Nothing Special   »   [go: up one dir, main page]

JP2010538651A - 均質な抗体集団 - Google Patents

均質な抗体集団 Download PDF

Info

Publication number
JP2010538651A
JP2010538651A JP2010525000A JP2010525000A JP2010538651A JP 2010538651 A JP2010538651 A JP 2010538651A JP 2010525000 A JP2010525000 A JP 2010525000A JP 2010525000 A JP2010525000 A JP 2010525000A JP 2010538651 A JP2010538651 A JP 2010538651A
Authority
JP
Japan
Prior art keywords
chain polypeptide
heavy chain
antibody
cysteine residue
light chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010525000A
Other languages
English (en)
Other versions
JP2010538651A5 (ja
JP5963341B2 (ja
Inventor
エム. ディロン トーマス,
パベル ボンダレンコ,
ジェット ワイピチ,
マーティン アレン,
アライン バランド,
マーガレット スピード リッキ,
アミー グオ,
ウェンヤン シェン,
ジョンホン サン,
クリス ベジーナ,
Original Assignee
アムジエン・インコーポレーテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アムジエン・インコーポレーテツド filed Critical アムジエン・インコーポレーテツド
Publication of JP2010538651A publication Critical patent/JP2010538651A/ja
Publication of JP2010538651A5 publication Critical patent/JP2010538651A5/ja
Application granted granted Critical
Publication of JP5963341B2 publication Critical patent/JP5963341B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/245IL-1
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2875Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF/TNF superfamily, e.g. CD70, CD95L, CD153, CD154
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は概して、好ましい形態のモノクローナル抗体の富化および/または回収における向上を生じる方法に関する。さらに詳細には、本発明は組み換えIgG2抗体タンパク質のヒンジ領域におけるジスルフィド異質性を排除するための方法に関する。本明細書では、モノクローナルIgG2抗体が提供され、この抗体は:軽鎖ポリペプチド;およびヒンジ領域を有する重鎖ポリペプチドを含んでおり、ここでこの抗体は、重鎖または軽鎖ポリペプチドにおいてアミノ酸修飾を含み、その結果その修飾によって、軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて重鎖ポリペプチドのヒンジ領域におけるアミノ酸との鎖間ジスルフィド結合を主に形成する軽鎖ポリペプチドが提供される。

Description

関連出願
この出願は、2007年9月14日に出願された米国仮特許出願第60/972,688号(この内容は、その全体において参考として本明細書に援用される)への優先権を主張する。
発明の分野
本発明は概して、好ましい形態のモノクローナル抗体の富化および/または回収における向上を生じる方法に関する。さらに詳細には、本発明は組み換えIgG2抗体タンパク質ヒンジの領域におけるジスルフィド異質性を排除するための方法に関する。
1960年代には、均質なヒトIgG骨髄腫タンパク質に対する特定のポリクローナルウサギ抗血清で行われた広範囲な研究によって、それぞれ、IgG1、IgG2、IgG3およびIgG4と命名されたヒトIgGの4個の別個のサブグループの存在が明らかになった。この4個のサブクラスによって、y重鎖の定常ドメインのアミノ酸配列において大きい相同性が示される。この4個のIgGサブクラスは、2つの重鎖の間のジスルフィド結合を含んでいる分子の一部である「ヒンジ領域」のアミノ酸組成および構造において最も目立つ相違を示す。Fabアーム(抗原を結合するフラグメント)と両方の重鎖の2つのカルボキシルドメイン(C2およびC3)との間の領域によって、分子の可塑性を規定することが補助される。
上部のヒンジ(アミノ末端に向かう)セグメントによって、Fabアームの間の角度の変動(Fab−Fab間の可塑性)、および各々の個々のFabの回転の可塑性が許容される。下部のヒンジ領域(カルボキシル末端へ向かう)の可塑性によって、Fc領域に対するFabアームの位置(Fab−Fc可塑性)を決定することが補助される。ヒンジ依存性のFab−FabおよびFab−Fcの可塑性は、補体活性化およびFc受容体結合などのさらなるエフェクター機能を誘引するのに重要であり得る。
インビボでのタンパク質のジスルフィド結合形成は、複雑な過程であり、これは環境の酸化還元電位および専門的なチオール−ジスルフィド交換酵素によって影響される(非特許文献1;非特許文献2;非特許文献3)。ジスルフィドは、小胞体中への新生鎖の分泌の間または直後に細胞中で形成される(非特許文献1)。同じタンパク質のいくつかの立体配置アイソフォームであって、ただし異なるジスルフィド構造を有するアイソフォームが、ジスルフィド形成プロセスの失敗、タンパク質構造における3つ以上のシステイン残基の近接近性、または不対システイン残基の表面露出に起因して、哺乳動物細胞において組み換えタンパク質産生の間に生成され得る。
ほとんどの現在研究されている治療用のmAbはIgG1またはIgG4サブタイプのmAbであるが、IgG2抗体が、そのエフェクター機能のレベルが低いことに起因して特定の適応については他のサブクラスのものよりも好ましい場合もある(Canfield and Morrison、J.Exp.Med.173、1483〜1491、1991)。しかし、組み換えIgG2型モノクローナル抗体においてジスルフィド結合の割り当てを考証する構造的情報は限られている。
抗体治療における近年の進歩では、抗体構造の理解を向上することおよび生物学的機能に対するその関係に新たな関心が生じている。IgG1およびIgG2サブクラスは、循環中で最も豊富であり、長時間作用性であり、かつ安定な免疫グロブリンであるので、大変注目されている。
いくつかの以前の報告では、IgG2分子は、遊離のチオール基を含み、かつγグロブリンの他のサブクラスに比較した場合構造的に異種であることが示唆されている。1つの報告では、遊離のチオール基の含量は、5、5’−ジチオ(2、2’−ジニトロ)ベンゾアート(DTNB)との反応によって4つのヒトIgG抗体類の全てについて測定された(Schauensteinら 1986 Int.Arch.Allergy Immunol.,80:174〜179)。覆われていない遊離のチオール(ヒトIgG1モルあたり約0.24)がIgG2サブクラスに割り当てられた。4つのヒトIgGサブクラスの全てがチオレドキシンレダクターゼおよびNADPHでのチオレドキシンによる鎖間ジスルフィド結合の還元に供されたことも他に報告されている。IgG2は、2つのエフェクターにおいて他のサブクラスとは異なっていることが見出された:1)IgG2は還元に対して耐性であって、2)NADPH試薬を消費した。後者の知見によって、その試薬は、不安定な鎖間または表面露出された混合されたジスルフィドの還元によって消費されることが示唆された。さらに別の研究では、IgG2の共有結合二量体は、プールされたヒトγグロブリンおよびいくつかの正常な血清で検出された(Yooら、2003、J.Immunol.,170:3134〜3138)。二量体の臭化シアン切断分析によって、ヒンジ中の1つ以上のシステイン残基が二量体のアセンブリに関与することが示され、さらに、IgG2のヒンジにおける遊離または不安定なシステインの存在も示唆される。Phillipsらによる研究(J.Immun.,31:1201〜1210、1994)では、沈殿および電子顕微鏡分析を用いて、IgG2分子の多重の形状および二価のハプテンを有するそれらの複合体が、そしてヒトγグロブリンの他の3つのサブクラスについては単一の形態のみが特定された。この影響力の大きい研究では、IgG2サブクラス内に存在する構造的な異質性に言及したものはまだ誰もいない。IgG4ヒンジにおけるセリンからプロリンへの変異は、HL「半抗体」を排除することによって、およびH2L2四量体の形成を増強することによって異質性を減少するということが報告されている(Angalら、1993、Mol.Immunol.,30:105〜108、その全体が参照によって本明細書に援用される)。さらに、IgG1に由来するヒンジ領域と組み合わせた、IgG2抗体のCH1、CH2および/またはCH3ドメインを有するハイブリッドIgGアイソタイプは、高レベルの発現に有用であることが報告されている(その全体が参照によって本明細書に援用される、特許文献1)。
近年の報告によれば、抗体フラグメント主にFabおよびFab’の軽く200を超える構造が決定されている(Saphireら、2002、J.Mol.Biol.,319:9−18)。インタクトな抗体の結晶は、10回しか報告されておらず、これらの結晶のうち7個だけが部分的または完全な構造を提供した。これらの構造の全てがマウスIgGまたはヒトIgG1抗体のいずれかであったが、ヒトIgG2ではなかった(Saphireら、2002、J.Mol.Biol.,319:9〜18)。全長ヒンジを有するIgGの構造全体は3回しか報告されていない:mAb 231、マウスIgG2a(Harrisら、1992,Nature、360:369〜372;Larsonら、1991、J.Mol.Biol.,222:17〜19)、mAb 61.1.3、マウスIgG1(Harrisら、1998、J.Mol.Biol.,275:861〜872);およびHIV−1のgp120に対するヒトIgG1 b12(Saphireら、2001、Science、 293:1155〜1159;Saphireら、2002,J.Mol.Biol.,319:9〜18)。PDBナンバー1HZH由来のヒンジに近いヒトIgG1抗体の結晶画像のフラグメントが利用可能である(Saphireら、2001、Science、293::1155−1159)。オンラインでの質量分析による逆相クロマトグラフィーを用いることによるインタクトな抗体の現在開発されている分析方法が報告されており、これによってヒトIgG2抗体の異質性の発見および特徴付けを促進することが補助されている(Dillonら、2004、J.Chromatogr.A,1053:299〜305)。
近年では、IgG2サブクラスにおける構造の異質性が観察されているが、この異質性の背景にある理由は、まだ説明されていない。例えば、特許文献2、Dillonら、(その全体が参照によって本明細書に援用される)は、抗体を含んでいる、高分子量タンパク質を分析する逆相LC/MS法を考察している。さらに、特許文献3、Dillonら、(その全体が参照によって本明細書に援用される)は、還元/酸化カップリング試薬および必要に応じてカオトロピック剤を用いる組み換えIgGタンパク質の調製を供することによって特定のIgGアイソフォームを一過性に富化する方法に関する。
米国特許第7、148、321号明細書 米国特許出願公開第2005/0161399号明細書 米国特許出願公開第2006/0194280号明細書
Creighton、Methods Enzymol.(1984)107,305〜329 Houee−Levin,Methods Enzymol.(2002)353、35〜44 RitzおよびBeckwith、Roles of thiol−redox pathways in bacteria、Annu.Rev.Microbiol.(2001)55、21〜48
本発明の実施形態は、所望の高次構造のアイソフォームが産生される抗体サブタイプの同質性の集団の効率的かつ経済的な産生、精製、および分析を提供することに関する。さらに詳細には、本発明は、改善された貯蔵安定性を含めて改善された薬学的特性を生じるヒトIgG2抗体を操作することによって、同質性のIgG2ジスルフィド型を作製する方法を記載する。本明細書において下にさらに記載されるとおり、IgG2分子のアミノ酸残基の置換、欠失または挿入によって、ジスルフィド異質性の排除を促進し得、従ってIgG2抗体の構造的に均質な、さらに活性の単一の高次構造のアイソフォームが産生される。
上記によれば、本明細書では、モノクローナルIgG2抗体が提供され、この抗体は:軽鎖ポリペプチド;およびヒンジ領域を有する重鎖ポリペプチドを含んでおり、ここでこの抗体は、重鎖または軽鎖ポリペプチドにおいてアミノ酸修飾を含み、その結果その修飾によって、軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて重鎖ポリペプチドのヒンジ領域におけるアミノ酸との鎖間ジスルフィド結合を主に形成する軽鎖ポリペプチドが提供される。特定の局面では、この修飾は、重鎖ポリペプチド修飾を含む。特定の局面では、この修飾は、重鎖ポリペプチドのEu位置131でシステイン残基の置換または欠失を含んでもよい。特定の局面では、このヒンジ領域は、重鎖ポリペプチドのEuアミノ酸200〜238を含む。特定の局面では、この軽鎖ポリペプチドの最もC末端側のシステイン残基は軽鎖ポリペプチドのEu位置214のシステイン残基である。特定の局面では、この軽鎖ポリペプチドは常に、軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて重鎖ポリペプチドのヒンジ領域におけるアミノ酸とのみ鎖間ジスルフィド結合を形成する。
また本明細書では、モノクローナルIgG2抗体が提供され、この抗体は:軽鎖ポリペプチドと;ヒンジ領域を有する重鎖ポリペプチドを含んでおり、ここでこの抗体は、重鎖または軽鎖ポリペプチドにおいてアミノ酸修飾を含み、その結果その修飾によって、軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて重鎖ポリペプチドのヒンジ領域の外側のアミノ酸との鎖間ジスルフィド結合を主に形成する軽鎖ポリペプチドが提供される。特定の局面では、この軽鎖ポリペプチドの最もC末端側のシステイン残基は軽鎖ポリペプチドのEu位置214のシステイン残基である。特定の局面では、ヒンジ領域の外側のアミノ酸は重鎖ポリペプチドのEu位置131のシステイン残基である。特定の局面では、この重鎖ポリペプチド修飾は、ヒンジ領域内にシステイン残基の変異を含む。変異されたシステイン残基は、例えば、重鎖ポリペプチドのEu位置219または220であってもよい。特定の局面では、この軽鎖ポリペプチドの最もC末端側のシステイン残基は軽鎖ポリペプチドのEu位置214のシステイン残基である。
特定の局面では、この重鎖ポリペプチド修飾は、重鎖ポリペプチドのヒンジ領域において1つ以上のアミノ酸の挿入を含む。特定の局面では、1つ以上のアミノ酸の上記挿入は、重鎖ポリペプチドのEu位置219と220との間である。他の局面では、1つ以上のアミノ酸の前記挿入は、前記重鎖ポリペプチドのEu位置218と219との間である。
特定の局面では、この重鎖ポリペプチド修飾は、重鎖ポリペプチドのヒンジ領域において1つ以上のアミノ酸の欠失を含む。特定の局面では、このヒンジ領域は、重鎖ポリペプチドのEuアミノ酸200〜238を含む。特定の局面では、この軽鎖ポリペプチドは常に、軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて重鎖ポリペプチドのヒンジ領域の外側のアミノ酸とのみ鎖間ジスルフィド結合を形成する。
特定の局面では、この軽鎖修飾は、軽鎖ポリペプチドのC末端領域における1つ以上のアミノ酸の挿入または付加である。特定の局面では、この挿入は、軽鎖ポリペプチドのEu位置214と215との間である。特定の局面では、この修飾は、軽鎖ポリペプチドの最もC末端側のシステイン残基の後の1つ以上のアミノ酸の付加である。特定の局面では、この軽鎖修飾はEu位置215にセリン残基の置換変異を含み、この置換はセリンよりもかさ高いアミノ酸を提供する。
いくつかの実施形態では、治療用抗体処方物が提供され、この処方物は:目的の治療標的に結合する、複数のIgG2抗体であって、ここでこの処方物が主に、この抗体の単一の高次構造のアイソフォームを含み、この抗体が少なくとも1つのアミノ酸修飾を含む抗体と;薬学的に受容可能なキャリアとを含む。特定の局面では、この修飾は、抗体の重鎖ポリペプチド修飾を含んでいる。特定の局面では、この重鎖ポリペプチド修飾は、重鎖ポリペプチドのEu位置131でシステイン残基の置換を含む。特定の局面では、この重鎖ポリペプチド修飾は、重鎖ポリペプチドのEu位置131でシステイン残基の欠失を含む。
特定の局面では、この重鎖ポリペプチド修飾は、ヒンジ領域内にシステイン残基の変異を含む。特定の局面では、このシステイン残基の変異は、重鎖ポリペプチドのEu位置219でシステイン残基の変異を含む。
特定の局面では、このシステイン残基の変異は、重鎖ポリペプチドのEu位置220でシステイン残基の変異を含む。
特定の局面では、この重鎖ポリペプチド修飾は、重鎖ポリペプチドのヒンジ領域において1つ以上のアミノ酸の挿入を含む。1つ以上のアミノ酸の上記挿入は、例えば、重鎖ポリペプチドのEu位置219と220との間であっても、または218と219との間であってもよい。
特定の局面では、この重鎖ポリペプチド修飾は、重鎖ポリペプチドのヒンジ領域において1つ以上のアミノ酸の欠失を含む。
いくつかの実施形態では、この軽鎖修飾は、軽鎖ポリペプチドのC末端領域における1つ以上のアミノ酸の挿入または付加を含む。特定の局面では、1つ以上のアミノ酸の上記挿入は、軽鎖ポリペプチドのEu位置214と215との間である。特定の局面では、この挿入は、軽鎖ポリペプチドのEu位置214と215との間である。特定の局面では、この修飾は、軽鎖ポリペプチドの最もC末端側のシステイン残基の後の1つ以上のアミノ酸の付加である。この軽鎖修飾は、特定の局面では、Eu位置215でのセリン残基の置換変異であり、この置換はセリンよりもかさ高いアミノ酸を提供する。
また、本明細書においては、修飾されたIgG2抗体を作製する方法が提供され、この方法は:IgG2抗体の重鎖または軽鎖のポリペプチドをコードするヌクレオチド配列に対して修飾を作製する工程であって、その結果、少なくとも1つのコードされたアミノ酸を修飾する工程と;宿主細胞に核酸を導入する工程と;宿主細胞を培養して、その結果、複数の修飾されたIgG2抗体が発現されかつ分泌される工程とを包含し;ここでこの複数の修飾されたIgG2抗体は主に単一の高次構造のアイソフォームである。
特定の局面では、この修飾は、抗体の重鎖ポリペプチド修飾を含む。特定の局面では、この重鎖ポリペプチド修飾は、重鎖ポリペプチドのEu位置131でシステイン残基の置換または欠失を含む。他の局面では、この重鎖ポリペプチド修飾は、ヒンジ領域内にシステイン残基の変異を含む。特定の局面では、このシステイン残基の変異は、重鎖ポリペプチドのEu位置219または220でシステイン残基の変異を含む。特定の局面では、この重鎖ポリペプチド修飾は、重鎖ポリペプチドのヒンジ領域において1つ以上のアミノ酸の挿入を含む。1つ以上のアミノ酸の上記挿入は、例えば、重鎖ポリペプチドのEu位置219と220との間であっても、またはEu位置218と219との間であってもよい。特定の局面では、この重鎖ポリペプチド修飾は、重鎖ポリペプチドのヒンジ領域において1つ以上のアミノ酸の欠失を含む。
特定の局面では、上記修飾は、軽鎖修飾であり、かつ軽鎖のポリペプチドのC末端領域における1つ以上のアミノ酸の挿入を含む。特定の局面では、1つ以上のアミノ酸の上記挿入は、軽鎖ポリペプチドのEu位置214と215との間である。特定の局面では、この修飾は、軽鎖ポリペプチドの最もC末端側の残基の後の1つ以上のアミノ酸の付加である。特定の局面では、この軽鎖修飾は、Eu位置215でのセリン残基の置換変異を含んでおり、この置換はセリンよりもかさ高いアミノ酸を提供する。
本明細書ではまた、上記のモノクローナルIgG2抗体をコードする核酸分子、この核酸分子を含むベクター、およびこのベクターを含む宿主細胞も提供される。特定の局面では、宿主細胞は以下からなる群より選択され得る:CHO、VERO、NSO、BK、HeLa、CV1、Cos、MDCK、293、3T3、PC12 およびWI38細胞。本明細書ではまた、上記のIgG2抗体を発現するハイブリドーマ細胞も提供される。
本明細書ではまた、構造的同質性が増大した抗RANKL抗体も提供される。例えば、RANKLに対する抗体は、その全体が参照によって本明細書に援用される、国際公開第03/002713号に記載され、かつ配列番号60として本明細書に示される可変領域アミノ酸配列を含んでいる重鎖および配列番号61として本明細書に示される可変領域アミノ酸配列を含んでいる軽鎖によって例示される。従って、修飾は、この軽鎖ポリペプチドが軽鎖の最もC末端側のシステイン残基を通じてヒンジ領域におけるアミノ酸とのみ主に鎖間ジスルフィド結合を形成するように、本発明による抗RANKL抗体に対してなされてもよい。このような修飾は、抗RANKL抗体の重鎖ポリペプチドのEu位置131でシステイン残基の置換または欠失を有してもよい。他の、修飾は、この軽鎖が軽鎖の最もC末端側のシステイン残基を通じてヒンジ領域の外側のアミノ酸とのみ主に鎖間ジスルフィド結合を主に形成するように、抗RANKL抗体に対してなされてもよい。このような修飾は、抗RANKL抗体のヒンジ領域におけるシステイン残基の置換または欠失を有してもよい。例示的な置換または欠失は抗RANKL抗体の重鎖ポリペプチドのEu位置219または220であってもよい。本明細書で考慮される抗RANKL抗体に対するさらなる修飾としては、重鎖ポリペプチドのヒンジ領域における1つ以上のアミノ酸の挿入、または軽鎖ポリペプチドのC末端領域における1つ以上のアミノ酸の挿入が挙げられる。
本明細書ではまた、構造的同質性の増大した抗EGFR抗体である。例えば、EGFRに対する抗体は、その全体が参照によって本明細書に援用される、米国特許第6,235,883号に開示され、かつ配列番号57として本明細書に示される可変領域アミノ酸配列を含んでいる重鎖、および配列番号49として本明細書に示される可変領域アミノ酸配列を含んでいる軽鎖によって例示される。他の実施形態は、配列番号34、36、38、40、42、44、46、48および 50〜57のうちのいずれか1つとして本明細書に示される重鎖可変領域アミノ酸配列を含んでおり、かつ配列番号35、37、39、41、43、45、47または49のうちのいずれか1つとして本明細書に示される軽鎖可変領域アミノ酸配列を含んでいる抗体を包含する。従って、修飾は、軽鎖ポリペプチドが、軽鎖の最もC末端側のシステイン残基を通じてヒンジ領域のアミノ酸とのみ主に鎖間ジスルフィド結合を形成するように、本発明による抗EGFR抗体に対してなされ得る。このような修飾は、抗EGFR抗体の重鎖ポリペプチドのEu位置131でシステイン残基の置換または欠失を有してもよい。この軽鎖が軽鎖の最もC末端側のシステイン残基を通じてヒンジ領域の外側のアミノ酸とのみ主に鎖間ジスルフィド結合を形成するように、抗RANKL抗体に対して他の修飾がなされてもよい。このような修飾は、抗EGFR抗体のヒンジ領域においてシステイン残基の置換または欠失を有してもよい。例示的な置換または欠失は、抗EGFR抗体の重鎖ポリペプチドのEu位置219または220であってもよい。本明細書で考慮される抗EGFR抗体に対するさらなる修飾としては、重鎖ポリペプチドのヒンジ領域における1つ以上のアミノ酸の挿入、または軽鎖ポリペプチドのC末端領域における1つ以上のアミノ酸の挿入が挙げられる。
本明細書ではまた、構造的同質性の増大した抗IL−1R抗体も提供される。1つの特定の実施形態では、この抗体は抗IL−1Rの1型抗体である。例えば、IL−1Rに対する抗体は、その全体が参照によって本明細書に援用される、米国特許出願公開第2004/097712号に記載され、配列番号62、64、65、78、80または81のうちのいずれか1つとして本明細書に示される可変領域アミノ酸配列を含んでいる重鎖と、配列番号63、66、79または82のうちのいずれか1つとして本明細書に示される可変領域アミノ酸配列を含んでいる軽鎖によって例示される。他の実施形態としては、配列番号67〜75のうちいずれか1つとして本明細書に示される重鎖アミノ酸配列を含んでおり、配列番号76〜77のうちのいずれか1つとして本明細書に示される軽鎖アミノ酸配列を含んでいる抗体が挙げられる。従って、軽鎖ポリペプチドが、軽鎖の最もC末端側のシステイン残基を通じてヒンジ領域のアミノ酸とのみ主に鎖間ジスルフィド結合を形成するように、本発明による抗IL−1R抗体に対して修飾がなされもよい。このような修飾は、抗IL−1R抗体の重鎖ポリペプチドのEu位置131でシステイン残基の置換または欠失を有してもよい。この軽鎖が軽鎖の最もC末端側のシステイン残基を通じてヒンジ領域の外側のアミノ酸とのみ主に鎖間ジスルフィド結合を形成するように、抗IL−1R抗体に対して他の修飾がなされてもよい。このような修飾は、抗IL−1R抗体のヒンジ領域のシステイン残基に置換または欠失を有してもよい。例示的な置換または欠失は、抗IL−1R抗体の重鎖ポリペプチドのEu位置219または220であってもよい。本明細書で考慮される抗IL−1R抗体に対するさらなる修飾としては、重鎖ポリペプチドのヒンジ領域における1つ以上のアミノ酸の挿入、または軽鎖ポリペプチドのC末端領域における1つ以上のアミノ酸の挿入が挙げられる。
本明細書ではまた、修飾されたIgG2抗体の処方された安定性およびインビボの安定性を向上する方法が提供され、この方法は:IgG2抗体の重鎖または軽鎖のポリペプチドをコードするヌクレオチド配列を修飾する工程であって、その結果、少なくとも1つのコードされたアミノ酸を修飾する工程と;宿主細胞に核酸を導入する工程と;宿主細胞を培養して、その結果、複数の修飾されたIgG2抗体が発現されかつ分泌される工程とを包含し;ここでこの複数の修飾されたIgG2抗体は主に単一の高次構造のアイソフォームである。
本明細書ではまた、修飾されたIgG2治療用抗体の効力を増大させる方法が提供され、この方法は:IgG2抗体の重鎖または軽鎖のポリペプチドをコードするヌクレオチド配列を修飾する工程であって、その結果、少なくとも1つのコードされたアミノ酸を修飾する工程と;宿主細胞に核酸を導入する工程と;宿主細胞を培養して、その結果、複数の修飾されたIgG2抗体が発現されかつ分泌される工程とを包含し;ここでこの複数の修飾されたIgG2抗体は主に単一の高次構造のアイソフォームである。
本発明の他の特徴および利点は、以下の詳細な説明から明らかになる。しかし、詳細な説明および特定の実施例は、本発明のいくつかの実施形態を示しているが、例示のために示されるのに過ぎないことが理解されるべきである。なぜなら、本発明の趣旨および範囲内の種々の変化および改変がこの詳細な説明から当業者には明らかとなるからである。
本明細書の以下の図面の部分は本発明の局面をさらに例示するために含まれる。本発明は、本明細書に提示される特定の実施形態の詳細な説明と組み合わせてこの図面を参照することによってさらによく理解され得る。
図1は、ジスルフィド接続を示しているヒトIgGサブタイプの模式図である。IgG1(図1A)、IgG2(図1B)、IgG3(図1C)およびIgG4(図1D)が示されている。IgG1は、重鎖ヒンジ領域における最初のCys残基を介して軽鎖が接続されることが提唱された唯一のアイソタイプである。 図2は、抗RANKLのIgG2抗体の4つの構造的なアイソフォームに相当する模式図である。この形態は、構造型アイソフォームIgG2−A、(図2A)、IgG2−B1(図2B)、IgG2−B2(図2C)およびIgG2−A/B(図2D)と呼ばれる。 図2は、抗RANKLのIgG2抗体の4つの構造的なアイソフォームに相当する模式図である。この形態は、構造型アイソフォームIgG2−A、(図2A)、IgG2−B1(図2B)、IgG2−B2(図2C)およびIgG2−A/B(図2D)と呼ばれる。 図2は、抗RANKLのIgG2抗体の4つの構造的なアイソフォームに相当する模式図である。この形態は、構造型アイソフォームIgG2−A、(図2A)、IgG2−B1(図2B)、IgG2−B2(図2C)およびIgG2−A/B(図2D)と呼ばれる。 図2は、抗RANKLのIgG2抗体の4つの構造的なアイソフォームに相当する模式図である。この形態は、構造型アイソフォームIgG2−A、(図2A)、IgG2−B1(図2B)、IgG2−B2(図2C)およびIgG2−A/B(図2D)と呼ばれる。 図3は、IgG1およびIgG2サブタイプの模式図であって、IgG抗体のEdelmanまたはEuのナンバリング習慣を示している。軽鎖(LC)は破線で示される。特定のHCヒンジ領域およびLCアミノ酸のEUのナンバーが示される。IgG2ヒンジ領域の配列は配列番号5に示され、IgG1のヒンジ領域の配列は配列番号6に示される。可変性のジスルフィド結合相互作用は点線で示される。 図4は、異なるIgG2システイン変異体の模式図である。野性型IgG2抗体、およびCys219Ser(C219S)、Cys220Ser(C220S)およびCys131Ser(C131S)重鎖変異体が示される。各々の抗体のヒンジ領域配列は配列番号7(WTおよびC131S)、配列番号8(C219S)、および配列番号9(C220S)に示されるとおりである。軽鎖(LC)は、破線で示され、可変性のジスルフィド結合相互作用が点線で示される。 図5は、λ軽鎖またはκ軽鎖のいずれかを有するIgG2抗体の模式図である。軽鎖は破線によって示される。各々の抗体のヒンジ領域配列は配列番号7として示される。可変性のジスルフィド結合相互作用は点線で示される。 図6は、単一のIgG2重鎖のC1およびヒンジ領域を示しているIgG2の三次元モデルである。また、IgG1の公開された構造由来の重鎖とジスルフィド結合するLCのCys残基も示される。ヒトIgG2におけるLC Cys214残基の1つの可能性のある方向を図示するために、ヒトIgG4FabのLC Cys214残基の位置を示す。ヒトIgG4の配列においてLCのCys214にジスルフィド結合するC1のCysは、ヒトIgG2におけるCys131の位置と整列する。 図7は、抗RANKL抗体に対して作製されたIgG2システイン変異体の模式図である。野性型(WT)IgG2抗体、およびCys131Ser(C131S)変異体が示される。各々の抗体のヒンジ領域配列は配列番号7として示される。可変性のジスルフィド結合相互作用は点線で示される。 図8は、野性型およびCys131Ser変異体の模式図である。Cys131からSer131への変異によって、構造的アイソフォームIgG2−Aで見出される重鎖ジスルフィド間結合が妨げられる。 図9は、抗RANKL(実線)および抗RANKL(Cys131Ser)の変異体(点線)のSE−HPLC分析を示す。 図10は、抗RANKL(下部のトレース)および抗RANKL変異体(上部のトレース)のpH7.5でのCEX−HPLC分析を示す。 図11は、抗RANKL(下部のトレース)および抗RANKL変異体(上部のトレース)のpH5でのCEX−HPLC分析を示す。 図12は、抗RANKL(下部のトレース)および抗RANKL変異体(上部のトレース)の非還元のCE−SDS分析を示す。 図13は、抗RANKL(下部のトレース)および抗RANKL変異体(上部のトレース)の還元性のCE−SDS分析を示す。 図14は、非還元性のSDS−PAGEによる抗RANKL(Cys131Ser)変異体および抗RANKL野性型の分析を示す。サンプルは各々のレーンで示される。 図15は、還元SDS−PAGEによる抗RANKL(Cys131Ser)変異体および抗RANKL野性型の分析を示す。サンプルは各々のレーンで示される。 図16は、抗RANKL(上部のトレース)および抗RANKL(Cys131Ser)変異体(下部のトレース)のRP−HPLC分析を示す。 図17は、抗RANKL(上部のトレース)および抗RANKL(Cys131Ser)変異体(上部のトレース)の非還元のLys−Cペプチドマッピングを示す。 図18は、抗RANKL(上部のトレース)および抗RANKL変異体(下部のトレース)の還元のLys−Cペプチドマッピングを示す。 図19は、抗IL−1R抗体に対して作製されたIgG2システイン変異体の模式図である。図19には野性型(WT)IgG2抗体、Cys219Ser(C219S)およびCys131Ser(C131S)変異体が示される。図19Bは、ペプチドマッピング分析に従ってジスルフィド接続性を示す。各々の抗体のヒンジ領域配列は配列番号7(WTおよびC131S)、および配列番号8(C219S)に示される。軽鎖(LC)は、破線で示され、可変性のジスルフィド結合相互作用が点線で示される。 図20は、抗IL−1R野性型および産生された変異体のRP−HPLC分析を示す。安定にトランスフェクトされたCHO細胞(参照標準)、および一過性にトランスフェクトされたCHO細胞から産生された野性型抗IL−1Rが示される。抗IL−1R C219SおよびC131S変異体が示される。 図21は、IL−6産生阻害アッセイの結果を示しているグラフである。IL−6のコントロール産生の割合は、抗体濃度の関数としてpMでプロットする。抗IL−1R野性型ならびにC131SおよびC219S変異体の結果を示しており、算出されたIC50値はグラフの上の表に示す。 図22は、抗EGFr抗体に対して作製されたIgG2システイン変異体の模式図である。野性型(WT)IgG2抗体、Cys219Ser(C219S)、Cys220Ser(C220S)変異体およびC219S/C220S二重変異体が示される。各々の抗体のヒンジ領域配列は、配列番号7(WTおよびC131S)、配列番号8(C219S)、配列番号9(C220S)、および 配列番号10(C219S/C220S)に示される。軽鎖(LC)は、破線で示され、可変性のジスルフィド結合相互作用が点線で示される。 図23は、非還元性CE−SDSによるIgG2分子の分離を示す。(A)抗EGFr および(B)骨髄腫患者から単離された市販のヒトIgG2は、構造的なアイソフォームに典型的な二重性を示す(「出発材料」として示される)。システイン/システイン酸化還元電位の適用によって、ジスルフィド架橋の再配置がもたらされ、これがアイソフォーム1の減少およびアイソフォーム2の増大を生じる(「再折り畳み」として示される)。(C)単一のシステイン変異体C219S(図に示す)およびC220S(データ示さず)は、同質性の構造で予想される単一のピークで解像される。再折り畳み処理は変異体に影響しない。 図24は、抗EGFrジスルフィド架橋ヘテロペプチドのLC−MS分析を示す。(A)複雑なヒンジジスルフィド架橋ペプチドに関与する4つのトリプシンペプチドの配列。この複合体では、ヒンジ領域を提示するトリプシンペプチド、H16(配列番号11)が、鎖間結合C1−Cに通常関与する、トリプシンペプチドH10(配列番号12)およびL18に共有結合することが見出される。(B)抗EGFr参照材料のトリプシンペプチドマッピング。1〜7と表示される4つのペプチドの異なる配列をLC−MSで分離する。C219および/またはC220で変異されている抗EGFrでは、これらのヒンジ複合体ジスルフィドがペプチドに連結することは示されず、むしろ予想される直線的に対のヒンジ領域の完全な回復が示される。8〜10と表示されるこれらのペプチドは219/220C−Sヒンジ二量体であり、抗EGFrヒンジ二量体6,7とは1つの残基が異なる。(D)これらのIgG2分子のヒンジ複合ジスルフィド連結ペプチドの模式図。 図24は、抗EGFrジスルフィド架橋ヘテロペプチドのLC−MS分析を示す。(A)複雑なヒンジジスルフィド架橋ペプチドに関与する4つのトリプシンペプチドの配列。この複合体では、ヒンジ領域を提示するトリプシンペプチド、H16(配列番号11)が、鎖間結合C1−Cに通常関与する、トリプシンペプチドH10(配列番号12)およびL18に共有結合することが見出される。(B)抗EGFr参照材料のトリプシンペプチドマッピング。1〜7と表示される4つのペプチドの異なる配列をLC−MSで分離する。C219および/またはC220で変異されている抗EGFrでは、これらのヒンジ複合体ジスルフィドがペプチドに連結することは示されず、むしろ予想される直線的に対のヒンジ領域の完全な回復が示される。8〜10と表示されるこれらのペプチドは219/220C−Sヒンジ二量体であり、抗EGFrヒンジ二量体6,7とは1つの残基が異なる。(D)これらのIgG2分子のヒンジ複合ジスルフィド連結ペプチドの模式図。 図24は、抗EGFrジスルフィド架橋ヘテロペプチドのLC−MS分析を示す。(A)複雑なヒンジジスルフィド架橋ペプチドに関与する4つのトリプシンペプチドの配列。この複合体では、ヒンジ領域を提示するトリプシンペプチド、H16(配列番号11)が、鎖間結合C1−Cに通常関与する、トリプシンペプチドH10(配列番号12)およびL18に共有結合することが見出される。(B)抗EGFr参照材料のトリプシンペプチドマッピング。1〜7と表示される4つのペプチドの異なる配列をLC−MSで分離する。C219および/またはC220で変異されている抗EGFrでは、これらのヒンジ複合体ジスルフィドがペプチドに連結することは示されず、むしろ予想される直線的に対のヒンジ領域の完全な回復が示される。8〜10と表示されるこれらのペプチドは219/220C−Sヒンジ二量体であり、抗EGFrヒンジ二量体6,7とは1つの残基が異なる。(D)これらのIgG2分子のヒンジ複合ジスルフィド連結ペプチドの模式図。 図24は、抗EGFrジスルフィド架橋ヘテロペプチドのLC−MS分析を示す。(A)複雑なヒンジジスルフィド架橋ペプチドに関与する4つのトリプシンペプチドの配列。この複合体では、ヒンジ領域を提示するトリプシンペプチド、H16(配列番号11)が、鎖間結合C1−Cに通常関与する、トリプシンペプチドH10(配列番号12)およびL18に共有結合することが見出される。(B)抗EGFr参照材料のトリプシンペプチドマッピング。1〜7と表示される4つのペプチドの異なる配列をLC−MSで分離する。C219および/またはC220で変異されている抗EGFrでは、これらのヒンジ複合体ジスルフィドがペプチドに連結することは示されず、むしろ予想される直線的に対のヒンジ領域の完全な回復が示される。8〜10と表示されるこれらのペプチドは219/220C−Sヒンジ二量体であり、抗EGFrヒンジ二量体6,7とは1つの残基が異なる。(D)これらのIgG2分子のヒンジ複合ジスルフィド連結ペプチドの模式図。 図25は、配列番号13〜22に示される、ヒンジ領域のIgG2の挿入変異体を示す。 図26は、抗IL−1R抗体に対してなされた配列2〜4(配列番号14〜16)の挿入変異体の模式図である。 図27は、抗IL−1R抗体に対してなされた配列9〜10(配列番号21〜22)の挿入変異体の模式図である。 図28は、抗IL−1R抗体に対してなされた配列5〜8(配列番号17〜20)の挿入変異体の模式図である。 図29は、酸化還元富化型1および3とのコントロールの抗IL−1R抗体および抗IL−1RサンプルのRP−HPLCを示す。この型は、それぞれ0.9MのGuHClの有無のもとでレドックス緩衝液中で富化された。 図30は、1つの実験からの代表的なデータを示しており、これは抗IL−1R1のIgG2コントロール抗体(黒四角)、酸化還元富化型1(上向き三角)、および酸化還元富化型3(下向き三角)によるヒト軟骨細胞におけるIL−1b誘導性のIL−6産生の阻害を示している。IL−6の阻害は、各々の抗体サンプルの濃度の関数としてプロットする。 図31A〜Bは、コントロールの抗体(ひし形)、酸化還元富化型1(上向き三角)および酸化還元富化型3(下向き三角)による軟骨細胞(A)および全血分析(B)におけるIL−1b誘導性のIL−6の阻害についてのIC50を示す(n=6)。黒いバーは平均を示す。*P>0.05;**P<0.05;***P<0.01;****P<0.001。 図32A〜Cは、細胞培養培地からの未精製IgG2サンプルの逆相HPLC分析を示す。示されるのは、野性型(WT)サンプル(A)、cAc挿入構築物(B)(配列番号32に示されるヒンジ領域)、およびcPPc構築物(C)(配列番号33として示されるヒンジ領域)についての結果である。 図32A〜Cは、細胞培養培地からの未精製IgG2サンプルの逆相HPLC分析を示す。示されるのは、野性型(WT)サンプル(A)、cAc挿入構築物(B)(配列番号32に示されるヒンジ領域)、およびcPPc構築物(C)(配列番号33として示されるヒンジ領域)についての結果である。 図32A〜Cは、細胞培養培地からの未精製IgG2サンプルの逆相HPLC分析を示す。示されるのは、野性型(WT)サンプル(A)、cAc挿入構築物(B)(配列番号32に示されるヒンジ領域)、およびcPPc構築物(C)(配列番号33として示されるヒンジ領域)についての結果である。 図33は、κ軽鎖を有するIgG2抗体変異体の模式図である。軽鎖は破線によって示される。配列11〜13(配列番号23〜25)が示される。各々の抗体のヒンジ領域配列は配列番号7として示される。 図34は、λ軽鎖を有するIgG2抗体変異体の模式図である。軽鎖は破線によって示される。配列14〜16(配列番号26〜28)が示される。各々の抗体のヒンジ領域配列は配列番号7として示される。 図35は、λ軽鎖を有するIgG2抗体変異体の模式図である。軽鎖は破線によって示される。配列17〜19(配列番号29〜31)が示される。各々の抗体のヒンジ領域配列は配列番号7として示される。
IgG2サブクラスにおいて抗体の構造的な異質性が観察されているが、この異質性の背景にある理由はまだ説明されていない。例えば、米国特許出願公開第2006/194280号、Dillonら、(その全体が参照によって本明細書に援用される)は、還元/酸化カップリング試薬および必要に応じてカオトロピック剤を用いる組み換えIgGタンパク質の調製を供することによって特定のIgGアイソフォームを一過性に富化する方法に関する。しかし、再折り畳み方法は、IgGアイソフォームの富化された集団を生じ得るが、その効果は一時的であって、その抗体は、アイソフォームのさらに異質な集団へと経時的に復帰し得る。従って、本明細書に記載される本発明の実施形態は、インビボで安定であって、かつ経時的に同質のままである同質性の抗体集団を産生する方法を提供する。
従って、本発明の実施形態は、構造的に同質の組み換えタンパク質に、およびこのような構造的に同質の組み換えタンパク質を産生する方法に関する。一実施形態では、この組み換えタンパク質は組み換え抗体である。一実施形態では、この組み換えタンパク質は免疫グロブリンタンパク質である。別の実施形態では、この組み換えタンパク質はIgG2アイソタイプの抗体である。構造的に同質の組み換えタンパク質を含んでいる溶液は、異種の組み換えタンパク質を有する溶液と比較してインビボまたはインビトロで活性を改善した。
上記に従って、本明細書に記載されるのは、IgG2抗体の別個の構造的アイソフォームの特徴である。本発明の実施形態は、従来受容されている免疫グロブリン構造モデルとは異なるIgG2構造を有する修飾された抗体を包含する。例えば、本明細書に記載の方法によって産生される種々の構造的アイソフォームは、野性型アイソフォームと比較して鎖間ジスルフィド結合のいくつかを選択的に排除することが見出された。
従って、本発明の実施形態は、抗体の同質の集団の効率的および経済的な産生、精製および分析をもたらし、ここで抗体の単一の所望される高次構造のアイソフォームが産生される。さらに詳細には、実施形態は、抗体の同質の集団を作製する方法を包含し、ここでこの集団は、複数のジスルフィド型を呈するIgG2抗体の野性型集団に比べて、単一のIgG2ジスルフィド型を含む。一実施形態では、これらの抗体のアミノ酸配列は、所定の型へ折り畳むようにだけ修飾される。別の実施形態では、この抗体は、改善された薬学的特性を提供するように修飾される。下にさらに詳細に記載されるように、IgG2分子におけるアミノ酸残基の置換、欠失または挿入は、ジスルフィド異質性の排除を容易にし、それによって構造的同質性の、IgG2抗体のさらに活性な単一の高次構造アイソフォームを生じることが見出された。異質の抗体集団に比べて等しいかまたは改善された力価を有するだけでなく、抗体の構造的に同質の集団は、製造および処理が簡易であるという追加的な利点を有する。
本明細書に記載される実施形態は、モノクローナルIgG2抗体を包含し、この抗体は、軽鎖ポリペプチドと、ヒンジ領域を有する重鎖ポリペプチドとを含んでおり、この抗体は、重鎖または軽鎖のポリペプチドにアミノ酸修飾を含み、その結果この軽鎖ポリペプチドはこの軽鎖ポリペプチドのEu位置214でC末端システイン残基を通じて重鎖ポリペプチドのヒンジ領域におけるアミノ酸と主に鎖間ジスルフィド結合を形成する。特定の局面では、この修飾は、重鎖ポリペプチド修飾を含む。特定の局面では、この修飾は、重鎖ポリペプチドのEu位置131でシステイン残基の置換または欠失を含んでもよい。特定の局面では、このヒンジ領域は、重鎖ポリペプチドのEuアミノ酸200〜238を含む。特定の局面では、この軽鎖ポリペプチドは常に、軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて重鎖ポリペプチドのヒンジ領域におけるアミノ酸とのみ鎖間ジスルフィド結合を形成する。
本明細書において用いる場合、主に形成する、主にそれだけ形成するなどの用語は、標準的な方法を用いて検出する場合、実質的な集団が単一の高次構造アイソフォームで存在する抗体を指す。代表的には、実質的な集団は少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、さらに代表的には総集団のうち少なくとも91%、92%、93%、94%、95%、96%、97%、98%または99%である。
当業者に理解されるとおり、鎖間ジスルフィド結合は異なる抗体鎖上の2つのシステインの間のジスルフィド結合である。代表的には、鎖間ジスルフィド結合は、重鎖システインと軽鎖システインとの間であるか、または異なる重鎖上の2つのシステインの間である。鎖間ジスルフィド結合は、同じ鎖上の2つのシステインの間のジスルフィド結合である。代表的には、鎖間ジスルフィド結合は、重鎖システインと重鎖システインとの間であるか、または同じ軽鎖上の軽鎖システインと軽鎖システインとの間のジスルフィド結合である。
また本明細書では、軽鎖ポリペプチド、およびヒンジ領域を有している重鎖ポリペプチドを有しているモノクローナルIgG2抗体も提供され、この抗体は、重鎖または軽鎖ポリペプチドにおいてアミノ酸修飾を含み、その結果その軽鎖ポリペプチドは、この軽鎖ポリペプチドのEu位置214でC末端システイン残基を通じて重鎖ポリペプチドのヒンジ領域の外側のアミノ酸と主に鎖間ジスルフィド結合を形成する。特定の局面では、ヒンジ領域の外側のアミノ酸は重鎖ポリペプチドのEu位置131のシステイン残基である。特定の局面では、この重鎖ポリペプチド修飾は、ヒンジ領域内にシステイン残基の変異を含む。変異されたシステイン残基は、例えば、重鎖ポリペプチドのEu位置219または220であってもよい。特定の局面では、この重鎖ポリペプチド修飾は、重鎖ポリペプチドのヒンジ領域において1つ以上のアミノ酸の挿入を有する。1つ以上のアミノ酸の上記挿入は、例えば、重鎖ポリペプチドのEu位置219と220との間であっても、または位置218と219との間であってもよい。他の局面では、この重鎖ポリペプチド修飾は、重鎖ポリペプチドのヒンジ領域において1つ以上のアミノ酸の欠失を含む。いくつかの局面では、このヒンジ領域は、重鎖ポリペプチドのEuアミノ酸200〜238を含む。
特定の局面では、この軽鎖ポリペプチドは常に、軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて重鎖ポリペプチドのヒンジ領域の外側のアミノ酸とのみ鎖間ジスルフィド結合を形成する。
別の実施形態では、IgG2抗体は、改善された薬学的特性が得られるように修飾される。薬学的特性としては溶解度、代謝、および吸収、ならびに貯蔵安定性などの特性が挙げられる。従って、本発明に従って修飾されている、薬学的使用のために処方されるIgG2抗体は驚くべき改善された有効(保存)期間を有する。
他の実施形態としては、治療用抗体処方物が挙げられ、これは目的の治療標的に結合する複数のIgG2抗体、および薬学的に受容可能なキャリアを含んでおり、この処方物は主に、この抗体の単一の高次構造のアイソフォームを含み、この抗体は、少なくとも1つのアミノ酸修飾を含む。特定の実施形態では、この修飾はこの抗体の重鎖ポリペプチド修飾を含む。この重鎖ポリペプチド修飾としては、例えば、重鎖ポリペプチドのEuの131位置でのシステイン残基の置換または欠失を挙げることができる。特定の局面では、この重鎖ポリペプチド修飾は、ヒンジ領域内にシステイン残基の変異を含む。この変異は例えば、重鎖ポリペプチドのEu位置219、またはEu位置220のシステイン残基の変異であってもよい。他の局面では、この重鎖ポリペプチド修飾は、重鎖ポリペプチドのヒンジ領域において1つ以上のアミノ酸の挿入または欠失を含む。1つ以上のアミノ酸の上記挿入は、例えば、重鎖ポリペプチドのEu位置219と220との間であっても、または位置218と219との間であってもよい。
いくつかの実施形態では、この軽鎖修飾は、軽鎖ポリペプチドのC末端領域に1つ以上のアミノ酸の挿入を含む。特定の局面では、1つ以上のアミノ酸の上記挿入は、軽鎖ポリペプチドのEu位置214と215との間である。
IgG2抗体の構造
図1に示されるとおり、IgGサブタイプは特に、その重鎖結合間および重鎖/軽鎖結合において、予測されるジスルフィド結合構造を有する(Frangione,B.ら(1969)Nature 221,145〜148)。ヒンジ領域において、いくつかの例示されるIgGアイソタイプの間に多くの相違が見出され得る。表1は、コア・ヒンジ領域と名付けられたヒンジ領域のサブセット内のIgGアイソタイプの中の相違を例示する。表1に示されるとおり、IgG2コア・ヒンジは、IgG1のコア・ヒンジよりも3アミノ酸短い(Dangl,J.L.ら(1988)EMBO J.7,1989〜1994)。さらにIgG2コア・ヒンジはIgG1よりも多くのシステインを有する。
このヒンジ領域は、種々の方法で規定されている(その各々が参照によって全体として本明細書に援用される、Padlan,E.A.(1994)Mol.Immun.31,169−217;Dangl,ら、(1988)EMBO J.7,1989〜1994)。 本明細書において用いる場合、このIgG2ヒンジ領域は、Euナンバリング習慣を用いて、Cys200〜P238のアミノ酸残基を含む(その全体が参照によって本明細書に援用される、Edelman,G.M.ら、(1969)Natl.Acad.Sci.U.S.A.63:78〜85)。従って、IgGヒンジ領域に対する修飾としては、Eu位置200〜238を含むIgG2抗体の部分に対する任意の修飾を挙げることができる。
本明細書においては、図2に示されるようなIgG2サブタイプ内にジスルフィド異質性が存在するという発見がもたらされる。図3は、可能性のあるジスルフィド結合パターンに関してIgG2とIgG1との間の相違を強調している。Euナンバリングに従って、軽鎖(LC)は、IG1における重鎖(HC)のCys220に結合される。対称的に、IgG2抗体中のLC Cs214は、HC上の3つ以上の可能性のあるジスルフド結合パターンに近接していると予想される。C131、C219およびC220(図3)。従って、本明細書の実施例に提供されるとおり、IgG2抗体がそれらのヒンジ領域における異なるジスルフィド結合に基づく複数の高次構造アイソフォームで存在するということが発見である。従って、IgG2のLC 214はHC C131、C219およびC220とのジスルフィド結合を形成し、これによって別個の高次構造アイソフォームが生じることが示されている。
本明細書ではまた、HC−HCおよびHC−LCジスルフィド結合に関与するシステインに対する変異が同質性のIgG2高次構造アイソフォームをもたらすという驚くべき発見が提供される。HCシステインに対する変異によって、別個のジスルフィド接合性および高次構造の特性を有する抗体の同質性の集団がもたらされた。詳細には、図4に示すとおり、Cys219のセリンへの変異、Cys220のセリンへの変異およびCys131のセリンへの変異は、同質性のIgG2集団をもたらした。いくつかの実施形態では、この変異抗体は、野性型抗体以上の力価を保持していた。
本明細書ではまた、挿入変異を含んでおり、その結果、重鎖ヒンジ領域と軽鎖との間で作製されたジスルフィド結合が破壊されるIgG2抗体が提供される。実施例11に示されるとおり、代表的な実施形態では、1、2、3、4、5またはそれ以上のアミノ酸を重鎖(HC)ヒンジ領域ポリペプチドに挿入する。代表的には、挿入のポイントは、HCヒンジ領域のC219とC220の間、またはK218とC219との間である。しかし、本発明の実施形態は、抗体内のジスルフィド結合を変化させ、抗体の同質性の集団をもたらす他の挿入を包含する。
本明細書で提示される変異の例は、IgG2κについて行われたが、同じ変異をIgGγ抗体について同様に行うことができる。IgG2λ抗体はκ軽鎖の代わりにλ軽鎖を有する。例えば、λ軽鎖はC末端でシステインC214後にセリンS215を有する(図5を参照のこと)。
抗体アミノ酸配列に対する修飾
本発明の一実施形態は、構造的およびジスルフィド異質性を減少するように修飾されているIgG2抗体を含む。抗体のアミノ酸配列変異体は、抗体をコードするポリヌクレオチドへ適切なヌクレオチド変化を導入することによって調製される。あるいは、このアミノ酸変化は、抗体のペプチド合成の間になされてもよい。このような修飾としては例えば、抗体のポリペプチド配列からの欠失、および/またはその配列への挿入、および/またはその配列内の置換が挙げられる。欠失、挿入、および置換の任意の組み合わせは、最終構築物で到達するように行われるが、ただしこの最終構築物は所望の同質性の特徴を保有する。このアミノ酸変更は、配列が作製される時点で本発明の抗体のアミノ酸配列に導入され得る。
通常ジスルフィド結合形成に関与するシステインは、当該分野で公知の任意の種々の方法によってジスルフィド結合を形成できなくすることができる。例えば、ヒンジシステインは、ジスルフィド結合できない、セリンなどの別のアミノ酸で置換されてもよい。代表的には、セリンは、システインに対するその構造類似性に基づいて選択される。Cys→Serの置換は単一のシステイン側鎖のイオウ原子を酸素に変化させるという正味の影響を有する。システイン残基のジスルフィド結合能力を無くする他のアミノ酸置換を想定することができる。例えば、Cys→Ala、Cys→ThrまたはCys→Val置換が構築されてもよい。置換のための残基はまた、BLOSUM62 などのアミノ酸置換マトリックスの検査によって特定することもできる(S.Henikoff,、J.G.Henikoff(1992)Proc.Natl.Acad.Sci.USA89:10915)。これらの置換は目的のシステイン残基のジスルフィド結合能力を無くする。しかし、これらの変異による試験結果の解釈には、これらの置換された残基と元のシステインとの間の追加の構造的相違を考慮する必要があることに注意すべきである。これらの置換で得られるデータおよび特には、機能の変更を示唆しているデータは、ジスルフィド結合能力を除去する結果であり得るが、また、溶媒相互作用における変化またはポリペプチド折り畳みにおける変化の結果でもあり得る(完全にまたは部分的に)。あるいは、一連の変異体を構築してもよく、ここでは目的のシステイン残基が、システインのアミノ酸側鎖から逸脱するアミノ酸側鎖の特定の影響を評価するという時間がかかりかつ面倒な性質にもかかわらず、残りの天然に存在するアミノ酸の全てに対して変異されている。
アミノ酸置換は、周知の分子生物学的技術、例えば、修飾されるべきヒンジ領域をコードする核酸配列の部位指向性変異誘発によって達成することができる。適切な技術としては、Sambrookら、MOLECULAR CLONING:A LABORATORY MANUAL,第3版、Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,(2001)およびAusubelら、2006,Current Protocols in Molecular Biology,Greene Publishing Associates and Wiley Interscience,N.Yに記載される技術が挙げられる。変異体ヒンジ領域を有する免疫グロブリンを作製するための他の技術は、置換されるべきシステインをコードするコドンが置換アミノ酸をコードするコドンで置き換えられている、ヒンジ領域をコードする配列を有するオリゴヌクレオチドを合成する工程を包含する。次いで、このオリゴヌクレオチドは、必要に応じて、可変領域およびFc配列などの他の適切な抗体配列を含んでいるベクター骨格に連結され得る。
別の実施例では、ヒンジシステインが欠失されてもよい。アミノ酸欠失は、修飾されるべきヒンジ領域をコードする核酸配列の部位指向性の突然変異などの標準的な分子生物学的技術によって達成され得る。適切な技術としては、上掲のSambrookら、およびAusbelらに記載の技術が挙げられる。可変ヒンジ領域を有する免疫グロブリンを作製するための他の技術は、修飾されるべきシステインをコードするコドンが欠失されているヒンジ領域をコードする配列を含んでいるオリゴヌクレオチドを合成する工程を包含する。次いで、このオリゴヌクレオチドは、必要に応じて、可変領域およびFc配列などの他の適切な抗体配列を含んでいるベクター骨格に連結され得る。
アミノ酸配列挿入は、抗体の軽鎖内の1残基から百以上の残基を含んでいるポリペプチドまでの長さにおよぶカルボキシル末端融合物を含む。他の挿入としては、軽鎖または重鎖内の単一または複数のアミノ酸残基の配列内挿入を挙げることができる。代表的な実施形態では、1、2、3、4、5またはそれ以上のアミノ酸をHCヒンジ領域配列に挿入する。代表的には、挿入のポイントは、HCヒンジ領域のC219とC220の間、またはK218とC219との間である。挿入されるアミノ酸は任意のアミノ酸であってもよい。代表的には、挿入されるアミノ酸は、グリシンまたはプロリンであろう。2つ以上のアミノ酸を配列に挿入する場合、挿入されたアミノ酸は、全てがグリシンであっても、全てがプロリンであっても、またはグリシン、プロリンもしくは任意の他のアミノ酸の任意の組み合わせであってもよい。
アミノ酸欠失変異体は、少なくとも1つのアミノ酸残基が抗体分子から除去されている。
別のタイプの変異体はアミノ酸置換変異体である。これらの変異体は、抗体分子中で少なくとも1つのアミノ酸残基が異なる残基によって置き換えられている。保存的置換は表2で「保存的置換」の見出しのもとに示されている。表2に示されるか、またはアミノ酸分類を参照して下にさらに記載される、保存的置換もしくは好ましい置換が導入されてもよく、その産物がスクリーニングされてもよい。
抗体の生物学的特性における実質的な修飾は、(a)置換の領域でポリペプチド骨格の構造を例えば、シートまたはらせんの高次構造として維持すること、(b)この分子の荷電または疎水性を標的部位で維持すること、または(c)側鎖のかさを維持すること、に対する効果が有意に異なる置換を選択することによって達成される。天然に存在する残基は、以下の共通の側鎖特性に基づいてグループに分けられる:
(1)疎水性:met、ala、val、leu、ile;
(2)中性の親水性:cys、ser、thr;
(3)酸性:asp、glu;
(4)塩基性:asn、gln、his、lys、arg;
(5)鎖の方向に影響する残基:gly、pro;および
(6)芳香族:trp、tyr、phe。
非保存的置換は、これらのクラスの1つのメンバーを別のクラスで入れ替える工程を要するであろう。
抗体のアミノ酸配列変異体をコードする核酸分子は、当該分野で公知の種々の方法によって調製される。これらの方法としては限定するものではないが、天然の供給源からの単離(天然に存在するアミノ酸配列変異体の場合)、またはオリゴヌクレオチド媒介性(または部位指向性)突然変異誘発、PCR突然変異、および抗体の初期に調製された変異体もしくは非変異体バージョンのカセット変異誘発による調製が挙げられる。
変異誘発は、当該分野で公知の任意の技術に従って行ってもよく、この技術としては限定するものではないが、修飾されるべき免疫グロブリンの重鎖ヒンジ領域の配列内に1つ以上の修飾を有しているオリゴヌクレオチドを合成する工程が挙げられる。部位特異的な変異誘発では、所望の変異のDNA配列をコードする特異的なオリゴヌクレオチド配列の使用を通じた変異体の産生、および十分な数の隣接するヌクレオチドによって、十分なサイズおよび配列複雑性のプライマー配列を得て、横断されている欠失接合部の両側に安定な二重鎖を形成することが可能になる。代表的には、約17〜約75個のヌクレオチドまたはそれ以上の長さのプライマーであって、配列の接合部の両側の約10〜約25個以上の残基が変更されているプライマーが好ましい。1つ以上の位置で種々の異なる変異体を導入しているこのような多数のプライマーを用いて、変異体のライブラリーを作製してもよい。
部位特異的変異誘発または部位指向性変異誘発の技術は、その全体が参照によって本明細書に援用される、Ausubelら、2006,Current Protocols in Molecular Biology,Greene Publishing Associates and Wiley Interscience,N.Y.,によって例示されるとおり、当該分野で周知である。一般には、部位指向性の突然変異誘発は、最初に、所望のペプチドをコードするDNA配列をその配列内に含んでいる、一本鎖のベクターまたは二重鎖のベクターの二本鎖のメルティング分離物を得ることによって行われる。所望の変異した配列を保有しているオリゴヌクレオチドプライマーが一般には合成的に調製される。次いで、このプライマーを一本鎖ベクターとアニーリングして、T7DNAポリメラーゼのようなDNA重合化酵素に供して、変異を保有する鎖の合成を完了する。このように、ヘテロ二重鎖を形成し、ここでは1つの鎖が元の非変異配列をコードし、第二の鎖が所望の変異を保有する。次いで、このヘテロ二重鎖ベクターを用いて、E.coliまたはCHO細胞などの適切な細胞を形質転換またはトランスフェクトして、変異した配列の配置を保有している組み換えベクターを含むクローンを選択する。
あるいは、TaqDNAポリメラーゼのような市販の熱安定性酵素を用いるPCRの使用によって、変異誘発オリゴヌクレオチドプライマーを、適切なクローニングベクターまたは発現ベクターにクローニングできる増幅性のDNAフラグメントに組み込んでもよい。例えば、PCR媒介性の変異誘発手順については、その全体が本明細書に援用されているTornicら、Nucleic Acids Res.,18(6):1656,1987,およびUpenderら、Biotechniques,18(1):29〜30,32,1995を参照のこと。熱安定性ポリメラーゼに加えて熱安定性リガーゼを使用するPCRを用いて、増幅性のDNAフラグメントにリン酸化変異誘発オリゴヌクレオチドを組み込んでもよく、このDNAフラグメントを次に、適切なクローニングまたは発現ベクターにクローニングしてもよい(例えば、その全体が参照によって本明細書に援用される、Michael,Biotechniques,16(3):410〜2,1994を参照のこと)。
配列決定
当該分野で公知の任意の種々の配列決定反応を用いてアミノ酸修飾を有する抗体または抗体フラグメントをコードするヌクレオチド配列を直接配列決定してもよい。配列決定反応の例としては、Maxim and Gilbert(Proc.Natl.Acad.Sci.USA,74:560,1977)またはSanger(Proc.Natl.Acad.Sci.USA,74:5463,1977)によって開発された技術に基づく反応が挙げられる。任意の種々の自動化配列決定手順を利用することが可能であるということも考えられ(Bio/Techniques,19:448,1995)、これには、質量分析による配列決定が挙げられる(例えば、国際公開第94/16101号,Cohenら、Adv.Chromatogr.,36:127〜162,1996、およびGriffinら、Appl.Biochem.Biotechnol.,38:147〜159,1993を参照のこと)。
抗原特異性
本発明の実施形態は、任意の適切な抗原結合特異性の抗体に適用可能である。好ましくは、本発明の抗体は、生物学的に関連のあるポリペプチドである抗原に特異的である。さらに好ましくは、本発明の抗体は、ヒトなどの哺乳動物における疾患または障害の治療または診断のために有用である。
本明細書に記載のような修飾されたIgG2抗体は特に、治療用抗体、例えば、遮断抗体、アゴニスト抗体、中和抗体または抗体コンジュゲートとして有用である。治療用抗体の非限定的な例としては抗IL−1R(米国特許出願公開第2004/097712号に記載)、抗RANKL(国際公開第03/002713号に記載)、抗EGFr(米国特許第6,235,883号に記載)、抗IL−4受容体(米国特許出願公開第2005/0112694号および米国特許第7,186,809号に記載)、抗HGF(米国特許出願公開第2005/0118643号に記載)、抗Ang−1および抗Ang−2(米国特許出願公開第2003/0124129号および国際公開第03/030833号に記載)、抗Ang−4、抗OX−40、抗GM−CSF、抗NGF、抗グルカゴン受容体、抗スクレロスチン、抗IL−17R、抗CD30、抗IL18、抗アクチビン、抗VEGF、抗IgE、抗CD11、抗CD18、抗CD40、抗組織因子(TF)、抗HER2,および抗TrkC抗体が挙げられる。非ポリペプチド抗原に対する抗体(例えば、腫瘍関連糖脂質抗原)も考慮される。上述の引用文献の各々はその全体が参照によって本明細書に組み込まれる。
本発明の一実施形態は、構造的同質性が増大した抗RANKL抗体である。例えば、RANKLに対する抗体は、その全体が参照によって本明細書に組み込まれる、国際公開第03/002713号に記載され、かつ配列番号60として本明細書に示される可変領域アミノ酸配列を含んでいる重鎖および配列番号61として本明細書に示される可変領域アミノ酸配列を含んでいる軽鎖によって例示される。他の実施形態としては、配列番号58として本明細書に示される重鎖アミノ酸配列を含んでおり、かつ配列番号59として本明細書に示される軽鎖アミノ酸配列を含んでいる抗体が挙げられる。したがって、修飾は、この軽鎖ポリペプチドが軽鎖の最もC末端側のシステイン残基を通じてヒンジ領域におけるアミノ酸とのみ主に鎖間ジスルフィド結合を形成するように、本発明による抗RANKL抗体に対してなされてもよい。このような修飾は、抗RANKL抗体の重鎖ポリペプチドのEu位置131でシステイン残基の置換または欠失を有してもよい。この軽鎖が軽鎖の最もC末端側のシステイン残基を通じてヒンジ領域の外側のアミノ酸とのみ主に鎖間ジスルフィド結合を形成するように、抗RANKL抗体に対して他の修飾がなされてもよい。このような修飾は、抗RANKL抗体のヒンジ領域におけるシステイン残基の置換または欠失を有してもよい。例示的な置換または欠失は抗RANKL抗体の重鎖ポリペプチドのEu位置219または220であってもよい。本明細書で考慮される抗RANKL抗体に対するさらなる修飾としては、重鎖ポリペプチドのヒンジ領域における1つ以上のアミノ酸の挿入、または軽鎖ポリペプチドのC末端領域における1つ以上のアミノ酸の挿入が挙げられる。
本発明の一実施形態は、構造的同質性が増大した抗EGFR抗体である。例えば、EGFRに対する抗体は、その全体が参照によって本明細書に組み込まれる、米国特許第6,235,883号に開示され、かつ配列番号57として本明細書に示される可変領域アミノ酸配列、および配列番号49として本明細書に示される軽鎖アミノ酸配列を含んでいる重鎖によって例示される。他の実施形態は、配列番号34、36、38、40、42、44、46、48および50〜57のうちのいずれか1つとして本明細書に示される重鎖可変領域アミノ酸配列を含んでおり、かつ配列番号35、37、39、41、43、45、47または49のうちのいずれか1つとして本明細書に示される軽鎖可変領域アミノ酸配列を含んでいる抗体を包含する。したがって、修飾は、軽鎖ポリペプチドが、軽鎖の最もC末端側のシステイン残基を通じてヒンジ領域のアミノ酸とのみ主に鎖間ジスルフィド結合を形成するように、本発明による抗EGFR抗体に対してなされ得る。このような修飾は、抗EGFR抗体の重鎖ポリペプチドのEu位置131でシステイン残基の置換または欠失を有してもよい。この軽鎖が軽鎖の最もC末端側のシステイン残基を通じてヒンジ領域の外側のアミノ酸とのみ主に鎖間ジスルフィド結合を形成するように、抗EGFR抗体に対して他の修飾がなされてもよい。このような修飾は、抗EGFR抗体のヒンジ領域においてシステイン残基の置換または欠失を有してもよい。例示的な置換または欠失は、抗EGFR抗体の重鎖ポリペプチドのEu位置219または220であってもよい。本明細書で考慮される抗EGFR抗体に対するさらなる修飾としては、重鎖ポリペプチドのヒンジ領域における1つ以上のアミノ酸の挿入、または軽鎖ポリペプチドのC末端領域における1つ以上のアミノ酸の挿入が挙げられる。
本発明の一実施形態は、構造的同質性が増大した抗IL−1R抗体である。1つの特定の実施形態では、この抗体は抗IL−1Rの1型抗体である。例えば、IL−1Rに対する抗体は、その全体が参照によって本明細書に組み込まれる、米国特許出願公開第2004/097712号に記載され、配列番号62、64、65、78、80または81のうちのいずれか1つとして本明細書に示される可変領域アミノ酸配列を含んでいる重鎖と、配列番号63、66、79または82のうちのいずれか1つとして本明細書に示される可変領域アミノ酸配列を含んでいる軽鎖によって例示される。他の実施形態としては、配列番号67〜75のうちいずれか1つとして本明細書に示される重鎖アミノ酸配列を含んでおり、かつ配列番号76〜77のうちのいずれか1つとして本明細書に示される軽鎖アミノ酸配列を含んでいる抗体が挙げられる。したがって、軽鎖ポリペプチドが、軽鎖の最もC末端側のシステイン残基を通じてヒンジ領域のアミノ酸とのみ主に鎖間ジスルフィド結合を形成するように、本発明による抗IL−1R抗体に対して修飾がなされもよい。このような修飾は、抗IL−1R抗体の重鎖ポリペプチドのEu位置131でシステイン残基の置換または欠失を有してもよい。この軽鎖が軽鎖の最もC末端側のシステイン残基を通じてヒンジ領域の外側のアミノ酸とのみ主に鎖間ジスルフィド結合を形成するように、抗IL−1R抗体に対して他の修飾がなされてもよい。このような修飾は、抗IL−1R抗体のヒンジ領域のシステイン残基に置換または欠失を有してもよい。例示的な置換または欠失は、抗IL−1R抗体の重鎖ポリペプチドのEu位置219または220であってもよい。本明細書で考慮される抗IL−1R抗体に対するさらなる修飾としては、重鎖ポリペプチドのヒンジ領域における1つ以上のアミノ酸の挿入、または軽鎖ポリペプチドのC末端領域における1つ以上のアミノ酸の挿入が挙げられる。

上記抗原がポリペプチドである場合、それは、膜貫通分子(例えば、受容体)または成長因子などのリガンドであってもよい。例示的な抗原としては、分子、例えば、レニン;成長ホルモン、例としては、ヒト成長ホルモンおよびウシ成長ホルモン;成長ホルモン放出因子;副甲状腺ホルモン;甲状腺刺激ホルモン;リポタンパク質;α−1−アンチトリプシン;インスリンA鎖;インスリンB鎖;プロインスリン;卵胞刺激ホルモン;カルシトニン;黄体形成ホルモン;グルカゴン;アンジオポイエチン−1(Ang−1)、アンジオポイエチン−2(Ang−2)、アンジオポイエチン−4(Ang−4)、OX−40、GM−CSF、NGF、グルカゴン受容体、スクレロスチン、IL−17R、CD30、IL18、アクチビン、VEGF、IgE、CD11、CD18、CD40、組織因子(TF)、HER2、TrkC凝固因子、例えば、第VIIIC因子、第IX因子、組織因子(TF)、およびフォン・ヴィレブランド因子;凝固因子、例えば、プロテインC;心房性ナトリウム利尿因子;肺サーファクタント;プラスミノーゲンアクチベーター、例えばウロキナーゼまたはヒト尿もしくは組織型プラスミノーゲンアクチベーター(t−PA);ボンベシン;トロンビン;造血成長因子;腫瘍壊死因子−αおよび−β;エンケファリナーゼ;RANTES(正常T細胞発現および分泌活性(regulated on activation normally T−cell expressed and secreted));ヒトマクロファージ炎症性タンパク質(MIP−1−α);血清アルブミン、例えばヒト血清アルブミン;ミュラー阻害物質;レラキシンA鎖;レラキシンB鎖;プロレラキシン;マウスゴナドトロピン関連ペプチド;微生物タンパク質、例えば、βラクタマーゼ;DNase;IgE;細胞傷害性Tリンパ球関連抗原(CTLA)、例えばCTLA−4;インヒビン;アクチビン;血管内皮成長因子(VEGF);ホルモンまたは成長因子の受容体、例えば、上皮成長因子受容体(EGFr);インターロイキン受容体、例えば、IL−1RおよびIL−4R;プロテインAまたはD;リウマチ因子;神経栄養因子、例えば、骨由来神経栄養因子(BDNF)、ニューロトロフィン−3、−4、−5、または−6(NT−3、NT−4、NT−5、またはNT−6)、または神経成長因子、例えば、NGF−β;血小板由来成長因子(PDGF);線維芽細胞成長因子、例えば、aFGFおよびbFGF;上皮成長因子(EGF);トランスフォーミング成長因子(TGF)例えばTGF−αおよびTGF−β、例としては、TGF−β1、TGF−β2、TGF−β3、TGF−β4、またはTGF−β5;インスリン様成長因子−Iおよび−II(IGF−IおよびIGF−II);des(1−3)−IGF−I(脳IGF−I)、インスリン様成長因子結合タンパク質;CDタンパク質、例えば、CD3、CD4、CD8、CD19、CD20およびCD40;エリスロポイエチン;骨誘導因子;免疫毒素;骨形態形成タンパク質(BMP);核因子κBリガンド受容体活性化因子(Receptor Activator of Nuclear Factor Kappa B Ligand)(RANK−L);インターフェロン、例えば、インターフェロンα、−β、およびγ;コロニー刺激因子(CSF)、例えば、M−CSF、GM−CSF、およびG−CSF;インターロイキン(IL)、例えば、IL−1〜IL−10;スーパーオキシドディスムターゼ;T細胞受容体;表面膜タンパク質;分解促進因子;ウイルス抗原、例えば、HIVエンベロープの一部;輸送タンパク質;ホーミング受容体;アドレシン;調節性タンパク質;インテグリン、例えば、CD11a、CD11b、CD11c、CD18、ICAM、VLA−4およびVCAM;腫瘍関連抗原、例えば、HER2、HER3またはHER4受容体;ならびに上記の任意のポリペプチドのフラグメントが挙げられる。
本発明によって包含される抗体の例示的な抗原としては、CDタンパク質、例えば、CD3、CD4、CD8、CD19、CD20、CD34、およびCD46;ErbB受容体ファミリーのメンバー、例えば、EGF受容体、HER2、HER3またはHER4受容体;細胞接着分子、例えば、LFA−1、Mac1、p150.95、VLA−4、ICAM−1、VCAM、α4/β7インテグリン、およびαv/β3インテグリン、例としては、そのαまたはβサブユニット(例えば、抗CD11a、抗CD18または抗CD11b抗体);成長因子、例えば、VEGF;組織因子(TF);TGF−β;αインターフェロン(α−IFN);インターロイキン、例えばIL−8;IgE;血液型抗原Apo2、死受容体;flk2/flt3受容体;肥満(OB)受容体;mpl受容体;CTLA−4;プロテインCなどが挙げられる。本明細書の最も好ましい標的はVEGF、TF、CD19、CD20、CD40、TGF−β、CD11a、CD18、Apo2およびC24である。
いくつかの実施形態では、本発明の抗体は、腫瘍抗原に特異的に結合し得る。いくつかの実施形態では、本発明の抗体は、腫瘍抗原に特異的に結合し得、この腫瘍抗原は、クラスター分化因子(すなわち、CDタンパク質)ではない。いくつかの実施形態では、本発明の抗体は、CDタンパク質に特異的に結合し得る。いくつかの実施形態では、本発明の抗体は、CD3またはCD4以外のCDタンパク質に特異的に結合し得る。いくつかの実施形態では、本発明の抗体は、CD19またはCD20以外のCDタンパク質に特異的に結合し得る。いくつかの実施形態では、本発明の抗体は、CD40以外のCDタンパク質に特異的に結合し得る。いくつかの実施形態では、本発明の抗体は、CD19またはCD20に特異的に結合し得る。いくつかの実施形態では、本発明の抗体は、CD40に特異的に結合し得る。いくつかの実施形態では、本発明の抗体は、CD11に特異的に結合し得る。
一実施形態では、本発明の抗体は細胞生存調節因子に特異的に結合し得る。いくつかの実施形態では、本発明の抗体は細胞成長調節因子に特異的に結合し得る。いくつかの実施形態では、本発明の抗体は細胞周期調節に関与する分子に特異的に結合し得る。いくつかの実施形態では、本発明の抗体は組織発達または細胞分化に関与する分子に特異的に結合し得る。他の実施形態では、本発明の抗体は、細胞表面分子に特異的に結合し得る。いくつかの実施形態では、本発明の抗体は、細胞表面受容体ポリペプチドではない腫瘍抗原に特異的に結合し得る。
一実施形態では、本発明の抗体はリンホカインに特異的に結合し得る。一実施形態では、本発明の抗体はサイトカインに特異的に結合し得る。
一実施形態では、本発明の抗体は、血管形成に関与する分子に特異的に結合し得る。別の実施形態では、本発明の抗体は、血管形成に関与する分子に特異的に結合し得る。
可溶性抗原、またはそのフラグメントは、必要に応じて他の分子にコンジュゲートされて、抗体を作製するための免疫原として用いられ得る。受容体などの膜貫通分子については、これらの分子のフラグメント(例えば、受容体の細胞外ドメイン)を免疫原として用いてもよい。あるいは、膜貫通分子を発現する細胞を、免疫原として用いてもよい。このような細胞は、天然の供給源(例えば、癌細胞株)由来であってもよいし、または膜貫通分子を発現するように組み換え技術によって形質転換されている細胞であってもよい。抗体を調製するために有用な他の抗原およびその形態は当業者には明らかであろう。
本発明の抗体は、単一特異性であっても、二重特異性であっても、三重特異性であってもよく、またはそれ以上の多特異性抗体であってもよい。多特異性抗体は、単一分子の種々のエピトープに特異的であってもよく、または異なる分子上のエピトープに特異的であってもよい。多価特異的な抗体を設計および作製するための方法は当該分野で公知である。例えば、Millsteinら、(1983)Nature 305:537〜539;Kostelnyら、(1992)J.Immunol.148:1547〜1553;国際公開第93/17715号を参照のこと。
ベクターの構築
本発明の免疫グロブリンポリペプチドをコードするポリヌクレオチド配列は、標準的な組み換え技術を用いて得ることができる。所望のポリヌクレオチド配列を単離して、ハイブリドーマ細胞などの抗体産生細胞から単離して配列決定してもよい。あるいは、ポリヌクレオチドは、ヌクレオチドシンセサイザーまたはPCR技術を用いて合成してもよい。一旦得られれば、免疫グロブリンをコードする配列を、宿主細胞中で異種ポリヌクレオチドを複製および発現し得る組み換えベクターに挿入する。当該分野で入手可能でありかつ公知である多くのベクターを本発明の目的に用いてもよい。適切なベクターの選択は主に、ベクターに挿入すべき核酸の大きさ、およびそのベクターで形質転換されるべき特定の宿主細胞に依存する。各々のベクターは、その機能(異種ポリヌクレオチドの増幅もしくは発現、またはその両方)およびそのベクターが存在する特定の宿主細胞との適合性次第で、種々の成分を含む。このベクター成分としては一般には、限定するものではないが、以下が挙げられる:複製起点(特に、ベクターが原核生物細胞に挿入される場合)、選択マーカー遺伝子、プロモーター、リボソーム結合部位(RBS)、シグナル配列、異種核酸挿入および転写終止配列。
組み換え抗体の産生
哺乳動物細胞で組み換え抗体を作製するための方法は公知である。このような方法では、抗体産生は、タンパク質発現の誘導を包含する。IgG抗体またはIgG抗体フラグメントをコードする核酸は、プロモーター、好ましくは哺乳動物細胞で機能的なコントロール可能なプロモーターとの作動的な会合によって都合よく発現可能にされる。このような組み換え構築物は、適切な宿主(例えば、細菌、マウスまたはヒト)におけるIgG抗体タンパク質の発現のために設計される。本明細書においてタンパク質およびポリペプチドの発現のために適切なプロモーターが広範に利用可能であり、かつ当該分野で周知である。調節領域に連結されている誘導性プロモーターまたは構成的なプロモーター(例えば、転写または翻訳因子のためのエンハンサー、オペレーターおよび結合領域)が好ましい。「誘導性」プロモーターは、本明細書では制御可能なプロモーターと定義され、これには誘導性プロモーター(すなわち、アクチベーターまたはインデューサーの存在によって活性化または誘導されるまで不活性である正の調節を受けやすい)として、または活性化プロモーター(すなわち、レプレッサーが存在しない限り、不活性であり負の調節を受けやすく、リプレッサーの除去または活性化があれば、プロモーター活性の増大が生じる)として代表的には呼ばれるプロモーターである。本明細書に考慮されるプロモーターとしては例えば、限定するものではないが、当該分野で公知のようにtrp、lpp、tac、およびlacプロモーター、例えば、E.coli由来のlacUV5;バキュロウイルス/昆虫細胞発現系のP10またはポリヘドリン遺伝子プロモーター(例えば、米国特許第5,243,041号、同第5,242,687号、同第5,266,317号、同第4,745,051号、および同第5,169,784号を参照のこと)および他の真核生物発現系由来の誘導性プロモーターが挙げられる。タンパク質の発現のために、このようなプロモーターは、trpオペロンのオペレーター領域のようなコントロール領域との作動可能な連結においてプラスミド中に挿入される。
哺乳動物細胞に加えて、IgG2分子も、当該分野で公知の技術を用いて任意の他の適切な真核生物または原核生物の宿主細胞中に産生され得る。例えば、この分子は、E.coliなどの細菌中に産生されてもよい。さらなる例としては、この分子は、バキュロウイルスを用いて形質転換された昆虫細胞中で産生されてもよい。
疾患、障害または状態を処置する方法においては、このような疾患、障害および状態の予防的方法または予防する方法に加えて、有効量の組み換えポリペプチドとは、当該分野で公知のような、所望の生物学的または生理学的な効果を生じるポリペプチドの量である。特に処置方法、ならびに疾患、障害または状態に関連する症状を緩和する方法に関して、有効な量とは、治療上有効な量と同義に用いられる。このような方法では、必要な被験体とは、任意の動物、例えば、ヒトであって、疾患、障害または状態の症状を呈しているか、発症するリスクがあるか、または有していると診断される被験体である。
本明細書に提供される抗体修飾は、例えば、哺乳動物細胞で産生されるIgG抗体の同質性を増大するのに特定の用途を見出す。いくつかの実施形態では、本発明は、IgG2分子の改良された産生に特に関する。異なるジスルフィド結合型の存在に起因する、このようなタンパク質の異質性は、本明細書に記載される修飾の使用の結果として有意に減少される。これらの有益な結果は、当業者に公知のLCおよびLC/MS方法を用いてこのような異質性をモニターすることによって評価され得る。
詳細には、哺乳動物細胞系で分泌される抗体はグリコシル化される。好ましくは、この抗体は、細胞培養中での成長に適合した哺乳動物産生細胞によって分泌される。工業的に一般に用いられるこのような細胞の例は、CHO,VERO、NSO、BK、HeLa、CV1(Cosを含む)、MDCK、293、3T3骨髄腫細胞株(例えば、マウス)、PC12およびWI38細胞である。典型的な宿主細胞はチャイニーズハムスター卵巣(CHO)細胞であり、これはいくつかの複合の組み換えタンパク質、例えば、サイトカイン、凝固因子、および抗体の産生のために広範に用いられている(Braselら、1996,Blood 88:2004〜2012;Kaufmanら、1988,J.Biol Chem 263:6352〜6362;McKinnonら、1991,J Mol Endocrinol 6:231〜239;Woodら、1990,J.Immunol 145:3011〜3016)。ジヒドロ葉酸還元酵素(DHFR)欠損突然変異体細胞株(Urlaubら、1980,Proc Natl Acad Sci USA 77:4216〜4220),DXB11およびDG−44は、選り抜きのCHO宿主細胞株である。なぜなら、効率的なDHFR選択性および増幅性の遺伝子発現系によって、これらの細胞中の高レベルの組み換えタンパク質発現が可能になるからである(Kaufman R.J.,1990,Meth Enzymol 185:527〜566)。さらに、これらの細胞は、接着性または懸濁の培養物として操作することが容易であって、比較的良好な遺伝子安定性を呈する。CHO細胞およびそれらで発現される組み換えタンパク質は、広く特徴づけられて、規制当局によって臨床的な製造における用途が承認されている。
宿主細胞は、上記の発現ベクターで形質転換されるかまたはトランスフェクトされて、プロモーターを誘導するため、形質転換体を選択するため、または所望の配列をコードする遺伝子を増幅するために必要に応じて修飾された従来の栄養培地中で培養される。
トランスフェクションとは、任意のコード配列が現実に発現されるか否かにかかわらず宿主細胞による発現ベクターの取り込みをいう。トランスフェクションの多数の方法、例えば、CaPO沈殿およびエレクトロポレーションが、当業者に公知である。首尾よいトランスフェクションが一般には、このベクターの操作の任意の指示が宿主細胞内で生じるとき、認識される。
形質転換とは、DNAが複製可能になるように、染色体外エレメントとして、または染色体構成要素によって、原核生物宿主へDNAを導入する工程を意味する。用いられる宿主細胞次第で、このような細胞に適切な標準的な技術を用いて形質転換を行う。塩化カルシウムを使用するカルシウム処理は一般には、実質的な細胞壁障壁を含む細菌細胞について用いられる。形質転換のための別の方法は、ポリエチレングリコール/DMSOを使用する。用いられるさらに別の技術はエレクトロポレーションである。
組み換え修飾されたIgG2抗体の調製は好ましくは細胞培養の培地中で達成される。この組み換え抗体はその培養中で細胞によって産生され、引き続き精製される。組み換えタンパク質の調製は、細胞培養上清、細胞抽出物であってもよいが、好ましくはそれらから部分的に精製された画分である。部分的に精製されたとは、いくつかの断片化手順(単数または複数)が行われているが、所望のタンパク質またはタンパク質高次構造よりも多くのポリペプチド種(少なくとも10%)が存在することを意味する。組み換えタンパク質は、かなり高濃度であってもよい。いくつかの濃度範囲は、0.1〜20mg/ml、さらに好ましくは0.5〜15mg/mlであり、さらにより好ましくは1〜10mg/mlである。
組み換えの修飾されたIgG2抗体の調製は、ポリペプチドを発現するのに適切な培養条件下で組み換え宿主細胞を培養することによって最初に調製され得る。このポリペプチドはまた、トランスジェニック動物の産生物として、例えば、このポリペプチドをコードするヌクレオチド配列を含んでいる体細胞または胚細胞によって特徴づけられる、トランスジェニックのウシ、ヤギ、ブタまたはヒツジの乳汁の成分として発現されてもよい。次いで、公知のプロセスを用いて、このような培養物または成分から(例えば、培養培地または細胞抽出物または体液から)得られた発現ポリペプチドを精製するか、または部分的に精製してもよい。限定するものではないが、濾過、遠心分離、沈殿、相分離、アフィニティー精製、ゲル濾過、イオン交換クロマトグラフィー、疎水性相互作用クロマトグラフィー(HIC;フェニルエーテル、ブチルエーテルまたはプロピルエーテルなどの樹脂を用いる)、HPLC、または上記のいくつかの組み合わせのうちの1つ以上の工程を含む分画が本明細書で用いられてもよいが、本発明の有利な方法では、米国特許出願公開第2005/0161399号,および同第2006/194280号(その全体が参照によって本明細書に組み込まれる)に記載の様な高分子量治療タンパク質のLC分画および精製を使用してもよい。
本明細書に記載されるLCおよびLC/MS方法はまた、他の精製方法、例えば、ポリペプチドに結合する剤を含有しているアフィニティーカラムを用いるポリペプチドの精製;1つ以上の工程が溶出を含んでいる、コンカナバリンAアガロース、ヘパリントヨパール(商標)またはCibacrom blue 3GA Sepharose(商標)などのアフィニティー樹脂での1回以上のカラム工程;および/またはイムノアフィニティークロマトグラフィーと組み合わせてもよい。このポリペプチドは精製を容易にする形態で発現されてもよい。例えば、このポリペプチドは、マルトース結合ポリペプチド(MBP)、グルタチオン−S−トランスフェラーゼ(GST)またはチオレドキシン(TRX)などの融合ポリペプチドとして発現されてもよい。このような融合ポリペプチドの発現および精製のためのキットは、それぞれ、NEW ENGLAND BIOLAB(登録商標)(Beverly,Mass.),PHARMACIA(登録商標)(Piscataway,N.J.)およびINVITROGEN(登録商標)から市販されている。このポリペプチドは、エピトープでタグ化されて、このようなエピトープに関連する特定の抗体を用いることによって引き続いて精製されてもよい。このようなエピトープの1つ(FLAG(商標))は、KODAK(登録商標)(New Haven,Conn.)から市販されている。発現されたポリペプチドを親和性精製するために、ポリペプチドに結合するポリペプチド、例えば、組み換えタンパク質に対するモノクローナル抗体、を含んでいるアフィニティーカラムを利用することも可能である。他のタイプのアフィニティー精製工程は、プロテインAカラムであってもまたはプロテインGカラムであってもよく、このアフィニティー剤は、Fcドメインを含むタンパク質に結合する。ポリペプチドは、従来の技術を用いて、例えば、高い塩溶出緩衝液中で、アフィニティーカラムから取り出され、次いで利用されるアフィニティーマトリックスに依存して使用のための低い塩緩衝液中にまたはpHもしくは他の成分を変化させることによって透析されてもよいし、あるいはアフィニティー部分の天然に存在する物質を用いて競合的に除去されてもよい。本発明の一実施形態では、組み換えタンパク質の調製は、プロテインAアフィニティーカラムで部分的に精製されてもよい。
前述の精製工程のうちいくつか、または全てを、種々の組み合わせで、本発明の方法における使用のための組み換えIgG2の適切な調製物を調製するために、および/またはこのような組み換えポリペプチドをさらに精製するために、組み換え体タンパク質の調製物と還元/酸化カップリング試薬剤とを接触した後に使用してもよい。他の哺乳動物ポリペプチドを実質的に含まないポリペプチドが単離されたポリペプチドとして規定される。本明細書に記載されるレドックス試薬系剤の方法と組み合わせてもよい特定のLC方法は米国特許出願公開第2005/0161399号、および米国特許出願公開第2006/194280号、各々がその全体が参照によって本明細書に組み込まれる)にさらに詳細に記載される。
このポリペプチドはまた、公知の従来の化学合成によって産生されてもよい。合成手段によってポリペプチドを構築するための方法は、当業者に公知である。合成的に構築されたポリペプチド配列は、そのポリペプチドの意図される使用に応じて最終精製の所望の程度でグリコシル化されてもよい。このポリペプチドが例えばインビボで投与されるべき場合、比較的高い程度の純度が所望される。このような場合、このポリペプチドは精製され、他のポリペプチドに対応するポリペプチドバンドは、SDS−ポリアクリルアミドゲル電気泳動(SDS−PAGE)による分析の際に検出できない。当業者には、このポリペプチドに対応する複数のバンドが、示差的なグリコシル化、示差的な翻訳後プロセシングなどに起因してSDS−PAGEによって可視化できるということが理解されるであろう。最も好ましいのは、本発明のポリペプチドが、SDS−PAGEによる分析の際に単一のポリペプチドバンドで示されるように、実質的に均一まで精製されることである。このポリペプチドバンドは、銀染色、クマシーブルー染色、および/または(ポリペプチドが放射性標識される場合は)オートラジオグラフィーによって可視化され得る。
修飾された抗体の構造的アイソフォームの特徴付け
タンパク質の高次構造、および混合物中のタンパク質の高次構造の相対的な割合の決定は、任意の種々の分析技術および/または定量技術を用いて行ってもよい。タンパク質の高次構造の間の活性において相違が存在する場合、混合物中の高次構造の相対的な割合を決定することは、活性アッセイ(例えば、リガンドに対する結合、酵素活性、生物学的活性など)の方法によって行うことができる。タンパク質の生物学的活性も用いてもよい。あるいは、タンパク質1mgあたりの活性単位として活性を表現する結合アッセイを用いてもよい。
クロマトグラフィー、電気泳動、濾過、または他の精製技術などの分離技術の間に、2つの高次構造が示差的に分離されるならば、その混合物中の高次構造の相対的な割合を、このような精製技術を用いて決定してもよい。例えば、組み換えIgGの少なくとも2つの異なる高次構造が、疎水性相互作用クロマトグラフィーの方法で分離され得る。さらに、遠UV円偏光二色性がタンパク質の二次構造組成を評価するために用いられて以降(Perczelら、1991,Protein Engrg.4:669〜679)、このような技術で、タンパク質の選択的高次構造が存在するか否かを決定できる。高次構造を決定するために用いられるさらに別の技術は、蛍光分光であって、これを使用して、トリプトファンおよびチロシン蛍光に割り当て可能な三次構造において相補的な相違を得ることができる。高次構造における相違、したがって高次構造の相対的な割合を決定するために用いられ得る他の技術は、融解転移(Tm’s)および成分エンタルピー、ならびにカオトロープ変性を測定するための示差走査熱量測定である、凝集状態を測定するためのオンラインのSECである。本明細書で以下に詳細に記載されるいくつかの実施形態では、本発明は、タンパク質の異質性を決定するためにLC/MS検出を用いる。
単離という用語は、混合物中で他の成分と離れた混合物中の少なくとも1つの成分の物理的な分離を意味する。タンパク質の成分を分離すること、またはタンパク質の特定の高次構造は、このような成分を分離する傾向である任意の精製方法を用いて達成され得る。したがって、下に記載されるRP−HPLCに加えて、多数のクロマトグラフィー工程を使用してもよく、これには限定するものではないが、HIC、ヒドロキシアパタイトクロマトグラフィー、イオン交換クロマトグラフィー、アフィニティー、およびSECが挙げられる。他の精製方法は、ほんの2〜3例を挙げれば、濾過(例えば、接線流濾過)、電気泳動技術(例えば、電気泳動、電気溶出、等電点電気泳動)、および相分離(例えば、PEG−デキストラン相分離)である。さらに、所望の高次構造にタンパク質を含む組み換えタンパク質の調製の分画は、所望の高次構造を有するタンパク質の収率をさらに最適化するために、本発明の方法において再度処置してもよい。
活性のアッセイ
本発明の免疫グロブリンは、その物理的/化学的特性および生物学的機能について、当該分野で公知の種々のアッセイによって特徴づけられ得る。本発明の一局面では、参照(一般には野性型対応物)免疫グロブリンに対して本発明の変更された免疫グロブリンを比較することが重要である。特に、本発明の方法に従って発現される本発明の変更された免疫グロブリンの量は、類似の培養条件下で発現される参照免疫グロブリンのものに比較できる。タンパク質の定量のための方法は当該分野で周知である。例えば、発現されるタンパク質のサンプルは、クマシーブルー染色されたSDS−PAGE上でその定量的な強度について比較され得る。あるいは、目的の特定のバンド(単数または複数)(例えば、全長のバンド)は、例えば、ウエスタンブロットゲル分析および/またはAME5−RPアッセイによって検出され得る。
精製された免疫グロブリンはさらに一連のアッセイによって特徴づけられ得、このアッセイとしては限定するものではないが、N末端配列決定、アミノ酸分析、非変性サイズ排除高圧液体クロマトグラフィー(HPLC)、陽イオン交換クロマトグラフィー(CEX)、質量分析、イオン交換クロマトグラフィーおよびトリプシン消化が挙げられる。
本発明の特定の実施形態では、本明細書で産生される免疫グロブリンは、その生物学的活性について分析される。いくつかの実施形態では、本発明の免疫グロブリンは、その抗原結合活性について試験される。当該分野で公知であり、かつ本明細書で用いられ得る抗原結合アッセイとしては限定するものではないが、ウエスタンブロット、ラジオイムノアッセイ、ELISA(酵素結合免疫吸着アッセイ)、「サンドイッチ」イムノアッセイ、免疫沈降アッセイ、蛍光免疫アッセイおよびプロテインAイムノアッセイなどの技術を用いる任意の直接または競合的な結合アッセイが挙げられる。
イムノコンジュゲート
本発明はまた、化学療法剤(本明細書において上記で規定されかつ記載される)、毒素(例えば、細菌、真菌、植物または動物由来の低分子毒素または酵素的に活性な毒素であって、そのフラグメントおよび/または変異体を含むもの)、または放射性同位体(すなわち、放射性コンジュゲート)などの細胞傷害性剤に対してコンジュゲートされた本発明の免疫グロブリンポリペプチドを含んでいるイムノコンジュゲートに関する。
抗体および1つ以上の低分子毒素、例えば、カリケアマイシン、メイタンシン(米国特許第号5,208,020号)、トリコテセン、およびCC1065のコンジュゲートも本明細書において考慮される。
本発明の一実施形態では、免疫グロブリンは1つ以上のメイタンシン分子(例えば、1抗体分子あたり約1〜約10個のメイタンシン分子)にコンジュゲートされる。メイタンシンは例えば、May−SS−Meに変換されて、これがMay−SH3に還元されてもよく、修飾された抗体と反応されて(Cancer Research 52:127〜131(1992))メイタンシノイド−抗体イムノコンジュゲートが作製されてもよい。
用いられ得る酵素的に活性な毒素およびそのフラグメントとしてはジフテリアA鎖、ジフテリア毒素の非結合活性フラグメント、外毒素A鎖(Pseudomonas aeruginosa由来)、リシンA鎖、アブリンA鎖、モデシンA鎖、α−サルシン、Aleurites fordiiのタンパク質、ジアンチンのタンパク質、Phytolaca americanaのタンパク質(PAPI、PAPII、およびPAP−S)、momordica charantiaのインヒビター、クルシン、クロチン、sapaonaria officinalisのインヒビター、ゲロニン、ミトゲリン、レストリクトシン、フェノマイシン、エノマイシンおよびトリコテセンが挙げられる。例えば、1993年10月28日公開の国際公開第93/21232号を参照のこと。
本発明はさらに、本発明の免疫グロブリンと核酸分解活性を有する化合物(例えば、リボヌクレアーゼまたはDNAエンドヌクレアーゼ、例えば、デオキシリボヌクレアーゼ;DNase)との間で形成されるイムノコンジュゲートを考慮する。
放射性コンジュゲート抗体の産生のためには種々の放射性同位体が利用可能である。例としては、At211、I131、I125、Y90、Re186、Re188、Sm153、Bi212、P32およびLuの放射性同位体が挙げられる。
本発明の免疫グロブリンおよび細胞傷害性剤のコンジュゲートは、種々の二機能性タンパク質カップリング剤、例えば、N−スクシンイミジル−3−(2−ピリジルジチオール)プロピオネート(SPDP)、スクシンイミジル−4−(N−メレイミドメチル)シクロヘキサン−1−カルボキシレート、イミノチオラン(IT)、イミドエステルの二官能性誘導体(例えば、ジメチルアジピミデートHCL)、活性エステル(例えば、スベリン酸ジスクシンイミジル)、アルデヒド(例えば、グルタルアルデヒド)、ビス−アジド化合物(例えば、ビス(p−アジドベンゾイル)ヘキサンジアミン)、ビス−ジアゾニウム誘導体(例えば、ビス−(p−ジアゾニウムベンソイル)−エチレンジアミン)、ジイソシアネート(例えば、トリエン2,6−ジイソシアネート)、およびビス−活性フッ素化合物(例えば、1,5−ジフルオロ−2,4−ジニトロベンゼン)を用いて作製され得る。例えば、リシン免疫毒素は、Vitettaら、Science 238:1098(1987)に記載のように調製され得る。炭素14標識された1−イソチオシアナトベンジル−3−メチルジエチレントリアミン五酢酸(MX−DTPA)は、抗体に対する放射性ヌクレオチドのコンジュゲーションのための例示的なキレート剤である。国際公開第94/11026号を参照のこと。このリンカーは、細胞中の細胞毒性薬物の放出を容易にする「切断可能リンカー」であってもよい。例えば、酸易分解性リンカー、ペプチダーゼ感受性リンカー、ジメチルリンカーまたはジスルフィド含有リンカー(Chariら、Cancer Research 52:127〜131(1992))を用いてもよい。
あるいは、免疫グロブリンおよび細胞傷害性剤を含んでいる融合タンパク質を、例えば、組み換え技術またはペプチド合成によって作製してもよい。
さらに別の実施形態では、本発明の免疫グロブリンは、腫瘍プレターゲティングにおける利用のための「受容体」(例えば、ストレプトアビジン)にコンジュゲートされてもよく、ここでは抗体受容体コンジュゲートが患者に投与され、続いて、洗浄剤を用いて循環から未結合のコンジュゲートが取り除かれ、次いで細胞傷害性剤(例えば、放射性ヌクレオチド)にコンジュゲートされている「リガンド」(例えば、アビジン)の投与がなされる。
抗体誘導体
本発明の抗体および抗体変異体は、当該分野で公知であり、かつ容易に利用可能である追加の非タンパク質部分を含むように修飾されてもよい。好ましくは、抗体の誘導体化のために適切な部分は水溶性ポリマーである。水溶性ポリマーの非限定的な例としては限定するものではないが、ポリエチレングリコール(PEG)、エチレングリコール/プロピレングリコールのコポリマー、カルボキシメチルセルロース、デキストラン、ポリビニルアルコール、ポリビニルピロリドン、ポリ−1,3−ジオキソラン、ポリ−1,3,6−トリオキサン、エチレン/無水マレイン酸コポリマー、ポリアミノ酸(ホモポリマーまたはランダムコポリマーのいずれか)、およびデキストランまたはポリ(n−ビニルピロリドン)ポリエチレングリコール、プロピレングリコールホモポリマー、ポリプロピレンオキシド/エチレンオキシドコポリマー、ポリオキシエチル化ポリオール(例えば、グリセロール)、ポリビニルアルコール、およびそれらの混合物が挙げられる。ポリエチレングリコールプロピオンアルデヒドは、水におけるその安定性のおかげで製造に利点を有し得る。ポリマーは、任意の分子量のものであってもよく、分岐であっても、または未分岐であってもよい。抗体に結合されたポリマーの数は、変化してもよいし、2つ以上のポリマーが結合される場合は、それらは同じ分子であっても異なる分子であってもよい。一般には、誘導体化に用いられるポリペプチドの数またはタイプは、限定するものではないが、抗体誘導体が規定の条件下で治療に用いられるか否かにかかわらず、改良されるべき抗体の特定の特性または機能を含む考慮に基づいて決定され得る。
融合タンパク質
本明細書に提供される抗体修飾は、複数の高次構造に適合し得るか、および/または2つ以上のドメインを含み得る組み換えIgG2分子の異質性を効率的に減少することが見出されている。ドメインとは、ポリペプチド鎖のその領域に局在化され得る特定の三次構造および/または特定の活性に適合するポリペプチドの連続領域である。例えば、あるタンパク質の1つのドメインは、1つのリガンドに結合親和性を有し得、あるタンパク質の1つのドメインは別のリガンドに結合親和性を有し得る。熱安定性の意味では、ドメインは、タンパク質の協同的な変性ユニットを指してもよい。2つ以上のドメインを含むこのようなタンパク質は、1つのタンパク質として天然に存在することが見出されてもよいし、または融合タンパク質として遺伝的に操作されてもよい。さらに、ポリペプチドのドメインはサブドメインを有してもよい。
本明細書に提供される抗体修飾はまた、他のタイプの組み換えIgG2タンパク質の調製に有用であり、このタンパク質としては、免疫グロブリン分子もしくはその一部、およびキメラ抗体(例えば、マウス抗原結合領域にカップリングされたヒト定常領域を有する抗体)、またはそのフラグメントが挙げられる。免疫グロブリン分子をコードするDNAを操作して、単鎖抗体、親和性増強抗体、またはポリペプチドベースの他の抗体などの組み換えタンパク質をコードし得るDNAを作製する多くの技術が公知である(例えば、Larrickら、1989,Biotechnology 7:934〜938;Reichmannら、1988,Nature 332:323〜327;Robertsら、1987,Nature 328:731〜734;Verhoeyenら、1988,Science 239:1534〜1536;Chaudharyら、1989,Nature 339:394〜397を参照のこと)。完全ヒト抗体(例えば、トランスジェニック動物を用いて調製され、必要に応じてインビトロでさらに修飾される)、およびヒト化抗体の調製も本発明で用いられ得る。ヒト化抗体という用語はまた、単鎖抗体を包含する。例えば、Cabillyら、米国特許第4,816,567号;Cabillyら、欧州特許第0,125,023号B1;Bossら、米国特許第4,816,397号;Bossら、欧州特許第0,120,694号B1;Neuberger,M.S.ら、国際公開第86/01533号;Neuberger,M.S.ら、欧州特許第0,194,276 B1;Winter,米国特許第5,225,539号;Winter,欧州特許第0,239,400号B1;Queenら、欧州特許第0 451 216号B1;およびPadlan,E.A.ら、欧州特許第0 519 596号A1を参照のこと。本明細書で提供される抗体修飾はまた、抗体および細胞傷害性物質または発光物質を含んでいるコンジュゲートの調製の間に用いられてもよい。このような物質としては以下が挙げられる:メイタンシン誘導体(例えば、DM1);エンテロトキシン(例えば、黄色ブドウ球菌のエンテロトキシン);ヨウ素同位体(例えば、ヨウ素−125);テクニウム同位体(例えば、Tc−99m);シアニン蛍光色素(例えば、Cy5.5.18);およびリボソーム不活性化タンパク質(例えば、ボウガニン、ゲロニンまたはサポリン−S6)。
種々の融合タンパク質の調製はまた、本明細書に提供される修飾された抗体を用いて調製され得る。このような融合タンパク質の例としては、組み換えIgG(すなわち、IgG1、IgG2、IgG3またはIgG4)分子の一部との融合物として発現されるタンパク質、ジッパー部分との融合タンパク質として発現されるタンパク質、およびサイトカインと成長因子の融合タンパク質(すなわち、GM−CSFとIL−3、MGFとIL−3)などの新規な多機能タンパク質が挙げられる。国際公開第93/08207号および同96/40918号は、それぞれ免疫グロブリン融合タンパク質およびジッパー融合タンパク質を含めて、CD40Lと称する分子の種々の可溶性オリゴマー型の調製を記載する;そこに考察される技術は他のタンパク質に適用可能である。任意の上記の分子が、限定するものではないが、細胞受容体分子の細胞外ドメイン、酵素、ホルモン、サイトカイン、免疫グロブリン分子の一部、ジッパードメインおよびエピトープを含めて、融合タンパク質として発現され得る。
薬学的処方物
本発明の抗体を含んでいる治療用処方物は、水溶液、凍結乾燥処方物または他の乾燥処方物の形態で、所望の程度の純度を有する抗体を、必要に応じて生理的に許容される担体、賦形剤または安定剤(Remington’s Pharmaceutical Sciences 第16版 Osol,A.編集.(1980))と混合することによって貯蔵のために調製される。受容可能な担体、賦形剤または安定剤は、使用される投与量および濃度で受容者にとって無毒であり、これにはリン酸塩、クエン酸塩、ヒスチジンおよび他の有機酸などの緩衝液;アスコルビン酸およびメチオニンを含む酸化防止剤;防腐剤(例えば、塩化オクタデシルジメチルベンジルアンモニウム;塩化ヘキサメトニウム;塩化ベンザルコニウム;塩化ベンゼトニウム;フェノール、ブチルまたはベンジルアルコール;アルキルパラベン、例えば、メチルまたはプロピルパラベン;カテコール;レソルシノール;シクロヘキサノール;3−ペンタノール;およびm−クレゾール);低分子量(約10残基未満)ポリペプチド;タンパク質、例えば、血清アルブミン、ゼラチンまたは免疫グロブリン;ポリビニルピロリドンなどの親水性ポリマー;アミノ酸、例えば、グルタミン酸、プロリン、グリシン、グルタミン、アスパラギン、ヒスチジン、アルギニン、またはリジン;単糖類、二糖類および他の炭水化物、例としては、グルコース、マンノース、またはデキストリン;EDTAなどのキレート剤;糖類、例えば、スクロース、マンニトール、トレハロースまたはソルビトール;ナトリウムなどの塩を形成する対イオン;金属錯体(例えば、Zn−タンパク質複合体)および/または非イオン性サーファクタントTWEEN(商標)、PLURONICS(商標)またはポリエチレングリコール(PEG)が挙げられる。
本明細書の処方物はまた処置されている特定の適応のために必須である2つ以上の活性化合物、好ましくは、お互いに有害ではない補完的な活性を有するものを含んでもよい。このような分子は意図される目的に有効である量で組み合されて適切に存在する。
活性成分はまた、例えば、コアセルベーション技術によって、または界面重合によって調製されたマイクロカプセル中に、例えば、それぞれ、ヒドロキシメチルセルロースまたはゼラチン−マイクロカプセルおよびポリ−(メチルメタクリレエート)マイクロカプセルに、コロイド状の薬物送達系(例えば、リポソーム、アルブミンマイクロスフェア、マイクロエマルジョン、ナノ粒子およびナノカプセル)中に、またはマクロエマルジョン中にトラップされてもよい。このような技術は、Remington’s Pharmaceutical Sciences 第16版 Osol,A.編集.(1980)に開示される。
インビボ投与に用いるべき処方物は、無菌でなければならない。これは無菌濾過膜を通じて濾過によって容易に達成される。
徐放性の調製物を調製してもよい。徐放性調製物の適切な例としては、本発明の免疫グロブリンを含んでいる固体疎水性ポリマーの半透過性マトリックスが挙げられ、このマトリックスは、成形された物品の形態、例えば、フィルムまたはマイクロカプセルである。徐放性マトリックスの例としては、ポリエステル、ヒドロゲル(例えば、ポリ(2−ヒドロキシエチル−メタクリレート)、またはポリ(ビニルアルコール)、ポリラクチド(米国特許第3,773,919号)、L−グルタミン酸およびγ−エチル−L−グルタミン酸のコポリマー、非分解性エチレン−ビニルアセテート、分解性乳酸−グリコール酸コポリマー、例えば、LUPRON DEPOT(商標)(乳酸−グリコール酸コポリマーおよび酢酸ロイプロリドから構成される注射用マイクロスフェア)、およびポリ−D−(−)−3−ヒドロキシ酪酸が挙げられる。ポリマー、例えば、エチレン−ビニルアセテートおよび乳酸−グリコール酸は100日間にわたって分子の放出をし得るが、特定のヒドロゲルがタンパク質を放出するのはより短期間である。カプセル化された免疫グロブリンが、長期間身体にとどまる場合、それらは、37℃での湿気に対する曝露の結果として変性または凝集し得、それによって生物学的活性の損失および免疫原性の可能な変化が生じる。合理的なストラテジーが、関与する機構に依存して安定化のために考案され得る。例えば、凝集機構は、チオ−ジスルフィド交換を通じた分子間S−S結合形成であることが発見されている場合、安定化は、スルフヒドリル残基を修飾すること、酸性溶液からの凍結乾燥、湿度を制御すること、適切な添加物を用いること、および特定のポリマーマトリックス組成物を開発することによって達成され得る。これに関して、本明細書に記載されるようなシステイン残基を形成するジスルフィドの還元/排除が特に有利であり得る。
使用
本発明の免疫グロブリンは、例えば、インビトロおよびインビボの診断方法および治療方法の両方を含む、その免疫グロブリンが認識する特定のポリペプチドを精製、検出および標的化するために用いられ得る。
一局面では、本発明の免疫グロブリンは、生物学的サンプル中で特異的な抗原を定性的におよび定量的に測定するためのイムノアッセイで用いられ得る。抗原−抗体結合を検出するための従来の方法としては、例えば、酵素結合免疫吸着アッセイ(ELISA)、ラジオイムノアッセイ(RIA)または組織免疫組織化学が挙げられる。多くの方法は、検出目的のために抗体に結合した標識を用い得る。抗体とともに用いられる標識は、抗体に対するその結合を妨げない任意の検出可能な官能基(部分)である。多くの標識が公知であって、これには、放射性同位体である32P、32S、14C、125I、H、および131I、蛍光体、例えば、希土類キレート、またはフルオレセインおよびその誘導体、ローダミンおよびその誘導体、ダンシル、ウンベリフェロン、ルセリフェラーゼ、例えば、ホタルルシフェラーゼ、および細菌ルシフェラーゼ(米国特許第4,737,456号)、ルシフェリン、2,3−ジヒドロフタラジンジオン、西洋わさびペルオキシダーゼ(HRP)、アルカリホスファターゼ、ベータ−ガラクトシダーゼ、グルコアミラーゼ、リゾチーム、サッカリドオキシダーゼ、例えば、グルコースオキシダーゼ、ガラクトースオキシダーゼ、およびグルコース−6−ホスフェートデヒドロゲナーゼ、複素環オキシダーゼ、例えば、ウリカーゼおよびキサンチンオキシダーゼ、ラクトペルオキシダーゼ、ビオチン/アビジン、スピン標識、バクテリオファージ標識、安定なフリーラジカル、造影放射性ヌクレオチド(例えば、テクネシウム)などが挙げられる。特定の標識に関連するシグナルの発生および検出は、2つ以上の相互作用部分、例えば、リガンド−受容体対、酵素−基質対および蛍光共鳴エネルギー移動対の間の相互作用に直接的または間接的に関与し得る。
従来の方法は、それらの標識が免疫グロブリンポリペプチドに対して共有結合するために利用可能である。例えば、カップリング剤、例えば、ジアルデヒド、カルボジイミド、ジマレイミド、ビス−イミデート、ビス−ジアゾ化ベンジジンなどを用いて、上記の蛍光、化学発光および酵素標識によって抗体をタグ化してもよい。例えば、米国特許第3,940,475号(蛍光定量法)および米国特許第3,645,090号(酵素);Hunterら、Nature 144:945(1962);Davidら、Biochemistry 13:1014〜1021(1974);Painら、J.Immunol.Methods 40:219〜230(1981);ならびにNygren Histochem.and Cytochem 30:407〜412(1982)を参照のこと。本明細書で好ましい標識は、西洋わさびペルオキシダーゼおよびアルカリホスファターゼなどの酵素である。免疫グロブリンポリペプチドに対するこの酵素を含む、このような標識のコンジュゲーションは、免疫アッセイ技術の当該分野で標準的な徒手的手順である。例えば、O’Sullivanら、「Methods for the Preparation of Enzyme−antibody Conjugates for Use in Enzyme Immunoassay」 Methods in Enzymology,編集.J.J.LangoneおよびH.Van Vunakis,第73巻(Academic Press,New York,N.Y.,1981),pp.147〜166を参照のこと。このような結合方法は、本発明の免疫グロブリンポリペプチド内での使用に適切である。
免疫グロブリンを標識する代わりに、抗原を、検出可能な物質で標識された競合する抗原標準および未標識の抗体を利用する競合イムノアッセイによって体液中でアッセイしてもよい。このアッセイでは、この生物学的サンプル、標識抗原標準および抗体を組み合わせて、未標識の抗体に結合された標識された抗原標準の量を決定する。生物学的サンプル中の試験された抗原の量は、抗体に結合した標識された抗原標準の量に反比例する。
本発明の免疫グロブリンは、親和性精製剤として用いられてもよい。このプロセスでは、免疫グロブリンポリペプチドは、当該分野で周知の方法を用いて、Sephadex樹脂またはろ紙などの固体相上に固定される。この固定された免疫グロブリンを、精製されるべき抗原を含んでいるサンプルと接触させ、その後にその支持体を適切な溶媒で洗浄し、この溶媒は、固定された抗体に結合している、精製されるべき抗原以外のサンプル中の実質的に全ての物質を除去する。最終的に、この支持体を、免疫グロブリンから抗原を遊離する別の適切な溶媒で、例えば、グリシン緩衝液pH5.0で洗浄する。
本発明の免疫グロブリンは、インビトロおよびインビボの両方のアッセイで特異的な抗原活性を部分的にまたは完全に遮断するためにアンタゴニストとして用いられ得る。さらに、本発明の免疫グロブリンの少なくともいくつかは、他の種から抗原活性を中和し得る。したがって、本発明の抗体は、例えば、抗原を含有している細胞培養物中で、ヒト被験体において、または本発明の抗体が交差反応する抗原を有している他の哺乳動物被験体(例えば、チンパンジー、ヒヒ、マーモセット、カニクイザルおよびアカゲザル、ブタまたはマウス)において、特異的な抗原活性を阻害するために用いられ得る。一実施形態では、本発明の免疫グロブリンは、抗原活性が阻害されるように免疫グロブリンと抗原とを接触させることによって、抗原活性を阻害するために用いられ得る。好ましくは、この抗原はヒトタンパク質分子である。
別の実施形態では、本発明の免疫グロブリンは、障害に罹患している被験体において抗原(ここでこの抗原活性は有害である)を阻害するための方法で用いられ得、この方法は、被験体において抗原活性が阻害されるように、この被験体に対して本発明の免疫グロブリンを投与する工程を包含する。好ましくは、この抗原はヒトタンパク質分子であって、この被験体とはヒト被験体である。あるいは、この被験体は、本発明の抗体が結合する抗原を発現する哺乳動物であってもよい。なおさらに、この被験体は、抗原が導入されている(例えば、抗原の投与によって、または抗原導入遺伝子の発現によって)哺乳動物であってもよい。本発明の免疫グロブリンは、治療目的のためにヒト被験体に投与され得る。さらに、本発明の免疫グロブリンは、獣医用に、またはヒト疾患の動物モデルとして免疫グロブリンが交差反応する抗原を発現している非ヒト哺乳動物(例えば、霊長類、ブタまたはマウス)に投与され得る。後者に関して、このような動物モデルは、本発明の抗体の治療有効性を評価する(例えば、投薬量および投与の時間経過を試験すること)ために有用であり得る。治療上有用である本発明の遮断抗体としては、例えば、限定するものではないが、抗VEGF、抗IgE、抗CD11、抗インターフェロンおよび抗組織因子抗体が挙げられる。本発明の免疫グロブリンは、限定するものではないが、悪性および良性の腫瘍;非白血病およびリンパ性悪性疾患;神経、グリア、星状細胞、視床下部および他の腺、マクロファージ、上皮、間質性および胞胚腔の障害;ならびに炎症性、血管原性および免疫障害を含む1つ以上の抗原分子の異常な発現および/または活性に関連する疾患、障害または状態を診断、処置、阻害または予防するために用いられ得る。
一局面では、本発明の遮断抗体は、リガンド抗原に特異的であって、リガンド抗原に関与するリガンド−受容体相互作用を遮断するかまたは干渉すること、これによって対応するシグナル経路および他の分子または細胞事象を阻害することによって抗原活性を阻害する。本発明はまた、必ずしもリガンド結合を妨げる必要はないが、受容体活性化を妨げ、それによってリガンド結合により正常には開始される任意の応答を阻害する受容体特異的抗体を特徴とする。本発明はまた、リガンド−受容体複合体に優先的にまたは排他的に結合する抗体を包含する。本発明の免疫グロブリンは、特定の抗原受容体のアゴニストとしても作用し、それによってリガンド媒介性の受容体活性化の全てのまたは部分的な活性のいずれかを強化、増強または活性化し得る。
特定の実施形態では、細胞傷害性剤とコンジュゲートされた免疫グロブリンを含んでいるイムノコンジュゲートが患者に投与される。好ましくは、イムノコンジュゲートおよび/またはそれに結合する抗原が、細胞に内部移行されて、そのイムノコンジュゲートが結合する標的細胞を殺傷するのにおけるそのイムノコンジュゲートの治療有効性が増大される。一実施形態では、この細胞傷害性剤は標的細胞中の核酸を標的化するかまたは干渉する。このような細胞傷害性剤の例としては、本明細書で注記される任意の化学療法剤(メイタンシノイドまたはカリケアマイシン)、放射性同位体、またはリボヌクレアーゼ、またはDNAエンドヌクレアーゼが挙げられる。
本発明の修飾された抗体は、治療において単独でまたは他の組成物と組み合わせていずれかで用いられ得る。例えば、本発明の抗体は、別の抗体、化学療法剤(単数または複数)(化学療法剤のカクテルを含む)、他の細胞毒性剤(単数または複数)、抗血管形成剤(単数または複数)、サイトカイン、および/または増殖阻害剤(単数または複数)と同時投与されてもよい。本発明の抗体が腫瘍増殖を阻害する場合、その抗体と、これも腫瘍増殖を阻害する1つ以上の他の治療剤(単数または複数)とを組み合わせることが特に所望され得る。例えば、抗VEGF抗体遮断VEGF活性を、転移性乳癌の処置において、抗ErbB抗体(例えば、HERCEPTIN(商標)抗HER2抗体)と組み合わせてもよい。あるいは、またはさらに、この患者は、放射線治療(例えば、外部ビーム照射または抗体などの放射性標識剤での治療)を併用して受けてもよい。上で注記されるこのような併用療法としては、併用投与(ここでは2つ以上の剤が同じまたは別の処方物中に含まれる)、および別々の投与(この場合、本発明の免疫グロブリンの投与は、追加の治療(単数または複数)の投与の前および/または後に行ってもよい)が挙げられる。
本発明の免疫グロブリン(および追加の治療剤)は、非経口、皮下、腹腔内、肺内および鼻腔内を含む任意の適切な方法、および局所的な処置に望まれる場合には、病巣内投与によって投与される。非経口的注入としては筋肉内、静脈内、動脈内、腹腔内または皮下の投与が挙げられる。さらに、免疫グロブリンはパルス注入によって、特に抗体の漸減用量で投与されることが適切である。好ましくは、この投薬量は、その投与が短期であるかまたは慢性的であるかに部分的に依存して、注射によって、最も好ましくは静脈内または皮下注射によって、与えられる。
本発明の免疫グロブリン組成物は、適正医療行為に従ったやり方で、処方、投薬および投与される。この状況での考慮のための要因としては、処置されるべき特定の障害、処置されている特定の哺乳動物、個々の患者の臨床状態、障害の原因、その剤の送達の部位、投与方法、投与の計画、および医療従事者に公知の他の要因が挙げられる。免疫グロブリンは必ずではないが、該当の障害を予防または処置するために現在用いられている1つ以上の剤とともに必要に応じて処方される。このような他の剤の有効量は、処方物中に存在する本発明の免疫グロブリンの量、障害または処置のタイプ、および上記で考察される他の要因に依存する。これらは一般には、本明細書において上で用いられたのと同じ投薬量で、かつ投与経路で、または従来使用される投薬量の約1〜99%で用いられる。
疾患の予防または処置については、本発明の免疫グロブリンの適切な投薬量(単独で用いられるか、または化学療法剤などの他の剤と組み合わせて用いられる)は、処置されるべき疾患のタイプ、抗体のタイプ、疾患の重症度および経過、免疫グロブリンが予防目的で投与されるか治療目的で投与されるか、事前の治療、患者の臨床病歴、および免疫グロブリンに対する応答、ならびに担当医の裁量に依存する。免疫グロブリンは適切には、一回または一連の処置で患者に投与される。疾患のタイプおよび重症度に依存して、約1μg/kg〜15mg/kg(例えば、0.1mg/kg〜10mg/kg)の免疫グロブリンが、例えば、1回以上の別々の投与によろうと、または連続注入によろうと、患者への投与のための初回候補投薬量である。代表的な一日投薬量は、上述の要因に依存して、約1μg/kg〜100mg/kg以上にわたってもよい。数日間以上にわたる反復投与については、その条件次第で、疾患症状の望ましい抑制が生じるまで処置が維持される。抗体または抗体フラグメントの好ましい投薬量は、約0.05mg/kg〜約10mg/kgの範囲である。したがって、1回以上の用量の約0.5mg/kg、2.0mg/kg、4.0mg/kgまたは10mg/kg(またはその任意の組み合わせ)が患者に投与されてもよい。このような用量は、間欠的に、例えば、毎週、または3週毎に投与されてもよい(例えば、その結果、患者は約2〜約20、例えば、約6用量の抗体を与えられる)。最初により高用量を、続いて1回以上の低用量を投与してもよい。例示的な投薬レジメンは、免疫グロブリンの約4mg/kgの初期ローディング用量、続いて約2mg/kgという毎週の維持用量を投与する工程を包含する。しかし、他の投薬レジメンが有用である場合もある。この治療の進行は従来の技術およびアッセイによって容易にモニターされる。
製品
本発明の別の実施形態では、上記の障害の処置のために有用な材料を含んでいる製品が提供される。製品は、容器、およびその容器に付随した表示または添付文書を含む。適切な容器としては、例えば、ボトル、バイアル、シリンジなどが挙げられる。その容器は、ガラスまたはプラスチックなどの種々の材料から形成され得る。その容器は、その条件を処置するのに有効な組成物を保持し、無菌のアクセスポートを備えてもよい(例えば、その容器は、皮下注射針で穿刺可能な栓を有している静脈内溶液バッグまたはバイアルであってもよい)。組成物中の少なくとも1つの活性剤は、本発明の免疫グロブリンである。この表示または添付文書は、この組成物が癌などの選ばれた状態を処置するのに用いられることを示す。さらに、この製品は(a)本明細書に含まれる組成物を含む第一の容器であって、その組成物が本発明の免疫グロブリンを含む第一の容器と;(b)そこに組成物が含まれる第二の容器であって、その組成物がさらなる細胞毒性剤を含む第二の容器とを備えてもよい。本発明のこの実施形態における製品はさらに、その第一および第二の免疫グロブリン組成物が癌を処置するために用いられ得ることを示している添付文書を備えてもよい。あるいは、またはさらに、その製品はさらに、注射用静菌水(BWFI)、リン酸緩衝化生理食塩水、リンゲル溶液、およびデキストラン溶液などの薬学的に受容可能な緩衝液を含んでいる第二(または第三)の容器を備えてもよい。他の緩衝液、希釈剤、フィルター、ニードルおよびシリンジを含んでいる商業的観点および使用者の観点から望まれる他の材料がさらに含まれてもよい。
以下の実施例は、本発明のいくつかの実施形態を実証するために含まれる。当業者には、以下の実施例に開示される技術が本発明の実施において十分機能することが本発明者らによって発見された技術に相当し、したがって、その実施のための好ましい形態を構成すると考えられ得るということが理解されるはずである。しかし、当業者は、本発明の開示に照らして、開示されている特定の実施形態で多くの変化をおこなうことが可能であり、さらに本発明の趣旨および範囲から逸脱することなく同様のまたは類似の結果が得られるということを理解すべきである。
以下の実施例は、組み換え抗体分子の構造的に均一な集団を生じるように抗体を修飾する方法を提供する。
(実施例1)
IGG2のC1およびヒンジ近接性のモデリング
IgG2抗体の三次元モデルを作製して、野性型抗体分子におけるジスルフィド結合の位置を研究した。このモデルでは、IgG2のC1のCys残基(Cys−131)とヒンジ残基Cys−219およびCys−220の密接な空間近接性、ならびに鎖間ジスルフィド結合軽鎖Cys残基(Cys−214)を図示した。IgG2抗体の三次元モデルは以下のように構築した。
ヒトIgG2モノクローナル抗体の抗EGFrのC1アミノ酸配列(その全体が参照によって本明細書に組み込まれる、米国特許第6,235,883号に記載される)を、IgG4抗体の公知のC1構造に対してモデリングした(pdbアクセッションコード1ad9;Banfield,M.J.およびBrady,R.L.(1997)Proteins 29:161〜171)。抗EGFrのC1配列とテンプレートとの間のアミノ酸配列同一性は、96%であって、全てのCys残基の位置および同一性は完全に保存されていた。得られたIgG2のC1モデルは、ヒンジ領域を含むヒトIgG1のC1構造上に重ね合わされた(pdbアクセッションコード1hzh;Saphire,E.O.,ら、(2001)Science 293:1155〜1159)。次いで、IgG2 C1モデルをC1ドメインのC末端のβ鎖の末端でIgG1構造に計算的に融合して、偽IgG2のC1およびヒンジを作製した。次いで、IgG1構造から残ったアミノ酸を、抗EGFr配列における対応する残基へ計算的に変異させて、最終のIgG2のC1およびヒンジの図示を作製した。IgG1またはIgG4由来のLCのCys残基の位置は、それぞれ1hzhおよび1ad9からとられた;1ad9の定常軽鎖ドメインが抗EGFrのドメインと同一であり、1hzhの定常軽鎖ドメインは、Cys−214から離れた単一の残基で抗EGFrとは異なるということが注目される。図6に示される軽鎖Cys残基は、その方向が異なる。しかし、この残基での可撓性が、その残基がその軽鎖の最後のアミノ酸であるために予想される。三次元のモデリングは、MOE(Chemical Computing Group,Montreal,Quebec,Canada)を用いて行い、かつ図6はPyMOL Molecular Graphics System(DeLano Scientific,San Carlos,CA)を用いて作製した。
したがって、前述の抗体配列は、図6に示されるようなIgG2抗体の三次元モデルを作製するために有用であった。このモデルでは、4つのシステインについて、位置(HC)131、(HC)219、(HC)220および(LC)214が、密接な空間近接性にある(図6)。このことは、これらのシステイン残基が別のジスルフィド連結を生じ、これらのシステイン残基の修飾が、IgG2抗体の構造的アイソフォームを生じ得るという発見を支持する。
(実施例2)
モノクローナル抗体である抗RANKLの変異
抗RANKLは、核因子κBリガンド受容体活性化因子(Receptor Activator of Nuclear Factor Kappa B Ligand)(RANK−L)に対するヒトモノクローナルIgG2抗体である。抗RANKLは、分子間ジスルフィド結合を通じて連結される2つのHCおよび2つのLCから構成される。各々のHCは、448個のアミノ酸を生じるようにコードされ、κサブタイプに属する各々のLCは、C末端でCys残基を有する215個のアミノ酸からなる。上記で考察されるとおり、溶液中のヒトIgG2抗体は、鎖間ジスルフィド架橋のなかに異質性を呈する。
のなかのジスルフィド接続性を簡略にするために、抗RANKLの変異型であるC1ドメインおよびヒンジを作製した。この変異型では、両方の重鎖の第三のCys残基であるCys131を、セリン残基で置き換えて(図7)C131S突然変異体を作製した。要するに、野性型抗RANKLをコードするDNAをWO03/002713(その全体が参照によって本明細書に組み込まれる)に記載されるように得た。次いで、抗RANKLのC131S突然変異体を、部位指向性の変異誘発による周知の方法を用いて構築した。次いで、C131S突然変異体を、標準的な方法によってCHO細胞で発現した。次いで、その分泌された抗体を精製した。最終産物の濃度は3.8mg/mLであった。野性型抗体は、31.9mg/mLおよび61.2mg/mLで得た。野性型および変異型の抗RANKLタンパク質の両方とも10mMの酢酸ナトリウム、5%ソルビトール、pH5.2で処方した。
図8は、主要IgG−抗RANKL抗体の構造的アイソフォームの野性型重鎖および軽鎖の予想されるジスルフィド接続性を示す。前の実施例の構造的分析では、LCはまた、ヒンジのCys残基を通じてHCに結合して別の構造的アイソフォームを形成することが可能であることが実証された。したがって、HCのCys131をC131S型のSer残基で置換する場合、LCのC末端Cys214は、HCのヒンジの他のCys残基(Cys219、220)のうちの1つとジスルフィド結合を形成し、それによって4鎖のジスルフィド結合抗体が維持されることが予想された。
軽鎖は、もはやC131S突然変異体における位置131でジスルフィド結合を作製することができないので、抗RANKL(Cys131Ser)突然変異体は、多数の可能なアイソフォームで存在する野性型抗RANKLよりも均一なプロフィールを呈することが予想された(図2を参照のこと)。以下の2つの実施例は、C131S突然変異体抗RANKL抗体の構造および活性の特徴を記載する。
(実施例3)
抗RANKL突然変異体抗体の構造的特徴付け
抗RANKLのC131S変異型は、下に記載されるような種々の分析技術(SE−HPLC、CEX−HPLC、CE−SDS、SDS−PAGEおよびRP−HPLC)を用いて野性型抗RANKLと隣り合わせで特徴づけた。変異型のジスルフィド結合はまた、非還元性のペプチドマッピング技術で特徴づけた。
抗RANKL抗体のSE−HPLC
SE−HPLCは、非変性条件下でタンパク質の分子サイズまたは流体力学的容積を決定するための信頼できる技術である。抗RANKLのSE−HPLC分析を行って、その純度を決定した。この方法は、2つのToso Hass TSK−GEL G3000SWXLカラムを連続して、そして20mMのリン酸ナトリウム、250mMのNaCl、pH 7.0を移動相として利用して、凝集物および低分子量のクリップ型からモノマーの抗RANKLを識別した。この溶出プロフィールは、低濃度(3.8mg/mL)の抗RANKL Cys131Ser突然変異体に起因して280nmではなく215nmでモニターした。凝集物、Main Peakおよびクリップ型についての結果は、相対的な面積の割合として表した。
抗RANKL(Cys131Ser)突然変異体のSE−HPLC分析からの結果を、抗RANKL野性型タンパク質の溶出プロフィール(実線)と重なったクロマトグラム(点線)として図9に示す。図9に示されるとおり、突然変異体の溶出プロフィールは、1つのメインのピークによって支配され、またマイナーな凝集体ピークを有する。この突然変異体の組み込み結果は、野性型抗RANKLで得られる結果と極めて匹敵する。抗RANKL(cys131Ser)突然変異体のメインのピークと野性型のピークとの間の溶出位置におけるわずかな相違にかかわらず、SE−HPLCの結果、その突然変異体がちょうど抗RANKL野性型と同様に2つのHCおよび2つのLCのポリペプチド鎖から構成されるという結論が全く支持される。メインのピークの溶出において観察される相違は、HCおよびLCポリペプチドの異なる化学量論を示唆するほど十分大きくはない。
抗RANKLのCEX−HPLC分析
抗RANKLの荷電異質性は代表的には、CEX−HPLC分析を用いて評価される。抗RANKLの種々の表面荷電変異体は、pH7.5で弱い陽イオン荷電カラムに結合すること、続いて塩勾配を使用する溶出によって分離された。この方法は、抗RANKL結合およびNaCl含有勾配での溶出の間に215nmでプロフィールをモニタリングするとき、pH7.5で20mMのリン酸ナトリウムを用いて40℃でDionex ProPac WCX 10カラムを用いた。この流速は、0.6mL/分であって、注入量は180μgのタンパク質であった。この方法は、酸性の変異体をPre−Peaksとして、塩基性の変異体を特定のPost Shoulder、およびPost Peaksとして分離した。Pre−Peaks, Post ShoulderおよびPost Peaksについての結果、ならびにMain Peakは、面積の割合として表された。溶出の間の直線勾配は、1分あたり約1.25mMのNaClの流速で0〜79nMのNaClであった。
追加のCEX−HPLC技術を抗RANKL(Cys131Ser)突然変異体の分析のために用いた。荷電の変異体を生じ得る一次配列の修飾に基づく抗体のIgGサブタイプを主に分離するのではなく、pH5の移動相を使用するこの方法は、図8に記載されるIgGサブタイプの構造的アイソフォームを分離する。この手順は、Dionex ProPac WCX 10カラムおよび20mMの酢酸ナトリウム緩衝液pH5を用いた。このタンパク質は、NaCl勾配で溶出され、215nmでモニターされた。溶出されたピークA、B、C、Dの特徴は、相対的な面積の割合として表現された。カラムの温度は、外界温度であって、流速は0.8mL/分であった。溶出の直線勾配は、1分あたり約1.1mMのNaClの増加で100〜175mMのNaClであった。
抗RANKLおよび野性型のpH7.5でのCEX−HPLC分析は図10に示される。抗RANKL(Cys131Ser)の溶出クロマトグラムは下側に示される野性型のクロマトグラムに比較して上側に示される。溶出位置は、野性型よりもわずかにはやく溶出する突然変異体と匹敵しており、これはわずかに多くの酸性の暴露面を示唆している。野性型についての約39分で遅く溶出するショルダーは、突然変異体のクロマトグラムには存在せず、これはいくらか広くただし対称的なピークを呈している。このショルダーは、抗RANKL野性型の特徴であって、構造的アイソフォームIgG−B2で富化されることが示された(抗RANKLについての4つの可能な構造の図解については図2を参照のこと)。このIgG−B2の構造的アイソフォームは、HC Cys131がSer残基によって置換されるとき可能な構造ではない。したがって、CEX−HPLC pH7.5の方法によって抗RANKL(Cys131Ser)突然変異体を分析するとき、遅い溶出ショルダーは存在しないということは驚くべきことではない。
次いで、野性型RANKLの構造的アイソフォームの部分的精製および富化のために用いられたCEX−HPLC分析(pH5)を使用して、抗RANKL突然変異体のプロフィールを評価した。下の図11は、抗RANKL野性型のプロフィール(青)に比較した突然変異体について得られたプロフィール(赤)を示す。
抗RANKLのCE−SDS分析
CE−SDSは最初、SDSでの処理後に非還元条件下で行い、70℃で加熱し、分子が変性された後にいずれの露出した遊離のチオール基もヨードアセトアミドで遮断する。抗RANKLをSDSでインキュベートした場合、そのタンパク質は全般的に負の電荷を呈し、陰極に向かって電場中を移動した。CE−SDSはSDS後の分子サイズ(流体力学的容積)に基づいて分離し、熱がそのタンパク質を変性した。この分析は、非還元条件および還元条件の両方を用いて行った。その分析は、UV/PDA検出を備えるAgilent HP3Dキャピラリー電気泳動システムで行った。そのキャピラリーは、CE標準のベアー融合シリカキャピラリであって、CE−SDSサンプルおよび泳動緩衝液はBio−Radから供給された。
抗RANKLは、Peak1AおよびPeak1Bとして特定された異質のスプリットの主要なピークとして非還元条件下で移動した。スプリットの主要なピークはIgGサブタイプのジスルフィド媒介アイソフォームの別の指標である。非還元条件下では、その結果は、相対的面積の割合のもとで、Pre Peaks、Main Peaks(Peak1A+Peak1B)およびPost Peaksとして表わされた。抗RANKLは、還元CE−SDSについては2−メルカプトエタノールで還元された。溶出プロフィールは、別個のLCおよびHCを示し、その結果は、LC、HCおよび非主要として、相対面積割合において報告される。
これらの結果は図12に示され、この図では、抗RANKL野性型について得られた結果に比較した変異の電気泳動図を提示している。図12に示されるとおり、抗RANKL突然変異体の電気泳動図によって、対称的な主要なピークが示され、これは抗RANKL野性型について観察されるとおり予想されるIgG特徴的な徴候のスプリットを欠いていた。突然変異体についてのスプリットの主要ピークの欠失によって、ジスルフィド構造は2つの形態の間で異なることが示唆された。突然変異体の対称的なピークによって、1つまたは2〜3個の構造的アイソフォームしか存在しないことが示唆される。
次に、CE−SDSを、SDSでの処置後還元条件下で行い、70℃の加熱およびDTTでHCおよびLCを遊離した。野性型に比較して得られた突然変異体の電気泳動図を図13に示す。

両方の構築物についてLCに対するHCの比は、2.1という値を呈し、これは、HCおよびLCポリペプチドについての平均質量値を用いる計算に基づいた2.1という理論値とよく匹敵した。この結果によって、この突然変異体は野性型とちょうど同じく、2つのHCおよび2つのLCポリペプチド鎖でアセンブルされたということが強調された。
抗RANKLのSDS−PAGE分析
抗RANKL(Cys131Ser)を、非還元SDS−PAGEによって抗RANKL野性型と隣り合わせで分析して、SDSおよび熱変性後に抗RANKLおよび変異体のサイズ分布をモニターした。この方法は、完全にアセンブルされていない分子であってもよいし(1つまたは2つのLCのいずれかを欠く)、またはペプチド結合切断によって断片化されてもよい、共有結合したマルチマーまたは潜在的なフラグメントの検出に有用な非還元条件下でプレ・キャストした4〜20%のポリアクリルアミドゲルを用いた。遊離のLCおよびHCはまた、非還元条件下で検出され得る。抗RANKLは、非還元条件下で、116.25〜200kDaという分子量マーカーの位置で、約150kDaというみかけの分子量を有するインタクトな分子として移動した。低レベルの共有結合した二量体もこの方法によって検出された。
ジスルフィド結合は、抗RANKLをそのサブユニットであるLCおよびHCに還元するために2−メルカプトエタノールまたはジチオスレイトール(DTT)のいずれかで破壊してもよい。抗RANKLは、還元剤としてDTTを使用することによって還元した。なぜならこの試薬を用いれば観察されるスメアおよびアーチファクトが最小限であったからである。抗RANKLのHCおよびLCは、それぞれ、ほぼ50kDaおよび26kDaというみかけの分子量で移動した。ペプチド結合切断によって産生されるフラグメントはまた、還元条件下でおよび非還元条件下で検出された。Bio−Safeクマシー染色を用いて、SDS−PAGEによって分けられた抗RANKLのペプチドバンドを可視化した。
非還元性のSDS−PAGEの結果は図14に示す。非還元のゲルの結果によって、この突然変異体構築物がわずかに高レベルのマイナーな改変、例えば、共有結合した凝集体(自然には二量体である可能性が高い)を呈したことが示される。なぜなら移動位置によって、200kDaの分子量標準より大きいサイズが示されたからである。この突然変異体は、たとえマイナー型のレベルが抗RANKL(Cys131Ser)突然変異体を示すサンプル中でわずかに高いとしても、野性型抗RANKLに比較して同様のアレイのマイナーな低分子型を提示した。
還元性SDS−PAGE分析の結果は、図15に示しており、抗RANKL突然変異体および野性型の匹敵するバンドパターンを示す。ゲル中のマイナーなバンドの強度は、2つの構築物の間でわずかに変化したが、その変動は、1つの構築物の異なる調製物から十分に予想される範囲内である。
抗RANKLのRP−HPLC分析
RP−HPLCを用いてIgGサブクラスに固有の構造的アイソフォームを部分的に分離した。サンプルを、64℃で移動相A(0.1%のTFAが95/3.9/1.1(v/v/v)のHO/n−プロパノール/ACN中に含有される)中で平衡にしたZorbax 300 SB C カラム(5μ,2.1×150mm)上に注入して、0.5mL/分の流速で溶出した。溶出の与えられた勾配は、移動相B(0.1%のTFAが10/70/20(v/v/v)のHO/n−プロパノール/ACN/の中に含有される)で25〜30%で23分にわたり、溶出されたタンパク質は215nmでモニターした。図16は、野性型のクロマトグラムと比較した抗RANKL突然変異体のクロマトグラムを示す。示されるとおり、RP−HPLCによって、野性型構築物よりも数分遅く溶出された突然変異体の疎水性の増大した性質が実証された。構造的アイソフォームに相当し、かつ野性型に存在した、十分規定された4つのピーク1、2、3および4は、突然変異体のプロフィールには明らかに存在しなかった。
抗RANKLのペプチドマッピング
HCにおけるCys131の除去は、ヒンジ領域に関するジスルフィド接続性を簡単にすることが期待された。ジスルフィド接続性を試験する最も直接的な方法は、非還元条件下でペプチドマッピングを行うことであった。エンドプロテイナーゼLys−Cを用いる非還元性のペプチドマッピングを、突然変異体および野性型抗RANKL構築物に適用した。抗RANKLのペプチドマッピングは、非還元条件について下に概説されるように行い、Cys残基を含んでいるペプチドの間のジスルフィド接続性を確立した。この確立された非還元性の消化はまた、下に概説されるようなTCEPでの処置によって還元して、配列を特定する目的のための還元マッピングを得た。

Lys−C消化。 3μLのサンプルを30〜60mg/mLで7μLの8MのGuHCl、0.1MのNaOAc、20mMのNEM、pH5.0の緩衝液と混合し、これを37℃で3時間インキュベートし、続いて4Mの尿素、20mMのNHOH、0.1Mのリン酸ナトリウム、pH7.0の緩衝液中に30倍希釈した。エンドプロテイナーゼLys−Cを添加して、酵素対基質の比が1:10(w/w)まで添加し、その消化を37℃で一晩行った。非還元性ペプチドマッピング分析については、TFAをこのサンプル消化物に0.1%(v/v)の最終濃度まで添加して、反応をクエンチし、そのペプチドを液体クロマトグラフィー/エレクトロスプレーイオン化タンデム質量分析(LC/ESI−MS/MS)によって直接分析した。還元されたペプチドマッピング分析については、TECPを消化したサンプルに対して10mMという最終濃度まで添加して、サンプルを室温で約30分間インキュベートして、ジスルフィド連結ペプチドを還元した。TFAを分析前に0.1%(v/v)という最終濃度まで添加した。
オンラインのLC/ESI−MS/MSペプチド分析。 LC/ESI−MS/MSシステムは、Agilent 1100 HPLCシステムと、エレクトロスプレーインターフェースを備えたThermoFinnigan LCQイオントラップ質量分析計とから構成された。用いたカラムは、60℃に設定したVydac 214TP52カラム(C−4,300Åの細孔、5μmの粒子サイズ、2.1mmの内径×250mmの長さ)であった。移動相Aは、HO:TFA混合物で1000:1の比(v/v)であり、移動相Bは、ACN:HO:TFA混合物で900:100:1の比(v/v/v)であった。ペプチドフラグメントは、90分にわたり0〜45%Bの直線勾配、または120分にわたる0〜50%Bの直線勾配を用いて0.2mL/分の流速で溶出した。LCQのAPI電源は、4.5kVに設定され、N圧力は80psiであり、キャピラリーの温度は220℃に設定された。LC/ESI−MS/MSの泳動は、約10分で転換して、質量分析計に入る塩の混入を回避した。LC/ESI−MS/MSデータ獲得プログラムの設定のために、3つの異なるスキャンモード(フルスキャン、ズームスキャン、およびMS/MSスキャン)を行った。第一に、フルスキャンの最も豊富なペプチドイオンピーク(m/z 300〜2000)を前駆体イオンとして選択した。第二に、ズームスキャンを行って、前駆体イオンの荷電状態を測定した。最終的に、MS/MSスキャンを用いて、35%という相対衝突エネルギーを用いる衝突誘起解離(CID)を用いて前駆体の配列を決定した。
図17は、抗RANKL野性型(上)および抗RANKL変異体(下)の非還元性Lys−CマップのUVクロマトグラムを示す。2つのマップの間の最も明白な相違は、その変異体のマップがHCのヒンジ(H10−11−12、H10−11およびH11)ペプチドおよびH6/H7−8ペプチドをLCのL12ペプチドと一緒にして含んでいるジスルフィド変異体ペプチドを識別する極めて疎水性の遅く溶出するペプチドを含まないことであった;これらのペプチドは予想どおり、抗RANKL野性型のマップに存在した。HCのCys131およびLCのCys214;H6/H7−8/L12を接続し、約85分で溶出するジスルフィド連結ペプチドはしかし、予想どおり、変異体では失われていた。代わりに、H6(Cys131Ser)/H7−8ペプチド(図17でH6M/H7−8として表示される)は、約87分で溶出し、抗RANKL(Cys131Ser)変異体のマップに存在した。6974Daの質量値を有するペプチドが、約80分の溶出位置で変異体のマップで観察され;このペプチドは、ジスルフィド連結ペプチド(L12−H11−12)に相当し、これは、HCのヒンジ領域に対するLCの連結を示した。
還元されたLys−Cペプチドマップは、抗RANKL野性型プロフィール(上)および抗RANKL(Cys131Ser)変異体(下)で図18に示される。このマップは、抗RANKL野性型のマップにのみ存在した、約60分で十分解像されたH6ペプチド、および抗RANKL(Cys131Ser)変異体のマップにのみ存在する、対応するH6Mペプチド(これは、約67分のH6Cys131Ser変異体に相当する)以外はほとんど同一であった。
結論
SE−HPLC、CE−SDSおよびSDS−PAGEによる抗RANKL(Cys131Ser)変異体の評価によって、構築された分子は、ジスルフィド結合によって一緒に保持されるLCおよびHCの各々の2つのコピーを含んでいる4つのポリペプチド抗体として発現および精製されることが確認された。SE−HPLCによる溶出位置によって、野性型抗RANKLに比較した場合、変異体についてわずかに大きい流体力学半径が示唆された。pH7.5のCEX−HPLCによる、および非還元性CE−SDSによるプロフィールは、抗RANKL野性型について観察されるプロフィールよりも抗RANKL(Cys131Ser)変異体についてさらに均一でかつ簡単であった。非還元性CE−SDS、CEX−HPLC(pH5)およびRP−HPLC分析によって、代表的なIgGサブタイプ抗体を示す、野性型抗RANKLについて観察されるよりも抗RANKL(Cys131Ser)変異体についてジスルフィド媒介性の構造的アイソフォームの複雑性の少ないアレイが示された。非還元性のペプチドマッピングによって、HCのCys131がSer残基によって置換されるとき、LCはLCのCys215(EdelmanのナンバリングではCys214)およびHCの4つのCys残基のうちの1つを通じてHCのヒンジ領域に接続されることが示された。まとめると、これらの結果によって、Cys131の変異体は、IgG2抗体における構造的な相同性の増大を生じることが確認される。
(実施例4)
抗RANKL変異体抗体の力価分析
抗RANKLの変異型は、均一時間分解蛍光(HTRF)アッセイによってインビトロで力価を評価するために野性型抗RANKLと隣り合わせで特徴づけた。抗RANKLの力価は、それが、RANK−Lのその同族の受容体である「核因子κB受容体活性化因子」(RANK)に対する結合をブロックする能力によって定量される。均一時間分解蛍光(HTRF)アッセイを利用して、定量的な結果を得た。要するに、RANK−Lを、337nmの光で励起させた場合620nmで光を発光するユーロピウム+3(Eu+3)で標識した。この受容体は、組み換え技術RNAK−FLAGを用いて融合タンパク質として産生され、これはアロフィコシアニン(APC)に結合された抗FLAG抗体で標識された。APCは、620nmで光によって励起されるとき665nmの光を発光する発蛍光団である。従って、Eu+3標識されたRANK−LがRANK−FLAG/抗−FLAG−APC複合体に結合するとき、三次の複合体は337nmの光で励起されたとき635nmの光を発光する。抗RANKLをEu+3、RANK−LおよびRANK−FLAG/抗FLAG−APCとともにインキュベートした場合、665nmの蛍光強度は用量依存性の様式で減少した。
各々の試験サンプルの力価を、参照標準に比較して、そのデータを、参照標準に比較した相対力価として報告した。変異体抗RANKLの力価は、HTRFアッセイによって評価した。得られた結果によって、92%の相対力価を有する変異体は、アッセイ中で101%の相対力価を示した野性型に対して匹敵する活性を有することが示された。HTRFアッセイを3つの複製のサンプル調製物で1回行い、その結果を下の表3にまとめる。
これらの結果、抗RANKL(Cys131Ser)変異体は、HTRFベースの力価アッセイでインビトロで試験した場合、野性型に対して匹敵する活性を示したことが示される。
(実施例5)
抗IL−1R抗体の変異体
IgG2抗体におけるジスルフィド結合形成システインに対する変異体の効果をさらに理解するために、2つの変異体抗IL−1R抗体を作製して、下に示されるように特徴づけた(図19Aを参照のこと)。第一の変異体(C219S)は、ジスルフィド構造3型について富化されていると予想され、ここではLCジスルフィド結合がC131に強制されている(図19Bを参照のこと)。第二の変異体(C131S)は、ジスルフィド構造1型について富化されていると予想され、ここではLCジスルフィド結合がHCヒンジ領域に強制されている(図19Bを参照のこと)。この抗IL−1Rのヌクレオチドおよびコードされたアミノ酸配列は、米国特許出願公開第2004/097712号、Varnumら、(その全体が参照によって本明細書に援用される)に示される。C219SおよびC131S変異体は、上記の実施例2に記載されるような標準的な部位指向性の変異誘発を用いて作製された。その変異体は、DNA配列決定によって確認され、その変異した発現構築物をCOS細胞に一過性にトランスフェクトした。分泌された抗体を精製し、次いで次の2つの実施例に記載されるように特徴づけた。
(実施例6)
抗IL−1R変異体抗体の構造的特徴付け
実施例5で作製されるC219およびC131S変異体抗体を、RP−HPLCで分析して、安定にトランスフェクトされたCHO細胞および一過性にトランスフェクトされたCHO細胞由来の野性型抗IL−1Rと比較した。RP−HPLC手順は以下のとおり行った。
要するに、バイナリ・ポンプを備えたAgilent 1100 HPLCシステムにUV検出器を装備し、Agilent 1100キャピラリーHPLCシステムを、エレクトロスプレーイオン化(ESI)源を装備したMicromass Q− TOF Micro質量分析計にオンラインで接続した。このタンパク質を、75℃で作動するZorbax 300SB C8カラム(150×2.1mm、5μm)上に注入した。この流速は0.5mL/分であった。移動相Aは0.1%のTFAを含んでいる水であった。移動相Bは、70%のイソプロピルアルコール、20%のアセトニトリル、および0.1%のTFA水溶液であった。サンプルを10%Bというローディング条件で注入して、2分にわたって19%Bまで増大した。1.1%B/分という直線溶出勾配で2分で開始して、24分で終わった。次いで、そのカラムを95%のBを用いて5分間フラッシュした。そのカラムを5分間のローディング条件で再度平衡化した。バイナリ・ポンプを備えたAgilent 1100 HPLCシステムを標準分析に用い、Agilent 1100キャピラリーHPLCシステムを、エレクトロスプレーイオン化(ESI)源を装備したMicromass Q−TOF Micro質量分析計にオンラインで接続した。
その結果を図20に示す。そのクロマトグラムによって、野性型抗IL−1Rは4つのピークに分かれたが、C219SおよびC131Sは各々単一のピークとして、異なる保持時間で溶出したことが示される。詳細には、C219およびC131変異体は、野性型IgG2の遅れて溶出する型と同時に溶出し、これによって、この変異体が野性型IgG2の遅れて溶出する型と同様の可塑性の増大および力価の増大を保有することが示唆される。溶出するアイソフォームのオンラインの質量分析計によって測定される質量は、システインからセリンへの置換と一致していた。これらのデータによって、C219またはC131のいずれかの変異体が単一の構造的アイソフォームの富化を生じることが強力に示唆される。
(実施例7)
抗IL−1R変異体抗体の力価
各々の抗IL−1R変異体の力価を、下に記載されるように軟骨細胞および全血のバイオアッセイを用いて野性型と比較した。
これらの研究における抗体を、インターロイキン−1細胞表面受容体1型(IL−1RI)に特異的に結合するように設計した;これは、インターロイキン−1β(IL−1b)リガンドと競合し、それによってIL−6の産生を含めて、IL−1媒介性の細胞事象を阻害する。従って、この抗体の生物活性を、一次的なヒト軟骨細胞およびヒト全血によってIL−1b誘発性のIL−6産生の阻害をモニタリングすることによって評価した。
軟骨細胞アッセイについては、IL−I受容体mAb(抗IL−1R)ならびにC219SおよびC131S変異体を、アッセイ培地中で40nM〜1.5256pMまで連続希釈した。この希釈された試験抗体(50μL)を、100μLの溶液で10000細胞/ウェルという密度でヒト軟骨細胞を播種した96ウェルプレートのウェルに添加した。最終抗体濃度は10nM〜0.3815pMにおよんだ。30分のインキュベーション後、50μLの組み換えヒトIL−1βを10pMという最終濃度まで添加した。一晩のインキュベーション後、その抗体活性を電気化学発光検出(Meso Scale Discovery,Gaithersburg,MD)を用いるIL−6イムノアッセイを用いて分析した。IL−6産生の阻害は、最大IL−1β活性の割合として算出した。各々の試験抗体についての阻害応答曲線を確立して、対応するIC50値(シグナルを50%まで減少する抗体の濃度)は、GraphPad PRISMソフトウェアを用いて導いた。
全血アッセイについては、抗体を10ポイントのIC50曲線について半対数増分における10nM〜0.0003nMの50%ヒト全血(最終濃度)で評価した。抗体との45分のプレインキュベーション後、血液を30pM(〜IC50)という最終濃度について組み換えIL−1βで刺激した。一晩のインキュベーション後、その抗体活性を電気化学発光検出(Meso Scale Discovery,Gaithersburg,MD)を用いるIL−6イムノアッセイを用いて分析した。IL−6産生の阻害は、最大IL−1β活性の割合として算出した。IC50値は、6つの別のドナー(2つの異なる日の3つのドナー)を用いて算出した(Graph Pad PRISMソフトウェア)。
バイアッセイのデータはGraphPad Prism Softwareを用いて分析した。IC50値は非線形回帰(勾配変化)によって導いた。用量応答曲線が不完全である場合、その底部を0に拘束した。有意性は、チューキー多重比較事後検定による1元ANOVAを用いて算出した。P値が0.05未満を有意とみなした。
図21に代表的な結果を示す。反復したアッセイの結果を下の表4にまとめる。図21および表4に示されるように、抗IL−1R C131Sおよび抗IL−1R C219Sは一貫して、最初のヒト軟骨細胞およびヒトの全血によるIL−1b誘導性のIL−6産生の阻害において野性型に比較して2〜3倍大きい力価を示した。
(実施例8)
抗EGFR抗体の変異
実施例1に示さるとおり、近い空間的近接性(図6)の、位置(HC)131、219、220および(LC)214の4つのシステインの抗体位置の三次元構造に基づくIgG2抗体配列のモデリングによって、これらの残基の可変性の配列がIgG2の構造的アイソフォームを生じ得ることが示唆されている。空間的に近いシステインの変異がこれらの形態を排除し得る可能性を以下のとおり試験した。
2つの特異的なシステインからセリンへの変異体は、219または220のいずれかの位置での部位指向性の変異誘発によって調製した(図22を参照のこと)。部位指向性の変異誘発は、完全ヒトモノクローナル抗体抗EGFr(その全体が参照によって本明細書に援用される、米国特許第6,235,883号にmAbE7.6.3として記載)をコードするベクターでのQuickChange部位指向性変異誘発キット(Stratagene,La Jolla,CA)を用いることによって行い、その所望の変異体の存在はDNA配列決定によって確認した。所望の変異を有する発現プラスミドを、ジヒドロ葉酸還元酵素活性を欠いている懸濁適合CHO細胞中に安定にトランスフェクトした。目的の抗体を発現する細胞を、グリシン、ヒポキサンチンおよびチミンを欠いている培地中での増殖によって選択した。トランスフェクションおよび選択からの回収後、CHO細胞プールをスピナーフラスコ中で増殖させた。発現された抗体を、収集された細胞培養上清から、プロテインAアフィニティークロマトグラフィーによって精製した。変異体C219SおよびC220Sは、野性型抗EGFrと比較した場合、発現および精製の特徴に有意な相違を呈さなかった。
(実施例9)
抗EGFR変異体抗体の構造の特徴付け
変異体抗EGFr抗体を次に、非還元性CE−SDSおよび天然ペプチドマッピングによって以下のように比較して分析した。
変異体抗体のジスルフィド結合異質性の評価
第一に、抗体の見かけの大きさを非還元性のキャピラリー電気泳動のドデシル硫酸ナトリウム(nrCE−SDS)によって評価し、完全に変性した分子でゲル篩い分け法を行った。
要するに、2.5mg/mlという最小濃度の抗体サンプルを以下の手順に従って1mg/mlの最終濃度まで希釈した:150μgの抗体溶液を10μlのヨードアセトアミド(IAM)と合わせて、3μlの内部標準(10kDa分子量マーカー、Beckman)を添加し、その溶液をCE−SDSサンプル緩衝液(BioRad)で150μlにした。その溶液を混合し、遠心分離し、75℃で水浴中で10分間加熱した。その混合物を室温で冷却し、12,000rpmで6分間遠心分離し、注射のためにサンプルバイアルに移した。
nrCE−SDS分析方法をまた、システイン/システイン酸化還元電位を用いて再折り畳み手順に供した抗EGFr分子でも行い、ジスルフィド結合の配置が別個の構造的アイソフォームを担ったか否かを確認した。酸化還元−再折り畳み抗体を作製するために、天然の抗体サンプルを6mMのシステインおよび0.6mMのシスチンが含まれる0.2MのTis−HCl(pH8.6)で96時間、2〜8℃で処理した。次いでサンプルをその処方物の緩衝液で透析した。ヒト骨髄腫由来のヒトIgG2を、その元の処方物の緩衝液、40mMのリン酸塩、および150mMのNaCl、pH7.4に透析した。次いで、再折り畳みされたサンプルを上記のようにnrCE−SDSに供した。その結果を(図23)に示す。図23Aによって、野性型抗EGFrが、nrCD−SDS中に2つのピークによって提示される2つの構造的アイソフォームに存在することが示される。酸化還元電位での野性型抗EGFrの処理によって、構造的アイソフォームが修飾され、その結果、アイソフォーム2の増大(60%から88%へ)をともなうアイソソーム1の有意な減少(40%から12%へ)が生じる。この結果、この構造的アイソフォームはジスルフィド結合配置に基づいて別個であることが確認される。骨髄腫患者から単離した市販のIgG2分子について同様の結果が得られた(図23B)。対照的に、変異体抗EGFrは代表的なIgG2の二重性を失い、nrCE−SDSによって単一ピークに解像された(図23C)。従って、この構造的アイソフォームは、グリコシル化に関連せず、ただし(HC−LC)の形態の完全な共有構造の存在に依存することが示された。
ペプチドマッピング
野性型およびC219S抗EGFrのジスルフィド構造は、非還元性ペプチドマッピングによって検討した。遊離のシステインは、(Bures ら,1998,Biochemistry 37:12172)によって記載されるとおり酸性pHでN−エチルマレイミド(NEM)でアルキル化された。NEMアルキル化後、その溶液を緩衝液交換して、酵素消化を非還元性分子で行った。要するに、NEM標識材料を、10%w/wのトリプシン含有0.1MのTris/2Mの尿素pH8.3を1mg/mLの濃度で用いて37℃で4時間、消化した。その消化反応を10%TFAの10μLの添加でクエンチした。次いで、このトリプシン消化サンプルを60℃で加熱するカラムを備えたRP−HPLCを介して分析した。移動相は、(A)水に含まれる0.12%のTFA(w:v)、および(B)40:40:20のアセトニトリル:イソプロパノール:水(w:v)に含まれる0.11%のTFAから構成された。分離は、移動相A中で調整した、Jupiter C5(2.1×250mm)カラム上で20分間行った。100μgの消化物を注入して、ペプチドフラグメントを0〜65%のBの勾配で0.2mL/分の流速で、165分溶出させた。ペプチド溶出は、214nmのUV吸収およびオンラインの質量獲得によってモニターした。
ジスルフィド対の割り当ては、質量分析を用いて架橋したペプチドの特定によって行った。全ての質量分析は、Agilent 1100ポンプ(Agilent,USA)に接続されたエレクトロスプレー源を装備したLCQ Decaイオン・トラップ装置(Thermo−Finnigan,San Jose,CA)を用いて行った。分析は、5.0kVというスプレー電圧を用いて正のイオンモードで行い、MSキャピラリー温度は225℃で維持した。その装置は、カフェイン、MRFAペプチドおよびUltramark1621の混合物を用いて500〜2000というm/z範囲で較正した。重鎖および軽鎖のエレクトロスプレーイオン化質量スペクトルのデコンボリューションは、XcaliburソフトウェアについてProMassを用いて行った。タンパク質消化のためのスペクトルデータは、200〜2000m/zの範囲でオンラインで獲得した。MS/MS分析はデータ依存性の方式で行った。衝突データは、40%の相対衝突エネルギーを用いて得た。
その結果を図24に示しており、変異体の天然のトリプシンのペプチドマッピングは、ヒンジダイマーの定量的回収ならびに従来の鎖間接続C1−Cから予想されるH10−L18ヘテロペプチドの定量的回収を示したことが実証される(図24)。
結論として、nrCE−SDSおよび天然のペプチドマッピングによって分析した場合、その変異体分子は、野性型とは異なって挙動した。これらの結果によって、単一のシステイン残基の変異はIgG2構造的アイソフォームを特異的に廃して、同質の構造を有する抗体を有する溶液を生じたことが示される。
(実施例10)
抗EGFr変異体抗体の生物学的活性の特徴付け
変異体のC219S、C220Sおよび野性型の抗EGFrの力価を、以下のように行うEGFrリガンドおよびリン酸化バイアッセイによって比較する。抗EGFrは、ヒト上皮成長因子受容体(EGFr)に対する完全ヒト組み換えIgG2モノクローナル抗体である。従って、力価は、その抗体が細胞表面でリガンド−受容体結合を阻害し、それによってシグナル伝達経路のリガンド誘導性活性を妨げる能力によって測定する。2つの力価アッセイを用いて、EGF媒介性のEGFrの自己リン酸化の遮断、またはレポーター遺伝子発現アッセイによる細胞増殖の阻害のいずれかを測定する。EGFr自己リン酸化の阻害を測定するために、96ウェルの組織培養プレートにA431細胞を播種する。参照標準および試験サンプルの連続希釈を行って、0.1125mg/ml〜0.02μg/mlにおよぶ濃度範囲を得る。50μlの各々の連続希釈をA431細胞を含んでいる組織培養プレートに添加する。各々の細胞にまた、作業希釈範囲まで希釈した50μlのrhEGFを添加する。そのプレートを37℃でかつ10%のCOで60分間インキュベートする。その上清を廃棄して、細胞を1ウェルあたり105μlの緩衝液(10mMのTris,150mMの塩化ナトリウム、5mMのEDTA、1%のTriton X−100)で溶解した。そのプレートを2〜8℃で60分間インキュベートする。85μlのこの細胞の溶解液を、E752 EGF抗体でコーティングしたELISAプレートに添加する。そのプレートを室温でかつ暗野で90分間インキュベートする。次いで、そのプレートを洗浄して100μlのHRPコンジュゲートした検出抗体を各々のウェルに添加する。そのプレートを60分間インキュベートし、次いで洗浄した後に100μlの基質の添加をする。そのプレートを15〜25分間発色する。その発色は、50μlの2M HSOを添加することによって停止して、そのプレートを450nmおよび650nmで読み取る。各々の試験サンプルの力価は、三通り計算して、平均値を報告する。
遺伝子発現アッセイは、ヒトEGFrおよびEGFrシグナル伝達に応答するルシフェラーゼレポーター遺伝子構築物を発現する操作された細胞株を用いて行った。抗EGFrは、EGFrに対する結合についてTGF−αと競合し、ルシフェラーゼ産生の用量依存性の阻害を生じる。ルシフェラーゼ産生は、細胞溶解およびルシフェリンの添加後に発光によって測定される。参照標準、コントロールおよび試験サンプルをアッセイ培地中で440ng/mlに希釈する。400〜87ng/mlという濃度範囲への連続希釈を調製する。固定濃度のTGF−αの等容積を各々の試験管に添加する。アッセイウェル中の最終濃度は細胞の添加後、110〜22ng/mlの抗EGFrである。懸濁物中の細胞増殖物を4つの96ウェルプレートに添加し、抗EGFrの25μlの各々の連続希釈する。代表的な用量応答によって、約87ng/mlのIC50値でのシグモイド反応が示される。このシグナル反応を測定して、アイソフォームの力価は、サンプルの反応を参照標準の反応と比較することによって測定する。
両方のバイオアッセイによって示されるとおり、両方の変異体は、これらのアッセイにおいて野性型と同様の力価を有する。
(実施例11)
IgG2抗体のヒンジ領域における挿入変異によるジスルフィド異質性の排除
上で考察したとおり、ヒトIgG2抗体は、ヒンジでのジスルフィド異質性に起因して構造的改変を有する。ジスルフィド異質性は、IgG2抗体の重鎖でのみ生じる、ヒンジ中での反応性でかつ固有のシステイン219−システイン220(C219C220)モチーフによって誘導される。この例では、ジスフルフィド異質性は、図25に示されるように重鎖の残基C219とC220の間、または上に1、2またはそれ以上のアミノ酸残基を挿入することによって排除される。
ヒトIgG2のヒンジにおける2つのタンデムシステイン(抗IL−1R重鎖アミノ酸番号219および220)の間または上の1つ以上のアミノ酸の挿入は、2つのジスルフィド結合を分離するか、またはヒンジセクションを延長し、それによって均質なジスルフィド型の産生を強制することによって上部ヒンジ領域中のC219および/またはC220の反応性を低下するように設計する。これらの変異体から産生された予想されるジスルフィド型は3型であって、LCのC214がHCのC131とジスルフィド結合を形成している。これは、天然のシステイン残基を変異することなく行われる(図26〜28)。挿入された残基は、グリシン、プロリン、セリンおよび他のアミノ酸残基を含んでいるリストから選択される。
図25〜28に示される挿入変異は、部位指向性の挿入変異誘発を用いて作製される。配列2〜4の異なるバージョンが作製される。配列2の1バージョンでは、単一のグリシンがC219とC220との間に挿入される。配列2の別のバージョンでは、単一のプロリンがC219とC220との間に挿入される。配列3および4の異なるバージョンでは、図26に示すように、2もしくは3つのグリシン、2もしくは3つのプロリン、または2もしくは3つのグリシンまたはプロリンの組み合わせがC219とC220との間に挿入される。
配列9および10の異なるバージョンは、図27に示される挿入変異誘発によって作製された。配列9の1バージョンでは、単一のグリシンがK218とC219との間に挿入される。配列9の別のバージョンでは、単一のプロリンがK218とC219との間に挿入される。配列10の異なるバージョンでは、2つのグリシン、2つのプロリン、または1つのグリシンおよび1つのプロリンの組み合わせがK218とC219との間に挿入される。
配列5〜8の異なるバージョンをまた、図28に示される挿入変異誘発によって作製する。配列1〜4および9〜10で行われるとおり、グリシン、プロリンまたは他のアミノ酸の異なる組み合わせを用いて、K218とC219との間に、またC219とC220の間にも1または2つのアミノ酸を挿入する。
IgG2ヒンジ領域の挿入変異誘発によって、LC214と、HC219またはHC220との間のジスルフィド結合形成が妨げられる。いくつかのまたは全ての変異体では、LC C214は、HC C131とのジスルフィド結合を形成する。
挿入変異における構造的アイソフォームの異質性を分析して、異質性が変異によって減少されることが示される。CD−SDS、CEXおよびRP−HPLC分析によって、野性型IgG2抗体に比較して、挿入変異体のいくつかまたは全てで構造的異質性の有意な減少が示される。ある場合には、ジスルフィド構造は、完全に同質性を呈する。
挿入変異の力価は、抗IL−1R抗体に特異的なバイオアッセイを用いて分析する。軟骨細胞および全血のIL−6産生バイオアッセイを、実施例7で記載のとおり行って、それらの標的分子について力価の増強を呈する挿入変異の多くまたは全てが明らかになる。
(実施例12)
酸化還元変換によるIgG2抗体高次構造のアイソフォームの富化
酸化還元変換
封入体状態からタンパク質の酸化的再折り畳みは、組み換えタンパク質の微生物産生においては通常の手順であるが、哺乳動物の細胞産生では通常は行われない。しかし、IgG2の異質性は、ジスルフィドに関連すると考えられ、酸化還元処理に対するその型の反応性を試験した。野性型の抗IL−1R抗体(その全体が参照によって本明細書に援用される、米国特許出願公開第2004/097712に記載される)を、グアニジンHCl(GuHCl)の有無において種々の酸化還元条件に供した。
抗IL−1R抗体を以下の2つの緩衝液のうちの一方において3mg/mLでインキュベートした:1)200mMのTris緩衝液(pH8.0);2)200mMのTris緩衝液pH8.0(0.9MのGuHCl含有)。システインおよびシスタミンの組み合わせを6mM:0.6mMのモル比で添加した。そのサンプルは2〜8℃で24〜48時間おいた。これらの実験で用いたGuHClの最適濃度0.9Mは、抗体の二次構造または三次構造全体に影響することが公知の温度未満であって(Teerinenら、2006,J.Mol.Biol.361:687〜697)、これは、IgG2κの別の高次構造の形成を可能にする、構造のマイナーな変化のみを誘導する。従って、酸化還元処理のパラメーターを変化することによって、RP−HPLCのピーク1およびピーク3を、それぞれゼロおよび0.9MのGuHClを用いて優先的に富化した(図29)。この再折り畳みした材料は、コントロール(非酸化還元)でみられるピークと整列した単一の均質な種として本質的に溶出した。さらに、いくつかの他のIgG2のmAbを同じ条件を用いて酸化還元処理した。RP−HPLCの結果によって、試験した全てのIgG2のmAbが酸化還元処理に反応性であったことが示された。一般には、RP−HPLCのピーク3および1は、その抗体がそれぞれ、GuHClの存在の有無において酸化還元に曝されるとき、優先的に富化された。この富化された形態は、酸化還元溶液から取り出された後さらなる変換を示さず、PBS緩衝液中に保管された。
(実施例13)
酸化還元再折り畳みIgG2抗体高次構造アイソフォームの生理活性
IgG2酸化還元再折り畳み高次構造アイソフォームの生理活性を試験して各々のアイソフォームがバルクの未処理の抗体の力価を保持していたか否かを決定した。
再折り畳みされた抗IL−1Rアイソフォームを実施例7に記載のとおり軟骨細胞および全血アッセイを用いて試験した。IL−1Rバイオアッセイの結果、酸化還元富化材料のIl−6阻害における相違が示され(図30)、再折り畳みされた材料がバルクの異質の抗体よりも少なくとも強力、またはそれより強力であることが実証される。平均して、酸化還元富化された材料の間のIC50値において統計学的に有意な相違があり、そして1型は3型よりもほぼ3倍低い活性を示した(図31A〜B)。
再折り畳みされた抗IL−4R抗体を、IL−4R活性の阻害を測定する生理活性アッセイを用いて試験した。その結果を下の表5に示しており、再折り畳みされた材料が、バルクの異質性抗体と少なくとも同じく強力、またはそれよりも強力であったことが示される。
再折り畳みされた抗HGF抗体をHGFシグナル伝達活性の阻害を測定する生理活性アッセイを用いて試験した。その結果を下の表6に示しており、これは、再折り畳みされた材料が、バルクの異質性抗体と少なくとも同じく強力、またはそれよりも強力であってことを示す。
ヒトグルカゴン受容体に対する再折り畳みされた抗体を、その抗体の力価を測定する生理活性アッセイを用いて試験した。その結果を下の表7に示しており、これは、再折り畳み材料が、バルクの異質性抗体と少なくとも同じく強力、またはそれよりも強力であってことを示す。
再折り畳みされた抗EGFr抗体を、実施例10に記載のEGFrレポーター遺伝子発現アッセイを用いて試験した。その結果を下の表8に示しており、これは、再折り畳み材料が、バルクの異質性抗体と同様の生理活性を有することを示す。
(実施例14)
IgG2抗体の挿入変異の構造の特徴付け
実施例11に記載のヒンジ領域挿入変異体を、抗IL−1R抗体で作製した。変異体は、配列2(配列番号14)のアラニンの挿入によって作製して、ヒンジ領域配列CACVECPPC(配列番号32)を有するIgG2抗体を作製し、配列3(配列番号15)の2つのプロリンの挿入によって、ヒンジ領域配列CPPCVECPPC(配列番号33)を有するIgG2抗体を作製した。
構造的な異質性をRP−HPLCによって分析し、その結果を図32に示す。野性型(WT)のサンプル(図32A)は、他のヒトIgG2サンプルでみられるような代表的な4つのピークプロフィールを示した。cAc構築物(図32B)は改善された同質性を示した。cPPc構築物(図32C)は、検出可能な量のピーク1および2がない高い程度の同質性を示した。これらの結果によって、ジスルフィド交換を停止させるために必要であり得る、システインの間の重要な距離および方向が得られたことが示唆される。
(実施例15)
IgG2抗体の軽鎖のC末端領域における挿入変異によるジスルフィド異質性の排除
上記で考察されるとおり、ヒトIgG2抗体は、ヒンジでのジスルフィドの異質性に起因して構造的変異体を有する。このジスルフィド異質性は、IgG2抗体の軽鎖のC末端システイン残基(C214)と反応するヒンジにおける反応性および固有のシステイン219−システイン220(C219C220)モチーフによって誘導される。この実施例では、ジスルフィド異質性は、図33および34に示されるように軽鎖の残基C214およびC215の後ろに1、2またはそれ以上のアミノ酸残基を挿入することによって排除される。
ヒトIgG2の軽鎖のC末端領域の残基C214およびC215後の1つ以上のアミノ酸の挿入は、重鎖のヒンジセクションからC末端システインを分離し、それによって同質性のジスルフィド型の産生を強制することによってC214の酸化還元電位を低くするように設計されている。これらの変異体から産生される予想されるジスルフィド型は、3型であって、LCのC214がHCのC131とのジスルフィド結合を形成する。これは、天然のシステイン残基を変異することなく行われる(図33〜36)。この挿入された残基は、グリシン、プロリン、セリンおよび他のアミノ酸残基を含む列挙から選択される。
図33〜35に示される挿入変異は、部位指向性の挿入変異誘発を用いて作製される。配列11〜13の異なるバージョンは、κ軽鎖を有するIgG2抗体変異体について作製される。配列11の1バージョンでは、単一のグリシンをC214の後に挿入する。配列11の別のバージョンでは、単一のプロリンをC214の後ろに挿入する。配列11のさらに別のバージョンでは、単一のセリンをC214の後ろに挿入する。配列12および13の異なるバージョンでは、2もしくは3つのグリシン、2もしくは3つのプロリン、2もしくは3つのセリン、あるいは2もしくは3つのグリシンまたはプロリンまたはセリンの組み合わせのいずれかを図33に示されるようにC214の後に挿入する。
配列14、15および16の異なるバージョンをまた、図34に示されるλ軽鎖を有するIgG2抗体変異体の挿入変異誘発によって作製する。配列14の1バージョンでは、単一のグリシンをC214とC215との間に挿入する。配列14の別のバージョンでは、単一のプロリンをC214およびC215に挿入する。配列14のさらに別のバージョンでは、単一のセリンをC214とC215との間に挿入する。配列15および16の別のバージョンでは、2もしくは3つのグリシン、2もしくは3つのプロリン、2もしくは3つのセリン、あるいは2もしくは3つのグリシンまたはプロリンまたはセリンの組み合わせのいずれかをC214とC215との間に挿入する。
配列17、18および19の異なるバージョンをまた、図35に示されるλ軽鎖を有するIgG2抗体変異体について挿入変異誘発によって作製する。配列17の1つのバージョンでは、単一のグリシンをS215の後ろに挿入する。配列17の別のバージョンでは、単一のプロリンをS215の後ろに挿入する。配列17のさらに別のバージョンでは、単一のセリンをS215の後ろに挿入する。配列18および19の異なるバージョンでは、2もしくは3つのグリシン、2もしくは3つのプロリン、2もしくは3つのセリン、あるいは2もしくは3つのグリシンまたはプロリンまたはセリンの組み合わせがS215の後ろに挿入される。
IgG2軽鎖C末端領域の挿入変異誘発は、LC214とHC219またはHC220のいずれかとの間のジスルフィド結合形成を妨げる。いくつかのまたは全ての変異では、LCのC214は、HCのC131とジスルフィド結合を形成する。
挿入変異における構造的アイソフォームの異質性を分析して、この変異によって異質性が減少することが示されている。CD−SDS、CEXおよびRP−HPLC分析で、野性型のIgG2抗体に比較して挿入変異のいくつかまたは全てで構造的異質性の有意な減少が示される。いくつかの場合には、ジスルフィド構造は、完全に同質性であると考えられる。
挿入変異の力価は抗LI−1R抗体に特異的なバイオアッセイを用いて分析される。軟骨細胞および全血のIL−6産生のバイオアッセイは、実施例7に記載のように行われ、これによって挿入変異の多くまたは全てがその標的分子について力価の増強を示すことが明らかになる。
(実施例16)
追加の抗EGFR抗体の変異および特徴付け
実施例8で作製され、かつ実施例9および10で特徴づけられた抗EGFR抗体変異体に加えて、抗EGFR抗体に対する他の変異を作製した。本実施例は、変異体の作製ならびにそれらの構造的および生物学的活性の特徴付けを記載する。
抗EGFR抗体(米国特許第6,235,883号にmAb E7.6.3として記載され、配列番号57として本明細書に示される可変領域を含んでいる)の重鎖に対する種々の変異が作製された。その変異体を消化し、次いで上記の例で記載される技術と同様の技術を用いて、CHO安定プールまたはCOS一過性産生系のいずれかで発現した。単一のシステインからセリンへの変異を有する抗体を作製するように、いくつかの変異体を設計した。2つまたは3つのシステインからセリンへの変異体を組み込むように他の変異体を設計した。CHO細胞対COS細胞のどちらで発現するかの決定は、都合だけに基づいて行い、いずれかの発現系で所定の構築物を発現できるかできないかには基づかなかった。下の表9に行った変異をまとめている。
変異体抗体を精製し、次いで上記の実施例に記載されたように、天然および還元のLys−Cペプチドマッピング、非還元性CE−SDSおよびNEM/CnBr/トリプシン/dSEC分離、および複合ジスルフィド−連結ペプチドの単離を用いて分析した。C131S変異の部分的な還元およびアルキル化も行った。非還元性CE−SDSによって、変異型と野性型との間で明確な相違が示された。ペプチドマッピングによって、抗EGFR参照および野性型におけるヒンジペプチドの回収が低いことが示され、このことは、ヒンジに関する複雑なジスルフィド連結構造の存在を示している。しかし、ペプチドマッピングは、219および220の位置で変異体についてのヒンジペプチドの良好な回収を示し、このことは、このヒンジに関与する複雑なジスルフィド−連結構造がないことを示している。
nrCE−SDSによるC226S分子の分離は、野性型とは異なったプロフィールを有し、異なるピーク1/ピーク2比を呈した。C226Sのペプチドマッピングは、野性型参照に比較して複雑なジスルフィド−連結の同じ分布を示し、このことはこのヒンジに関与する複雑なジスルフィド−連結構造の存在を示している。
変異体C131Sの分析によって、ヒンジおよび軽鎖に関与する型が1つだけ観察されることが示された。従って、C131Sを有する構造的な型は、異質性を示す野性型よりも簡易である。この観察を確認することで、部分還元−アルキル化実験によって、C220への軽鎖の接続が示された。
次いで、各々の精製された変異体の生物学的活性を、実施例10において上記されるELISA結合アッセイおよび力価アッセイを用いて評価した。ヒンジ領域において変異体を有する分子の、この力価およびELISA結合アッセイの結果は、参照および野性型に匹敵した。しかし、ヒンジ領域の外側の重鎖において変異(C131S)を有する分子の力価およびELISA結合アッセイの結果は、参照および野性型よりも20〜25%低かった。
従って、これらの実験によって、表9に列挙される抗EGFR重鎖システイン残基の変異が力価に影響を生じず、100%活性である分子を生じることが示される。さらに、これらのデータによって、219または220での単一の残基の変異が構造的アイソフォームの異質性を廃するのに十分であることが示される。これらの実験によってまた重鎖残基C131の変異体が低い力価を生じ、野性型で観察される多重の分布とは異なりC220に連結された軽鎖を有している均質な構造型を生じることが示される。結局のところ、C226の変異は、野性型複合体と同様である(ヒンジ−HC−LC)複合体を有する構造的アイソフォームを維持している。
(実施例17)
IgG2抗体の挿入変異体の構造、安定性および生物学的活性の特徴付け
実施例14に記載される結果に基づいて確認および拡張するために、以下の実験を行った。この実施例では、ジスルフィド異質性を、重鎖のC219およびC220の残基の間に2つのアミノ酸残基を挿入することによって2つの異なるmAb中で排除した。さらに、抗IL−1R1の挿入変異体を処方安定性、酸化還元環境でのジスルフィド安定性、および生物学的活性について試験した。下に示されるとおり、挿入変異体は、異質性が少なく、血液様の酸化還元環境においてさらに安定であって、力価の有意な増大を示した。試験したいくつかの挿入残基のなかでも、cPPc挿入変異体は、生物学的活性の増大および酸化還元処理に対する非反応性に加えて、野性型mAbに対して、全体的な最大の処方安定性を示した。
いくつかの挿入変異体構築物(表10に示される)を、抗IL−1RIのIgG2のmAbについて調製し、それらの特性について試験した。
ジスルフィド 接続性
挿入変異のジスルフィド接続性を、非還元性Lys−Cペプチドマッピングに加えてESI−MSをタンデムで用いて非還元性逆相(RP)分析によって評価した。前の実施例に考察されるとおり、IgG2 mAbのインタクトなRP分析は、IgG2ジスルフィドアイソフォームを評価するための鋭敏かつ選択的な方法である。野性型の(WT)抗IL−1RIのIgG2のmAbは、RP−HPLCによって代表的な4つのピークの異質IgG2プロフィールを提示した。RP分析による挿入変異体の分析では、ジスルフィドアイソフォーム分布上の重鎖(HC)のCys219/Cys220の前および間にアミノ酸を挿入することの影響が示された。4つの挿入変異体(cAc、PNcc、およびANcc)のうちの3つが複数のピークを呈したが、異なる分布では、WTに匹敵していた。Cys219/Cys220の前に作製された2つの挿入によって、RPのピーク2の量の顕著な増大および他のピークの量の引き続く減少が示された。これによって、2つのアミノ酸の距離によりヒンジ領域を低下することによって、ジスルフィド分布が中間アイソフォーム(RPピーク2)へシフトすることが可能であるが、ジスルフィド異質性を完全には排除しないことが示唆される。他方では、2つのタンデムシステイン(Cys219/Cys220)の間のアミノ酸の挿入は、ジスルフィド異質性を排除した。2つのタンデムシステインの間の1つのアミノ酸(cAc)の挿入は、システイン上に作製された挿入に匹敵する結果を生じ、これによって単一アラニンアミノ酸挿入が、ジスルフィド異質性を排除するのに最も有効ではない場合もあることが示唆される。しかし、アラニンより大きい単一アミノ酸の異なる選択によって、ジスルフィド異質性を停止することが可能である。その後の質量分析によって、IgG2のRPピークの間の有意な質量の相違が示された。
抗IL−1R1挿入変異体の正確なジスルフィド接続性を確認するため、非還元性Lys−Cペプチドマッピングを行った。mAbとLys−Cプロテアーゼとのインキュベーションによって、ペプチド骨格の予測可能な断片化を行い、それによってRP−LC/MS分析で引き続き分析して、その分子のジスルフィド接続性を決定することが可能である。非還元性ペプチドマッピングについてのプロトコールおよび質量分析による特定を含む、IgG2ジスルフィド接続性の詳細な特徴付けは、上の実施例に記載される。さらに、IgG2アイソフォームを規定する特定のジスルフィド連結ペプチドのグループ分けは、実施例3に詳細に記載され、下におよび表11にまとめて記載される。
IgG2挿入変異体(cAc挿入変異体は、サンプルが不十分なせいで除外した)およびIgG2 WT材料の非還元性Lys−Cエンドペプチダーゼペプチドマップは、いくつかの後期溶出ピークを除いて同じクロマトグラフィーのプロフィールを示した。これらのピークは、予想されるLCからHCへのジスルフィド連結ペプチド(P1)、および2つの他の別個のジスルフィドペプチドを含み、ここでこのヒンジは、1つまたは両方のC−末端LCペプチド、およびCys131を含んでいる1つまたは両方のHCペプチド(P2,P3)に共有結合される。この抗IL−1RIのmAbのcPPc挿入変異体は、LCからHCへのジスルフィド架橋が予想されるジスルフィド架橋されたペプチドP1のみを含み(P1=LCフラグメントL12+HC ジスルフィド−連結フラグメントH6−7−8)、ペプチドP2もP3も含まない(P2=L12フラグメント+H6−7−8フラグメント+2つのH11−12フラグメント、P3=2つのL12フラグメント+2つのH6−7−8フラグメント+2つのH11−12フラグメント)構築物であった。他のIL−1RI mAb構築物(WT、ANcc、およびPNcc)は、ジスルフィド−架橋されたペプチドP1、P2、およびP3の全てを含んだが、P1がこの変異体では部分的に富化された。
安定性(処方された)
抗IL−1RI挿入変異体の安定性を、PBS(pH7.2)に2mg/mLで含有されるタンパク質を処方すること、およびそのサンプルを上昇した温度(37℃および45℃)でインキュベートすること、およびサイズ排除クロマトグラフィーによってモニタリングすることによって試験した。サイズ排除クロマトグラフィー(SEC)は、連続した(2つのTosoh Bioscience TSK−Gel G3000 SW×1(カラム7.8内径×30cm、5μmの粒子)で、Agilent 1100 HPLCシステム(Agilent Technologies,Inc.,Palo Alto CA USA)で行った。この装置に20μgをロードして2mg/mLでサンプルを分析した。移動相は、100mMのリン酸ナトリウム、500mMの塩化ナトリウム、5%のエタノール(pH7.0)を含んだ。この流速は、0.5mL/minであって、カラム温度は25℃で制御した。そのシグナルは、215nmおよび280nmの波長での吸光度によってモニターした。
cPPc挿入変異体は、主要なピークの損失の速度が遅い、経時的に大きい安定性を示した。凝集体およびクリップの相対増大パーセントはWTおよび他の構築物に比較してcPPc挿入変異体について有意に低かった。さらに、その構造的安定性は、示差走査熱量測定を用いて評価した。抗IL−1R1サンプルを、1℃/分という走査速度で、30℃から95℃までPBS中で0.5mg/mLでモニターした。サンプルをMicroCal VP−キャピラリー示差走査熱量測定システムを用いて分析した。
挿入変異体の熱融解プロフィールをWTと比較した。PBS(pH7.2)中で熱安定性に有意差は検出できなかった。従って、処方された安定性は、本明細書に記載の挿入変異体では改善されていた。
安定性(酸化還元)
以前に考察したとおり、IgG2ジスルフィドアイソフォームは、酸化還元環境におかれた場合、不安定でかつ不活性変換される。この抗IL−1RIのcPPc挿入変異体を酸化還元の安定性について試験した。なぜならこれは、単一のIgG2ジスルフィドアイソフォームから構成されることが示されたからである。このサンプルを、4μMのシステインの出発濃度を含有しているPBS(pH7.2)溶液中で約1mg/mLでインキュベートした。このシステイン濃度は、定常状態の酸化還元環境では維持されなかった。なぜなら、システインは水溶液中では急速にシスチンに変換するからである。このサンプルを最大144時間までインキュベートして、ジスルフィド変換についてRPクロマトグラフィーによってモニターした。この抗体を、Zorbax 300SB C8カラム(150×2.1mm、5μmまたは50×1mm、3.5μm)を用いて、インタクトなRP−HPLCによって分析した。そのカラム温度は75℃であって、その流速は0.5mL/分であった。移動相Aは4%のIPA/1%のACN/0.11%のTFAであり、移動相Bは70%のIPA/20%のACN/0.10%のTFAであった。
実験の経過にわたってcPPc挿入変異体についてRPでは変換は見られなかった。変異体とは対照的に、WTは、同様の酸化還元条件のもとでRPピーク1に変換された。これらのデータによって、cPPc挿入変異体がインビボにおいて循環中で安定であることが強力に示唆される。
生物学的活性
抗IL−1RI挿入変異体の力価は、軟骨細胞のバイオアッセイを用いてWTと比較した。この抗IL−1RIのIgGサンプルをアッセイ培地で400nMから1.5pMまで連続希釈した。希釈された試験抗体(50μl)を、100μlの容積に10,000細胞/ウェルの密度でヒト軟骨細胞を播種された96−ウェルプレートのウェルに添加した。最終抗体濃度は、100nMから0.38pMまでにおよんだ。30分のインキュベーション後、50μlの組み換え体ヒトIL−1βを最終濃度10pMまで添加した。一晩のインキュベーション後、電気化学発光検出(Meso Scale Discovery,Gaithersburg,MD)によるIL−6のイムノアッセイを用いて抗体活性を分析した。IL−6産生の阻害は、最大IL−1β活性の割合として算出した。各々の試験抗体の阻害応答曲線を確立して、対応するIC50値(シグナルを50%まで低下する抗体の濃度)は、GraphPad Prismソフトウェアを用いて導いた。
3つの独立した実験からのデータによって、WTの抗IL−1RIのmAbが、いずれの変異体よりも活性が有意に弱かった(p<0.001)ことが示される。いずれの変異体の間にも有意な相違はなかった(p>0.05)。このデータは、酸化還元的富化によって研究したIgG2アイソフォームの間の活性の有意な相違を示した、上記の実施例13の結果と一致している。
挿入変異体の一過性の産生の間、挿入変異体構築物の少なくとも1つでより高い収率が観察された。さらに、挿入変異体構築物の少なくとも1つは、産生の間に少ないIgGフラグメントを示した。これらのデータによって、IgG2ヒンジにおいてシステインを再構築することは、収率に影響を有し得ることが示唆される。理論で束縛されるものではないが、これらのデータによって、IgGヒンジ内およびその周囲のジスルフィド結合形成は、IgGの発現および収率に影響し得るタンパク質折り畳みのボトルネックを生じることが示される。
本実施例および先行する実施例に示される結果によって、産生およびインビボ安定性について分子のジスルフィド構造を安定化する方法でIgG2 mAbのヒンジを操作することが可能であることが示される。
本明細書に開示されかつ特許請求される組成物および/または方法の全ては、本発明の開示に照らして過度の実験なしに作製および行うことができる。本発明の組成物および方法は、いくつかの実施形態に関して記載されているが、本発明の概念、趣旨および範囲から逸脱することなく、バリエーションが、本明細書に記載される、組成物および/または方法に、ならびにその方法の工程にまたはその方法の工程の順序に適用され得ることが当業者には明白であろう。さらに詳細には、化学的におよび生理学的に両方で関連する特定の剤を、本明細書に記載の剤について置き換えても、同じまたは同様の結果が達成され得るということが明白であろう。当業者に明白な全てのこのような類似の置換および修飾は、添付の請求項の範囲によって規定されるとおり本発明の趣旨、範囲および概念の範囲内であるとみなされる。
本明細書全体を通じて引用される引用文献は、それが本明細書に示されるものに対して例示的な手順または補充的な他の詳細を提供する程度まで、全てが参照によって本明細書に詳細に援用される。

Claims (90)

  1. モノクローナルIgG2抗体であって:
    軽鎖ポリペプチドと;
    ヒンジ領域を有する重鎖ポリペプチドと、を含み、
    前記抗体が前記重鎖または軽鎖ポリペプチドにおいてアミノ酸修飾を含み、その結果、前記修飾が、前記軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて前記重鎖ポリペプチドのヒンジ領域におけるアミノ酸とのみ主に鎖間ジスルフィド結合を形成する軽鎖ポリペプチドを提供する、モノクローナルIgG2抗体。
  2. 前記修飾が重鎖ポリペプチド修飾を含む、請求項1に記載のモノクローナルIgG2抗体。
  3. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのEu位置131にシステイン残基の置換を含む、請求項2に記載のモノクローナルIgG2抗体。
  4. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのEu位置131にシステイン残基の欠失を含む、請求項2に記載のモノクローナルIgG2抗体。
  5. 前記ヒンジ領域が、前記重鎖ポリペプチドのEuアミノ酸200〜238を含む、請求項1に記載のモノクローナルIgG2抗体。
  6. 前記軽鎖の前記最もC末端側のシステイン残基が前記軽鎖のEu位置214のシステイン残基である、請求項1に記載のモノクローナルIgG2抗体。
  7. 前記軽鎖ポリペプチドが常に、前記軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて前記重鎖ポリペプチドの前記ヒンジ領域のアミノ酸でのみ鎖間ジスルフィド結合を形成する、請求項1に記載のモノクローナルIgG2抗体。
  8. モノクローナルIgG2抗体であって:
    軽鎖ポリペプチドと;
    ヒンジ領域を有する重鎖ポリペプチドと、を含み、
    前記抗体が前記重鎖または軽鎖ポリペプチドにおいてアミノ酸修飾を含み、その結果、前記修飾が、前記軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて前記重鎖ポリペプチドのヒンジ領域の外側のアミノ酸とのみ主に鎖間ジスルフィド結合を形成する軽鎖ポリペプチドを提供する、モノクローナルIgG2抗体。
  9. 前記ヒンジ領域の外側の前記アミノ酸が前記重鎖ポリペプチドのEu位置131のシステイン残基である、請求項8に記載のモノクローナルIgG2抗体。
  10. 前記重鎖ポリペプチド修飾が前記ヒンジ領域内にシステイン残基の変異を含む、請求項8に記載のモノクローナルIgG2抗体。
  11. システイン残基の前記変異が、前記重鎖ポリペプチドのEu位置219にシステイン残基の変異を含む、請求項10に記載のモノクローナルIgG2抗体。
  12. システイン残基の前記変異が、前記重鎖ポリペプチドのEu位置220にシステイン残基の変異を含む、請求項10に記載のモノクローナルIgG2抗体。
  13. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドの前記ヒンジ領域に1つ以上のアミノ酸の挿入を含む、請求項8に記載のモノクローナルIgG2抗体。
  14. 1つ以上のアミノ酸の前記挿入が、前記重鎖ポリペプチドのEu位置219と220との間である、請求項13に記載のモノクローナルIgG2抗体。
  15. 1つ以上のアミノ酸の前記挿入が、前記重鎖ポリペプチドのEu位置218と219との間である、請求項13に記載のモノクローナルIgG2抗体。
  16. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドの前記ヒンジ領域に1つ以上のアミノ酸の欠失を含む、請求項8に記載のモノクローナルIgG2抗体。
  17. 前記ヒンジ領域が、前記重鎖ポリペプチドのEuアミノ酸200〜238を含む、請求項8に記載のモノクローナルIgG2抗体。
  18. 前記軽鎖の前記最もC末端側のシステイン残基が前記軽鎖のEu位置214のシステイン残基である、請求項8に記載のモノクローナルIgG2抗体。
  19. 前記軽鎖ポリペプチドが常に、前記軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて前記重鎖ポリペプチドの前記ヒンジ領域の外側のアミノ酸とのみ鎖間ジスルフィド結合を形成する、請求項8に記載のモノクローナルIgG2抗体。
  20. 前記軽鎖修飾が、前記軽鎖ポリペプチドのC末端領域に1つ以上のアミノ酸の挿入を含む、請求項1または8のいずれかに記載のモノクローナルIgG2抗体。
  21. 1つ以上のアミノ酸の前記挿入が、前記軽鎖ポリペプチドのEu位置214と215との間である、請求項20に記載のモノクローナルIgG2抗体。
  22. 前記軽鎖修飾が、前記軽鎖ポリペプチドの最もC末端側のシステイン残基の後に1つ以上のアミノ酸の追加を含む、請求項20に記載のモノクローナルIgG2抗体。
  23. 前記軽鎖修飾が、Eu位置215にセリン残基の置換変異を含み、前記置換がセリンよりもかさ高いアミノ酸を提供する、請求項1または8のいずれかに記載のモノクローナルIgG2抗体。
  24. 治療用抗体処方物であって:
    目的の治療標的に結合し、かつ少なくとも1つのアミノ酸修飾を含み、ここで前記修飾が単一の高次構造のアイソフォームを生じる、複数のIgG2抗体と、
    薬学的に受容可能なキャリアと、を含む治療用抗体処方物。
  25. 前記修飾が前記抗体の重鎖ポリペプチド修飾を含む、請求項24に記載の治療用抗体処方物。
  26. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのEu位置131にシステイン残基の置換を含む、請求項25に記載の治療用抗体処方物。
  27. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのEu位置131にシステイン残基の欠失を含む、請求項25に記載の治療用抗体処方物。
  28. 前記重鎖ポリペプチド修飾が前記ヒンジ領域内にシステイン残基の変異を含む、請求項25に記載の治療用抗体処方物。
  29. システイン残基の前記変異が前記重鎖ポリペプチドのEu位置219にシステイン残基の変異を含む、請求項28に記載の治療用抗体処方物。
  30. システイン残基の前記変異が前記重鎖ポリペプチドのEu位置220にシステイン残基の変異を含む、請求項28に記載の治療用抗体処方物。
  31. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのヒンジ領域に1つ以上のアミノ酸の挿入を含む、請求項25に記載の治療用抗体処方物。
  32. 1つ以上のアミノ酸の前記挿入が前記重鎖ポリペプチドのEu位置219と220との間である、請求項31に記載の治療用抗体処方物。
  33. 1つ以上のアミノ酸の前記挿入が前記重鎖ポリペプチドのEu位置218と219との間である、請求項31に記載の治療用抗体処方物。
  34. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのヒンジ領域に1つ以上のアミノ酸の欠失を含む、請求項31に記載の治療用抗体処方物。
  35. 修飾されたIgG2抗体を作製する方法であって:
    IgG2抗体の重鎖または軽鎖ポリペプチドをコードするヌクレオチド配列を修飾し、その結果、少なくとも1つのコードされたアミノ酸を修飾する工程と;
    前記核酸を宿主細胞に導入する工程と;
    前記宿主細胞を培養して、その結果複数の修飾されたIgG2抗体を発現および分泌させる工程と、を包含し、
    前記複数の修飾されたIgG2抗体が主に単一の高次構造のアイソフォームである、方法。
  36. 前記修飾が前記抗体の重鎖ポリペプチド修飾を含む、請求項35に記載の方法。
  37. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのEu位置131にシステイン残基の置換を含む、請求項36に記載の方法。
  38. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのEu位置131にシステイン残基の欠失を含む、請求項36に記載の方法。
  39. 前記重鎖ポリペプチド修飾が前記ヒンジ領域内にシステイン残基の変異を含む、請求項36に記載の方法。
  40. システイン残基の前記変異が、前記重鎖ポリペプチドのEu位置219にシステイン残基の変異を含む、請求項39に記載の方法。
  41. システイン残基の前記変異が、前記重鎖ポリペプチドのEu位置220にシステイン残基の変異を含む、請求項39に記載の方法。
  42. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのヒンジ領域に1つ以上のアミノ酸の挿入を含む、請求項36に記載の方法。
  43. 1つ以上のアミノ酸の前記挿入が、前記重鎖ポリペプチドのEu位置219と220との間である、請求項42に記載の方法。
  44. 1つ以上のアミノ酸の前記挿入が、前記重鎖ポリペプチドのEu位置218と219との間である、請求項42に記載の方法。
  45. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのヒンジ領域に1つ以上のアミノ酸の欠失を含む、請求項36に記載の方法。
  46. 前記修飾が、軽鎖修飾であり、かつ前記軽鎖ポリペプチドのC末端領域に1つ以上のアミノ酸の挿入を含む、請求項35に記載の方法。
  47. 前記修飾が、前記軽鎖ポリペプチドのC末端での1つ以上のアミノ酸の追加である、請求項35に記載の方法。
  48. 請求項1〜23のいずれかに記載のモノクローナルIgG2抗体をコードする核酸。
  49. 請求項48の核酸分子を含むベクター。
  50. 請求項49に記載のベクターを含んでいる宿主細胞。
  51. 前記宿主細胞が、CHO、VERO、NSO、BK、HeLa、CV1、Cos、MDCK、293、3T3、PC12およびWI38細胞からなる群より選択される、請求項50に記載の宿主細胞。
  52. 請求項1〜23のいずれかに記載のIgG2抗体を発現するハイブリドーマ細胞。
  53. 上皮成長因子受容体(EGFR)に標的化されたモノクローナルIgG2抗体であって、前記抗体は:
    配列番号49を含む軽鎖ポリペプチド49;および
    配列番号57を含む重鎖ポリペプチドであって、ヒンジ領域を有する重鎖ポリペプチド、を含み、
    前記抗体が前記重鎖または軽鎖ポリペプチドにおいてアミノ酸修飾を含み、その結果、前記修飾が、前記軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて前記重鎖ポリペプチドのヒンジ領域におけるアミノ酸とのみ主に鎖間ジスルフィド結合を形成する軽鎖ポリペプチドを提供する、モノクローナルIgG2抗体。
  54. 前記修飾が重鎖ポリペプチド修飾を含み、前記重鎖ポリペプチド修飾が前記重鎖ポリペプチドのEu位置131でシステイン残基の置換または欠失を含む、請求項53に記載のモノクローナルIgG2抗体。
  55. 上皮成長因子受容体(EGFR)に標的化されたモノクローナルIgG2抗体であって、前記抗体は:
    配列番号49を含む軽鎖ポリペプチド;および
    配列番号57を含む重鎖ポリペプチドであって、ヒンジ領域を有する重鎖ポリペプチド、を含み、
    前記抗体が前記重鎖または軽鎖ポリペプチドにおいてアミノ酸修飾を含み、その結果、前記修飾が、前記軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて前記重鎖ポリペプチドのヒンジ領域の外側のアミノ酸とのみ主に鎖間ジスルフィド結合を形成する軽鎖ポリペプチドを提供する、モノクローナルIgG2抗体。
  56. 前記重鎖ポリペプチド修飾が前記ヒンジ領域内にシステイン残基の変異を含む、請求項55に記載のモノクローナルIgG2抗体。
  57. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのヒンジ領域に1つ以上のアミノ酸の挿入を含む、請求項55に記載のモノクローナルIgG2抗体。
  58. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのヒンジ領域に1つ以上のアミノ酸の欠失を含む、請求項55に記載のモノクローナルIgG2抗体。
  59. 核因子κBリガンド受容体活性化因子(RANKL)に標的化されたモノクローナルIgG2抗体であって、前記抗体は:
    配列番号61を含む軽鎖ポリペプチド;および
    配列番号60を含む重鎖ポリペプチドであって、ヒンジ領域を有する重鎖ポリペプチド、を含み、
    前記抗体が前記重鎖または軽鎖ポリペプチドにおいてアミノ酸修飾を含み、その結果、前記修飾が、前記軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて前記重鎖ポリペプチドのヒンジ領域におけるアミノ酸とのみ主に鎖間ジスルフィド結合を形成する軽鎖ポリペプチドを提供する、モノクローナルIgG2抗体。
  60. 前記修飾が重鎖ポリペプチド修飾を含み、前記重鎖ポリペプチド修飾が前記重鎖ポリペプチドのEu位置131でシステイン残基の置換または欠失を含む、請求項59に記載のモノクローナルIgG2抗体。
  61. 核因子κBリガンド受容体活性化因子(RANKL)に標的化されたモノクローナルIgG2抗体であって、前記抗体は:
    配列番号61を含む軽鎖ポリペプチド;および
    配列番号60を含む重鎖ポリペプチドであって、ヒンジ領域を有する重鎖ポリペプチド、を含み、
    前記抗体が前記重鎖または軽鎖ポリペプチドにおいてアミノ酸修飾を含み、その結果、前記修飾が、前記軽鎖ポリペプチドの最もC末端側のシステイン残基を通じて前記重鎖ポリペプチドのヒンジ領域の外側のアミノ酸とのみ主に鎖間ジスルフィド結合を形成する軽鎖ポリペプチドを提供する、モノクローナルIgG2抗体。
  62. 前記重鎖ポリペプチド修飾が前記ヒンジ領域内にシステイン残基の変異を含む、請求項61に記載のモノクローナルIgG2抗体。
  63. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのヒンジ領域に1つ以上のアミノ酸の挿入を含む、請求項61に記載のモノクローナルIgG2抗体。
  64. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのヒンジ領域に1つ以上のアミノ酸の欠失を含む、請求項61に記載のモノクローナルIgG2抗体。
  65. 修飾されたIgG2抗体の処方された安定性およびインビボの安定性を向上する方法であって、前記方法は:
    IgG2抗体の重鎖または軽鎖ポリペプチドをコードするヌクレオチド配列を修飾し、その結果、少なくとも1つのコードされたアミノ酸を修飾する工程と;
    前記核酸を宿主細胞に導入する工程と;
    前記宿主細胞を培養して、その結果複数の修飾されたIgG2抗体を発現および分泌させる工程と、を包含し、
    前記複数の修飾されたIgG2抗体が主に単一の高次構造のアイソフォームである、方法。
  66. 前記修飾が前記抗体の重鎖ポリペプチド修飾を含む、請求項65に記載の方法。
  67. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのEu位置131にシステイン残基の置換を含む、請求項66に記載の方法。
  68. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのEu位置131にシステイン残基の欠失を含む、請求項66に記載の方法。
  69. 前記重鎖ポリペプチド修飾が前記ヒンジ領域内にシステイン残基の変異を含む、請求項66に記載の方法。
  70. システイン残基の前記変異が、前記重鎖ポリペプチドのEu位置219にシステイン残基の変異を含む、請求項69に記載の方法。
  71. システイン残基の前記変異が、前記重鎖ポリペプチドのEu位置220にシステイン残基の変異を含む、請求項69に記載の方法。
  72. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのヒンジ領域に1つ以上のアミノ酸の挿入を含む、請求項66に記載の方法。
  73. 1つ以上のアミノ酸の前記挿入が、前記重鎖ポリペプチドのEu位置219と220との間である、請求項72に記載の方法。
  74. 1つ以上のアミノ酸の前記挿入が、前記重鎖ポリペプチドのEu位置218と219との間である、請求項72に記載の方法。
  75. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのヒンジ領域に1つ以上のアミノ酸の欠失を含む、請求項66に記載の方法。
  76. 前記修飾が、軽鎖修飾であり、かつ前記軽鎖ポリペプチドのC末端領域に1つ以上のアミノ酸の挿入を含む、請求項65に記載の方法。
  77. 前記修飾が、前記軽鎖ポリペプチドのC末端での1つ以上のアミノ酸の追加である、請求項65に記載の方法。
  78. 修飾されたIgG2治療用抗体の効力を増大させる方法であって:
    IgG2抗体の重鎖または軽鎖ポリペプチドをコードするヌクレオチド配列を修飾し、その結果、少なくとも1つのコードされたアミノ酸を修飾する工程と;
    前記核酸を宿主細胞に導入する工程と;
    前記宿主細胞を培養して、その結果複数の修飾されたIgG2抗体を発現および分泌させる工程と、を包含し、
    前記複数の修飾されたIgG2抗体が主に単一の高次構造のアイソフォームである、方法。
  79. 前記修飾が前記抗体の重鎖ポリペプチド修飾を含む、請求項78に記載の方法。
  80. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのEu位置131にシステイン残基の置換を含む、請求項79に記載の方法。
  81. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのEu位置131にシステイン残基の欠失を含む、請求項79に記載の方法。
  82. 前記重鎖ポリペプチド修飾が前記ヒンジ領域内にシステイン残基の変異を含む、請求項79に記載の方法。
  83. システイン残基の前記変異が、前記重鎖ポリペプチドのEu位置219にシステイン残基の変異を含む、請求項82に記載の方法。
  84. システイン残基の前記変異が、前記重鎖ポリペプチドのEu位置220にシステイン残基の変異を含む、請求項82に記載の方法。
  85. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのヒンジ領域に1つ以上のアミノ酸の挿入を含む、請求項79に記載の方法。
  86. 1つ以上のアミノ酸の前記挿入が、前記重鎖ポリペプチドのEu位置219と220との間である、請求項85に記載の方法。
  87. 1つ以上のアミノ酸の前記挿入が、前記重鎖ポリペプチドのEu位置218と219との間である、請求項85に記載の方法。
  88. 前記重鎖ポリペプチド修飾が、前記重鎖ポリペプチドのヒンジ領域に1つ以上のアミノ酸の欠失を含む、請求項79に記載の方法。
  89. 前記修飾が、軽鎖修飾であり、かつ前記軽鎖ポリペプチドのC末端領域に1つ以上のアミノ酸の挿入を含む、請求項78に記載の方法。
  90. 前記修飾が、前記軽鎖ポリペプチドのC末端での1つ以上のアミノ酸の追加である、請求項78に記載の方法。
JP2010525000A 2007-09-14 2008-09-11 均質な抗体集団 Active JP5963341B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US97268807P 2007-09-14 2007-09-14
US60/972,688 2007-09-14
PCT/US2008/076070 WO2009036209A2 (en) 2007-09-14 2008-09-11 Homogeneous antibody populations

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2014031437A Division JP2014097070A (ja) 2007-09-14 2014-02-21 均質な抗体集団
JP2016098451A Division JP2016145259A (ja) 2007-09-14 2016-05-17 均質な抗体集団

Publications (3)

Publication Number Publication Date
JP2010538651A true JP2010538651A (ja) 2010-12-16
JP2010538651A5 JP2010538651A5 (ja) 2011-04-07
JP5963341B2 JP5963341B2 (ja) 2016-08-10

Family

ID=40260803

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2010525000A Active JP5963341B2 (ja) 2007-09-14 2008-09-11 均質な抗体集団
JP2014031437A Pending JP2014097070A (ja) 2007-09-14 2014-02-21 均質な抗体集団
JP2016098451A Withdrawn JP2016145259A (ja) 2007-09-14 2016-05-17 均質な抗体集団
JP2018039909A Withdrawn JP2018086032A (ja) 2007-09-14 2018-03-06 均質な抗体集団
JP2019237762A Withdrawn JP2020063298A (ja) 2007-09-14 2019-12-27 均質な抗体集団
JP2021161100A Withdrawn JP2022000468A (ja) 2007-09-14 2021-09-30 均質な抗体集団

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2014031437A Pending JP2014097070A (ja) 2007-09-14 2014-02-21 均質な抗体集団
JP2016098451A Withdrawn JP2016145259A (ja) 2007-09-14 2016-05-17 均質な抗体集団
JP2018039909A Withdrawn JP2018086032A (ja) 2007-09-14 2018-03-06 均質な抗体集団
JP2019237762A Withdrawn JP2020063298A (ja) 2007-09-14 2019-12-27 均質な抗体集団
JP2021161100A Withdrawn JP2022000468A (ja) 2007-09-14 2021-09-30 均質な抗体集団

Country Status (7)

Country Link
US (3) US20100226925A1 (ja)
EP (1) EP2197911A2 (ja)
JP (6) JP5963341B2 (ja)
AU (1) AU2008298904B2 (ja)
CA (1) CA2698809C (ja)
MX (1) MX2010002683A (ja)
WO (1) WO2009036209A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014054804A1 (ja) * 2012-10-05 2016-08-25 協和発酵キリン株式会社 ヘテロダイマータンパク質組成物
JP2018501208A (ja) * 2014-11-21 2018-01-18 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company 修飾された重鎖定常領域を含む抗体
DE102015100009B4 (de) 2014-01-08 2018-06-21 Fanuc Corporation Werkzeugwechsler mit Abdeckungsmittel
JP2021520829A (ja) * 2018-04-18 2021-08-26 ゼンコア インコーポレイテッド IL−15/IL−15RA Fc融合タンパク質およびTIM−3抗原結合ドメインを含む、TIM−3標的化ヘテロ二量体融合タンパク質
JP2021521779A (ja) * 2018-04-18 2021-08-30 ゼンコア インコーポレイテッド IL−15/IL−15RA Fc融合タンパク質およびLAG−3抗原結合ドメインを含む、LAG−3を標的とするヘテロ二量体融合タンパク質

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198698B (zh) 2005-03-31 2014-03-19 中外制药株式会社 通过调节多肽缔合制备多肽的方法
CN101479381B (zh) 2006-03-31 2015-04-29 中外制药株式会社 调控抗体血液动力学的方法
EP4218801A3 (en) 2006-03-31 2023-08-23 Chugai Seiyaku Kabushiki Kaisha Antibody modification method for purifying bispecific antibody
CN106519025B (zh) 2007-09-26 2021-04-23 中外制药株式会社 利用cdr的氨基酸取代来改变抗体等电点的方法
KR101922788B1 (ko) 2007-09-26 2018-11-27 추가이 세이야쿠 가부시키가이샤 항체 정상영역 개변체
TWI440469B (zh) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
WO2010107109A1 (ja) 2009-03-19 2010-09-23 中外製薬株式会社 抗体定常領域改変体
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
JO3437B1 (ar) * 2009-10-30 2019-10-20 Esai R & D Man Co Ltd أجسام مضادة محسنة مضادة للفراكتالكين البشري واستخداماتها
EP2543730B1 (en) 2010-03-04 2018-10-31 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
EP2377888A1 (en) * 2010-04-07 2011-10-19 Corimmun GmbH Fusion protein
JP5953303B2 (ja) 2010-07-29 2016-07-20 ゼンコア インコーポレイテッド 改変された等電点を有する抗体
MX342135B (es) * 2011-03-17 2016-09-14 Ramot At Tel-Aviv Univ Ltd Anticuerpos asimetricos, biespecificos y monoespecificos, y metodos para generar los mismos.
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
AU2012347545A1 (en) * 2011-12-07 2014-06-12 Amgen Inc. IgG2 disulfide isoform separation
DK2794905T3 (da) * 2011-12-20 2020-07-06 Medimmune Llc Modificerede polypeptider til bispecifikke antistofgrundstrukturer
EP2708556B1 (en) 2012-09-12 2018-11-07 Samsung Electronics Co., Ltd Pharmaceutical composition for the use in a combination therapy for prevention or treatment of c-met or angiogenesis factor induced diseases
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
KR102391731B1 (ko) 2013-01-14 2022-04-27 젠코어 인코포레이티드 신규한 이형이량체 단백질
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
WO2014113510A1 (en) 2013-01-15 2014-07-24 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
CA2906927C (en) 2013-03-15 2021-07-13 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
KR101895634B1 (ko) * 2013-05-31 2018-09-05 한미약품 주식회사 변이된 힌지 영역을 포함하는 IgG4 Fc 단편
EP3892294A1 (en) 2013-08-28 2021-10-13 AbbVie Stemcentrx LLC Site-specific antibody conjugation methods and compositions
MX2016003616A (es) 2013-09-27 2016-07-21 Chugai Pharmaceutical Co Ltd Metodo para producir heteromultimeros de polipeptidos.
WO2015069794A2 (en) 2013-11-06 2015-05-14 Stem Centrx, Inc. Novel anti-claudin antibodies and methods of use
US9717715B2 (en) 2013-11-15 2017-08-01 Samsung Electronics Co., Ltd. Method of combination therapy using an anti-C-Met antibody
JP2017500028A (ja) 2013-12-12 2017-01-05 アッヴィ・ステムセントルクス・エル・エル・シー 新規の抗dpep3抗体および使用方法
CR20160437A (es) 2014-02-21 2017-02-20 Abbvie Stemcentrx Llc Conjugados de anticuerpos anti-drosophila similar a delta 3 (anti-dll3) y medicamentos para uso en el tratamiento contra melanoma
ES2775431T3 (es) 2014-03-28 2020-07-27 Xencor Inc Anticuerpos biespecíficos que se unen a CD38 y CD3
TW201617368A (zh) 2014-09-05 2016-05-16 史坦森特瑞斯公司 新穎抗mfi2抗體及使用方法
ME03806B (me) 2014-11-21 2021-04-20 Bristol Myers Squibb Co Antitela protiv cd73 i njihova upotreba
US10526417B2 (en) 2014-11-26 2020-01-07 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CD38
CA2967426A1 (en) 2014-11-26 2016-06-02 Xencor, Inc. Heterodimeric antibodies that bind cd3 and tumor antigens
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
EP3237449A2 (en) 2014-12-22 2017-11-01 Xencor, Inc. Trispecific antibodies
TWI805046B (zh) 2015-02-27 2023-06-11 日商中外製藥股份有限公司 Il-6受體抗體用於製備醫藥組成物的用途
WO2016141387A1 (en) 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
JP7082484B2 (ja) 2015-04-01 2022-06-08 中外製薬株式会社 ポリペプチド異種多量体の製造方法
JP7058219B2 (ja) 2015-12-07 2022-04-21 ゼンコア インコーポレイテッド Cd3及びpsmaに結合するヘテロ二量体抗体
SG11201803989WA (en) 2015-12-28 2018-06-28 Chugai Pharmaceutical Co Ltd Method for promoting efficiency of purification of fc region-containing polypeptide
CN109476747A (zh) 2016-05-27 2019-03-15 艾伯维生物制药股份有限公司 结合免疫调节性蛋白和肿瘤抗原的双特异性结合蛋白
AU2017285218B2 (en) 2016-06-14 2024-08-22 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
WO2018005706A1 (en) 2016-06-28 2018-01-04 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
JP7273453B2 (ja) 2016-10-14 2023-05-15 ゼンコア インコーポレイテッド IL-15/IL-15RアルファFc融合タンパク質およびPD-1抗体の断片を含む二重特異性ヘテロ二量体融合タンパク質
CN110546162B (zh) * 2017-03-28 2021-09-07 礼进生物医药科技(上海)有限公司 用于增强肿瘤微环境中免疫应答的治疗剂和方法
JOP20190248A1 (ar) 2017-04-21 2019-10-20 Amgen Inc بروتينات ربط مولد ضد trem2 واستخداماته
JP7185884B2 (ja) 2017-05-02 2022-12-08 国立研究開発法人国立精神・神経医療研究センター Il-6及び好中球の関連する疾患の治療効果の予測及び判定方法
JP2020521751A (ja) * 2017-05-25 2020-07-27 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company 修飾重鎖定常領域を含む抗体
CN111132733A (zh) 2017-06-30 2020-05-08 Xencor股份有限公司 含有IL-15/IL-15Rα和抗原结合结构域的靶向异源二聚体Fc融合蛋白
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
WO2019094637A1 (en) 2017-11-08 2019-05-16 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-pd-1 sequences
EP3728302A1 (en) 2017-12-19 2020-10-28 Xencor, Inc. Engineered il-2 fc fusion proteins
EP3765494A4 (en) 2018-03-15 2022-03-23 Chugai Seiyaku Kabushiki Kaisha ANTI-DENGUE VIRUS ANTIBODIES WITH CROSS-REACTIVITY AGAINST ZIKA VIRUS AND METHODS OF USE
WO2019178539A1 (en) * 2018-03-16 2019-09-19 Ngm Biopharmaceuticals, Inc. Bispecific antibodies
US10982006B2 (en) 2018-04-04 2021-04-20 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
US11524991B2 (en) 2018-04-18 2022-12-13 Xencor, Inc. PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof
US10899826B1 (en) 2018-09-13 2021-01-26 Teva Pharmaceuticals International Gmbh Pharmaceutical compositions for an anti-CGRP antagonist antibody
EP3861016A2 (en) 2018-10-03 2021-08-11 Xencor, Inc. Il-12 heterodimeric fc-fusion proteins
PE20211055A1 (es) 2018-10-12 2021-06-07 Xencor Inc Proteinas de fusion il-15 / il-15 ralpha f c dirigidas a pd-1 y usos en terapias de combinacion de las mismas
CN113438961A (zh) 2018-12-20 2021-09-24 Xencor股份有限公司 含有IL-15/IL-15Rα和NKG2D抗原结合结构域的靶向异二聚体Fc融合蛋白
US11472890B2 (en) 2019-03-01 2022-10-18 Xencor, Inc. Heterodimeric antibodies that bind ENPP3 and CD3
TW202128757A (zh) 2019-10-11 2021-08-01 美商建南德克公司 具有改善之特性的 PD-1 標靶 IL-15/IL-15Rα FC 融合蛋白
WO2021231976A1 (en) 2020-05-14 2021-11-18 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (psma) and cd3
JP2023538891A (ja) 2020-08-19 2023-09-12 ゼンコア インコーポレイテッド 抗cd28組成物
MX2023010499A (es) 2021-03-09 2023-09-18 Xencor Inc Anticuerpos heterodimericos que se unen a cd3 y cldn6.
US11859012B2 (en) 2021-03-10 2024-01-02 Xencor, Inc. Heterodimeric antibodies that bind CD3 and GPC3

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644323A (ja) * 1992-07-22 1994-02-18 Nec Corp 蛋白質立体構造推定システム
JP2001521372A (ja) * 1996-04-30 2001-11-06 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー ヒトP2x4レセプタースプライス−変異体
WO2005003155A1 (ja) * 2003-07-03 2005-01-13 Toyo Boseki Kabushiki Kaisha ブロッキング効率の向上したタンパク質
WO2005081898A2 (en) * 2004-02-20 2005-09-09 The Trustees Of The University Of Pennsylvania Binding peptidomimetics and uses of the same
WO2006047340A2 (en) * 2004-10-22 2006-05-04 Amgen Inc. Methods for refolding of recombinant antibodies
US20060134105A1 (en) * 2004-10-21 2006-06-22 Xencor, Inc. IgG immunoglobulin variants with optimized effector function
JP2007501013A (ja) * 2003-08-04 2007-01-25 ファイザー プロダクツ インコーポレイティッド c−Metに対する抗体

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235871A (en) * 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4870009A (en) * 1982-11-22 1989-09-26 The Salk Institute For Biological Studies Method of obtaining gene product through the generation of transgenic animals
US4501728A (en) * 1983-01-06 1985-02-26 Technology Unlimited, Inc. Masking of liposomes from RES recognition
GB8308235D0 (en) * 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4745051A (en) * 1983-05-27 1988-05-17 The Texas A&M University System Method for producing a recombinant baculovirus expression vector
US4952496A (en) * 1984-03-30 1990-08-28 Associated Universities, Inc. Cloning and expression of the gene for bacteriophage T7 RNA polymerase
US4766205A (en) * 1985-11-13 1988-08-23 Beatrice Companies, Inc. Method for isolation of recombinant polypeptides in biologically active forms
US4737323A (en) * 1986-02-13 1988-04-12 Liposome Technology, Inc. Liposome extrusion method
US5225539A (en) * 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4837028A (en) * 1986-12-24 1989-06-06 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5677425A (en) * 1987-09-04 1997-10-14 Celltech Therapeutics Limited Recombinant antibody
US5242687A (en) * 1989-03-15 1993-09-07 Tkb Associates Limited Partnership Method of reducing cellular immune response involving T-cells using CD8-bearing antigen presenting cells
US5272071A (en) * 1989-12-22 1993-12-21 Applied Research Systems Ars Holding N.V. Method for the modification of the expression characteristics of an endogenous gene of a given cell line
US5169784A (en) * 1990-09-17 1992-12-08 The Texas A & M University System Baculovirus dual promoter expression vector
US5266317A (en) * 1990-10-04 1993-11-30 University Of Georgia Research Foundation, Inc. Insect-specific paralytic neurotoxin genes for use in biological insect control: methods and compositions
US5243041A (en) * 1991-08-22 1993-09-07 Fernandez Pol Jose A DNA vector with isolated CDNA gene encoding metallopanstimulin
AU698393B2 (en) * 1994-06-24 1998-10-29 Immunex Corporation Controlled release polypeptide compositions and methods of treating inflammatory bowel disease
US6063905A (en) * 1997-01-07 2000-05-16 Board Of Regents, The University Of Texas System Recombinant human IGA-J. chain dimer
US6235883B1 (en) * 1997-05-05 2001-05-22 Abgenix, Inc. Human monoclonal antibodies to epidermal growth factor receptor
AUPQ599700A0 (en) * 2000-03-03 2000-03-23 Super Internet Site System Pty Ltd On-line geographical directory
ATE517909T1 (de) * 2001-02-23 2011-08-15 Immunex Corp Effizientes gewinnungsverfahren von korrekterweise rückgefalteten proteinen
MXPA03008031A (es) 2001-03-07 2003-12-04 Merck Patent Gmbh Tecnologia de expresion para proteinas que contienen porcion de anticuerpo isotipo hibrida.
ES2907826T3 (es) * 2001-06-26 2022-04-26 Amgen Inc Anticuerpos para OPGL
US7247304B2 (en) * 2001-08-23 2007-07-24 Genmab A/S Methods of treating using anti-IL-15 antibodies
ATE531390T1 (de) * 2001-08-23 2011-11-15 Genmab As Interleukin-15-(il-15-)spezifische menschliche antikörper
WO2003074679A2 (en) * 2002-03-01 2003-09-12 Xencor Antibody optimization
CN1832756A (zh) * 2003-06-09 2006-09-13 约翰·A·麦金太尔 通过氧化还原反应改变血浆蛋白质结合专一性的方法
US9557325B2 (en) * 2003-06-09 2017-01-31 Redox-Reactive Reagents Llc Method of altering the binding specificity of proteins by oxidation-reduction reactions
WO2005000898A2 (en) * 2003-06-27 2005-01-06 Biogen Idec Ma Inc. Use of hydrophobic-interaction-chromatography or hinge-region modifications for the production of homogeneous antibody-solutions
GB0315457D0 (en) 2003-07-01 2003-08-06 Celltech R&D Ltd Biological products
US7329353B2 (en) * 2004-01-23 2008-02-12 Amgen Inc. LC/MS method of analyzing high molecular weight proteins
WO2006047350A2 (en) * 2004-10-21 2006-05-04 Xencor, Inc. IgG IMMUNOGLOBULIN VARIANTS WITH OPTIMIZED EFFECTOR FUNCTION

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644323A (ja) * 1992-07-22 1994-02-18 Nec Corp 蛋白質立体構造推定システム
JP2001521372A (ja) * 1996-04-30 2001-11-06 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー ヒトP2x4レセプタースプライス−変異体
WO2005003155A1 (ja) * 2003-07-03 2005-01-13 Toyo Boseki Kabushiki Kaisha ブロッキング効率の向上したタンパク質
JP2007501013A (ja) * 2003-08-04 2007-01-25 ファイザー プロダクツ インコーポレイティッド c−Metに対する抗体
WO2005081898A2 (en) * 2004-02-20 2005-09-09 The Trustees Of The University Of Pennsylvania Binding peptidomimetics and uses of the same
US20060134105A1 (en) * 2004-10-21 2006-06-22 Xencor, Inc. IgG immunoglobulin variants with optimized effector function
WO2006047340A2 (en) * 2004-10-22 2006-05-04 Amgen Inc. Methods for refolding of recombinant antibodies

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANTICANCER RESEACH, vol. 19, JPN6014036104, 1999, pages 13 - 22, ISSN: 0002884721 *
J. MOL. BIOL., vol. 319, JPN6013041972, 2002, pages 9 - 18, ISSN: 0002613706 *
PROTEIN ENGINEERING, DESIGN AND SELECTION, vol. 19, no. 7, JPN6015009747, 2006, pages 299 - 307, ISSN: 0003026111 *
細胞の分子生物学, vol. 第3版, JPN6013041971, 1995, pages 112頁, ISSN: 0002613705 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014054804A1 (ja) * 2012-10-05 2016-08-25 協和発酵キリン株式会社 ヘテロダイマータンパク質組成物
DE102015100009B4 (de) 2014-01-08 2018-06-21 Fanuc Corporation Werkzeugwechsler mit Abdeckungsmittel
JP2018501208A (ja) * 2014-11-21 2018-01-18 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company 修飾された重鎖定常領域を含む抗体
JP2020100645A (ja) * 2014-11-21 2020-07-02 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company 修飾された重鎖定常領域を含む抗体
JP7091379B2 (ja) 2014-11-21 2022-06-27 ブリストル-マイヤーズ スクイブ カンパニー 修飾された重鎖定常領域を含む抗体
JP2021520829A (ja) * 2018-04-18 2021-08-26 ゼンコア インコーポレイテッド IL−15/IL−15RA Fc融合タンパク質およびTIM−3抗原結合ドメインを含む、TIM−3標的化ヘテロ二量体融合タンパク質
JP2021521779A (ja) * 2018-04-18 2021-08-30 ゼンコア インコーポレイテッド IL−15/IL−15RA Fc融合タンパク質およびLAG−3抗原結合ドメインを含む、LAG−3を標的とするヘテロ二量体融合タンパク質
JP7366056B2 (ja) 2018-04-18 2023-10-20 ゼンコア インコーポレイテッド IL-15/IL-15RA Fc融合タンパク質およびLAG-3抗原結合ドメインを含む、LAG-3を標的とするヘテロ二量体融合タンパク質

Also Published As

Publication number Publication date
JP2020063298A (ja) 2020-04-23
EP2197911A2 (en) 2010-06-23
AU2008298904B2 (en) 2014-10-16
MX2010002683A (es) 2010-03-26
WO2009036209A2 (en) 2009-03-19
CA2698809C (en) 2023-10-17
US20180105589A1 (en) 2018-04-19
CA2698809A1 (en) 2009-03-19
WO2009036209A3 (en) 2009-05-07
EP3418299A1 (en) 2018-12-26
US20130144041A1 (en) 2013-06-06
JP2018086032A (ja) 2018-06-07
JP2022000468A (ja) 2022-01-04
AU2008298904A1 (en) 2009-03-19
JP2016145259A (ja) 2016-08-12
JP5963341B2 (ja) 2016-08-10
JP2014097070A (ja) 2014-05-29
US20100226925A1 (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5963341B2 (ja) 均質な抗体集団
JP6942162B2 (ja) Fc受容体結合が変更された非対称抗体および使用方法
ES2791989T3 (es) Anticuerpos humanizados anti-CD19 humano y procedimientos de uso
US9409950B2 (en) Linker peptides and polypeptides comprising same
JP6787888B2 (ja) 抗il−1ベータ抗体及び使用方法
JP6675017B2 (ja) コントースボディ−単鎖標的結合物質
KR102306492B1 (ko) 불변 쇄 변형된 이특이적, 5가 및 6가 ig-m 항체
JP2019187417A (ja) Fgf21突然変異体及びその使用
CN111683970A (zh) C-kit结合剂
EP3019531A1 (en) Immunoglobulin fusion proteins and compositions thereof
TW201302790A (zh) 單特異性及雙特異性抗igf-1r及抗erbb3抗體
KR20130004586A (ko) 조직 인자 경로 억제제 (tfpi)에 대한 최적화된 모노클로날 항체
CN113260375A (zh) 针对人补体因子C2b的抗体及使用方法
CN117597365A (zh) 多特异性fgf21受体激动剂及其应用
KR101744899B1 (ko) 신규 항-tfpi 항체 및 이를 포함하는 조성물
JP2022545925A (ja) 抗tfpiモノクローナル抗体
AU2013203141B2 (en) Homogeneous antibody populations
EP3418299B1 (en) Homogeneous antibody populations
KR102705001B1 (ko) 단백질 a 친화성 크로마토그래피를 이용한 생리활성 펩티드의 정제 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131121

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131220

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140121

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150107

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5963341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250