Nothing Special   »   [go: up one dir, main page]

JP5421717B2 - Refrigeration cycle apparatus and hot water heater - Google Patents

Refrigeration cycle apparatus and hot water heater Download PDF

Info

Publication number
JP5421717B2
JP5421717B2 JP2009231659A JP2009231659A JP5421717B2 JP 5421717 B2 JP5421717 B2 JP 5421717B2 JP 2009231659 A JP2009231659 A JP 2009231659A JP 2009231659 A JP2009231659 A JP 2009231659A JP 5421717 B2 JP5421717 B2 JP 5421717B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
compressor
bypass
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009231659A
Other languages
Japanese (ja)
Other versions
JP2011080633A (en
Inventor
俊二 森脇
繁男 青山
典穂 岡座
安彦 諌山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009231659A priority Critical patent/JP5421717B2/en
Priority to EP10186452.8A priority patent/EP2320165B1/en
Priority to DK10186452.8T priority patent/DK2320165T3/en
Priority to CN201010509342.8A priority patent/CN102032698B/en
Publication of JP2011080633A publication Critical patent/JP2011080633A/en
Application granted granted Critical
Publication of JP5421717B2 publication Critical patent/JP5421717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/08Exceeding a certain temperature value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、凝縮器から流出した冷媒を過冷却する冷凍サイクル装置およびこの冷凍サイクル装置を用いた温水暖房装置に関する。   The present invention relates to a refrigeration cycle apparatus that supercools refrigerant that has flowed out of a condenser, and a hot water heater using the refrigeration cycle apparatus.

従来、冷媒回路の凝縮器の下流側に過冷却熱交換器が設けられ、この過冷却熱交換器に膨張させた冷媒を流入させることにより凝縮器から流出した冷媒を過冷却する冷凍サイクル装置が知られている。例えば、特許文献1には、図6に示すような冷凍サイクル装置100が開示されている。   2. Description of the Related Art Conventionally, there has been provided a refrigeration cycle apparatus in which a supercooling heat exchanger is provided on the downstream side of a condenser in a refrigerant circuit, and the refrigerant flowing out of the condenser is supercooled by allowing the expanded refrigerant to flow into the supercooling heat exchanger. Are known. For example, Patent Document 1 discloses a refrigeration cycle apparatus 100 as shown in FIG.

この冷凍サイクル装置100は、冷媒を循環させる冷媒回路110と、バイパス路120とを備えている。冷媒回路110は、圧縮機111、凝縮器112、過冷却熱交換器113、主膨張弁114および蒸発器115が配管により環状に接続されて構成されている。バイパス路120は、凝縮器112と過冷却熱交換器113の間で冷媒回路110から分岐し、過冷却熱交換器113を経由して蒸発器115と圧縮機111の間で冷媒回路110につながっている。また、バイパス路120には、過冷却熱交換器113よりも上流側にバイパス膨張弁121が設けられている。   The refrigeration cycle apparatus 100 includes a refrigerant circuit 110 that circulates refrigerant and a bypass passage 120. The refrigerant circuit 110 is configured by connecting a compressor 111, a condenser 112, a supercooling heat exchanger 113, a main expansion valve 114, and an evaporator 115 in an annular shape by piping. The bypass 120 is branched from the refrigerant circuit 110 between the condenser 112 and the supercooling heat exchanger 113 and connected to the refrigerant circuit 110 between the evaporator 115 and the compressor 111 via the supercooling heat exchanger 113. ing. The bypass passage 120 is provided with a bypass expansion valve 121 upstream of the supercooling heat exchanger 113.

さらに、冷凍サイクル装置100には、圧縮機111に吸入される冷媒の圧力を検出する圧力センサ131と、蒸発器115から流出する冷媒の温度(蒸発器出口温度)Teoを検出する温度センサ141と、バイパス路120において過冷却熱交換器113から流出する冷媒の温度(バイパス側出口温度)Tboを検出する温度センサ142とが設けられている。   Further, the refrigeration cycle apparatus 100 includes a pressure sensor 131 that detects the pressure of the refrigerant sucked into the compressor 111, and a temperature sensor 141 that detects the temperature of the refrigerant flowing out of the evaporator 115 (evaporator outlet temperature) Teo. In addition, a temperature sensor 142 that detects the temperature (bypass side outlet temperature) Tbo of the refrigerant flowing out of the supercooling heat exchanger 113 in the bypass passage 120 is provided.

そして、特許文献1には、圧力センサ131で検出される圧力から当該圧力での飽和温度Tsが算出され、蒸発器115出口での過熱度(Teo−Ts)が目標過熱度となるように主膨張弁114が制御され、過冷却熱交換器113出口での過熱度(Tbo−Ts)が目標過熱度となるようにバイパス膨張弁121が制御されることが記載されている。   In Patent Document 1, the saturation temperature Ts at the pressure is calculated from the pressure detected by the pressure sensor 131, and the superheat degree (Teo-Ts) at the outlet of the evaporator 115 is the target superheat degree. It is described that the expansion valve 114 is controlled and the bypass expansion valve 121 is controlled so that the degree of superheat (Tbo-Ts) at the outlet of the supercooling heat exchanger 113 becomes the target degree of superheat.

特開平10−68553号公報Japanese Patent Laid-Open No. 10-68553

しかしながら、特許文献1に記載されているように、過冷却熱交換器113出口での過熱度(Tbo−Ts)が目標過熱度となるようにバイパス膨張弁121を制御した場合には、過冷却熱交換器113ではさらに多くの冷媒を蒸発させることができるのであるから、過冷却熱交換器113の性能を最大限に活用することができない。すなわち、主流冷媒とバイパス流冷媒との熱交換による蒸発器115におけるエンタルピ増大効果および冷媒のバイパスによる低圧側冷媒経路の圧力損失低減効果を最大とすることができない。しかも、蒸発器115をバイパスする冷媒が過熱(スーパーヒート)されると圧縮機111に吸入される冷媒の比体積が増加し冷媒循環量の減少が生じるばかりか圧縮機の吐出温度も高くなる。このため、大きな加熱能力が求められる低外気温度時には、吐出温度を抑えて信頼性を確保する観点から圧縮機の回転数をあまり大きくすることができず、加熱能力が不足するおそれがある。   However, as described in Patent Document 1, when the bypass expansion valve 121 is controlled so that the degree of superheat (Tbo-Ts) at the outlet of the supercooling heat exchanger 113 becomes the target degree of superheating, the supercooling is performed. Since more refrigerant can be evaporated in the heat exchanger 113, the performance of the supercooling heat exchanger 113 cannot be utilized to the maximum extent. That is, the effect of increasing the enthalpy in the evaporator 115 by heat exchange between the mainstream refrigerant and the bypass refrigerant and the effect of reducing the pressure loss of the low-pressure refrigerant path by bypassing the refrigerant cannot be maximized. In addition, when the refrigerant bypassing the evaporator 115 is overheated (superheated), the specific volume of the refrigerant sucked into the compressor 111 is increased, the refrigerant circulation amount is decreased, and the discharge temperature of the compressor is also increased. For this reason, at the low outside air temperature in which a large heating capacity is required, the rotational speed of the compressor cannot be increased so much from the viewpoint of securing the reliability by suppressing the discharge temperature, and the heating capacity may be insufficient.

本発明は、このような事情に鑑み、蒸発器におけるエンタルピ増大効果および低圧側冷媒経路の圧力損失低減効果を最大とすることができ、かつ、低外気温度時に十分な加熱能力を得ることができる冷凍サイクル装置、およびこの冷凍サイクル装置を用いた温水暖房装置を提供することを目的とする。   In view of such circumstances, the present invention can maximize the effect of increasing the enthalpy in the evaporator and the effect of reducing the pressure loss of the low-pressure side refrigerant path, and can obtain sufficient heating capacity at a low outside air temperature. An object is to provide a refrigeration cycle apparatus and a hot water heating apparatus using the refrigeration cycle apparatus.

前記課題を解決するために、本発明は、圧縮機、凝縮器、過冷却熱交換器、主膨張手段および蒸発器が環状に接続された冷媒回路と、前記凝縮器と前記過冷却熱交換器の間または前記過冷却熱交換器と前記主膨張手段の間で前記冷媒回路から分岐し、前記過冷却熱交換器を経由して前記蒸発器と前記圧縮機の間で前記冷媒回路につながるバイパス路と、前記バイパス路の前記過冷却熱交換器よりも上流側に設けられたバイパス膨張手段と、前記バイパス路において前記過冷却熱交換器から流出する冷媒の温度を検出する第1温度センサと、前記冷媒回路において前記蒸発器から流出する冷媒の温度を検出する第2温度センサと、前記第1温度センサで検出される温度が前記圧縮機に吸入される冷媒の圧力での飽和温度となり、かつ、前記第2温度センサで検出される温度に基づいて算出される前記蒸発器出口での過熱度が予め定められた所定の過熱度以下となるように、前記バイパス膨張手段を制御する制御装置と、を備える、冷凍サイクル装置を提供する。   In order to solve the above-described problems, the present invention provides a compressor, a condenser, a supercooling heat exchanger, a refrigerant circuit in which a main expansion means and an evaporator are connected in an annular shape, the condenser and the supercooling heat exchanger. Or a bypass that branches from the refrigerant circuit between the supercooling heat exchanger and the main expansion means, and connects to the refrigerant circuit between the evaporator and the compressor via the supercooling heat exchanger A bypass expansion means provided upstream of the subcooling heat exchanger in the bypass passage, and a first temperature sensor for detecting the temperature of the refrigerant flowing out of the supercooling heat exchanger in the bypass passage A second temperature sensor for detecting a temperature of the refrigerant flowing out of the evaporator in the refrigerant circuit, and a temperature detected by the first temperature sensor becomes a saturation temperature at a pressure of the refrigerant sucked into the compressor, And the second A controller that controls the bypass expansion means so that the degree of superheat at the evaporator outlet calculated based on the temperature detected by the degree sensor is equal to or lower than a predetermined degree of superheat. A refrigeration cycle apparatus is provided.

また、本発明は、加熱手段により生成した温水を暖房に利用する温水暖房装置であって、前記加熱手段として上記の冷凍サイクル装置を備える、温水暖房装置を提供する。   Moreover, this invention is a hot water heating apparatus which utilizes the warm water produced | generated by the heating means for heating, Comprising: The hot water heating apparatus provided with said refrigeration cycle apparatus as said heating means is provided.

上記の構成によれば、バイパス路において過冷却熱交換器から流出する冷媒の温度が圧縮機に吸入される冷媒の圧力での飽和温度に維持されるため、過冷却熱交換器から流出する冷媒を湿り状態または飽和気体状態に保つことができる。しかも、蒸発器出口での過熱度が所定の過熱度以下に抑えられるため、バイパス路を流れる冷媒の流量が多くなりすぎて圧縮機に吸入される冷媒(バイパス路を流れた冷媒と蒸発器を通過した冷媒とが合流した後の冷媒)の乾き度が低下しすぎることを防止することができ、圧縮機に吸入される冷媒の乾き度を所望の範囲(例えば0.8以上1.0未満)に収めることができる。これにより、主流冷媒とバイパス流冷媒との熱交換による蒸発器におけるエンタルピ増大効果および冷媒のバイパスによる低圧側冷媒経路の圧力損失低減効果を最大とすることができる。また、圧縮機の吐出温度が抑えられるため、低外気温度時に圧縮機の回転数を大きくすることが可能になり、十分な加熱能力を得ることができる。   According to said structure, since the temperature of the refrigerant | coolant which flows out from a supercooling heat exchanger in a bypass channel is maintained at the saturation temperature in the pressure of the refrigerant | coolant suck | inhaled by a compressor, the refrigerant | coolant which flows out from a supercooling heat exchanger Can be kept wet or saturated. In addition, since the superheat degree at the evaporator outlet is suppressed to a predetermined superheat degree or less, the flow rate of the refrigerant flowing through the bypass passage becomes too large and the refrigerant sucked into the compressor (the refrigerant flowing through the bypass passage and the evaporator) It is possible to prevent the dryness of the refrigerant that has passed with the refrigerant that has passed through from being too low, and to set the dryness of the refrigerant sucked into the compressor within a desired range (for example, 0.8 to less than 1.0). ). Thereby, the enthalpy increase effect in the evaporator by heat exchange between the main flow refrigerant and the bypass flow refrigerant and the pressure loss reduction effect in the low pressure side refrigerant path by the refrigerant bypass can be maximized. Further, since the discharge temperature of the compressor can be suppressed, it is possible to increase the rotation speed of the compressor at a low outside air temperature, and a sufficient heating capacity can be obtained.

本発明の第1実施形態に係る冷凍サイクル装置の概略構成図1 is a schematic configuration diagram of a refrigeration cycle apparatus according to a first embodiment of the present invention. 図1に示す冷凍サイクル装置のモリエル線図Mollier diagram of the refrigeration cycle apparatus shown in FIG. 第1実施形態における制御装置が行う制御のフローチャートFlowchart of control performed by the control device in the first embodiment 本発明の第2実施形態に係る冷凍サイクル装置の概略構成図Schematic block diagram of the refrigeration cycle apparatus according to the second embodiment of the present invention. 第2実施形態における制御装置が行う制御のフローチャートFlowchart of control performed by the control device in the second embodiment 従来の冷凍サイクル装置の概略構成図Schematic configuration diagram of a conventional refrigeration cycle apparatus

(第1実施形態)
図1に、本発明の第1実施形態に係る冷凍サイクル装置1Aを示す。この冷凍サイクル装置1Aは、冷媒を循環させる冷媒回路2と、バイパス路3と、制御装置4とを備えている。冷媒としては、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、または単一冷媒等を用いることができる。
(First embodiment)
FIG. 1 shows a refrigeration cycle apparatus 1A according to the first embodiment of the present invention. The refrigeration cycle apparatus 1 </ b> A includes a refrigerant circuit 2 that circulates refrigerant, a bypass path 3, and a control device 4. As the refrigerant, for example, a non-azeotropic refrigerant mixture such as R407C, a pseudo-azeotropic refrigerant mixture such as R410A, or a single refrigerant can be used.

冷媒回路2は、圧縮機21、凝縮器22、過冷却熱交換器23、主膨張弁(主膨張手段)24および蒸発器25が配管により環状に接続されて構成されている。本実施形態では、蒸発器25と圧縮機21の間に、気液分離を行うサブアキュムレータ26および主アキュムレータ27が設けられている。また、冷媒回路2には、通常運転とデフロスト運転を切り換えるための四方弁28が設けられている。   The refrigerant circuit 2 is configured by connecting a compressor 21, a condenser 22, a supercooling heat exchanger 23, a main expansion valve (main expansion means) 24, and an evaporator 25 in an annular shape by piping. In the present embodiment, a sub-accumulator 26 and a main accumulator 27 that perform gas-liquid separation are provided between the evaporator 25 and the compressor 21. The refrigerant circuit 2 is provided with a four-way valve 28 for switching between normal operation and defrost operation.

本実施形態では、冷凍サイクル装置1Aが、加熱手段により生成した温水を暖房に利用する温水暖房装置の加熱手段を構成しており、凝縮器22が、冷媒と水との間で熱交換を行わせて水を加熱する熱交換器となっている。具体的には、凝縮器22に供給管71と回収管72が接続されており、供給管71を通じて凝縮器22に水が供給され、凝縮器22で加熱された水(温水)が回収管72を通じて回収されるようになっている。回収管72により回収された温水は、例えばラジエータ等の暖房機に直接的または貯湯タンクを介して送られ、これにより暖房が行われる。   In the present embodiment, the refrigeration cycle apparatus 1A constitutes a heating means of a hot water heating apparatus that uses hot water generated by the heating means for heating, and the condenser 22 exchanges heat between the refrigerant and water. It is a heat exchanger that heats water. Specifically, a supply pipe 71 and a recovery pipe 72 are connected to the condenser 22. Water is supplied to the condenser 22 through the supply pipe 71, and water (hot water) heated by the condenser 22 is recovered in the recovery pipe 72. It has come to be collected through. The hot water collected by the collection pipe 72 is sent to a heater such as a radiator directly or via a hot water storage tank, and thereby heating is performed.

バイパス路3は、過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐し、過冷却熱交換器23を経由して蒸発器25と圧縮機21の間で冷媒回路2につながっている。本実施形態では、サブアキュムレータ26と主アキュムレータ27の間でバイパス路3が冷媒回路2につながっている。また、バイパス路3には、過冷却熱交換器23よりも上流側にバイパス膨張弁(バイパス膨張手段)31が設けられている。   The bypass path 3 branches from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24, and enters the refrigerant circuit 2 between the evaporator 25 and the compressor 21 via the supercooling heat exchanger 23. linked. In the present embodiment, the bypass 3 is connected to the refrigerant circuit 2 between the sub accumulator 26 and the main accumulator 27. The bypass passage 3 is provided with a bypass expansion valve (bypass expansion means) 31 on the upstream side of the supercooling heat exchanger 23.

通常運転では、圧縮機21から吐出された冷媒が四方弁28を介して凝縮器22に送られ、デフロスト運転では、圧縮機21から吐出された冷媒が四方弁28を介して蒸発器25に送られる。図1では、通常運転時の冷媒の流れ方向を矢印で示している。以下、通常運転における冷媒の状態変化を説明する。   In the normal operation, the refrigerant discharged from the compressor 21 is sent to the condenser 22 via the four-way valve 28, and in the defrost operation, the refrigerant discharged from the compressor 21 is sent to the evaporator 25 via the four-way valve 28. It is done. In FIG. 1, the direction of refrigerant flow during normal operation is indicated by arrows. Hereinafter, the state change of the refrigerant in the normal operation will be described.

圧縮機21から吐出された高圧冷媒は、凝縮器22に流入し、凝縮器22を通過する水に放熱する。凝縮器22から流出した高圧冷媒は、過冷却熱交換器23に流入し、バイパス膨張弁31で減圧された低圧冷媒によって過冷却される。過冷却熱交換器23から流出した高圧冷媒は、主膨張弁24側とバイパス膨張弁31側とに分流する。   The high-pressure refrigerant discharged from the compressor 21 flows into the condenser 22 and radiates heat to the water passing through the condenser 22. The high-pressure refrigerant flowing out of the condenser 22 flows into the supercooling heat exchanger 23 and is supercooled by the low-pressure refrigerant decompressed by the bypass expansion valve 31. The high-pressure refrigerant that has flowed out of the supercooling heat exchanger 23 is divided into the main expansion valve 24 side and the bypass expansion valve 31 side.

主膨張弁24側に分流した高圧冷媒は、主膨張弁24によって減圧されて膨張した後に、蒸発器25に流入する。蒸発器25に流入した低圧冷媒は、ここで空気から吸熱する。一方、バイパス膨張弁31側に分流した高圧冷媒は、バイパス膨張弁31によって減圧されて膨張した後に、過冷却熱交換器23に流入する。過冷却熱交換器23に流入した低圧冷媒は、凝縮器22から流出した高圧冷媒によって加熱される。その後、過冷却熱交換器23から流出した低圧冷媒は、蒸発器25から流出した低圧冷媒と合流し、再度圧縮機21に吸入される。   The high-pressure refrigerant branched to the main expansion valve 24 side is decompressed and expanded by the main expansion valve 24 and then flows into the evaporator 25. Here, the low-pressure refrigerant flowing into the evaporator 25 absorbs heat from the air. On the other hand, the high-pressure refrigerant branched to the bypass expansion valve 31 side is decompressed and expanded by the bypass expansion valve 31 and then flows into the supercooling heat exchanger 23. The low-pressure refrigerant that has flowed into the supercooling heat exchanger 23 is heated by the high-pressure refrigerant that has flowed out of the condenser 22. Thereafter, the low-pressure refrigerant that has flowed out of the supercooling heat exchanger 23 merges with the low-pressure refrigerant that has flowed out of the evaporator 25, and is sucked into the compressor 21 again.

本実施形態の冷凍サイクル装置1Aの構成は、低外気温度時に圧縮機21に吸入される冷媒の圧力が低下して冷媒循環量が減少し、これにより凝縮器22の加熱能力が低下することを防止するためのものである。これを実現するには、過冷却により蒸発器25でのエンタルピ差を増大させるとともに、バイパス路3によって冷媒をバイパスさせることにより冷媒回路2の低圧側部分を流れる吸熱効果の小さい気相冷媒の量を抑え、これにより冷媒回路2の低圧側部分での圧力損失を低減させることが重要である。冷媒回路2の低圧側部分での圧力損失が低減すれば、その分圧縮機21に吸入される冷媒の圧力が上昇して比体積が減少するため、冷媒循環量が増加する。また、蒸発器25でのエンタルピ差を増大させれば、バイパスにより蒸発器25を通過する冷媒の質量流量が低下したとしても、蒸発器25での吸熱量を確保することができる。すなわち、冷媒の過冷却度とバイパス量を最大にすれば、最大限の凝縮器22の加熱能力向上効果と冷凍サイクル装置1AのCOP(Coefficient of Performance)向上効果が得られる。   The configuration of the refrigeration cycle apparatus 1A of the present embodiment is that the pressure of the refrigerant sucked into the compressor 21 at the low outside air temperature decreases and the refrigerant circulation amount decreases, thereby reducing the heating capacity of the condenser 22. It is for preventing. In order to realize this, the amount of gas-phase refrigerant having a small endothermic effect that flows through the low pressure side portion of the refrigerant circuit 2 by increasing the enthalpy difference in the evaporator 25 by supercooling and bypassing the refrigerant by the bypass passage 3. It is important to reduce the pressure loss at the low pressure side portion of the refrigerant circuit 2. If the pressure loss in the low pressure side portion of the refrigerant circuit 2 is reduced, the pressure of the refrigerant sucked into the compressor 21 is increased by that amount, and the specific volume is reduced, so that the refrigerant circulation amount is increased. Moreover, if the enthalpy difference in the evaporator 25 is increased, even if the mass flow rate of the refrigerant passing through the evaporator 25 is reduced by bypass, the heat absorption amount in the evaporator 25 can be secured. That is, if the degree of supercooling of the refrigerant and the amount of bypass are maximized, the maximum heating capacity improvement effect of the condenser 22 and the COP (Coefficient of Performance) improvement effect of the refrigeration cycle apparatus 1A can be obtained.

本実施形態では、詳しくは後述するが、バイパス路3を流れる冷媒が過冷却熱交換器23で過熱(スーパーヒート)されないようにバイパス膨張弁31が制御される。従って、バイパス路3において過冷却熱交換器23から流出した冷媒の状態は、図2中にa点で示すように飽和状態となる。一方、蒸発器25では冷媒が過熱されるため、蒸発器25から流出した冷媒の状態は、図2中のb点になる。そして、圧縮機21に吸入される冷媒は、それらの冷媒が合流したものであるから、a点とb点の間のc点の状態になる。   In this embodiment, as will be described in detail later, the bypass expansion valve 31 is controlled so that the refrigerant flowing through the bypass passage 3 is not superheated (superheated) by the supercooling heat exchanger 23. Therefore, the state of the refrigerant that has flowed out of the supercooling heat exchanger 23 in the bypass passage 3 is saturated as shown by point a in FIG. On the other hand, since the refrigerant is superheated in the evaporator 25, the state of the refrigerant flowing out of the evaporator 25 is a point b in FIG. And since the refrigerant | coolant suck | inhaled by the compressor 21 is what those refrigerant | coolants merged, it will be in the state of the c point between the point a and b point.

バイパス路3には、過冷却熱交換器23から流出する冷媒の温度(バイパス側出口温度)Tboを検出する第1温度センサ61が設けられている。一方、冷媒回路2には、圧縮機21に吸入される冷媒の圧力(吸入圧力)Psを検出する圧力センサ51と、圧縮機21から吐出される冷媒の温度(吐出温度)Tdを検出する吐出温度センサ65と、蒸発器25から流出する冷媒の温度(蒸発器出口温度)Teoを検出する第2温度センサ62とが設けられている。   The bypass passage 3 is provided with a first temperature sensor 61 that detects the temperature (bypass side outlet temperature) Tbo of the refrigerant flowing out from the supercooling heat exchanger 23. On the other hand, the refrigerant circuit 2 includes a pressure sensor 51 that detects the pressure (suction pressure) Ps of the refrigerant sucked into the compressor 21 and a discharge that detects the temperature (discharge temperature) Td of the refrigerant discharged from the compressor 21. A temperature sensor 65 and a second temperature sensor 62 for detecting the temperature (evaporator outlet temperature) Teo of the refrigerant flowing out of the evaporator 25 are provided.

制御装置4は、各種のセンサ51,61,62,65で検出される検出値等に基づいて、圧縮機21の回転数、四方弁28の切り換え、ならびに主膨張弁24およびバイパス膨張弁31の開度を制御する。本実施形態では、制御装置4は、通常運転時に、第1温度センサ61で検出されるバイパス側出口温度Tboが圧縮機21に吸入される冷媒の圧力での飽和温度STsとなり、かつ、第2温度センサ62で検出される蒸発器出口温度Teoに基づいて算出される蒸発器25出口での過熱度SHeが予め定められた所定の過熱度以下となるように、バイパス膨張手段31を制御する。   Based on the detection values detected by the various sensors 51, 61, 62 and 65, the control device 4 switches the rotational speed of the compressor 21, the four-way valve 28, and the main expansion valve 24 and the bypass expansion valve 31. Control the opening. In the present embodiment, during normal operation, the control device 4 determines that the bypass-side outlet temperature Tbo detected by the first temperature sensor 61 becomes the saturation temperature STs at the pressure of the refrigerant sucked into the compressor 21, and the second The bypass expansion means 31 is controlled so that the degree of superheat SHe at the outlet of the evaporator 25 calculated based on the evaporator outlet temperature Teo detected by the temperature sensor 62 is equal to or lower than a predetermined degree of superheat.

次に、通常運転時の制御装置4の制御を図3に示すフローチャートを参照して詳細に説明する。   Next, the control of the control device 4 during normal operation will be described in detail with reference to the flowchart shown in FIG.

まず、制御装置4は、吐出温度センサ65で吐出温度Tdを検出し(ステップS1)、この吐出温度Tdが目標値となるように主膨張弁24の開度を調整する(ステップS2)。   First, the control device 4 detects the discharge temperature Td with the discharge temperature sensor 65 (step S1), and adjusts the opening of the main expansion valve 24 so that the discharge temperature Td becomes a target value (step S2).

ついで、制御装置4は、圧力センサ51で吸入圧力Psを検出するとともに、第1温度センサ61でバイパス側出口温度Tboを検出する(ステップS3)。さらに、制御装置4は、検出した吸入圧力Psから圧縮機21に吸入される冷媒の圧力での飽和温度STsを算出する(ステップS4)。この飽和温度STsの算出は、冷媒物性式を用いて行われる。その後、制御装置4は、バイパス側出口温度Tboが飽和温度STsと等しいか否かを判定する(ステップS5)。   Next, the control device 4 detects the suction pressure Ps with the pressure sensor 51 and detects the bypass side outlet temperature Tbo with the first temperature sensor 61 (step S3). Further, the control device 4 calculates the saturation temperature STs at the refrigerant pressure sucked into the compressor 21 from the detected suction pressure Ps (step S4). The calculation of the saturation temperature STs is performed using a refrigerant physical property formula. Thereafter, the control device 4 determines whether or not the bypass side outlet temperature Tbo is equal to the saturation temperature STs (step S5).

バイパス側出口温度Tboが飽和温度STsと等しくない場合には(ステップS5でNO)、過冷却熱交換器23ではさらに多くの冷媒を蒸発させることができたと考えられるため、制御装置4は、バイパス膨張弁31の開度を所定量上げて(ステップS6)、ステップS1に戻る。   When the bypass-side outlet temperature Tbo is not equal to the saturation temperature STs (NO in step S5), it is considered that more refrigerant can be evaporated in the supercooling heat exchanger 23. The opening degree of the expansion valve 31 is increased by a predetermined amount (step S6), and the process returns to step S1.

一方、バイパス側出口温度Tboが飽和温度STsと等しい場合には(ステップS5でYES)、過冷却熱交換器23の性能は冷媒の蒸発に最大限に活用できていると考えられるため、制御装置4は、バイパス膨張弁31の開度を補正するための制御に移る。   On the other hand, when the bypass-side outlet temperature Tbo is equal to the saturation temperature STs (YES in step S5), it is considered that the performance of the supercooling heat exchanger 23 can be fully utilized for the evaporation of the refrigerant. 4 shifts to control for correcting the opening degree of the bypass expansion valve 31.

すなわち、制御装置4は、第2温度センサ62で蒸発器出口温度Teoを検出し(ステップS7)、以下の式により蒸発器25出口での過熱度SHeを算出する(ステップS8)。
SHe=Teo−STs
That is, the control device 4 detects the evaporator outlet temperature Teo with the second temperature sensor 62 (step S7), and calculates the superheat degree SHe at the outlet of the evaporator 25 by the following equation (step S8).
SHe = Teo-STs

その後、制御装置4は、算出した蒸発器25出口での過熱度SHeが予め定められた所定の過熱度以下か否かを判定する(ステップS9)。ステップS9でNOの場合には、図2中に示す点cが右に行き過ぎている(流量不足により過熱度過大)、すなわち点aが左に行き過ぎている(流量過多により湿り過ぎ)と考えられるため、バイパス膨張弁31の開度を所定量下げて(ステップS10)、ステップS1に戻る。一方、ステップS10でYESの場合には、バイパス膨張弁31の開度は適正であると考えられるため、制御装置4は、そのままステップS1に戻る。   Thereafter, the control device 4 determines whether or not the calculated degree of superheat SHe at the outlet of the evaporator 25 is equal to or lower than a predetermined degree of superheat (step S9). In the case of NO in step S9, it is considered that the point c shown in FIG. 2 has gone too far to the right (overheating due to insufficient flow), that is, the point a has gone too far to the left (too wet due to excessive flow). Therefore, the opening degree of the bypass expansion valve 31 is lowered by a predetermined amount (step S10), and the process returns to step S1. On the other hand, if YES in step S10, it is considered that the opening degree of the bypass expansion valve 31 is appropriate, and therefore the control device 4 directly returns to step S1.

以上説明したように、本実施形態では、バイパス側出口温度Tboが圧縮機21に吸入される冷媒の圧力での飽和温度STsに維持されるため、過冷却熱交換器23から流出する冷媒を湿り状態または飽和気体状態に保つことができる。しかも、蒸発器25出口での過熱度SHeが所定の過熱度以下に抑えられるため、バイパス路3を流れる冷媒の流量が多くなりすぎて圧縮機21に吸入される冷媒(バイパス路3を流れた冷媒と蒸発器25を通過した冷媒とが合流した後の冷媒)の乾き度が低下しすぎることを防止することができ、圧縮機21に吸入される冷媒の乾き度を所望の範囲(例えば0.8以上1.0未満)に収めることができる。これにより、主流冷媒とバイパス流冷媒との熱交換による蒸発器25におけるエンタルピ増大効果および冷媒のバイパスによる低圧側冷媒経路の圧力損失低減効果を最大とすることができる。また、圧縮機21の吐出温度Tdが抑えられるため、低外気温度時に圧縮機21の回転数を大きくすることが可能になり、十分な加熱能力を得ることができる。   As described above, in the present embodiment, the bypass-side outlet temperature Tbo is maintained at the saturation temperature STs at the pressure of the refrigerant sucked into the compressor 21, so that the refrigerant flowing out of the supercooling heat exchanger 23 is moistened. State or saturated gas state. Moreover, since the degree of superheat SHe at the outlet of the evaporator 25 is suppressed to a predetermined degree of superheat or less, the flow rate of the refrigerant flowing through the bypass passage 3 becomes too large and the refrigerant sucked into the compressor 21 (flowed through the bypass passage 3). It is possible to prevent the dryness of the refrigerant after the refrigerant and the refrigerant that has passed through the evaporator 25 from joining together, and to prevent the dryness of the refrigerant sucked into the compressor 21 from being in a desired range (for example, 0). .8 or more and less than 1.0). Thereby, the enthalpy increasing effect in the evaporator 25 due to heat exchange between the mainstream refrigerant and the bypass flow refrigerant and the pressure loss reducing effect in the low-pressure side refrigerant path due to the refrigerant bypass can be maximized. In addition, since the discharge temperature Td of the compressor 21 is suppressed, the rotation speed of the compressor 21 can be increased at a low outside air temperature, and sufficient heating capability can be obtained.

ここで、ステップS9で使用する「所定の過熱度」は、圧縮機21に吸入される冷媒の乾き度が0.8以上1.0未満となる過熱度であることが好ましい。このようになっていれば、最も効率的な状態で冷凍サイクル装置1Aを運転することが可能になる。なお、圧縮機21に吸入される冷媒の乾き度は、以下の式により算出される。
X=(ha−hl)/(hv−hl)
X:圧縮機21に吸入される冷媒の乾き度
ha:圧縮機21に吸入される冷媒のエンタルピ
hl:圧縮機21に吸入される冷媒の圧力での飽和気体エンタルピ
hv:圧縮機21に吸入される冷媒の圧力での飽和液体エンタルピ
Here, the “predetermined superheat degree” used in step S9 is preferably a superheat degree at which the dryness of the refrigerant sucked into the compressor 21 becomes 0.8 or more and less than 1.0. If it has become like this, it will become possible to operate refrigeration cycle device 1A in the most efficient state. The dryness of the refrigerant sucked into the compressor 21 is calculated by the following equation.
X = (ha−hl) / (hv−hl)
X: dryness of refrigerant sucked into the compressor 21 ha: enthalpy of refrigerant sucked into the compressor 21 hl: saturated gas enthalpy at the pressure of refrigerant sucked into the compressor 21 hv: sucked into the compressor 21 Saturated liquid enthalpy at the refrigerant pressure

また、「所定の過熱度」は、外気温度が低くなるほど圧縮機21に吸入される冷媒の乾き度が小さくなるように、外気温度に応じて定められていることが好ましい。このようになっていれば、外気温度低下に伴う蒸発圧力の低下により吐出温度が適正範囲を超えて上昇することを抑制しながら圧縮機21の回転数を上昇させることができ、加熱能力を十分に得ることができる。この場合、外気温度センサで外気温度を検出しながら制御を行えばよい。   Further, the “predetermined degree of superheat” is preferably determined according to the outside air temperature so that the dryness of the refrigerant sucked into the compressor 21 decreases as the outside air temperature decreases. If it becomes like this, the rotation speed of the compressor 21 can be raised while suppressing that the discharge temperature rises beyond the appropriate range due to the decrease in the evaporation pressure accompanying the decrease in the outside air temperature, and the heating capacity is sufficient. Can get to. In this case, the control may be performed while the outside temperature is detected by the outside temperature sensor.

あるいは、「所定の過熱度」は、圧縮機21による冷媒の圧縮比が高くなるほど圧縮機21に吸入される冷媒の乾き度が小さくなるように、冷媒の圧縮比に応じて定められていることが好ましい。このようになっていれば、圧縮比上昇に伴う吐出温度上昇を抑制しながら圧縮機21の回転数を上昇させることができ、加熱能力を十分に得ることができる。この場合、圧力センサで圧縮機21の吐出圧力と吸入圧力を検出しながら制御を行えばよい。   Alternatively, the “predetermined degree of superheat” is determined according to the compression ratio of the refrigerant so that the degree of dryness of the refrigerant sucked into the compressor 21 decreases as the compression ratio of the refrigerant by the compressor 21 increases. Is preferred. If it becomes like this, the rotation speed of the compressor 21 can be raised, suppressing the discharge temperature rise accompanying the compression ratio raise, and heating capability can fully be acquired. In this case, the control may be performed while detecting the discharge pressure and the suction pressure of the compressor 21 with a pressure sensor.

さらに別の観点からは、「所定の過熱度」は、圧縮機21の回転数が高くなるほど圧縮機21に吸入される冷媒の乾き度が小さくなるように、圧縮機21の回転数に応じて定められていることが好ましい。このようになっていれば、回転数上昇に伴う吐出温度上昇を抑制しながら圧縮機21の回転数を上昇させることができ、加熱能力を十分に得ることができる。   From another viewpoint, the “predetermined degree of superheat” depends on the rotational speed of the compressor 21 so that the higher the rotational speed of the compressor 21 is, the smaller the dryness of the refrigerant sucked into the compressor 21 is. It is preferable that it is defined. If it becomes like this, the rotation speed of the compressor 21 can be raised, suppressing the discharge temperature rise accompanying the rotation speed rise, and heating capability can fully be acquired.

<変形例>
なお、図1では、圧力センサ51が冷媒回路2におけるバイパス路3がつながる位置と主アキュムレータ27の間に設けられているが、圧力センサ51は、蒸発器25と圧縮機21の間であれば冷媒回路2のどの位置に設けられていてもよい。あるいは、圧力センサ51は、バイパス路3の過冷却熱交換器23よりも下流側に設けられていてもよい。
<Modification>
In FIG. 1, the pressure sensor 51 is provided between the position where the bypass path 3 in the refrigerant circuit 2 is connected and the main accumulator 27, but the pressure sensor 51 is between the evaporator 25 and the compressor 21. It may be provided at any position in the refrigerant circuit 2. Alternatively, the pressure sensor 51 may be provided on the downstream side of the subcooling heat exchanger 23 in the bypass passage 3.

(第2実施形態)
図4に、本発明の第2実施形態に係る冷凍サイクル装置1Bを示す。なお、本実施形態では、第1実施形態と同一構成部分には同一符号を付して、その説明を省略する。
(Second Embodiment)
FIG. 4 shows a refrigeration cycle apparatus 1B according to the second embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態でも、第1実施形態と同様に、制御装置4は、通常運転時に、第1温度センサ61で検出されるバイパス側出口温度Tboが圧縮機21に吸入される冷媒の圧力での飽和温度STsとなり、かつ、第2温度センサ62で検出される蒸発器出口温度Teoに基づいて算出される蒸発器25出口での過熱度SHeが予め定められた所定の過熱度以下となるように、バイパス膨張手段31を制御する。ただし、本実施形態では、制御装置4が、第1温度センサ61で検出されるバイパス側出口温度Tboが圧縮機21に吸入される冷媒の圧力での飽和温度STsとなることを、第1温度センサ61で検出されるバイパス側出口温度Tboが第3温度センサ63で検出される温度と略等しくなることにより検知する点で第1実施形態と異なる。   Also in this embodiment, as in the first embodiment, the control device 4 saturates the bypass-side outlet temperature Tbo detected by the first temperature sensor 61 with the pressure of the refrigerant sucked into the compressor 21 during normal operation. The degree of superheat SHe at the outlet of the evaporator 25 calculated based on the evaporator outlet temperature Teo detected by the second temperature sensor 62 is equal to or lower than a predetermined predetermined degree of superheat. The bypass expansion means 31 is controlled. However, in the present embodiment, the controller 4 determines that the bypass side outlet temperature Tbo detected by the first temperature sensor 61 becomes the saturation temperature STs at the pressure of the refrigerant sucked into the compressor 21. This differs from the first embodiment in that the bypass-side outlet temperature Tbo detected by the sensor 61 is detected by being substantially equal to the temperature detected by the third temperature sensor 63.

具体的に、図4に示すように、本実施形態では、冷媒回路2に圧力センサ51(図1参照)が設けられておらず、代わりに、バイパス路3に、過冷却熱交換器23に流入する冷媒の温度(バイパス側入口温度)Tbiを検出する第3温度センサ63が設けられている。   Specifically, as shown in FIG. 4, in the present embodiment, the refrigerant circuit 2 is not provided with the pressure sensor 51 (see FIG. 1). Instead, the bypass circuit 3 is connected to the supercooling heat exchanger 23. A third temperature sensor 63 for detecting the temperature of the refrigerant flowing in (the bypass side inlet temperature) Tbi is provided.

次に、通常運転時の制御装置4の制御を図5に示すフローチャートを参照して詳細に説明する。   Next, the control of the control device 4 during normal operation will be described in detail with reference to the flowchart shown in FIG.

まず、制御装置4は、第1実施形態と同様に、吐出温度センサ65で吐出温度Tdを検出し(ステップS21)、この吐出温度Tdが目標値となるように主膨張弁24の開度を調整する(ステップS22)。   First, similarly to the first embodiment, the control device 4 detects the discharge temperature Td by the discharge temperature sensor 65 (step S21), and the opening degree of the main expansion valve 24 is adjusted so that the discharge temperature Td becomes a target value. Adjust (step S22).

ついで、制御装置4は、第1温度センサ61でバイパス側出口温度Tboを検出するとともに、第3温度センサ63でバイパス側入口温度Tbiを検出する(ステップS23)。その後、制御装置4は、バイパス側出口温度Tboがバイパス側入口温度Tbiと略等しいか否かを判定する(ステップS24)。ここで、「略等しい」とは、実際には圧力損失の影響でバイパス側出口温度Tboはバイパス側入口温度Tbiと完全には等しくならないため、その現象を考慮した概念である。例えば、バイパス側出口温度Tboとバイパス側入口温度Tbiとの温度差が3K以下であれば、それらが略等しいとしてもよい。   Next, the control device 4 detects the bypass side outlet temperature Tbo with the first temperature sensor 61 and also detects the bypass side inlet temperature Tbi with the third temperature sensor 63 (step S23). Thereafter, the control device 4 determines whether or not the bypass side outlet temperature Tbo is substantially equal to the bypass side inlet temperature Tbi (step S24). Here, “substantially equal” is a concept considering the phenomenon because the bypass side outlet temperature Tbo is not completely equal to the bypass side inlet temperature Tbi due to the effect of pressure loss. For example, if the temperature difference between the bypass side outlet temperature Tbo and the bypass side inlet temperature Tbi is 3K or less, they may be substantially equal.

バイパス側出口温度Tboがバイパス側入口温度Tbiと略等しくない場合には(ステップS24でNO)、過冷却熱交換器23ではさらに多くの冷媒を蒸発させることができたと考えられるため、制御装置4は、バイパス膨張弁31の開度を所定量上げて(ステップS25)、ステップS21に戻る。   When the bypass-side outlet temperature Tbo is not substantially equal to the bypass-side inlet temperature Tbi (NO in step S24), it is considered that more refrigerant can be evaporated in the supercooling heat exchanger 23. Therefore, the control device 4 Increases the opening of the bypass expansion valve 31 by a predetermined amount (step S25), and returns to step S21.

一方、バイパス側出口温度Tboがバイパス側入口温度Tbiと略等しい場合には(ステップS24でYES)、過冷却熱交換器23の性能は冷媒の蒸発に最大限に活用できていると考えられるため、制御装置4は、バイパス膨張弁31の開度を補正するための制御に移る。   On the other hand, when the bypass side outlet temperature Tbo is substantially equal to the bypass side inlet temperature Tbi (YES in step S24), it is considered that the performance of the supercooling heat exchanger 23 can be utilized to the maximum for the evaporation of the refrigerant. The control device 4 proceeds to control for correcting the opening degree of the bypass expansion valve 31.

すなわち、制御装置4は、第2温度センサ62で蒸発器出口温度Teoを検出し(ステップS26)、以下の式により蒸発器25出口での過熱度SHeを算出する(ステップS27)。
SHe=Teo−Tbi
That is, the control device 4 detects the evaporator outlet temperature Teo with the second temperature sensor 62 (Step S26), and calculates the degree of superheat SHe at the outlet of the evaporator 25 by the following equation (Step S27).
SHe = Teo-Tbi

その後、制御装置4は、算出した蒸発器25出口での過熱度SHeが予め定められた所定の過熱度以下か否かを判定する(ステップS28)。ステップS28でNOの場合には、図2中に示す点cが右に行き過ぎている、すなわち点aが左に行き過ぎていると考えられるため、バイパス膨張弁31の開度を所定量下げて(ステップS29)、ステップS21に戻る。一方、ステップS28でYESの場合には、バイパス膨張弁31の開度は適正であると考えられるため、制御装置4は、そのままステップS21に戻る。   Thereafter, the control device 4 determines whether or not the calculated degree of superheat SHe at the outlet of the evaporator 25 is equal to or lower than a predetermined degree of superheat (step S28). In the case of NO in step S28, it is considered that the point c shown in FIG. 2 has gone too far to the right, that is, the point a has gone too far to the left, so the opening degree of the bypass expansion valve 31 is lowered by a predetermined amount ( Step S29), the process returns to step S21. On the other hand, if YES in step S28, the opening degree of the bypass expansion valve 31 is considered to be appropriate, and the control device 4 directly returns to step S21.

本実施形態のような制御を行っても、第1実施形態と同様の効果を得ることができる。   Even if the control as in this embodiment is performed, the same effect as in the first embodiment can be obtained.

<変形例>
なお、本実施形態では、バイパス側入口温度Tbiを検出する第3温度センサ63が用いられているが、本発明の第3温度センサは、冷媒回路2において蒸発器25に流入する冷媒の温度(蒸発器入口温度)Teiを検出するものであってもよい。この場合のフローチャートは、図5に示すフローチャートのバイパス側入口温度Tbiを蒸発器入口温度Teiに変更したものとなり、ステップS27では、蒸発器25出口での過熱度SHeを以下の式により算出すればよい。
SHe=Teo−Tei
<Modification>
In the present embodiment, the third temperature sensor 63 that detects the bypass side inlet temperature Tbi is used. However, the third temperature sensor of the present invention uses the temperature of the refrigerant flowing into the evaporator 25 in the refrigerant circuit 2 ( An evaporator inlet temperature) Tei may be detected. The flowchart in this case is obtained by changing the bypass side inlet temperature Tbi of the flowchart shown in FIG. 5 to the evaporator inlet temperature Tei. In step S27, the superheat degree SHe at the outlet of the evaporator 25 is calculated by the following equation. Good.
SHe = Teo-Tei

(その他の実施形態)
前記第1および第2実施形態では、吐出温度Tdが目標値になるように主膨張弁24が制御されているが、主制御弁24を制御する方法はこれに限られるものではない。例えば、主膨張弁24は、圧縮機21から吐出される冷媒の圧力が目標値になるように制御されてもよい。あるいは、主膨張弁24を圧縮機21出口での過熱度または凝縮器22出口での過冷却度に基づいて制御することも可能である。
(Other embodiments)
In the first and second embodiments, the main expansion valve 24 is controlled so that the discharge temperature Td becomes the target value, but the method for controlling the main control valve 24 is not limited to this. For example, the main expansion valve 24 may be controlled so that the pressure of the refrigerant discharged from the compressor 21 becomes a target value. Alternatively, the main expansion valve 24 can be controlled based on the degree of superheat at the outlet of the compressor 21 or the degree of supercooling at the outlet of the condenser 22.

また、バイパス路3は、必ずしも過冷却熱交換器23と主膨張弁24の間で冷媒回路2から分岐している必要はなく、凝縮器22と過冷却熱交換器23の間で冷媒回路2から分岐していてもよい。   Further, the bypass passage 3 does not necessarily have to branch from the refrigerant circuit 2 between the supercooling heat exchanger 23 and the main expansion valve 24, and the refrigerant circuit 2 is between the condenser 22 and the supercooling heat exchanger 23. You may branch from.

さらに、本発明の主膨張手段およびバイパス膨張手段は、必ずしも膨張弁である必要はなく、膨張する冷媒から動力を回収する膨張機であってもよい。この場合、例えば、膨張機と連結された発電機によって負荷を変化させることにより、膨張機の回転数を制御すればよい。   Furthermore, the main expansion means and bypass expansion means of the present invention are not necessarily expansion valves, and may be an expander that recovers power from the expanding refrigerant. In this case, for example, the rotational speed of the expander may be controlled by changing the load with a generator connected to the expander.

本発明は、冷凍サイクル装置によって温水を生成し、その温水を暖房に利用する温水暖房装置に特に有用である。   INDUSTRIAL APPLICABILITY The present invention is particularly useful for a hot water heater that generates hot water using a refrigeration cycle apparatus and uses the hot water for heating.

1A,1B 冷凍サイクル装置
2 冷媒回路
21 圧縮機
22 凝縮器
23 過冷却熱交換器
24 主膨張弁(主膨張手段)
25 蒸発器
3 バイパス路
31 バイパス膨張弁(バイパス膨張手段)
4 制御装置
51 圧力センサ
61 第1温度センサ
62 第2温度センサ
63 第3温度センサ
1A, 1B Refrigeration cycle apparatus 2 Refrigerant circuit 21 Compressor 22 Condenser 23 Supercooling heat exchanger 24 Main expansion valve (main expansion means)
25 Evaporator 3 Bypass path 31 Bypass expansion valve (bypass expansion means)
4 Control Device 51 Pressure Sensor 61 First Temperature Sensor 62 Second Temperature Sensor 63 Third Temperature Sensor

Claims (9)

圧縮機、凝縮器、過冷却熱交換器、開度調整が可能な主膨張および蒸発器が環状に接続された冷媒回路と、
前記凝縮器と前記過冷却熱交換器の間または前記過冷却熱交換器と前記主膨張の間で前記冷媒回路から分岐し、前記過冷却熱交換器を経由して前記蒸発器と前記圧縮機の間で前記冷媒回路につながるバイパス路と、
前記バイパス路の前記過冷却熱交換器よりも上流側に設けられた開度調整が可能なバイパス膨張と、
前記バイパス路において前記過冷却熱交換器から流出する冷媒の温度を検出する第1温度センサと、
前記冷媒回路において前記蒸発器から流出する冷媒の温度を検出する第2温度センサと、
前記第1温度センサで検出される温度が前記圧縮機に吸入される冷媒の圧力での飽和温度となり、かつ、前記第2温度センサで検出される温度に基づいて算出される前記蒸発器出口での過熱度が予め定められた所定の過熱度以下となるように、前記バイパス膨張弁の開度を制御する制御装置と、を備え、
前記制御装置は、前記蒸発器出口での過熱度が前記所定の過熱度よりも大きいときに、前記バイパス膨張弁の開度を小さくする、冷凍サイクル装置。
A refrigerant circuit in which a compressor, a condenser, a supercooling heat exchanger, a main expansion valve capable of opening adjustment, and an evaporator are connected in an annular shape;
Branching from the refrigerant circuit between the condenser and the supercooling heat exchanger or between the supercooling heat exchanger and the main expansion valve , the evaporator and the compression via the supercooling heat exchanger A bypass that leads to the refrigerant circuit between the machines,
A bypass expansion valve capable of adjusting the opening provided upstream of the supercooling heat exchanger of the bypass passage;
A first temperature sensor for detecting a temperature of the refrigerant flowing out of the supercooling heat exchanger in the bypass path;
A second temperature sensor for detecting a temperature of refrigerant flowing out of the evaporator in the refrigerant circuit;
The temperature detected by the first temperature sensor becomes a saturation temperature at the pressure of the refrigerant sucked into the compressor, and the evaporator outlet is calculated based on the temperature detected by the second temperature sensor. A control device for controlling the degree of opening of the bypass expansion valve so that the degree of superheat is equal to or less than a predetermined degree of superheat,
The said control apparatus is a refrigerating-cycle apparatus which makes the opening degree of the said bypass expansion valve small, when the superheat degree in the said evaporator exit is larger than the said predetermined superheat degree .
前記圧縮機に吸入される冷媒の圧力を検出する圧力センサをさらに備え、
前記制御装置は、前記圧力センサで検出される圧力から前記圧縮機に吸入される冷媒の圧力での飽和温度を算出する、請求項1に記載の冷凍サイクル装置。
A pressure sensor for detecting the pressure of the refrigerant sucked into the compressor;
2. The refrigeration cycle apparatus according to claim 1, wherein the control device calculates a saturation temperature at a pressure of a refrigerant sucked into the compressor from a pressure detected by the pressure sensor.
前記バイパス路において前記過冷却熱交換器に流入する冷媒の温度または前記冷媒回路において前記蒸発器に流入する冷媒の温度を検出する第3温度センサをさらに備え、
前記制御装置は、前記第1温度センサで検出される温度が前記圧縮機に吸入される冷媒の圧力での飽和温度となることを、前記第1温度センサで検出される温度が前記第3温度センサで検出される温度と略等しくなることにより検知する、請求項1に記載の冷凍サイクル装置。
A third temperature sensor for detecting the temperature of the refrigerant flowing into the supercooling heat exchanger in the bypass passage or the temperature of the refrigerant flowing into the evaporator in the refrigerant circuit;
The controller determines that the temperature detected by the first temperature sensor is a saturation temperature at the pressure of the refrigerant sucked into the compressor, and the temperature detected by the first temperature sensor is the third temperature. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is detected by being substantially equal to a temperature detected by a sensor.
前記所定の過熱度は、前記圧縮機に吸入される冷媒の乾き度が0.8以上1.0未満となる過熱度である、請求項1〜3のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the predetermined degree of superheat is a degree of superheat at which a dryness of the refrigerant sucked into the compressor is 0.8 or more and less than 1.0. . 前記所定の過熱度は、外気温度が低くなるほど前記圧縮機に吸入される冷媒の乾き度が小さくなるように、外気温度に応じて定められている、請求項4に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 4, wherein the predetermined degree of superheat is determined according to the outside air temperature so that the degree of dryness of the refrigerant sucked into the compressor decreases as the outside air temperature decreases. 前記所定の過熱度は、前記圧縮機による冷媒の圧縮比が高くなるほど前記圧縮機に吸入される冷媒の乾き度が小さくなるように、冷媒の圧縮比に応じて定められている、請求項4に記載の冷凍サイクル装置。   5. The predetermined degree of superheat is determined according to the compression ratio of the refrigerant such that the higher the compression ratio of the refrigerant by the compressor, the smaller the dryness of the refrigerant sucked into the compressor. The refrigeration cycle apparatus described in 1. 前記所定の過熱度は、前記圧縮機の回転数が高くなるほど前記圧縮機に吸入される冷媒の乾き度が小さくなるように、圧縮機の回転数に応じて定められている、請求項4に記載の冷凍サイクル装置。   The predetermined degree of superheat is determined according to the rotational speed of the compressor so that the higher the rotational speed of the compressor, the smaller the dryness of the refrigerant sucked into the compressor. The refrigeration cycle apparatus described. 前記凝縮器は、冷媒と水との間で熱交換を行わせて水を加熱する熱交換器である、請求項1〜7のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein the condenser is a heat exchanger that heats water by performing heat exchange between a refrigerant and water. 加熱手段により生成した温水を暖房に利用する温水暖房装置であって、
前記加熱手段として請求項8に記載の冷凍サイクル装置を備える、温水暖房装置。
A hot water heater that uses hot water generated by a heating means for heating,
A hot water heating apparatus comprising the refrigeration cycle apparatus according to claim 8 as the heating means.
JP2009231659A 2009-10-05 2009-10-05 Refrigeration cycle apparatus and hot water heater Active JP5421717B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009231659A JP5421717B2 (en) 2009-10-05 2009-10-05 Refrigeration cycle apparatus and hot water heater
EP10186452.8A EP2320165B1 (en) 2009-10-05 2010-10-04 Refrigeration cycle apparatus and hot water heater
DK10186452.8T DK2320165T3 (en) 2009-10-05 2010-10-04 COOLING CYCLE DEVICE AND HOT WATER HEATER
CN201010509342.8A CN102032698B (en) 2009-10-05 2010-10-08 Refrigeration cycle apparatus and hot water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231659A JP5421717B2 (en) 2009-10-05 2009-10-05 Refrigeration cycle apparatus and hot water heater

Publications (2)

Publication Number Publication Date
JP2011080633A JP2011080633A (en) 2011-04-21
JP5421717B2 true JP5421717B2 (en) 2014-02-19

Family

ID=43778550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231659A Active JP5421717B2 (en) 2009-10-05 2009-10-05 Refrigeration cycle apparatus and hot water heater

Country Status (4)

Country Link
EP (1) EP2320165B1 (en)
JP (1) JP5421717B2 (en)
CN (1) CN102032698B (en)
DK (1) DK2320165T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867207B1 (en) * 2014-07-30 2018-06-12 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Turbo refrigerator, control device therefor, and control method therefor

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5816789B2 (en) * 2011-06-17 2015-11-18 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5824628B2 (en) * 2011-06-29 2015-11-25 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and hot water generating apparatus having the same
JP2014105890A (en) * 2012-11-26 2014-06-09 Panasonic Corp Refrigeration cycle device and hot-water generating device including the same
EP2765370A1 (en) * 2013-02-08 2014-08-13 Panasonic Corporation Refrigeration cycle apparatus and hot water generator provided with the same
JP2015218909A (en) * 2014-05-14 2015-12-07 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generation device including the same
JP6387246B2 (en) * 2014-05-19 2018-09-05 リンナイ株式会社 Heat pump heating device
CN104457072B (en) * 2014-11-20 2017-02-22 珠海格力电器股份有限公司 Electronic expansion valve control method and device and refrigeration/heating system
JP6170487B2 (en) * 2014-12-22 2017-07-26 株式会社神戸製鋼所 Thermal energy recovery device
US10178940B2 (en) * 2015-07-31 2019-01-15 Illinois Tool Works Inc. Warewasher with heat recovery system
CN105972717B (en) * 2016-05-11 2018-11-02 珠海格力电器股份有限公司 Multi-split air conditioning system and control method thereof
CN107036352A (en) * 2017-05-05 2017-08-11 重庆美的通用制冷设备有限公司 Economizer gas supply control method and apparatus
CN110173913A (en) * 2019-04-24 2019-08-27 同济大学 A kind of steam compressed high temperature heat pump unit of very large super cooling degree
CN112833481A (en) * 2019-11-22 2021-05-25 青岛海尔空调电子有限公司 Air supplementing and enthalpy increasing device for air conditioning system and air conditioning system
JP7157353B1 (en) * 2021-03-31 2022-10-20 ダイキン工業株式会社 refrigeration cycle equipment
CN116538656A (en) * 2022-01-26 2023-08-04 广东美的制冷设备有限公司 Air conditioner, controller, control method and computer readable storage medium thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544675Y2 (en) * 1988-05-19 1993-11-12
DE69533120D1 (en) * 1994-05-30 2004-07-15 Mitsubishi Electric Corp Coolant circulation system
JPH0814676A (en) * 1994-06-28 1996-01-19 Daikin Ind Ltd Air conditioner
DE19522884A1 (en) * 1995-06-23 1997-01-02 Inst Luft Kaeltetech Gem Gmbh Compression refrigeration circuit operating system
CN1205073A (en) * 1996-08-14 1999-01-13 大金工业株式会社 Air conditioner
JP2000018737A (en) * 1998-06-24 2000-01-18 Daikin Ind Ltd Air-conditioner
JP4356146B2 (en) * 1999-07-21 2009-11-04 ダイキン工業株式会社 Refrigeration equipment
JP4036288B2 (en) * 2002-07-11 2008-01-23 株式会社日立製作所 Air conditioner
US6925823B2 (en) * 2003-10-28 2005-08-09 Carrier Corporation Refrigerant cycle with operating range extension
JP4269323B2 (en) * 2004-03-29 2009-05-27 三菱電機株式会社 Heat pump water heater
JP5011957B2 (en) * 2006-09-07 2012-08-29 ダイキン工業株式会社 Air conditioner
JP2007212134A (en) * 2007-04-11 2007-08-23 Daikin Ind Ltd Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867207B1 (en) * 2014-07-30 2018-06-12 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Turbo refrigerator, control device therefor, and control method therefor

Also Published As

Publication number Publication date
CN102032698B (en) 2014-12-17
EP2320165A2 (en) 2011-05-11
DK2320165T3 (en) 2018-07-23
EP2320165A3 (en) 2015-02-25
CN102032698A (en) 2011-04-27
JP2011080633A (en) 2011-04-21
EP2320165B1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP5421717B2 (en) Refrigeration cycle apparatus and hot water heater
JP5533491B2 (en) Refrigeration cycle apparatus and hot water heater
JP5816789B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5637053B2 (en) Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP5278451B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
WO2014080612A1 (en) Refrigeration cycle device and hot water-producing device provided therewith
JP2011174672A (en) Refrigerating cycle device and hot water heating apparatus
JP5824628B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP2014119157A (en) Heat pump type heating device
EP3211350B1 (en) Refrigeration cycle device, and hot water heating device provided with the same
JP2011179697A (en) Refrigerating cycle device and water heating/cooling device
WO2014017345A1 (en) Heat pump
EP3220078A1 (en) Refrigeration cycle device and hot water heating device provided with the same
JP6948796B2 (en) Refrigerant circuit system and control method
JP2011185507A (en) Refrigerating cycle device and hot water heating device including the same
JP5233960B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP5440100B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP5421716B2 (en) Refrigeration cycle apparatus and hot water heater
JP2011099572A (en) Refrigerating cycle device and hot-water heating device using the same
JP4857903B2 (en) Water heater
JP5333292B2 (en) Refrigeration cycle apparatus and cold / hot water apparatus equipped with the same
JP2014202365A (en) Hot water generating equipment
JP2014016078A (en) Heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R150 Certificate of patent or registration of utility model

Ref document number: 5421717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150