Nothing Special   »   [go: up one dir, main page]

JP2011054652A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2011054652A
JP2011054652A JP2009200355A JP2009200355A JP2011054652A JP 2011054652 A JP2011054652 A JP 2011054652A JP 2009200355 A JP2009200355 A JP 2009200355A JP 2009200355 A JP2009200355 A JP 2009200355A JP 2011054652 A JP2011054652 A JP 2011054652A
Authority
JP
Japan
Prior art keywords
semiconductor chip
semiconductor
semiconductor device
conductive bump
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009200355A
Other languages
Japanese (ja)
Other versions
JP5338572B2 (en
Inventor
Hiroatsu Nomura
浩功 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2009200355A priority Critical patent/JP5338572B2/en
Publication of JP2011054652A publication Critical patent/JP2011054652A/en
Application granted granted Critical
Publication of JP5338572B2 publication Critical patent/JP5338572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten wirings and to reduce in thickness a laminated semiconductor chip with a simple structure. <P>SOLUTION: In a semiconductor device 10, a first semiconductor chip 12 and a second semiconductor chip 13 are laminated. The first semiconductor chip 12 is formed in a quadrangle plate shape. The second semiconductor chip 13 is formed in a quadrangle plate shape and has conductive bumps 17 arranged in a region where four sides project outside compared to the first semiconductor chip 12 at prescribed intervals. In the first semiconductor chip 12, conductive bumps 14 with shorter wiring distance are arranged in vertical and lateral directions at prescribed intervals and are flip chip-bonded to an electrode of the substrate 11. The second semiconductor chip 13 is flip chip-bonded to the electrode of the substrate 11 by the conductive bumps 17 with longer wiring distance at an outer side of the first semiconductor chip 12. The respective conductive chips 14 and 17 are deposited by electrolytic plating and are formed in almost columnar shapes. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は半導体装置に関し,特に複数の半導体チップを積層して封止用樹脂で一体化したスタック型マルチチップモジュール(MCM)からなる半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device including a stacked multichip module (MCM) in which a plurality of semiconductor chips are stacked and integrated with a sealing resin, and a method for manufacturing the same.

電子機器の小型化に伴い,半導体装置についても小型化の要求が高まっている。これにこたえるべく半導体パッケージは従来のリードフレーム構造から,はんだバンプのような突起物を外部電極としたBGA(ボールグリッドアレイ)構造に移行して実装面積の縮小を実現している。さらに最近では半導体パッケージの外形サイズを半導体チップのサイズと等しくしたCSP(チップサイズパッケージ)が開発され,半導体装置の小面積化は限界に近づいている。   Along with the downsizing of electronic equipment, there is an increasing demand for downsizing of semiconductor devices. In response to this, the semiconductor package has shifted from a conventional lead frame structure to a BGA (ball grid array) structure using protrusions such as solder bumps as external electrodes, thereby realizing a reduction in mounting area. Recently, a CSP (chip size package) in which the outer size of the semiconductor package is made equal to the size of the semiconductor chip has been developed, and the reduction in the area of the semiconductor device is approaching its limit.

そこで半導体装置のさらなる小型化への要求にこたえるため,半導体チップを高さ方向に積層したスタック型MCM(マルチチップモジュール)が開発されている。MCMは複数の半導体チップを一体化してひとつのモジュールとしたもので,特に半導体チップを高さ方向に積層したものをスタック型MCMと呼んでいる。スタック型MCMは半導体装置の実装密度の向上に非常に有効である。   Therefore, in order to meet the demand for further miniaturization of semiconductor devices, a stack type MCM (multi-chip module) in which semiconductor chips are stacked in the height direction has been developed. The MCM is a module obtained by integrating a plurality of semiconductor chips, and a stack of semiconductor chips stacked in the height direction is called a stack type MCM. Stacked MCM is very effective for improving the mounting density of semiconductor devices.

次に、スタック型MCMについて図6を用いて説明する。図6に示す半導体装置1は、2つの半導体チップ4A,4Bを縦方向即ち上下方向に積層したスタック型MCMである。下段の半導体チップ4Aは基板2に接着剤により固定されており,基板2の図示しない電極に金などによるワイヤ5Aによって電気的に接続されている。上段の半導体チップ4Bは下段の半導体チップ4A上に接着樹脂等により固定され,下段の半導体チップ4Aの図示しない電極に金などによるワイヤ5Bによって電気的に接続されている。
これらの半導体チップ4Aおよび4Bはワイヤ5A及び5Bと共に封止樹脂6によって封止されている。このようにして得られたスタック型マルチチップモジュールMCMの半導体装置1は基板2の下面に設けた略半球状のはんだバンプ3によって図示しないマザーボード等の電極に接続されている。
Next, the stack MCM will be described with reference to FIG. The semiconductor device 1 shown in FIG. 6 is a stacked MCM in which two semiconductor chips 4A and 4B are stacked in the vertical direction, that is, the vertical direction. The lower semiconductor chip 4A is fixed to the substrate 2 with an adhesive, and is electrically connected to an electrode (not shown) of the substrate 2 by a wire 5A made of gold or the like. The upper semiconductor chip 4B is fixed on the lower semiconductor chip 4A by an adhesive resin or the like, and is electrically connected to an electrode (not shown) of the lower semiconductor chip 4A by a wire 5B made of gold or the like.
These semiconductor chips 4A and 4B are sealed with a sealing resin 6 together with the wires 5A and 5B. The semiconductor device 1 of the stack type multichip module MCM obtained in this way is connected to an electrode such as a mother board (not shown) by a substantially hemispherical solder bump 3 provided on the lower surface of the substrate 2.

次に、別のタイプの半導体装置について図7を用いて説明する。図7に示す半導体装置8は、2つの半導体チップ4A,4Bを高さ方向に積層したスタック型MCMである。この半導体装置8では、下段の半導体チップ4Aははんだバンプ9によって基板2にフリップチップ接続されている。上段の半導体チップ4Bは下段の半導体チップ4A上に接着樹脂等により固定され,金などによるワイヤ5Bによって基板2の図示しない電極に電気的に接続されている。
これらの半導体チップ4Aおよび4Bはワイヤ5Bと共に封止樹脂6によってひとつのパッケージとして封止されている。得られたスタック型MCMの半導体装置8は基板2に設けたはんだバンプ3によってマザーボード等の電極に接続されている。
Next, another type of semiconductor device will be described with reference to FIG. The semiconductor device 8 shown in FIG. 7 is a stacked MCM in which two semiconductor chips 4A and 4B are stacked in the height direction. In this semiconductor device 8, the lower semiconductor chip 4 </ b> A is flip-chip connected to the substrate 2 by solder bumps 9. The upper semiconductor chip 4B is fixed on the lower semiconductor chip 4A by an adhesive resin or the like, and is electrically connected to an electrode (not shown) of the substrate 2 by a wire 5B made of gold or the like.
These semiconductor chips 4A and 4B are sealed as a single package by a sealing resin 6 together with the wires 5B. The obtained stacked MCM semiconductor device 8 is connected to electrodes such as a mother board by solder bumps 3 provided on the substrate 2.

なお、半導体装置に対する小型化以外の要求として信号伝達の高速化が挙げられる。高速信号においては配線のインダクタンスが信号伝送に大きく影響するため,配線長が短いほうが有利であることが一般に知られている。
しかしながら、従来のMCM型の半導体装置1,8は図6及び図7に示すようにワイヤボンディングを使用するため,高速信号の伝送においてワイヤ5A、5Bによるインダクタンスの増加が無視できなくなってきている。またワイヤ5A、5Bは必ずループ形状に配設されるため,MCM型の半導体装置1,8のさらなる薄型化の障害にもなっている。そこで下記特許文献1に示すようなワイヤボンディングを使用しないMCM型の半導体装置が提案されている。
Note that a request for speeding up signal transmission is given as a requirement other than miniaturization of a semiconductor device. In high-speed signals, it is generally known that a shorter wiring length is more advantageous because the wiring inductance greatly affects signal transmission.
However, since conventional MCM type semiconductor devices 1 and 8 use wire bonding as shown in FIGS. 6 and 7, an increase in inductance due to wires 5A and 5B cannot be ignored in high-speed signal transmission. Further, since the wires 5A and 5B are always arranged in a loop shape, this is an obstacle to further thinning of the MCM semiconductor devices 1 and 8. Therefore, an MCM type semiconductor device that does not use wire bonding as shown in Patent Document 1 has been proposed.

特許文献1に記載された半導体装置は、複数の半導体チップとして、最下層に設けた半導体チップを親チップとし、その活性面上に設けた複数の半導体チップを子チップとして、これら親チップ及び子チップが順に積層された構成を有している。これらの小チップには厚さ方向に貫通孔がそれぞれ形成され、これら貫通孔には導電体が充填されている。各小チップの活性面には内部接続用電極がそれぞれ形成されている。
そして、貫通孔に充填された導電体は電極パッドを介して内部接続用電極に接合することで、小チップは下方に隣接する他の子チップにそれぞれ電気的に接続された構成を備えている。
このような構成により、ワイヤを使用しない集積度の高いMCM型の半導体装置が得られるとしている。
The semiconductor device described in Patent Document 1 has a plurality of semiconductor chips, a semiconductor chip provided in the lowermost layer as a parent chip, and a plurality of semiconductor chips provided on the active surface thereof as child chips. It has a configuration in which chips are sequentially stacked. These small chips are each formed with through holes in the thickness direction, and these through holes are filled with a conductor. An internal connection electrode is formed on the active surface of each small chip.
Then, the conductor filled in the through hole is joined to the internal connection electrode via the electrode pad, so that the small chip is electrically connected to the other child chips adjacent below. .
With such a configuration, a highly integrated MCM type semiconductor device that does not use wires is obtained.

特許第3893268号公報Japanese Patent No. 3893268

しかしながら、特許文献1に記載された半導体装置は、半導体チップのシリコンウエハに貫通孔を設けて導電体を充填する工程や,半導体チップを基板にフリップチップ実装した後,背面を研磨する工程などが必要であり,製造工程が非常に複雑になるという欠点がある。
本発明は,このような実情に鑑みて、積層した半導体チップについて簡便な構成で半導体チップの配線を短縮すると共に薄型化を実現した半導体装置及びその製造方法を提供することを目的とする。
However, the semiconductor device described in Patent Document 1 includes a step of providing a through hole in a silicon wafer of a semiconductor chip and filling a conductor, a step of flip-chip mounting the semiconductor chip on a substrate, and a step of polishing the back surface. It is necessary and the manufacturing process is very complicated.
SUMMARY OF THE INVENTION In view of such circumstances, an object of the present invention is to provide a semiconductor device and a method for manufacturing the semiconductor device in which the wiring of the semiconductor chip is shortened and the thickness is reduced with a simple configuration for stacked semiconductor chips.

本発明による半導体装置は,複数の半導体チップを積層して一体化してなる半導体装置において,積層された複数の半導体チップは異なる高さを有する導電性バンプによってそれぞれ電気的に接続されていることを特徴とする。
本発明による半導体装置によれば,複数の半導体チップを積層すると共に,積層された高さの異なる複数の半導体チップを高さの異なる導電性バンプによってそれぞれ基板や他の半導体チップ等に電気的に接続することで、基板や他の半導体チップと積層された複数の半導体チップとの間に配設した導電性バンプの各配線距離が短縮される。そのため、従来のボンディングワイヤと比較してインダクタンスの増加がなく信号伝送の高速化を達成できて、半導体装置の薄型化も達成できる。また、半導体チップに貫通孔を形成して充填した導電体によって隣接する半導体チップ同士を接続する半導体装置と比較しても、構成が簡単で製造が容易になる。
The semiconductor device according to the present invention is a semiconductor device in which a plurality of semiconductor chips are stacked and integrated, and the plurality of stacked semiconductor chips are electrically connected by conductive bumps having different heights. Features.
According to the semiconductor device of the present invention, a plurality of semiconductor chips are stacked, and the plurality of stacked semiconductor chips having different heights are electrically connected to a substrate, another semiconductor chip, or the like by conductive bumps having different heights. By connecting, each wiring distance of the conductive bumps arranged between the substrate and other semiconductor chips and a plurality of stacked semiconductor chips is shortened. Therefore, compared with the conventional bonding wire, there is no increase in inductance, a high-speed signal transmission can be achieved, and a thin semiconductor device can be achieved. In addition, the structure is simple and the manufacture is facilitated even when compared with a semiconductor device in which adjacent semiconductor chips are connected to each other by a conductor filled with a through hole formed in the semiconductor chip.

また、導電性バンプの接続対象物に対して、第一の半導体チップより遠い側の第二の半導体チップは第一の半導体チップより外側に突出した領域で導電性バンプに電気的に接続されていることが好ましい。
複数の半導体チップを積層する際に、導電性バンプの接続対象物に対して、近い側の第一の半導体チップは任意の位置で導電性バンプに接続可能であり、遠い側の第二の半導体チップは第一の半導体チップの外側に突出した領域に導電性バンプを設けて導電性バンプの接続対象物に接続させることができる。これにより、積層された複数の半導体チップにワイヤボンディングや貫通孔及び導電体を設けることなく、それぞれ導電性バンプを接続できる。
なお、導電性バンプの接続対象物とは基板や他の半導体チップであることが好ましい。
In addition, the second semiconductor chip farther than the first semiconductor chip is electrically connected to the conductive bump in the region protruding outward from the first semiconductor chip with respect to the conductive bump connection object. Preferably it is.
When stacking a plurality of semiconductor chips, the first semiconductor chip on the near side can be connected to the conductive bump at an arbitrary position with respect to the conductive bump connection target, and the second semiconductor on the far side The chip can be connected to a connection object of the conductive bump by providing a conductive bump in a region protruding outside the first semiconductor chip. Thereby, a conductive bump can be connected to each of a plurality of stacked semiconductor chips without providing wire bonding, a through hole, and a conductor.
In addition, it is preferable that the connection object of a conductive bump is a board | substrate or another semiconductor chip.

また、導電性バンプの接続対象物に対して、少なくとも遠い側の半導体チップに電気的に接続される導電性バンプは略柱状に形成されていることが好ましい。
導電性バンプが、例えばはんだ印刷法やはんだボール搭載法等によって製造したはんだバンプ等である場合、高さが増大すると横方向にも増大する略半球状等のバンプとなるために半導体チップの多ピン化を達成できないが、少なくとも第二の導電性バンプを柱状に形成することで幅方向の面積を広げることなく高さを大きくすることができるから多ピン化を妨げることなく積層された高さの異なる半導体チップに接続できる。
また、導電性バンプは銅,銀,錫,金,ニッケルより選ばれるいずれかの材料またはいずれか2種以上の材料を積層することで形成されていてもよい。
導電性バンプとして銅,銀,錫,金,ニッケル等の任意の材料を採用することができ、場合によっては異種の導電性バンプ材料を積層することで導電性バンプを形成することができる。
また、導電性バンプは電解めっきによって形成されていてもよく、この場合にはその高さや断面積や材料や形状等を任意に選択して電解めっきによって形成できる。
Moreover, it is preferable that the conductive bump electrically connected to the semiconductor chip on the far side with respect to the conductive bump connection object is formed in a substantially columnar shape.
When the conductive bump is a solder bump manufactured by, for example, a solder printing method or a solder ball mounting method, the bump becomes a substantially hemispherical bump that increases in the lateral direction as the height increases. Although pinning cannot be achieved, the height can be increased without increasing the area in the width direction by forming at least the second conductive bump in a columnar shape, so the stacked height without interfering with multi-pinning Can be connected to different semiconductor chips.
Further, the conductive bump may be formed by laminating any material selected from copper, silver, tin, gold, and nickel, or any two or more materials.
Arbitrary materials, such as copper, silver, tin, gold | metal | money, nickel, can be employ | adopted as a conductive bump, and a conductive bump can be formed by laminating | stacking a different conductive bump material depending on the case.
In addition, the conductive bump may be formed by electrolytic plating. In this case, the height, cross-sectional area, material, shape, and the like can be arbitrarily selected and formed by electrolytic plating.

本発明による半導体装置の製造方法は、複数の半導体チップを積層して一体化してなる半導体装置の製造方法において、基板に無電解めっきによって給電層を形成する工程と、給電層に第一のレジストを形成してパターニングする工程と、第一のレジストのパターンに電解めっきで第一の導電性バンプを成長させる工程と、第二のレジストを形成してパターニングする工程と、少なくとも一部の第一の導電性バンプの上に第二のレジストのパターンに電気めっきで第二の導電性バンプを成長させる工程と、第一の導電性バンプに第一の半導体チップを接合すると共に、第二の導電性バンプに第二の半導体チップを接合する工程とを備えることで、第一の半導体チップと第二の半導体チップとを積層させてなることを特徴とする。
本発明による半導体装置の製造方法によれば、基板に無電解めっきによって導電性の給電層を形成し、その上に第一、第二のレジストによって導電性バンプを形成するためのパターンを形成し、導電性バンプの高さが短い場合には第一のレジストパターンのみで導電性バンプを電解めっきで析出させ、高さが長い場合には第一のレジストで析出させた導電性バンプの上に第二のレジストパターンで導電性バンプを電解めっきで析出させることで、積層される複数の半導体チップの配線距離に応じた長さの導電性バンプを形成することができる。これにより、高さの異なる各導電性バンプに積層した複数の半導体チップをそれぞれ接合させて積層することができる。
その後、封止樹脂によって半導体装置全体を封止できる。
A method of manufacturing a semiconductor device according to the present invention includes a step of forming a power supply layer on a substrate by electroless plating in a method of manufacturing a semiconductor device in which a plurality of semiconductor chips are stacked and integrated, and a first resist on the power supply layer Forming a pattern, forming a first conductive bump on the first resist pattern by electrolytic plating, forming a second resist and patterning, and at least a part of the first resist Growing a second conductive bump by electroplating on the second resist pattern on the conductive bump, bonding the first semiconductor chip to the first conductive bump, and second conductive And a step of bonding the second semiconductor chip to the conductive bump, whereby the first semiconductor chip and the second semiconductor chip are laminated.
According to the method for manufacturing a semiconductor device according to the present invention, a conductive power feeding layer is formed on a substrate by electroless plating, and a pattern for forming conductive bumps is formed on the first and second resists thereon. When the height of the conductive bump is short, the conductive bump is deposited by electrolytic plating only with the first resist pattern. When the height is long, the conductive bump is deposited on the conductive bump deposited with the first resist. By depositing the conductive bumps by electrolytic plating with the second resist pattern, it is possible to form the conductive bumps having a length corresponding to the wiring distance of a plurality of stacked semiconductor chips. Thereby, the several semiconductor chip laminated | stacked on each conductive bump from which height differs can be joined and laminated | stacked, respectively.
Thereafter, the entire semiconductor device can be sealed with a sealing resin.

本発明による半導体装置によれば,積層された複数の半導体チップをその積層高さに応じた距離を有する導電性バンプによって電気的に接続することで,積層された半導体チップの配線距離が短縮されるから、ボンディングワイヤを用いた場合と比較してインダクタンスの増加がなく高速化に対応できて半導体装置の薄型化を実現できる。更に半導体チップの貫通孔に導電体を充填して隣接する半導体チップ同士を接続した場合と比較しても、構成が簡単で製造が容易でありコストを低減できる。
本発明による半導体装置の製造方法によれば,基板の給電層の上に第一、第二のレジストによって高さの異なる第一、第二の導電性バンプを形成して積層された半導体チップを配線距離に応じてそれぞれ電気的に接続させることで、積層された半導体チップに対する導電性バンプの配線距離が短縮されるからインダクタンスの増加がなく高速化に対応できて半導体装置の薄型化も実現できる。しかも構成が簡単で製造が容易であり、製造コストを低減できる。
According to the semiconductor device of the present invention, the wiring distance of the stacked semiconductor chips is shortened by electrically connecting the stacked semiconductor chips by the conductive bumps having a distance corresponding to the stack height. Therefore, compared with the case where a bonding wire is used, there is no increase in inductance, and it is possible to cope with a higher speed and to realize a thinner semiconductor device. Furthermore, compared with the case where the semiconductor chip is filled with a conductor and adjacent semiconductor chips are connected to each other, the configuration is simple, the manufacturing is easy, and the cost can be reduced.
According to the method for manufacturing a semiconductor device according to the present invention, a semiconductor chip is formed by forming first and second conductive bumps having different heights on a power feeding layer of a substrate and having different heights depending on the first and second resists. By electrically connecting each according to the wiring distance, the wiring distance of the conductive bumps to the stacked semiconductor chips is shortened, so that there is no increase in inductance and it is possible to cope with high speed, and the semiconductor device can be thinned. . In addition, the structure is simple and the manufacturing is easy, and the manufacturing cost can be reduced.

本発明の実施形態による半導体チップを積層した半導体装置の縦断面図である。It is a longitudinal cross-sectional view of the semiconductor device which laminated | stacked the semiconductor chip by embodiment of this invention. 実施形態における積層された半導体チップと突起電極を示す平面透視図である。It is a plane perspective view which shows the laminated | stacked semiconductor chip and protrusion electrode in embodiment. (a)〜(d)は突起電極の一例を示す断面図である。(A)-(d) is sectional drawing which shows an example of a protruding electrode. 実施形態による半導体装置の変形例を示す平面透視図である。It is a plane perspective view which shows the modification of the semiconductor device by embodiment. (a)〜(l)は本発明の実施形態による半導体装置の製造方法を示す図である。(A)-(l) is a figure which shows the manufacturing method of the semiconductor device by embodiment of this invention. 従来技術による半導体装置の縦断面図である。It is a longitudinal cross-sectional view of the semiconductor device by a prior art. 従来技術による他の半導体装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other semiconductor device by a prior art.

次に本発明の第一の実施形態による半導体装置を図1乃至図3により説明する。
図1及び図2に示す第一実施形態による半導体装置10は複数段、例えば2段スタック型マルチチップモジュール(MCM)を示すものである。図1に示す半導体装置10は、例えばプリント基板からなる基板11上に下段側の第一の半導体チップ12と上段側の第二の半導体チップ13とが積層されて配設されている。下段の第一の半導体チップ12は下面に突起電極14が所定間隔を開けて設けられ、突起電極14は基板11上に配設された電極11aにフリップチップ接続されている。
第一の半導体チップ12は、図2に示すように、例えば略四角形板状に形成され、図2に示す例では複数の突起電極14が基板11に対向する面に縦横方向に所定間隔で配列されている。CPUチップなどのように電極数が多い半導体チップは、第一の半導体チップ12のようにチップ全面に突起電極14が配列されることがある。
なお、第一の半導体チップ12は基板11との距離が短いために、突起電極14は上述したはんだ電極で構成して基板にフリップチップ接続することも可能である。
Next, the semiconductor device according to the first embodiment of the present invention will be described with reference to FIGS.
The semiconductor device 10 according to the first embodiment shown in FIGS. 1 and 2 shows a plurality of stages, for example, a two-stage stack type multichip module (MCM). A semiconductor device 10 shown in FIG. 1 is provided by laminating a lower first semiconductor chip 12 and an upper second semiconductor chip 13 on a substrate 11 made of, for example, a printed circuit board. The lower first semiconductor chip 12 is provided with protruding electrodes 14 at a predetermined interval on the lower surface, and the protruding electrodes 14 are flip-chip connected to an electrode 11 a disposed on the substrate 11.
As shown in FIG. 2, the first semiconductor chip 12 is formed in, for example, a substantially square plate shape. In the example shown in FIG. 2, a plurality of protruding electrodes 14 are arranged at predetermined intervals in the vertical and horizontal directions on the surface facing the substrate 11. Has been. In a semiconductor chip having a large number of electrodes such as a CPU chip, the protruding electrodes 14 may be arranged on the entire surface of the chip like the first semiconductor chip 12.
Since the first semiconductor chip 12 has a short distance from the substrate 11, the protruding electrode 14 can be constituted by the solder electrode described above and can be flip-chip connected to the substrate.

図2に示す平面視で、第二の半導体チップ13は第一の半導体チップ12より四辺で外側に突出した略四角形板状に形成され、第一の半導体チップ12から外側に突出した略四角形枠状の領域13aには複数の突起電極17が第一の半導体チップ12の外側でこのチップ12を囲うように所定間隔で配列されている。第二の半導体チップ13に設けた枠状の領域13aは突起電極17によって基板11の電極11aにフリップチップ接続されている。
ロジック,マイコンなどの半導体チップは、本実施形態による半導体装置10のように第二の半導体チップ13の周辺に突起電極17が配列される場合が多い。
基板11において、第一、第二の半導体チップ12,13と反対側の面にはマザーボード等との接続のため複数のはんだバンプ18が配列されている。
In the plan view shown in FIG. 2, the second semiconductor chip 13 is formed in a substantially quadrangular plate shape that protrudes outward from the first semiconductor chip 12 on four sides, and a substantially rectangular frame that protrudes outward from the first semiconductor chip 12. A plurality of protruding electrodes 17 are arranged at predetermined intervals so as to surround the chip 12 outside the first semiconductor chip 12 in the shaped region 13a. The frame-shaped region 13 a provided in the second semiconductor chip 13 is flip-chip connected to the electrode 11 a of the substrate 11 by the protruding electrode 17.
In many semiconductor chips such as logic and microcomputer, the protruding electrodes 17 are arranged around the second semiconductor chip 13 like the semiconductor device 10 according to the present embodiment.
In the substrate 11, a plurality of solder bumps 18 are arranged on the surface opposite to the first and second semiconductor chips 12 and 13 for connection to a mother board or the like.

図1及び図2において、導電性バンプである突起電極14、17は例えば略円柱状等の柱状に形成されている。特に突起電極14より長い突起電極17は図1では二段の略円柱形状に形成されているが、全長に亘って略同一外径をなす単一の略円柱状に形成されていてもよい。
さらに基板11上に設けた二段の半導体チップ12,13とこれらを突起電極14,17で基板11の電極11aにフリップチップ接合された領域は、封止樹脂20によって封止されている。
In FIG. 1 and FIG. 2, the protruding electrodes 14 and 17 that are conductive bumps are formed in a columnar shape such as a substantially cylindrical shape. In particular, the protruding electrode 17 longer than the protruding electrode 14 is formed in a two-stage substantially cylindrical shape in FIG. 1, but may be formed in a single substantially cylindrical shape having substantially the same outer diameter over the entire length.
Further, the two-stage semiconductor chips 12, 13 provided on the substrate 11 and the regions where these are flip-chip bonded to the electrodes 11 a of the substrate 11 by the protruding electrodes 14, 17 are sealed with a sealing resin 20.

突起電極14,17は、フリップチップ接合に多く用いられてきたはんだ印刷法やはんだボール搭載法等によってはんだバンプ形状の電極を形成することも可能であるが,その場合、はんだバンプは突起電極17のように高さが大きくなると外径寸法が増大するため、半導体チップの多ピン化やピン配列の狭ピッチ化を阻害する不具合が発生することがあるので、好ましくない。
例えば、印刷法によるはんだ形成はペースト状のはんだを用いるため高さ方向に細長い柱状に形成することができず,例えば第二の半導体チップ13に接続させるような高い寸法を得るためには基板11に接続される部分の電極面積を大きくする必要がある。またはんだボール搭載法についてもほぼ略半球状のはんだを使用するため,突起電極14,17の高さを得るためには高さに応じて基板11に接続する面の電極面積が大きくなる。
従って、このようなはんだバンプを上段の第二の半導体チップ13に接続するための突起電極17として用いた場合に基板11への接続面積が大きいため特に不利に働く。
The bump electrodes 14 and 17 can be formed into solder bump-shaped electrodes by a solder printing method or a solder ball mounting method that has been widely used for flip-chip bonding. If the height is increased as described above, the outer diameter increases, which may cause a problem that hinders the increase in the number of pins of the semiconductor chip and the narrow pitch of the pin arrangement, which is not preferable.
For example, solder formation by a printing method uses paste-like solder, so that it cannot be formed in a column shape elongated in the height direction. For example, in order to obtain a high dimension that can be connected to the second semiconductor chip 13, the substrate 11 It is necessary to increase the electrode area of the portion connected to. In addition, since the solder ball mounting method uses a substantially hemispherical solder, in order to obtain the height of the protruding electrodes 14 and 17, the electrode area of the surface connected to the substrate 11 is increased according to the height.
Therefore, when such a solder bump is used as the protruding electrode 17 for connecting to the second semiconductor chip 13 on the upper stage, the connection area to the substrate 11 is large, which is particularly disadvantageous.

そこで、突起電極14,17ははんだに代えて銅,銀,錫,金,ニッケル等より選ばれる金属材料もしくはその組み合わせにより形成されることが接触面積を小さくする上で好ましく、望ましくは電解めっきによって柱状に形成する。
突起電極14,17について、本実施形態では銅,銀,錫,金,ニッケルのいずれかによる単一の金属材料で電気めっきによって柱状に形成されている。また、突起電極14,17は2種以上の金属材料を電解めっきによって接合して形成されていてもよい。
Therefore, the protruding electrodes 14 and 17 are preferably formed of a metal material selected from copper, silver, tin, gold, nickel or the like instead of solder, or a combination thereof, in order to reduce the contact area, and preferably by electrolytic plating. Form in a columnar shape.
In the present embodiment, the protruding electrodes 14 and 17 are formed in a columnar shape by electroplating with a single metal material of any of copper, silver, tin, gold, and nickel. The protruding electrodes 14 and 17 may be formed by joining two or more kinds of metal materials by electrolytic plating.

このような突起電極の一例として例えば突起電極17(または14)の変形例を図3(a)〜(d)により説明する。
図3(a)に示す突起電極17は、銅製の柱状の電極層単体で構成したものであり、基板11の電極部11aと第二の半導体チップ13のはんだバンプの電極部13aとに接続して形成したものである。この構成は、銅がはんだ(スズ−鉛)のスズ成分に溶解してしまい接続不良を起こすことがあるためあまり好ましくない。
図3(b)に示す突起電極17は、銅製の電極層21aにニッケル製の電極層21bを柱状に接続して形成し、はんだバンプの電極部13aと接続させたものである。この場合、ニッケルは銅がスズ中に溶解することをバリアできるが、はんだの濡れ広がりが悪い。
As an example of such a protruding electrode, a modified example of the protruding electrode 17 (or 14) will be described with reference to FIGS.
The protruding electrode 17 shown in FIG. 3A is constituted by a single columnar electrode layer made of copper, and is connected to the electrode portion 11 a of the substrate 11 and the electrode portion 13 a of the solder bump of the second semiconductor chip 13. Is formed. This configuration is not preferable because copper may be dissolved in the tin component of solder (tin-lead), resulting in poor connection.
The protruding electrode 17 shown in FIG. 3 (b) is formed by connecting a nickel electrode layer 21b in a columnar shape to a copper electrode layer 21a and connecting it to a solder bump electrode portion 13a. In this case, nickel can barrier the dissolution of copper in tin, but the solder wetting spreads poorly.

図3(c)に示す突起電極17は、銅製の電極層21aに金製の電極層21bを柱状に接続して形成したものであり、これをはんだバンプ電極部13aに接続したものである。この場合、金ははんだ濡れ性がよいが、金がスズ中に溶解してしまうため、銅がスズに溶解され易い。しかし、用途によっては採用される。
図3(d)に示す突起電極17は、銅製の電極層21aにニッケル製の電極層21bと金製の電極層21cとを柱状に接続して形成したものである。この場合、表面が金なので、はんだ濡れ性が良くニッケル層がバリアになるので銅がスズに溶解せず、最も好ましい。
上述した図3(a)〜(d)に示すいずれの突起電極も採用可能であるが、図3(d)に示す構成の導電性バンプが最も好ましい。
The protruding electrode 17 shown in FIG. 3 (c) is formed by connecting a gold electrode layer 21b to a copper electrode layer 21a in a columnar shape, and this is connected to the solder bump electrode portion 13a. In this case, gold has good solder wettability, but since gold is dissolved in tin, copper is easily dissolved in tin. However, it is adopted depending on the application.
The protruding electrode 17 shown in FIG. 3 (d) is formed by connecting a nickel electrode layer 21b and a gold electrode layer 21c in a columnar shape to a copper electrode layer 21a. In this case, since the surface is gold, the solder wettability is good and the nickel layer becomes a barrier, so that copper does not dissolve in tin and is most preferable.
Although any of the protruding electrodes shown in FIGS. 3A to 3D described above can be employed, the conductive bump having the configuration shown in FIG. 3D is most preferable.

次に、図4は第一実施形態による半導体装置10の変形例である。この変形例による半導体装置10では、下段の第一の半導体チップ12に対して上段側に配設する第二の半導体チップ22は対向する二辺の領域で第一の半導体チップ12より外側に突出して略四角形に形成されている。そして、第二の半導体チップ22の突出部22a、22aには所定間隔で突起電極17が配列されている。DRAMなどの半導体チップにおける突起電極17はこのような配列となることが多い。
なお、第二の半導体チップ22の形状や突起電極17の配列は図2や図4に示す形状や配列に限定されるものではなく任意であり、第一の半導体チップ12よりも外側に突出する領域を有していて、第一の半導体チップ12から外れて突出した領域で突起電極17によって直接基板11に接続されていればよい。
また、導電性バンプの変形例として、柱状の突起電極14,17に代えて金スタッドを設けて金ワイヤとしての線状の部分の先端側を切除することで突起電極14,17に変わる導電性バンプとして構成してもよい。
Next, FIG. 4 is a modification of the semiconductor device 10 according to the first embodiment. In the semiconductor device 10 according to this modification, the second semiconductor chip 22 disposed on the upper stage side with respect to the first semiconductor chip 12 on the lower stage protrudes outward from the first semiconductor chip 12 in two opposing regions. Are formed in a substantially rectangular shape. The protruding electrodes 17 are arranged at predetermined intervals on the protrusions 22 a and 22 a of the second semiconductor chip 22. The protruding electrodes 17 in a semiconductor chip such as a DRAM are often arranged in this manner.
The shape of the second semiconductor chip 22 and the arrangement of the protruding electrodes 17 are not limited to the shape and arrangement shown in FIGS. 2 and 4, and are arbitrary, and protrude outward from the first semiconductor chip 12. It is only necessary to have a region and be directly connected to the substrate 11 by the protruding electrode 17 in a region protruding out of the first semiconductor chip 12.
Further, as a modified example of the conductive bump, instead of the columnar protruding electrodes 14 and 17, a gold stud is provided and the conductive portion that changes to the protruding electrodes 14 and 17 by cutting off the front end side of the linear portion as a gold wire is provided. You may comprise as a bump.

また、本実施形態による半導体装置10は、積層する半導体チップ12、13または22を2段で構成したが,3段以上に半導体チップを積層することも可能である。この場合、必ずしも全ての半導体チップ12、13(22)、…と基板11との接続に本実施形態による略円柱状の突起電極14,17、…を形成してもよいが、これに代えて二段以上に設置される半導体チップを基板11と接続する際に、少なくとも一部の半導体チップに本実施形態による突起電極14、17、…を使用してもよい。
例えば、半導体チップを三段積層して構成した場合、一及び二段目の半導体チップ12,13(22)の接続構造には第一実施形態や変形例の構成を採用すると共に、三段目の半導体パッケージが信号の高速伝送を必要としない場合には、ワイヤを用いて基板11の電極11aに接続してもよい。特に、三段目の半導体チップが一段目や二段目の半導体チップ12,13(22)より小さくて外側に突出する部分がない場合にはワイヤ等で基板11に接続することになる。
In the semiconductor device 10 according to the present embodiment, the semiconductor chips 12, 13, or 22 to be stacked are configured in two stages, but it is also possible to stack semiconductor chips in three or more stages. In this case, the substantially cylindrical protruding electrodes 14, 17,... According to the present embodiment may be formed in connection with all the semiconductor chips 12, 13 (22),. When connecting the semiconductor chips installed in two or more stages to the substrate 11, the protruding electrodes 14, 17,... According to the present embodiment may be used for at least some of the semiconductor chips.
For example, when the semiconductor chip is configured by stacking three stages, the structure of the first embodiment or the modified example is adopted for the connection structure of the first and second semiconductor chips 12 and 13 (22), and the third stage. If the semiconductor package does not require high-speed signal transmission, it may be connected to the electrode 11a of the substrate 11 using a wire. In particular, when the third-stage semiconductor chip is smaller than the first-stage or second-stage semiconductor chips 12 and 13 (22) and there is no portion protruding outward, the third-stage semiconductor chip is connected to the substrate 11 with a wire or the like.

上述のように本実施形態による半導体装置10によれば、複数の半導体チップ12、13(22)をその積層高さに応じた高さを有する突起電極14,17によってフリップチップ接合することで,積層された半導体チップ12,13と基板11との間の配線距離が短縮されるから、ボンディングワイヤを用いた場合と比較してインダクタンスの増加がなく高速化に対応できる。しかも、半導体装置10の薄型化を実現できる。
更に半導体チップに貫通孔を設けて導電性バンプを充填して半導体チップ同士を接続した場合と比較して、下段側の第一の半導体チップ12の外側で上段側の第二の半導体チップ13を略柱状の突起電極17で基板11に接続したから、半導体チップに貫通孔を形成し導電性バンプを充填したりすることもなく、フリップチップ実装した後で背面を研磨する工程などが必要なく、構成が簡単で製造が容易であり製造コストを低廉にできる。
As described above, according to the semiconductor device 10 according to the present embodiment, the plurality of semiconductor chips 12 and 13 (22) are flip-chip bonded by the protruding electrodes 14 and 17 having a height corresponding to the stacking height. Since the wiring distance between the stacked semiconductor chips 12 and 13 and the substrate 11 is shortened, there is no increase in inductance as compared with the case where bonding wires are used, and it is possible to cope with higher speed. In addition, the semiconductor device 10 can be thinned.
Furthermore, compared with the case where the semiconductor chip is connected by providing a through hole in the semiconductor chip and filling the conductive bumps, the second semiconductor chip 13 on the upper stage side is outside the first semiconductor chip 12 on the lower stage side. Since it is connected to the substrate 11 by the substantially columnar projecting electrode 17, there is no need to form a through hole in the semiconductor chip and fill the conductive bump, and there is no need for a step of polishing the back surface after flip chip mounting, The structure is simple and easy to manufacture, and the manufacturing cost can be reduced.

次に本発明の実施形態による半導体装置10の製造方法について図5を用いて説明する。図5(a)〜(l)は図1乃至図2で示した実施形態によるスタック型マルチチップモジュール(MCM)の製造工程を示す例である。
図5(a)において、プリント基板である基板11に銅からなる電極パッド11aが形成された状態が示されている。次に、同図(b)において、突起電極14を電解めっきで形成するための給電層24を無電解めっきによって基板11の表面に析出させて形成した。給電層24は無電解銅めっきによって銅の薄層として形成する。
同図(c)において、第一の半導体チップ12に電気的に接続するための突起電極14を形成するためにレジスト25を形成し、突起電極14を析出するためのパターンを形成する。レジスト25は感光性レジストを使用し、所望の開口25aのパターンが描画されたマスクを用いて露光・現像によりパターニングを行う。
Next, a method for manufacturing the semiconductor device 10 according to the embodiment of the present invention will be described with reference to FIGS. FIGS. 5A to 5L show an example of a manufacturing process of the stacked multichip module (MCM) according to the embodiment shown in FIGS.
FIG. 5A shows a state in which an electrode pad 11a made of copper is formed on a substrate 11 which is a printed circuit board. Next, in FIG. 2B, a power feeding layer 24 for forming the protruding electrode 14 by electrolytic plating was deposited on the surface of the substrate 11 by electroless plating. The power feeding layer 24 is formed as a thin copper layer by electroless copper plating.
In FIG. 2C, a resist 25 is formed to form the protruding electrode 14 for electrical connection to the first semiconductor chip 12, and a pattern for depositing the protruding electrode 14 is formed. As the resist 25, a photosensitive resist is used, and patterning is performed by exposure and development using a mask on which a pattern of a desired opening 25a is drawn.

同図(d)において、レジスト25で形成された開口25aのパターンに第一の半導体チップ12を電気的に接続するための突起電極14を電解めっきで成長させる。めっき形成後にレジスト25を剥離する(同図(e)参照)。
そして、同図(f)に示すように、第二の半導体チップ13を電気的に接続するための突起電極17を析出させるためのレジスト26を形成してパターニングする。レジスト26は感光性レジストを使用する。所望のパターンとして突起電極17を形成するための突起電極14の領域にのみ形成する開口26aのパターンが描画されたマスクを用いて露光・現像によりパターニングを行う。
この例ではレジスト26の開口26aは1段目のめっき析出用の開口25aより小さく形成されているが,同一寸法でもよいし、より大きく形成されていてもかまわない。
In FIG. 4D, the protruding electrode 14 for electrically connecting the first semiconductor chip 12 to the pattern of the opening 25a formed of the resist 25 is grown by electrolytic plating. The resist 25 is peeled off after the plating is formed (see FIG. 5E).
Then, as shown in FIG. 5F, a resist 26 for depositing the protruding electrode 17 for electrically connecting the second semiconductor chip 13 is formed and patterned. As the resist 26, a photosensitive resist is used. Patterning is performed by exposure and development using a mask on which a pattern of the opening 26a formed only in the region of the protruding electrode 14 for forming the protruding electrode 17 as a desired pattern is drawn.
In this example, the opening 26a of the resist 26 is formed smaller than the first plating deposition opening 25a, but it may be the same size or larger.

そして、レジスト26の開口26aに、第二の半導体チップ13用の柱状の突起電極を突起電極14の上に電解めっきで成長させて、突起電極14より高さの大きい突起電極17を形成する(同図(g)参照)。次に、レジスト26を剥離する(同図(h)参照)。そして、同図(i)に示すように、突起電極14,17を除いて給電層24をエッチングで剥離する。
また、同図(j)において、プリント基板11の突起電極14,17とは反対側の面にはんだバンプ18を形成する。はんだバンプ18は例えばはんだボールを搭載しリフローすることで形成する。同図(k)において、第一及び第二の半導体チップ12,13に設けた電極パッド28、29に予備はんだ30、30を形成したものを準備し、各突起電極14,17と位置合わせする。そして、同図(l)に示すように、第一及び第二の半導体チップ12,13の電極パッド28,29と突起電極14、17をリフローにより接合する。更に、これら基板11上で突起電極14,17を介して電気的に接続された第一、第二の半導体チップ12,13を封止樹脂20によって封止する。
このようにして半導体装置10を製造できる。
Then, a columnar protruding electrode for the second semiconductor chip 13 is grown on the protruding electrode 14 by electrolytic plating in the opening 26a of the resist 26 to form a protruding electrode 17 having a height higher than the protruding electrode 14 ( (See (g) in the figure). Next, the resist 26 is peeled off (see FIG. 11H). Then, as shown in FIG. 4I, the power feeding layer 24 is removed by etching except for the protruding electrodes 14 and 17.
Further, in FIG. 6J, solder bumps 18 are formed on the surface of the printed board 11 opposite to the protruding electrodes 14 and 17. The solder bumps 18 are formed, for example, by mounting solder balls and reflowing. In FIG. 4 (k), electrode pads 28 and 29 provided on the first and second semiconductor chips 12 and 13 are provided with preliminary solders 30 and 30 and aligned with the protruding electrodes 14 and 17, respectively. . Then, as shown in FIG. 1L, the electrode pads 28 and 29 of the first and second semiconductor chips 12 and 13 and the protruding electrodes 14 and 17 are joined by reflow. Further, the first and second semiconductor chips 12 and 13 that are electrically connected via the protruding electrodes 14 and 17 on the substrate 11 are sealed with a sealing resin 20.
In this way, the semiconductor device 10 can be manufactured.

上述のように、本実施形態による半導体装置10の製造方法によれば,突起電極14,17の形成に無電解銅めっき及び電解銅めっきを使用するため,従来のプリント基板製造工程,半導体チップ実装工程および半導体パッケージ製造工程に特別新たな設備を導入することなく,スタック型MCMの半導体装置10を製造することができる。
また,基板11の給電層24の上に第一、第二のレジスト25,26によって高さの異なる突起電極14、17を形成して、積層された第一、第二の半導体チップ12,13と高さに応じてそれぞれ接合させることで、積層された半導体チップ12,13に対する突起電極14,17の配線距離が短縮されてインダクタンスの増加がなく信号伝送の高速化に対応でき,しかも構成が簡単で製造が容易であり、半導体装置10を薄型化できる。
As described above, according to the manufacturing method of the semiconductor device 10 according to the present embodiment, since the electroless copper plating and the electrolytic copper plating are used for forming the protruding electrodes 14 and 17, the conventional printed circuit board manufacturing process, semiconductor chip mounting The stacked MCM semiconductor device 10 can be manufactured without introducing special new equipment into the process and the semiconductor package manufacturing process.
Further, the first and second semiconductor chips 12 and 13 are formed by stacking the protruding electrodes 14 and 17 having different heights by the first and second resists 25 and 26 on the power feeding layer 24 of the substrate 11. By connecting them according to the height, the wiring distance of the protruding electrodes 14 and 17 with respect to the stacked semiconductor chips 12 and 13 can be shortened, so that there is no increase in inductance, and it is possible to cope with high-speed signal transmission. It is simple and easy to manufacture, and the semiconductor device 10 can be thinned.

しかも、各突起電極14,17は無電解めっきと電解めっきによって柱状に析出して形成したから、複数の半導体チップ12,13を積層することで基板11との距離が増大しても基板11または半導体チップ12,13上で突起電極14,17が広がることがなく、半導体チップ12,13の多ピン化を促進できる。そのため、特に薄型化,高速化,他ピン化が要求される電子機器に有用である。   In addition, since the protruding electrodes 14 and 17 are formed by columnar deposition by electroless plating and electrolytic plating, even if the distance from the substrate 11 is increased by stacking the plurality of semiconductor chips 12 and 13, the substrate 11 or The protruding electrodes 14 and 17 do not spread on the semiconductor chips 12 and 13 and the number of pins of the semiconductor chips 12 and 13 can be increased. Therefore, it is particularly useful for electronic devices that require thinning, high speed, and other pins.

なお、本発明に於いて、突起電極14,17は導電性バンプを構成する。
また、図1に示す半導体装置10では、第一及び第二の半導体チップ12,13は互いに離間した状態で積層されているが、接着剤等の絶縁材を介して互いに接着させて構成してもよい。
また、上述の実施形態では積層した複数の半導体チップ12,13の突起電極14,17はプリント基板等の基板11にフリップチップ接合するように構成したが、基板11に代えて上述した特許文献1に記載のように、他の半導体チップの電極に突起電極14,17をフリップチップ接合等により電気的に接続してもよい。
In the present invention, the protruding electrodes 14 and 17 constitute a conductive bump.
In the semiconductor device 10 shown in FIG. 1, the first and second semiconductor chips 12 and 13 are stacked apart from each other. However, the first and second semiconductor chips 12 and 13 are bonded to each other through an insulating material such as an adhesive. Also good.
In the above-described embodiment, the protruding electrodes 14 and 17 of the stacked semiconductor chips 12 and 13 are configured to be flip-chip bonded to the substrate 11 such as a printed circuit board. As described above, the protruding electrodes 14 and 17 may be electrically connected to electrodes of another semiconductor chip by flip chip bonding or the like.

10 半導体装置
11 基板
12 第一の半導体チップ
13 第二の半導体チップ
14、17 突起電極
18 はんだバンプ
20 封止樹脂
24 給電層
25,26 レジスト
28,29 電極パッド
30 予備はんだ
DESCRIPTION OF SYMBOLS 10 Semiconductor device 11 Board | substrate 12 1st semiconductor chip 13 2nd semiconductor chip 14, 17 Protruding electrode 18 Solder bump 20 Sealing resin 24 Feed layer 25, 26 Resist 28, 29 Electrode pad 30 Preliminary solder

Claims (6)

複数の半導体チップを積層して一体化してなる半導体装置において,積層された複数の半導体チップは異なる配線距離を有する導電性バンプによってそれぞれ電気的に接続されていることを特徴とする半導体装置。   A semiconductor device in which a plurality of semiconductor chips are stacked and integrated, wherein the stacked semiconductor chips are electrically connected by conductive bumps having different wiring distances. 前記導電性バンプの接続対象物に対して、第一の半導体チップより遠い側の第二の半導体チップは前記第一の半導体チップより外側に突出した領域で前記導電性バンプに電気的に接続されている請求項1に記載された半導体装置。   The second semiconductor chip farther than the first semiconductor chip is electrically connected to the conductive bump in a region protruding outward from the first semiconductor chip with respect to the connection object of the conductive bump. The semiconductor device according to claim 1. 前記導電性バンプの接続対象物に対して、少なくとも遠い側の前記半導体チップに電気的に接続される前記導電性バンプは略柱状に形成されている請求項1または2に記載された半導体装置。   The semiconductor device according to claim 1, wherein the conductive bump that is electrically connected to the semiconductor chip on at least a far side with respect to the connection target of the conductive bump is formed in a substantially columnar shape. 前記導電性バンプは銅,銀,錫,金,ニッケルより選ばれるいずれかの材料またはいずれか2種以上の材料を積層することで形成されている請求項1乃至3のいずれかに記載された半導体装置。   4. The conductive bump according to claim 1, wherein the conductive bump is formed by laminating any material selected from copper, silver, tin, gold, and nickel, or any two or more kinds of materials. Semiconductor device. 前記導電性バンプは電解めっきによって形成されている請求項1乃至4のいずれかに記載された半導体装置。   The semiconductor device according to claim 1, wherein the conductive bump is formed by electrolytic plating. 複数の半導体チップを積層して一体化してなる半導体装置の製造方法において、
基板に無電解めっきによって給電層を形成する工程と、
前記給電層に第一のレジストを形成してパターニングする工程と、
前記第一のレジストのパターンに電解めっきで第一の導電性バンプを成長させる工程と、
前記第二のレジストを形成してパターニングする工程と
少なくとも一部の前記第一の導電性バンプに前記第二のレジストのパターンによって電気めっきで第二の導電性バンプを成長させる工程と、
前記第一の導電性バンプに第一の半導体チップを接合すると共に前記第二の導電性バンプに第二の半導体チップを接合する工程とを備えることで、
前記第一の半導体チップと第二の半導体チップを積層させてなることを特徴とする半導体装置の製造方法。
In a manufacturing method of a semiconductor device formed by stacking and integrating a plurality of semiconductor chips,
Forming a power supply layer on the substrate by electroless plating;
Forming and patterning a first resist on the power feeding layer;
Growing a first conductive bump on the first resist pattern by electrolytic plating;
Forming and patterning the second resist; and growing at least a portion of the first conductive bumps by electroplating the second conductive bumps with a pattern of the second resist;
Bonding the first semiconductor chip to the first conductive bump and bonding the second semiconductor chip to the second conductive bump,
A method of manufacturing a semiconductor device, wherein the first semiconductor chip and the second semiconductor chip are stacked.
JP2009200355A 2009-08-31 2009-08-31 Manufacturing method of semiconductor device Expired - Fee Related JP5338572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009200355A JP5338572B2 (en) 2009-08-31 2009-08-31 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009200355A JP5338572B2 (en) 2009-08-31 2009-08-31 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2011054652A true JP2011054652A (en) 2011-03-17
JP5338572B2 JP5338572B2 (en) 2013-11-13

Family

ID=43943396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009200355A Expired - Fee Related JP5338572B2 (en) 2009-08-31 2009-08-31 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5338572B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192383A (en) * 2013-03-27 2014-10-06 Fujitsu Ltd Electronic component and method of manufacturing electronic device
JP2015213103A (en) * 2014-05-01 2015-11-26 三菱電機株式会社 Semiconductor device and mounting structure of the same
JP2017028228A (en) * 2015-07-28 2017-02-02 ローム株式会社 Multichip module and manufacturing method thereof
KR20170087765A (en) * 2016-01-21 2017-07-31 삼성전기주식회사 Printed circuit board
JP2018019077A (en) * 2016-07-28 2018-02-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129831A (en) * 1989-10-16 1991-06-03 Nec Corp Manufacture of semiconductor device
JPH0974099A (en) * 1995-09-07 1997-03-18 Samsung Electron Co Ltd Formation of bump using shadow mask
JP2002170921A (en) * 2000-12-01 2002-06-14 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2002353272A (en) * 2001-05-25 2002-12-06 Fujitsu Ltd Solder bump forming method and semiconductor device
JP2002373966A (en) * 2001-06-13 2002-12-26 Matsushita Electric Ind Co Ltd Mounting structure for semiconductor chip and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129831A (en) * 1989-10-16 1991-06-03 Nec Corp Manufacture of semiconductor device
JPH0974099A (en) * 1995-09-07 1997-03-18 Samsung Electron Co Ltd Formation of bump using shadow mask
JP2002170921A (en) * 2000-12-01 2002-06-14 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2002353272A (en) * 2001-05-25 2002-12-06 Fujitsu Ltd Solder bump forming method and semiconductor device
JP2002373966A (en) * 2001-06-13 2002-12-26 Matsushita Electric Ind Co Ltd Mounting structure for semiconductor chip and method for manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192383A (en) * 2013-03-27 2014-10-06 Fujitsu Ltd Electronic component and method of manufacturing electronic device
JP2015213103A (en) * 2014-05-01 2015-11-26 三菱電機株式会社 Semiconductor device and mounting structure of the same
JP2017028228A (en) * 2015-07-28 2017-02-02 ローム株式会社 Multichip module and manufacturing method thereof
US10804190B2 (en) 2015-07-28 2020-10-13 Rohm Co., Ltd. Multi-chip module and method for manufacturing same
KR20170087765A (en) * 2016-01-21 2017-07-31 삼성전기주식회사 Printed circuit board
KR102568249B1 (en) 2016-01-21 2023-08-18 삼성전기주식회사 Printed circuit board
JP2018019077A (en) * 2016-07-28 2018-02-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board
KR20180013018A (en) * 2016-07-28 2018-02-07 삼성전기주식회사 Printed circuit board
JP7099789B2 (en) 2016-07-28 2022-07-12 サムソン エレクトロ-メカニックス カンパニーリミテッド. Printed circuit board
KR102559345B1 (en) * 2016-07-28 2023-07-25 삼성전기주식회사 Printed circuit board

Also Published As

Publication number Publication date
JP5338572B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
CN109786266B (en) Semiconductor package and method of forming the same
US11270976B2 (en) Package structure and method of manufacturing the same
CN107978583B (en) Package structure and method for manufacturing the same
US9589938B2 (en) Semiconductor device including an embedded surface mount device and method of forming the same
TWI596679B (en) Integrated circuit package stacking system with redistribution and method of manufacture thereof
US9620482B1 (en) Semiconductor device and manufacturing method thereof
US20150325556A1 (en) Package structure and method for fabricating the same
KR20130006260A (en) Innovative bump-on-trace package-on-package
CN103137589A (en) Package-on-package (PoP) structure and method
JP2009004650A (en) Semiconductor device and its manufacturing method
TWI471991B (en) Semiconductor packages
US9087815B2 (en) Off substrate kinking of bond wire
US20140117538A1 (en) Package structure and fabrication method thereof
US8692386B2 (en) Semiconductor device, method of manufacturing semiconductor device, and electronic device
US20120256322A1 (en) Semiconductor device
TWI602269B (en) Package-on-package stacking method and device
US9324681B2 (en) Pin attachment
JP2010287710A (en) Semiconductor device and method of manufacturing the same
TWI578421B (en) Stackable semiconductor package and the method for manufacturing the same
JP5338572B2 (en) Manufacturing method of semiconductor device
CN112038329B (en) Wafer-level chip fan-out three-dimensional stacked packaging structure and manufacturing method thereof
JP6419500B2 (en) Semiconductor package
KR100912427B1 (en) Stacked chip package and method for forming thereof
JP2006202997A (en) Semiconductor device and its manufacturing method
KR20210126188A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees