のいずれか一項に記載の冷凍サイクル装置。   The said control apparatus is a refrigerating-cycle apparatus as described in any one of Claims 2-4 which controls the said bypass expansion means so that the said heat exchange ratio becomes large, so that external temperature becomes low. 前記制御装置は、前記凝縮器での冷媒の凝縮温度が高くなるほど前記熱交換比率が大きくなるように前記バイパス膨張手段を制御する、請求項2〜4のいずれか一項に記載の冷凍サイクル装置。   The said control apparatus controls the said bypass expansion means so that the said heat exchange ratio becomes large, so that the condensation temperature of the refrigerant | coolant in the said condenser becomes high, The refrigeration cycle apparatus as described in any one of Claims 2-4. . 前記凝縮器は、冷媒と被加熱流体との間で熱交換を行わせて被加熱流体を加熱する熱交換器である、請求項1〜6のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the condenser is a heat exchanger that heats the heated fluid by performing heat exchange between the refrigerant and the heated fluid. 加熱手段により生成した温水を暖房に利用する温水暖房装置であって、
前記加熱手段として請求項7に記載の冷凍サイクル装置を備える、温水暖房装置。
A hot water heater that uses hot water generated by a heating means for heating,
A hot water heating apparatus comprising the refrigeration cycle apparatus according to claim 7 as the heating means.
JP2009231660A 2009-10-05 2009-10-05 Refrigeration cycle apparatus and hot water heater Expired - Fee Related JP5411643B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009231660A JP5411643B2 (en) 2009-10-05 2009-10-05 Refrigeration cycle apparatus and hot water heater
CN201010539415.8A CN102032699B (en) 2009-10-05 2010-09-30 Refrigeration cycle apparatus and hot water heater
EP10186449.4A EP2320164A3 (en) 2009-10-05 2010-10-04 Refrigeration cycle apparatus and hot water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231660A JP5411643B2 (en) 2009-10-05 2009-10-05 Refrigeration cycle apparatus and hot water heater

Publications (2)

Publication Number Publication Date
JP2011080634A true JP2011080634A (en) 2011-04-21
JP5411643B2 JP5411643B2 (en) 2014-02-12

Family

ID=43778548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231660A Expired - Fee Related JP5411643B2 (en) 2009-10-05 2009-10-05 Refrigeration cycle apparatus and hot water heater

Country Status (3)

Country Link
EP (1) EP2320164A3 (en)
JP (1) JP5411643B2 (en)
CN (1) CN102032699B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765370A1 (en) 2013-02-08 2014-08-13 Panasonic Corporation Refrigeration cycle apparatus and hot water generator provided with the same
JP2015014377A (en) * 2013-07-03 2015-01-22 富士電機株式会社 Refrigerant circuit device
WO2015136703A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigerating cycle device
CN106225273A (en) * 2016-07-29 2016-12-14 青岛海尔特种电冰柜有限公司 Cooling cycle system and refrigeration plant
WO2019234986A1 (en) * 2018-06-07 2019-12-12 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device comprising same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2495149A (en) * 2011-09-30 2013-04-03 Arctic Circle Ltd Refrigeration Apparatus With Subcooler
JP2014102030A (en) * 2012-11-20 2014-06-05 Panasonic Corp Heat-pump hot water supply device
CN103344066A (en) * 2013-07-15 2013-10-09 江苏七政新能源有限公司 Bent tube type cooler
EP3023711A1 (en) * 2014-11-20 2016-05-25 Vaillant GmbH Energy control for vapour injection
CN108603699A (en) * 2015-12-08 2018-09-28 特灵国际有限公司 High-temperature-hot-water is obtained using the heat recycled from heat source
CN112771319A (en) * 2018-09-25 2021-05-07 东芝开利株式会社 Refrigeration cycle device
JP6886129B2 (en) * 2019-03-26 2021-06-16 株式会社富士通ゼネラル Air conditioner
JP7199554B2 (en) * 2019-09-09 2023-01-05 三菱電機株式会社 Outdoor unit and refrigeration cycle equipment
US20220128283A1 (en) * 2020-10-23 2022-04-28 General Electric Company Vapor cycle system for cooling components and associated method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169772U (en) * 1988-05-19 1989-11-30
JPH0814676A (en) * 1994-06-28 1996-01-19 Daikin Ind Ltd Air conditioner
JP2001033110A (en) * 1999-07-21 2001-02-09 Daikin Ind Ltd Refrigerator
JP2005315558A (en) * 2004-03-29 2005-11-10 Mitsubishi Electric Corp Heat pump water heater
JP2007212134A (en) * 2007-04-11 2007-08-23 Daikin Ind Ltd Air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124910A (en) 1984-07-16 1986-02-03 Toru Seki Incinerating disposal of raw garbage
CN1205073A (en) * 1996-08-14 1999-01-13 大金工业株式会社 Air conditioner
EP1033541B1 (en) * 1997-11-17 2004-07-21 Daikin Industries, Limited Refrigerating apparatus
ES2296645T3 (en) * 1999-10-18 2008-05-01 Daikin Industries, Ltd. REFRIGERATION DEVICE
JP4036288B2 (en) * 2002-07-11 2008-01-23 株式会社日立製作所 Air conditioner
JP4771721B2 (en) * 2005-03-16 2011-09-14 三菱電機株式会社 Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169772U (en) * 1988-05-19 1989-11-30
JPH0814676A (en) * 1994-06-28 1996-01-19 Daikin Ind Ltd Air conditioner
JP2001033110A (en) * 1999-07-21 2001-02-09 Daikin Ind Ltd Refrigerator
JP2005315558A (en) * 2004-03-29 2005-11-10 Mitsubishi Electric Corp Heat pump water heater
JP2007212134A (en) * 2007-04-11 2007-08-23 Daikin Ind Ltd Air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765370A1 (en) 2013-02-08 2014-08-13 Panasonic Corporation Refrigeration cycle apparatus and hot water generator provided with the same
JP2014169854A (en) * 2013-02-08 2014-09-18 Panasonic Corp Refrigeration cycle device and hot water generation device including the same
JP2015014377A (en) * 2013-07-03 2015-01-22 富士電機株式会社 Refrigerant circuit device
WO2015136703A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigerating cycle device
JPWO2015136703A1 (en) * 2014-03-14 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
US10508848B2 (en) 2014-03-14 2019-12-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN106225273A (en) * 2016-07-29 2016-12-14 青岛海尔特种电冰柜有限公司 Cooling cycle system and refrigeration plant
WO2019234986A1 (en) * 2018-06-07 2019-12-12 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device comprising same
JPWO2019234986A1 (en) * 2018-06-07 2021-06-17 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device equipped with it

Also Published As

Publication number Publication date
JP5411643B2 (en) 2014-02-12
EP2320164A3 (en) 2014-02-05
EP2320164A2 (en) 2011-05-11
CN102032699A (en) 2011-04-27
CN102032699B (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP5452138B2 (en) Refrigeration air conditioner
JP5533491B2 (en) Refrigeration cycle apparatus and hot water heater
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP5637053B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5421717B2 (en) Refrigeration cycle apparatus and hot water heater
JP5816789B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5278451B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP2009243793A (en) Heat pump type hot water supply outdoor unit
WO2007110908A9 (en) Refrigeration air conditioning device
JP2011174672A (en) Refrigerating cycle device and hot water heating apparatus
JP2010164257A (en) Refrigerating cycle device and method of controlling the refrigerating cycle device
JP5921777B1 (en) Refrigeration cycle equipment
JP5300806B2 (en) Heat pump equipment
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
JP2014105890A (en) Refrigeration cycle device and hot-water generating device including the same
JP2017161182A (en) Heat pump device
JP4442237B2 (en) Air conditioner
JP2005226950A (en) Refrigerating air conditioner
JP2017155944A (en) Refrigeration cycle device and hot water heating device including the same
JP6051401B2 (en) Heat pump air conditioning and hot water supply system
JP2011185507A (en) Refrigerating cycle device and hot water heating device including the same
JP2017166709A (en) Refrigeration cycle device and hot water heating device including the same
JP2014016067A (en) Heat pump type air-conditioning hot water supply device
JP5233960B2 (en) Refrigeration cycle apparatus and hot water heater using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131008

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131017

TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R150 Certificate of patent or registration of utility model

Ref document number: 5411643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees