Nothing Special   »   [go: up one dir, main page]

JP2010535944A - Method for making an active cathode anti-corrosion coating on steel parts - Google Patents

Method for making an active cathode anti-corrosion coating on steel parts Download PDF

Info

Publication number
JP2010535944A
JP2010535944A JP2010520418A JP2010520418A JP2010535944A JP 2010535944 A JP2010535944 A JP 2010535944A JP 2010520418 A JP2010520418 A JP 2010520418A JP 2010520418 A JP2010520418 A JP 2010520418A JP 2010535944 A JP2010535944 A JP 2010535944A
Authority
JP
Japan
Prior art keywords
coating
corrosion
steel
layer
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010520418A
Other languages
Japanese (ja)
Other versions
JP2010535944A5 (en
Inventor
シュテファン ゼポイア
シュテファン ゲディケ
クリスティーネ ブレイアー
Original Assignee
ナノ−イクス ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナノ−イクス ゲーエムベーハー filed Critical ナノ−イクス ゲーエムベーハー
Publication of JP2010535944A publication Critical patent/JP2010535944A/en
Publication of JP2010535944A5 publication Critical patent/JP2010535944A5/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2701/00Coatings being able to withstand changes in the shape of the substrate or to withstand welding
    • B05D2701/40Coatings being able to withstand changes in the shape of the substrate or to withstand welding withstanding welding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本発明は、鋼部品上に活性耐食コーティングを作製する方法に関する。従来手段(例えば、浸漬、噴霧、フラッディング)を用いて工業規模で施すことができると共に、スケーリング防止手段を設けた熱間成形鋼パーツ、特にプレス硬化鋼パーツについて意図される活性耐食コーティングを開発するために、本発明は、a.スケーリング防止層を設けた鋼エレメントを使用するステップと、b.硬化、半熱間成形若しくは熱間成形、又はプレス硬化の目的でアニール炉内において600℃を超える温度で鋼エレメントをアニールするステップであって、その場合、反応層を作製する、アニールするステップと、c.耐食コーティングをアニールされた反応層に適用するステップとを含む方法を提供する。
【選択図】なし
The present invention relates to a method for producing an active corrosion resistant coating on a steel part. Develop active corrosion resistant coatings that can be applied on an industrial scale using conventional means (eg dipping, spraying, flooding) and intended for hot-formed steel parts, especially press-hardened steel parts, with anti-scaling means Therefore, the present invention provides a. Using a steel element provided with an anti-scaling layer; b. Annealing the steel element at a temperature in excess of 600 ° C. in an annealing furnace for the purpose of hardening, semi-hot forming or hot forming, or press hardening, in which case a reaction layer is produced, annealing C. Applying a corrosion resistant coating to the annealed reaction layer.
[Selection figure] None

Description

本発明は、鋼部品上に活性耐食コーティングを作製する方法に関する。   The present invention relates to a method for producing an active corrosion resistant coating on a steel part.

熱間成形プロセスは、要求される部類の高強度鋼部品、例えば、自動車製造のための構造ボディ部品のような高強度鋼部品を製造するのにますます用いられている。熱間成形の或る特定の一タイプは、特殊鋼(通常、マンガン−ホウ素鋼)を成形型(forming tool)内でオーステナイト化温度まで加熱し、熱間成形し且つ焼入硬化するプレス硬化と称されるプロセスである。高機械強度のマルテンサイトミクロ組織が得られ、薄く、それゆえ軽量であるが、強度の高い部品を製造することが可能となる。オーステナイト化は850℃を超える温度で起こる。この温度では、顕著なスケール形成が鋼表面に生じる。スケールは、保護気体の雰囲気、例えば、連続炉内で加熱される部分さえも炉から成形型に移される際に空中酸素と接触するときにスケール形成を受けるほど、極めて迅速に形成する。自動車製造における数あるピース(piece numbers)の成形のために構成される製造ラインの場合、保護気体下でラインの全セクション(加熱から成形まで)を作業することは、経済的観点又は製造的観点のいずれからも正当でない。   Hot forming processes are increasingly being used to produce the required class of high strength steel parts, for example, high strength steel parts such as structural body parts for automotive manufacturing. One particular type of hot forming is press hardening, in which special steel (usually manganese-boron steel) is heated in a forming tool to the austenitizing temperature, hot formed and quench hardened. It is a process called. A high mechanical strength martensite microstructure is obtained, which makes it possible to produce parts that are thin and therefore light in weight but high in strength. Austenitization occurs at temperatures above 850 ° C. At this temperature, significant scale formation occurs on the steel surface. The scale forms so rapidly that it undergoes scale formation when it comes into contact with atmospheric oxygen as it is transferred from the furnace to the mold, even in the atmosphere of a protective gas, for example even the part heated in a continuous furnace. In the case of a production line that is configured for the formation of a number of pieces in the manufacture of automobiles, it is an economic or manufacturing aspect to work on all sections of the line (from heating to molding) under protective gas. It is not valid from any of the above.

スケールは、形成されると、剥がれ落ちる傾向にあり、粗面を呈し脆性である。したがって、部品及び成形型にダメージを与えるため、例えばブラスト処理(blasting)によりプレス硬化後に高いコストをかけて部品から除去しなければならない。必要な成形型の標準的な洗浄は実質的に、サイクル時間を増大させ、ブラスト処理により除去される材料は、より厚い金属シートを使用することによって補う必要がある。したがって、プレス硬化のために、スケーリングから保護するコーティングを設けた鋼シートを使用することが通常である。   Once formed, the scale tends to flake off, has a rough surface and is brittle. Therefore, in order to damage the part and the mold, it must be removed from the part at high cost after press curing, for example by blasting. The standard mold cleaning required substantially increases the cycle time and the material removed by blasting needs to be compensated by using thicker metal sheets. Therefore, it is common to use a steel sheet with a coating that protects against scaling for press hardening.

特許文献1は、ホットディップアルミナイズド鋼タイプの使用を記載している。これらは、ホットディップコーティングにより施される約20μm〜30μm厚のAl−Si合金層でコーティングされている。このAl−Siコーティングは実際に、ホットディップアルミナイズドシート鋼が貯蔵されている間、該鋼に対して或る程度の防食を示す。これは、シート及びコイルが、貯蔵及び輸送を目的として油を塗布する必要がないことを意味する。しかしながら、熱間成形中に使用されるアニールプロセス後に、コーティングの耐食効果が著しく減少する。これは、例えば、950℃でアニールされたホットディップアルミナイズド鋼シートがGerman standard DIN 50021に従う塩水噴霧試験を用いて試験される場合に、明らかとなる。ほんの数日の後、赤錆の形成が表面全体に見られる。自動車のボディ全体を組み立て、リン酸処理した後に、影響を受けたパーツに電気泳動浸漬コーティングを施すことができる。これにより、或る特定の用途に用いられる適切な防食が該パーツにもたらされる。しかしながら、電気泳動浸漬コーティングがダメージを受けると、適切な活性防食はそれ以上保証されない。直接プレス硬化の標準条件下で、ホットディップアルミナイズドシートの電気抵抗は、硬化プロセス後で1ミリオーム未満の範囲内にある。   Patent Document 1 describes the use of a hot dip aluminized steel type. These are coated with an Al—Si alloy layer of about 20 μm to 30 μm thickness applied by hot dip coating. This Al-Si coating actually exhibits some degree of corrosion protection against hot dip aluminized sheet steel while it is being stored. This means that the sheet and coil need not be oiled for storage and transport purposes. However, after the annealing process used during hot forming, the corrosion resistance effect of the coating is significantly reduced. This becomes evident, for example, when a hot dip aluminized steel sheet annealed at 950 ° C. is tested using the salt spray test according to German standard DIN 50021. Only a few days later, red rust formation is seen across the surface. After the entire automobile body has been assembled and phosphorylated, an electrophoretic dip coating can be applied to the affected parts. This provides the part with the appropriate anticorrosion used for certain applications. However, if the electrophoretic dip coating is damaged, proper active corrosion protection is no longer guaranteed. Under standard conditions of direct press curing, the electrical resistance of the hot dip aluminized sheet is in the range of less than 1 milliohm after the curing process.

特許文献2に記載されている、スケーリングに対する保護の別の形態は、有機ケイ素結合剤、アルミニウム粒子及び固体潤滑剤から成るコーティング組成物による鋼シート又はコイルの湿式−化学コーティングに基づく。これは、熱間成形又は冷間成形することができ、熱間成形中のスケーリングから保護する。熱間成形(プレス硬化)プロセス後に、無機反応層がブラスト処理により除去される。これを行うのに必要とされる時間及びエネルギーは、スケールを除去するのに必要とされるものよりも著しく低い。ブラスト処理によるこの層の除去は、層が続く抵抗スポット溶接に要求される導電性を有しないため、必要である。裸金属シートは、溶接された後に、リン酸処理され、電気泳動浸漬コーティングを受ける。   Another form of protection against scaling, as described in US Pat. No. 5,637,077, is based on wet-chemical coating of steel sheets or coils with a coating composition consisting of an organosilicon binder, aluminum particles and a solid lubricant. This can be hot formed or cold formed, protecting against scaling during hot forming. After the hot forming (press curing) process, the inorganic reaction layer is removed by blasting. The time and energy required to do this is significantly lower than that required to remove scale. Removal of this layer by blasting is necessary because the layer does not have the conductivity required for subsequent resistance spot welding. Bare metal sheets are welded, then phosphated and subjected to electrophoretic dip coating.

特許文献3の主題である、記載されている改良形態の湿式−化学的スケーリング防止コーティングは、抵抗スポット溶接及び電気泳動浸漬コーティングに要求される導電性を有するため、プレス硬化した後も部品上に残り得る。プレス硬化の標準条件下では、これらのシートの電気抵抗は、硬化プロセス後で5mOhm未満の範囲内にある。部品が続いて溶接プロセス、特に抵抗スポット溶接プロセスに、又は電気泳動ホットディップコーティングにかけられる場合、スケーリング防止コーティングを備える鋼シートがアニールされるときに導電性反応層の形成をもたらすプロセスパラメータの観測が特に重要となる。保護気体雰囲気(例えば、窒素又はアルゴン)又は酸素含量が低い(〜10%)炉内雰囲気の使用が有益であることが分かった。短時間の加熱も同様に、高い導電性をもたらすため、3ミリオーム未満の範囲の低い電気抵抗をもたらすことにより、溶接性が助長される。溶接、リン酸処理及び電気泳動浸漬コーティングの後、かかる部分は、或る特定の分野において用いられる適切な防食を示す。しかしながら、この場合でも、万一電気泳動浸漬コーティングに対するダメージが起きた際に鋼を保護する活性防食はない。   The described improved wet-chemical anti-scaling coating, which is the subject of U.S. Patent No. 5,637,086, has the electrical conductivity required for resistance spot welding and electrophoretic dip coating, and therefore remains on the part after press curing. Get the rest. Under standard conditions of press curing, the electrical resistance of these sheets is in the range of less than 5 mOhm after the curing process. If the part is subsequently subjected to a welding process, in particular a resistance spot welding process, or to an electrophoretic hot dip coating, the observation of process parameters that result in the formation of a conductive reactive layer when a steel sheet with an anti-scaling coating is annealed. Especially important. It has been found beneficial to use a protective gas atmosphere (eg, nitrogen or argon) or a low oxygen content (-10%) furnace atmosphere. Short heating also results in high electrical conductivity, thus providing weldability by providing low electrical resistance in the range of less than 3 milliohms. After welding, phosphating and electrophoretic dip coating, such parts exhibit the appropriate corrosion protection used in certain fields. However, even in this case, there is no active anticorrosion that protects the steel in the event of damage to the electrophoretic dip coating.

ホットディップアルミナイズドを超えると記載されている湿式−化学的スケーリング防止コーティングの包括的な利点は、オーステナイト化温度まで加熱する際に、拡散層を形成する必要がないため、サイクル時間が短くなることである。そのうえ、加熱の際、如何なる融解の場合でも危険がないため、プレス硬化中に誘導加熱法又は伝導加熱法を使用してもよいことを意味する。   The comprehensive advantage of wet-chemical anti-scaling coatings described as exceeding hot dip aluminized is that cycle times are reduced because no diffusion layers need to be formed when heating to the austenitizing temperature. It is. In addition, there is no danger of any melting during heating, meaning that induction heating or conduction heating may be used during press curing.

特許文献4、特許文献5及び特許文献6の出願は、様々な硬化鋼部品を作製する方法を記載している。いずれの場合においても、酸素に対する親和性を有する別の元素(特にアルミニウム)と組み合わせた亜鉛から成る保護コーティングが、鋼に施されている。この保護コーティングは、特許文献5ではホットディッププロセスにより適用され、特許文献4及び特許文献6ではホットディッププロセス又は電気めっきプロセスにより適用されている。しかしながら、主な元素として亜鉛を含有するこれらのコーティングは、プレス硬化プロセスで必要となるオーステナイト化温度において酸化及び蒸発の影響を非常に受けやすい。その表面上に存在する微量の汚れ(例えばダスト)が燃焼し、その部分における不良が生じる。挙げた3つの出願は、コーティングのカソード耐食効果が明確に記載されている特許文献7に基づく(「高強度防食シート鋼部品」)。しかしながら実際には、表面がダメージを受けていない好適な部品が狭いプロセスウィンドウ内に得られると、亜鉛のカソード耐食効果は、最初のものとアニール後ではもはや同様でなく、コーティング中への母材からの鉄の拡散により、部品が腐食して赤錆を比較的容易に形成することとなる。特許文献8に記載されている亜鉛コーティングにも同じことが当てはまり、酸化亜鉛の付加的な層によってプレス硬化条件下における蒸発から保護される。   The applications of Patent Literature 4, Patent Literature 5 and Patent Literature 6 describe methods for producing various hardened steel parts. In either case, the steel is provided with a protective coating consisting of zinc in combination with another element (especially aluminum) that has an affinity for oxygen. This protective coating is applied by a hot dip process in Patent Document 5 and applied by a hot dip process or an electroplating process in Patent Document 4 and Patent Document 6. However, these coatings containing zinc as the main element are very susceptible to oxidation and evaporation at the austenitizing temperature required in the press curing process. A minute amount of dirt (for example, dust) present on the surface burns, and a defect occurs in that portion. The three listed applications are based on US Pat. No. 6,057,031 (“High Strength Corrosion Resistant Sheet Steel Parts”) where the cathode corrosion resistance of the coating is clearly described. In practice, however, when suitable parts that are not damaged on the surface are obtained within a narrow process window, the cathodic corrosion resistance of zinc is no longer similar to that of the first after annealing, and the matrix into the coating Due to the diffusion of iron from the steel, the parts corrode and form red rust relatively easily. The same is true for the zinc coating described in US Pat. No. 6,057,028, which is protected from evaporation under press-hardening conditions by an additional layer of zinc oxide.

欧州特許出願公開第1013785号明細書European Patent Application Publication No. 1013785 国際公開第2006/040030号パンフレットInternational Publication No. 2006/040030 Pamphlet 国際公開第2007/076766号パンフレットInternational Publication No. 2007/076766 Pamphlet 国際公開第2005/021820号パンフレットInternational Publication No. 2005/021820 Pamphlet 国際公開第2005/021821号パンフレットInternational Publication No. 2005/021821 Pamphlet 国際公開第2005/021822号パンフレットInternational Publication No. 2005/021822 Pamphlet 豪州特許第412878号明細書Australian Patent No. 41878 欧州特許出願公開第1439240号明細書European Patent Application Publication No. 1439240

本発明の目的は、従来手段(例えば、浸漬、噴霧、フラッディング又は圧延)を用いて工業規模で適用することができると共に、スケーリング防止手段を設けた熱間成形鋼パーツ、特にプレス硬化鋼パーツについて意図される活性耐食コーティングを開発することである。   The object of the present invention can be applied on an industrial scale using conventional means (e.g. dipping, spraying, flooding or rolling) and also for hot-formed steel parts, in particular press-hardened steel parts, provided with anti-scaling means. To develop the intended active corrosion resistant coating.

この目的は、プリアンブルに記載されると共に以下のプロセスステップ:
a.スケーリング防止層を設けた鋼エレメントを使用するステップと、
b.硬化、半熱間成形若しくは熱間成形、又はプレス硬化の目的でアニール炉内において600℃を超える温度で鋼エレメントをアニールし、そのようにして反応層を作製するステップと、
c.耐食コーティングを前記アニールされた反応層に適用するステップと、
を含む方法によって、本発明により達成される。
This purpose is described in the preamble and the following process steps:
a. Using a steel element provided with an anti-scaling layer;
b. Annealing the steel element at a temperature in excess of 600 ° C. in an annealing furnace for the purpose of hardening, semi-hot forming or hot forming, or press hardening, thus producing a reaction layer;
c. Applying a corrosion resistant coating to the annealed reaction layer;
This is achieved by the present invention by a method comprising:

代替的な実施形態では、この目的は、プリアンブルに記載されると共に以下のプロセスステップ:
a.スケーリング防止層を設けた鋼エレメントを使用するステップと、
b.耐食コーティングをスケーリング防止層に適用するステップと、
c.硬化、半熱間成形若しくは熱間成形、又はプレス硬化の目的でアニール炉内において600℃を超える温度で鋼エレメントをアニールし、そのようにして反応層を作製するステップと、
を含む方法によって、本発明により達成される。
In an alternative embodiment, this purpose is described in the preamble and the following process steps:
a. Using a steel element provided with an anti-scaling layer;
b. Applying a corrosion resistant coating to the anti-scaling layer;
c. Annealing the steel element at a temperature in excess of 600 ° C. in an annealing furnace for the purpose of hardening, semi-hot forming or hot forming, or press hardening, thus producing a reaction layer;
This is achieved by the present invention by a method comprising:

このため、本発明は、600℃を超える温度における熱間成形中、特にプレス硬化中のスケール形成を防止するために、鋼上に特別なスケーリング防止コーティングを使用することに基づく。   For this reason, the present invention is based on the use of a special anti-scaling coating on the steel during hot forming at temperatures above 600 ° C., in particular to prevent scale formation during press hardening.

驚くべきことに、金属酸化物と、金属顔料、特に、亜鉛顔料、又は亜鉛顔料及びアルミニウム顔料とから成る特別なコーティング組成物は、層厚が小さいμm範囲内である場合でも、これらのコーティング組成物をアニール中に金属鋼表面上に直接適用するか、又はスケール防止コーティングから形成される反応層上に適用するかにかかわらず、鋼を腐食から効果的に保護することが見出された。高い耐性のエッジ保護が部品に付与され、特に電気泳動浸漬コーティングのプロセスによって何の問題もなく耐食コーティングを上塗りし、リン酸処理し、又は浸漬コーティングすることができる。   Surprisingly, special coating compositions consisting of metal oxides and metal pigments, in particular zinc pigments, or zinc pigments and aluminum pigments, have these coating compositions even when the layer thickness is in the small μm range. It has been found that the steel is effectively protected from corrosion whether applied directly on the surface of the metal steel during annealing or on a reactive layer formed from an anti-scale coating. High resistance edge protection is imparted to the part, and it can be overcoated, phosphated or dip coated without any problems, especially by the electrophoretic dip coating process.

本発明の実施の形態は、アニールが850℃を超える温度で行われることにある。   An embodiment of the present invention is that the annealing is performed at a temperature exceeding 850 ° C.

本発明によれば、硬化可能な鋼は、ガス利用アニール炉又は電気利用アニール炉内で伝導又は誘導によりアニールされる。   In accordance with the present invention, hardenable steel is annealed by conduction or induction in a gas-based annealing furnace or an electricity-based annealing furnace.

本発明の有益な実施の形態は、アニール炉雰囲気中の酸素含量が0%〜10%であることにある。   A beneficial embodiment of the present invention is that the oxygen content in the annealing furnace atmosphere is 0% to 10%.

スケーリング防止層が、アルミニウム合金、アルミニウム顔料、アルミニウム顔料を含有するコーティング、マグネシウム合金、マグネシウム顔料、マグネシウム顔料を含有するコーティング、亜鉛合金、亜鉛顔料、又は亜鉛顔料を含有するコーティングから成ることもまた、本発明の範囲内である。   It is also possible that the anti-scaling layer comprises an aluminum alloy, an aluminum pigment, a coating containing an aluminum pigment, a magnesium alloy, a magnesium pigment, a coating containing a magnesium pigment, a zinc alloy, a zinc pigment, or a coating containing a zinc pigment. It is within the scope of the present invention.

形成プロセス後に、スケーリング防止層が、10mΩの最大電気抵抗、好ましくは5mΩの最大電気抵抗を有することもまた、本発明の範囲内である。   It is also within the scope of the present invention that after the formation process, the anti-scaling layer has a maximum electrical resistance of 10 mΩ, preferably a maximum electrical resistance of 5 mΩ.

さらに、完成部品が、10mΩの最大電気抵抗、好ましくは5mΩの最大電気抵抗を有することが有利である。   Furthermore, it is advantageous for the finished part to have a maximum electrical resistance of 10 mΩ, preferably a maximum electrical resistance of 5 mΩ.

2つの先の手段は、抵抗スポット溶接が可能であることを保証する。   Two previous measures ensure that resistance spot welding is possible.

湿式−化学プロセス、特に噴霧、フラッディング、圧延又は浸漬プロセスにおいて、耐食層を液相からアニールされた反応層に塗布することがさらに好都合である。   In wet-chemical processes, in particular spraying, flooding, rolling or dipping processes, it is further advantageous to apply a corrosion-resistant layer to the reaction layer annealed from the liquid phase.

本発明によれば、耐食層の層厚が、50μm未満、好ましくは20μm未満、とりわけ10μm未満である。   According to the invention, the layer thickness of the corrosion-resistant layer is less than 50 μm, preferably less than 20 μm, in particular less than 10 μm.

耐食層を塗布前に溶媒で希釈することは、本発明の範囲である。   It is within the scope of the present invention to dilute the corrosion resistant layer with a solvent before application.

本発明の一実施の形態では、耐食層を、塗布した後に、室温〜400℃、好ましくは室温〜250℃の温度で乾燥させる。   In one embodiment of the present invention, the corrosion-resistant layer is applied and then dried at a temperature of room temperature to 400 ° C, preferably room temperature to 250 ° C.

さらに、耐食層が結合剤と金属顔料とを含有することは、本発明の範囲である。   Furthermore, it is within the scope of the present invention that the corrosion resistant layer contains a binder and a metal pigment.

これに関し、耐食層が、10wt.%〜100wt.%、好ましくは50wt.%〜100wt.%、とりわけ70wt.%〜95wt.%の金属亜鉛顔料及び/又はマグネシウム顔料を含有することが有利であることが分かっている。   In this regard, the corrosion resistant layer is 10 wt. % To 100 wt. %, Preferably 50 wt. % To 100 wt. %, Especially 70 wt. % To 95 wt. It has been found advantageous to contain 1% metallic zinc pigment and / or magnesium pigment.

また、これに関して、耐食層が最大50wt.%の金属アルミニウム顔料を含有することも有利である。   In this regard, the corrosion resistant layer has a maximum of 50 wt. It is also advantageous to contain 1% metallic aluminum pigment.

本発明の好適な実施の形態は、耐食層に使用される結合剤が、5wt.%〜100wt.%の金属酸化物、特に酸化チタン、酸化アルミニウム又は酸化ジルコニウムを含有することにある。   In a preferred embodiment of the present invention, the binder used in the corrosion resistant layer is 5 wt. % To 100 wt. % Metal oxide, in particular titanium oxide, aluminum oxide or zirconium oxide.

耐食層に使用される結合剤が、最大50wt.%のゾル−ゲル法により作製される結合剤、シリコーン、シロキサン又はワックスを含有することもまた、本発明の範囲内である。   The binder used for the corrosion resistant layer is up to 50 wt. It is also within the scope of the present invention to contain a binder, silicone, siloxane or wax made by the% sol-gel method.

さらに、耐食層が、固体状態の潤滑剤、特にグラファイト又は窒化ホウ素を含有することは、本発明の範囲である。   Furthermore, it is within the scope of the invention for the corrosion resistant layer to contain a solid state lubricant, in particular graphite or boron nitride.

本発明は、鋼エレメントが、シート、コイル、部品又は他の固体の形態であることにある。   The invention resides in that the steel element is in the form of a sheet, coil, part or other solid.

本発明の特定の実施の形態は、コーティングされた基材が、硬化プロセスを経た鋼エレメントであることにある。   A particular embodiment of the invention is that the coated substrate is a steel element that has undergone a hardening process.

鋼エレメントをハイドロフォーミングプロセスにおいて成形したこともまた、本発明の範囲内である。   It is also within the scope of the present invention for the steel element to be formed in a hydroforming process.

別の特定の実施の形態は、コーティングされた基材が、硬化プロセスに一般的な種類のものであり且つ部品上に残るスケール防止層を設けた鋼エレメントであることにある。   Another particular embodiment is that the coated substrate is a steel element that is of the kind common in the curing process and is provided with an anti-scale layer that remains on the part.

さらに、鋼エレメントが、アルミニウムコーティング若しくは亜鉛コーティング、又は金属顔料を含有するコーティング等の金属コーティングを含むか又は含まない、多種多様な合金鋼で作られる部品の組立体から成り、溶接、ボンディング、ボルト締め又はリベット打ち等の標準的な接合法によって互いに接合することは、本発明の範囲である。   Furthermore, the steel element consists of an assembly of parts made of a wide variety of alloy steels with or without a metal coating such as an aluminum coating or zinc coating, or a coating containing metal pigments, welding, bonding, bolts It is within the scope of the present invention to join together by standard joining methods such as tightening or riveting.

本発明の好適な実施の形態は、アニールする前に、鋼エレメントに、その鋼パーツ(単数又は複数)の昇温挙動に影響を与えるコーティングを完全に又は部分的に設けることにある。   A preferred embodiment of the present invention is to provide a complete or partial coating on the steel element that affects the heating behavior of the steel part (s) prior to annealing.

この状況では、昇温時間、炉内時間及び/又は拡散時間を減らすために、均質な熱線吸収コーティング、例えば黒色コーティング、又は鋼エレメントの表面にわたって分布する熱線吸収領域及び熱線反射領域を含む不均質なコーティング、例えば部分的に黒色のコーティング及び部分的に銀色のコーティングを鋼エレメントに設けることが可能であり、そのため、表面での赤外線の吸収におけるこの変形形態によって、例えば種々の硬化帯域の形成を可能にする領域から領域へのエネルギーの入力を選択的に制御することができる。この手段は当然ながら、鋼エレメントが、互いに接合する多種多様な部品を含む、これまでに記載した組立体と組み合わせてもよい。   In this situation, in order to reduce the heating time, the furnace time and / or the diffusion time, a homogeneous heat ray absorbing coating, for example a black coating, or a non-homogeneous comprising heat ray absorbing areas and heat ray reflecting areas distributed over the surface of the steel element. Coatings such as partially black coatings and partially silver coatings can be provided on the steel element, so that this variation in the absorption of infrared radiation at the surface can, for example, form various hardening zones. It is possible to selectively control the input of energy from region to region. This means may of course be combined with the assembly described so far, where the steel elements comprise a wide variety of parts that are joined together.

本発明の実施の形態は、耐食層を設けた部品又は部品の組立体を、相互に、一般的に溶接可能な合金鋼と、又は金属コーティングを設けた鋼グレードと溶接することができることにある。   An embodiment of the present invention is that a part or assembly of parts provided with a corrosion-resistant layer can be welded together with a generally weldable alloy steel or with a steel grade provided with a metal coating. .

本発明の特定の実施の形態は、使用される鋼エレメントの電気抵抗が、耐食層により有意に影響を受けないことにある。   A particular embodiment of the invention is that the electrical resistance of the steel elements used is not significantly affected by the corrosion resistant layer.

最後に、本発明の範囲は、機械製造に関する、特に、自動車の製造、建築、特に製鉄製品に関する、プロセス工学、航空宇宙工学、発電所及び発電所工学、電気工学、医療工学、スポーツ器具、園芸及び造園設計、工具製作、農業機械、家具、台所、家庭器具、玩具、スポーツ製品、キャンプ器具、キャラバン、ウィンドウ及びドアフレーム、暖房設備、熱交換器、エアコン、エスカレータ、コンベヤ、オイルプラットフォーム、宝飾品類、機関車、レール、輸送システム、クレーン、炉、エンジン及びエンジン付属品、ピストン、封止環、排気システム、ABS及びブレーキシステム、ブレーキディスク、シャーシ部品、ホイール、リム、衛生製品、ランプ及びデザイン製品に関する耐食性部品又は組立体を製造するための、本発明による方法の使用に及ぶ。   Finally, the scope of the present invention relates to machine manufacturing, in particular automobile manufacturing, construction, in particular steel products, process engineering, aerospace engineering, power plant and power plant engineering, electrical engineering, medical engineering, sports equipment, horticulture. Landscaping design, tool making, agricultural machinery, furniture, kitchen, home appliances, toys, sports products, camping equipment, caravans, window and door frames, heating equipment, heat exchangers, air conditioners, escalators, conveyors, oil platforms, jewelry , Locomotives, rails, transport systems, cranes, furnaces, engines and engine accessories, pistons, seal rings, exhaust systems, ABS and brake systems, brake discs, chassis parts, wheels, rims, sanitary products, lamps and design products For the production of corrosion-resistant parts or assemblies according to the invention It extends to the use of the law.

実施形態を参照して本発明を以下に説明する。   The present invention will be described below with reference to embodiments.

実施例1
60m/分で移動する脱脂22MnB5A鋼ストリップを、コイルコーティングラインにおいて、特許文献3によるコーティング材料によりロールコーティングする。コーティング材料を200℃〜250℃のPMT(ピーク金属温度(Peak Metal Temperature))で硬化する。コーティングされた鋼ストリップを適合する素材に切断し、冷間成形プロセスにおいてプリフォームに事前引抜き加工する。このプリフォームを、10vol.%の最大酸素含量を有する窒素雰囲気中において、電気利用連続炉内で4分間950℃の温度に加熱し、成形型に移し、そこで熱間成形した後、200℃までの20sの冷却により焼入れ硬化を行う。
Example 1
A degreased 22MnB5A steel strip moving at 60 m / min is roll coated with a coating material according to US Pat. The coating material is cured at a PMT (Peak Metal Temperature) of 200 ° C. to 250 ° C. The coated steel strip is cut into a compatible material and pre-drawn into a preform in the cold forming process. This preform was treated with 10 vol. In a nitrogen atmosphere having a maximum oxygen content of 5%, heat to a temperature of 950 ° C. for 4 minutes in an electric continuous furnace, transfer to a mold, hot mold there, and quench hardening by cooling to 200 ° C. for 20 s. I do.

記載のプレス硬化されたパーツのための好適な耐食コーティングは以下のように作製する。   A suitable corrosion resistant coating for the described press-cured parts is made as follows.

23.6gのアルミニウム顔料ペースト(例えば、Schlenk製のDecomet Hochglanz Al 1002/10)及び138.1gの亜鉛顔料ペースト(Eckart製のStapa TE Zinc AT)を、74.4gの1−ブタノール溶媒中に攪拌し、1000rpmの速度で運転するディゾルバを用いて20分間均質に混合する。163.3gのテトラブチルオルトチタネート(Fluka製)をこの溶液中に攪拌する。さらなる加工前に、5gのByk 348湿潤剤(Byk Chemie製)を添加する。   23.6 g of aluminum pigment paste (eg, Decomet Hochglanz Al 1002/10 from Schlenk) and 138.1 g of zinc pigment paste (Eckart's Tapa TE Zinc AT) are stirred into 74.4 g of 1-butanol solvent. And homogeneously mixed for 20 minutes using a dissolver operating at a speed of 1000 rpm. 163.3 g of tetrabutyl orthotitanate (from Fluka) is stirred into this solution. Add 5 g Byk 348 wetting agent (byk chemie) before further processing.

乾燥及び硬化後に3μm〜10μmの層厚を作製するようなペイントスプレーガン(例えばSata Jet、1.2mmノズル)を用いて、コーティング溶液をプレス硬化されたパーツの全面に塗布する。コーティング溶液は、室温で塗布から1時間内に、又は180℃で20分間内に硬化する。
実施例2:
アルミニウムスケーリング防止コーティングを設けた部品(例えばUsibor)を、実施例1と同様にプレス硬化プロセスにかける。
The coating solution is applied to the entire surface of the press-cured part using a paint spray gun (eg, Sat Jet, 1.2 mm nozzle) that produces a layer thickness of 3 μm to 10 μm after drying and curing. The coating solution cures within 1 hour of application at room temperature or within 20 minutes at 180 ° C.
Example 2:
Parts with an aluminum anti-scaling coating (eg, Usibor) are subjected to a press hardening process as in Example 1.

この部品のための好適な耐食コーティングは以下のように作製する。   A suitable corrosion resistant coating for this part is made as follows.

138.1gの亜鉛顔料ペースト(Eckart製のStapa TE Zinc AT)を、400gの1−ブタノール溶媒中に攪拌し、1000rpmの速度で運転するディゾルバを用いて20分間均質に混合する。163.3gのテトラブチルオルトチタネート(Fluka製)をこの溶液中に攪拌する。   138.1 g of zinc pigment paste (Stapa TE Zinc AT from Eckart) is stirred in 400 g of 1-butanol solvent and homogeneously mixed for 20 minutes using a dissolver operating at a speed of 1000 rpm. 163.3 g of tetrabutyl orthotitanate (from Fluka) is stirred into this solution.

40gのメチルトリエトキシシラン(Fluka製)と、10gのテトラエトキシシラン(Fluka製)との混合物を、15gの1%オルトリン酸と攪拌することによって加水分解させる。攪拌の5時間後、反応混合物は単相であり、この反応混合物を上記分散液中に攪拌して、均質溶液を作製する。   A mixture of 40 g methyltriethoxysilane (from Fluka) and 10 g tetraethoxysilane (from Fluka) is hydrolyzed by stirring with 15 g of 1% orthophosphoric acid. After 5 hours of stirring, the reaction mixture is single phase and the reaction mixture is stirred into the dispersion to make a homogeneous solution.

好適に制御される浸漬槽を満たすのに十分な量でコーティング溶液を調製する。クレーンによってコーティング溶液が入った浸漬槽内に部品を降ろし、その全面が均質に湿潤した後、再び持ち上げる。過剰なコーティング溶液を全て落とした後、20分間180℃でコーティングを硬化させる炉に部品を移す。   A coating solution is prepared in an amount sufficient to fill a suitably controlled immersion bath. The part is lowered into a dipping bath containing the coating solution by a crane, and the whole surface is uniformly wetted and then lifted again. After all of the excess coating solution has been dropped, the parts are transferred to an oven that cures the coating at 180 ° C. for 20 minutes.

処理後、鋼と、アルミニウムと、耐食層とを含む複合エレメントは、10mOhm未満の抵抗を有し、抵抗スポット溶接によって他のシートと難なく接合することができる。
実施例3:
プレス硬化によってAl−Si浸漬コーティングを備える鋼素材、且つ特許文献3によりコーティングされる鋼素材からボディ部品を作製する。これらを、抵抗スポット溶接によってコーティングされていない鋼部品と接合して、組立体を形成する。
After processing, the composite element comprising steel, aluminum and corrosion resistant layer has a resistance of less than 10 mOhm and can be joined without difficulty to other sheets by resistance spot welding.
Example 3:
A body part is produced from a steel material provided with an Al-Si dip coating by press hardening and a steel material coated according to Patent Document 3. These are joined with uncoated steel parts by resistance spot welding to form an assembly.

この組立体に好適な耐食コーティングは以下のように作製する。   A corrosion resistant coating suitable for this assembly is made as follows.

33.0gの酸化アルミニウム粉末(例えば、Degussa製のAeroxide Alu C)、41.3gの亜鉛粉末(Eckart製のStandart Zink Flake AT)、及び4.5gのAerosil R972(Degussa製)を、250gの1−ブタノール溶媒に添加する。さらなる加工前に、20gの好適な粉末状ワックス(Clariant製のLicowax C)を混合物に添加し、ディゾルバを用いて少なくとも2時間均質に混合する。   33.0 g aluminum oxide powder (eg Aeroxide Alu C from Degussa), 41.3 g zinc powder (Standard Zink Flake AT from Eckart), and 4.5 g Aerosil R972 (from Degussa), 250 g of 1 Add to butanol solvent. Prior to further processing, 20 g of a suitable powdered wax (Licowax C from Clariant) is added to the mixture and mixed homogeneously using a dissolver for at least 2 hours.

乾燥及び硬化後に3μm〜10μmの層厚を作製するようなスプレー塗装機器(例えば1.2mmの直径を有するHVLP加圧空気ノズル)を用いて、コーティング溶液をプレス硬化された組立体の全面に塗布する。また、溶液は空隙、間隙及び接合部に特に噴霧される。硬化は180℃の温度で20分間行われる。
結果
実施例1〜実施例3による部品及び組立体はそれぞれ、基材にしっかりと付着する3μm〜10μm厚の銀白色の耐食層でコーティングされている。DIN EN ISO 9227のように塩水噴霧試験に1000時間かけた後、コーティングは、表面上にも十字形損傷部位にも赤錆の形成を示さなかった。コーティングされた部品及び組立体は、10mΩ未満の電気抵抗を有し、他の鋼パーツに、例えば自動車のボディを組み立てるのに溶接することができる。
The coating solution is applied to the entire surface of the press-cured assembly using a spray coating device (eg HVLP pressurized air nozzle having a diameter of 1.2 mm) that produces a layer thickness of 3 μm to 10 μm after drying and curing. To do. Also, the solution is particularly sprayed into the voids, gaps and joints. Curing is performed at a temperature of 180 ° C. for 20 minutes.
Results The parts and assemblies according to Examples 1 to 3 are each coated with a 3 to 10 μm thick silver white corrosion resistant layer that adheres firmly to the substrate. After 1000 hours of salt spray testing, such as DIN EN ISO 9227, the coating showed no red rust formation on the surface or on the cruciform lesion. The coated parts and assemblies have an electrical resistance of less than 10 mΩ and can be welded to other steel parts, for example to assemble an automobile body.

Claims (22)

鋼部品上に活性カソード耐食コーティングを作製する方法であって、以下のプロセスステップ:
a.スケーリング防止層を設けた鋼エレメントを使用するステップと、
b.硬化、半熱間成形若しくは熱間成形、又はプレス硬化の目的でアニール炉内において600℃を超える温度で前記鋼エレメントをアニールし、そのようにして反応層を作製するステップと、
c.耐食コーティングを前記アニールされた反応層に適用するステップと、
を特徴とする、鋼部品上に活性カソード耐食コーティングを作製する方法。
A method for producing an active cathodic corrosion resistant coating on a steel part comprising the following process steps:
a. Using a steel element provided with an anti-scaling layer;
b. Annealing the steel element at a temperature in excess of 600 ° C. in an annealing furnace for the purpose of hardening, semi-hot forming or hot forming, or press hardening, and thus producing a reaction layer;
c. Applying a corrosion resistant coating to the annealed reaction layer;
A method for producing an active cathode corrosion resistant coating on a steel part.
鋼部品上に活性カソード耐食コーティングを作製する方法であって、以下のプロセスステップ:
a.スケーリング防止層を設けた鋼エレメントを使用するステップと、
b.耐食コーティングを前記スケーリング防止層に適用するステップと、
c.硬化、半熱間成形若しくは熱間成形、又はプレス硬化の目的でアニール炉内において600℃を超える温度で前記鋼エレメントをアニールし、そのようにして反応層を作製するステップと、
を特徴とする、鋼部品上に活性カソード耐食コーティングを作製する方法。
A method for producing an active cathodic corrosion resistant coating on a steel part comprising the following process steps:
a. Using a steel element provided with an anti-scaling layer;
b. Applying a corrosion resistant coating to the anti-scaling layer;
c. Annealing the steel element at a temperature in excess of 600 ° C. in an annealing furnace for the purpose of hardening, semi-hot forming or hot forming, or press hardening, and thus producing a reaction layer;
A method for producing an active cathode corrosion resistant coating on a steel part.
850℃を超える温度でアニールを実施することを特徴とする、請求項1に記載の方法。   The method according to claim 1, wherein the annealing is performed at a temperature exceeding 850 ° C. ガス利用(gas-operated)アニール炉又は電気利用(electrically-operated)アニール炉内において、アニールを伝導又は誘導により実施することを特徴とする、請求項1に記載の方法。   2. A method according to claim 1, characterized in that the annealing is carried out by conduction or induction in a gas-operated annealing furnace or an electrically-operated annealing furnace. アニール炉雰囲気中の酸素含量が0%〜10%であることを特徴とする、請求項1に記載の方法。   The method according to claim 1, wherein the oxygen content in the annealing furnace atmosphere is 0% to 10%. 前記スケーリング防止層が、アルミニウム合金、アルミニウム顔料を含有するコーティング、マグネシウム合金、マグネシウム顔料を含有するコーティング、亜鉛合金、又は亜鉛顔料を含有するコーティングから成ることを特徴とする、請求項1に記載の方法。   The anti-scaling layer comprises an aluminum alloy, a coating containing an aluminum pigment, a magnesium alloy, a coating containing a magnesium pigment, a zinc alloy, or a coating containing a zinc pigment. Method. 形成後に、前記スケーリング防止層が、10mΩの最大電気抵抗、好ましくは5mΩの最大電気抵抗を有することを特徴とする、請求項1に記載の方法。   2. Method according to claim 1, characterized in that after formation, the anti-scaling layer has a maximum electrical resistance of 10 m [Omega], preferably a maximum electrical resistance of 5 m [Omega]. 前記完成部品が、10mΩの最大電気抵抗、好ましくは5mΩの最大電気抵抗を有することを特徴とする、請求項1に記載の方法。   2. A method according to claim 1, characterized in that the finished part has a maximum electrical resistance of 10 mΩ, preferably a maximum electrical resistance of 5 mΩ. 湿式−化学プロセス、特に噴霧、フラッディング、圧延又は浸漬プロセスにおいて、前記耐食層を液相から前記アニール反応層に塗布することを特徴とする、請求項1に記載の方法。   The method according to claim 1, characterized in that the corrosion-resistant layer is applied from the liquid phase to the annealing reaction layer in a wet-chemical process, in particular a spraying, flooding, rolling or dipping process. 前記耐食層の層厚が、50μm未満、好ましくは20μm未満、とりわけ10μm未満であることを特徴とする、請求項8に記載の方法。   9. Method according to claim 8, characterized in that the thickness of the corrosion-resistant layer is less than 50 [mu] m, preferably less than 20 [mu] m, in particular less than 10 [mu] m. 前記耐食層を塗布前に溶媒で希釈することを特徴とする、請求項8に記載の方法。   The method according to claim 8, wherein the corrosion-resistant layer is diluted with a solvent before application. 前記耐食層を適用した後に、室温〜400℃、好ましくは室温〜250℃の温度で乾燥させることを特徴とする、請求項1に記載の方法。   The method according to claim 1, wherein after applying the corrosion-resistant layer, drying is performed at a temperature of room temperature to 400 ° C, preferably room temperature to 250 ° C. 前記耐食層が結合剤と金属顔料とを含有することを特徴とする、請求項1に記載の方法。   The method according to claim 1, wherein the corrosion-resistant layer contains a binder and a metal pigment. 前記耐食層が、10wt.%〜100wt.%、好ましくは50wt.%〜100wt.%、とりわけ70wt.%〜95wt.%の金属亜鉛顔料及び/又はマグネシウム顔料を含有することを特徴とする、請求項12に記載の方法。   The corrosion-resistant layer has a thickness of 10 wt. % To 100 wt. %, Preferably 50 wt. % To 100 wt. %, Especially 70 wt. % To 95 wt. The process according to claim 12, characterized in that it contains% metallic zinc pigment and / or magnesium pigment. 前記耐食層が最大50wt.%の金属アルミニウム顔料を含有することを特徴とする、請求項12に記載の方法。   The corrosion resistant layer has a maximum of 50 wt. The process according to claim 12, characterized in that it contains% metallic aluminum pigment. 前記耐食層に使用される前記結合剤が、5wt.%〜100wt.%の金属酸化物、特に酸化チタン、酸化アルミニウム又は酸化ジルコニウムを含有することを特徴とする、請求項12に記載の方法。   The binder used for the corrosion-resistant layer is 5 wt. % To 100 wt. 13. A method according to claim 12, characterized in that it contains% metal oxide, in particular titanium oxide, aluminum oxide or zirconium oxide. 前記耐食層に使用される前記結合剤が、最大50wt.%のゾル−ゲル法により作製される結合剤、シリコーン、シロキサン又はワックスを含有することを特徴とする、請求項12に記載の方法。   The binder used for the corrosion resistant layer has a maximum of 50 wt. The process according to claim 12, characterized in that it contains a binder, silicone, siloxane or wax made by the% sol-gel process. 前記耐食層が、固体状態の潤滑剤、特にグラファイト又は窒化ホウ素を含有することを特徴とする、請求項12に記載の方法。   13. A method according to claim 12, characterized in that the corrosion-resistant layer contains a solid state lubricant, in particular graphite or boron nitride. 前記鋼エレメントが、シート、コイル、部品又は他の固体の形態であることを特徴とする、請求項1〜18のいずれか一項に記載の方法。   19. A method according to any one of the preceding claims, characterized in that the steel element is in the form of a sheet, a coil, a part or other solid. 前記鋼エレメントが、アルミニウムコーティング若しくは亜鉛コーティング、又は金属顔料を含有するコーティング等の金属コーティングを含むか又は含まない、多種多様な合金鋼で作られる部品の組立体から成り、溶接、ボンディング、ボルト締め又はリベット打ち等の標準的な接合法によって互いに接合することを特徴とする、請求項1〜18のいずれか一項に記載の方法。   The steel element consists of an assembly of parts made of a wide variety of alloy steels with or without a metal coating, such as an aluminum coating or zinc coating, or a coating containing a metal pigment, and is welded, bonded, bolted The method according to any one of claims 1 to 18, wherein the members are joined to each other by a standard joining method such as riveting. アニールする前に、前記鋼エレメントに、その鋼パーツ(単数又は複数)の昇温挙動に影響を与えるコーティングを完全に又は部分的に設けることを特徴とする、請求項1〜20のいずれか一項に記載の方法。   21. Any one of claims 1 to 20, characterized in that, prior to annealing, the steel element is completely or partially provided with a coating that affects the heating behavior of the steel part (s). The method according to item. 請求項1〜請求項19に記載のいずれか一項に記載の方法の使用であって、機械製造に関する、特に、自動車製造、建築、特に製鉄製品に関する、プロセス工学、航空宇宙工学、発電所及び発電所工学、電気工学、医療工学、スポーツ器具、園芸及び造園設計、工具製作、農業機械、家具、台所、家庭器具、玩具、スポーツ製品、キャンプ器具、キャラバン、ウィンドウ及びドアフレーム、暖房設備、熱交換器、エアコン、エスカレータ、コンベヤ、オイルプラットフォーム、宝飾品類、機関車、レール、輸送システム、クレーン、炉、エンジン及びエンジン付属品、ピストン、封止環、排気システム、ABS及びブレーキシステム、ブレーキディスク、シャーシ部品、ホイール、ホイールリム、衛生製品、ランプ及びデザイン製品に関する耐食性部品又は組立体を製造するための、請求項1〜19のいずれか一項に記載の方法の使用。   20. Use of the method according to any one of claims 1 to 19, relating to machine manufacturing, in particular automotive manufacturing, construction, in particular steel products, process engineering, aerospace engineering, power plant and Power plant engineering, electrical engineering, medical engineering, sports equipment, horticulture and landscaping design, tool making, agricultural machinery, furniture, kitchen, household equipment, toys, sports products, camping equipment, caravans, window and door frames, heating equipment, heat Exchanger, air conditioner, escalator, conveyor, oil platform, jewelry, locomotive, rail, transport system, crane, furnace, engine and engine accessories, piston, seal ring, exhaust system, ABS and brake system, brake disc, Chassis parts, wheels, wheel rims, sanitary products, lamps and design products For producing consumable parts or assembly, use of a method according to any one of claims 1 to 19.
JP2010520418A 2007-08-13 2008-08-12 Method for making an active cathode anti-corrosion coating on steel parts Pending JP2010535944A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007038215A DE102007038215A1 (en) 2007-08-13 2007-08-13 Process for producing an active corrosion protection coating on steel components
PCT/DE2008/001298 WO2009021489A2 (en) 2007-08-13 2008-08-12 Process for producing an active cathodic anti-corrosion coating on steel components

Publications (2)

Publication Number Publication Date
JP2010535944A true JP2010535944A (en) 2010-11-25
JP2010535944A5 JP2010535944A5 (en) 2011-09-29

Family

ID=39929805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010520418A Pending JP2010535944A (en) 2007-08-13 2008-08-12 Method for making an active cathode anti-corrosion coating on steel parts

Country Status (7)

Country Link
US (1) US20100175794A1 (en)
EP (1) EP2191030A2 (en)
JP (1) JP2010535944A (en)
KR (1) KR20100052534A (en)
CN (1) CN101815805B (en)
DE (1) DE102007038215A1 (en)
WO (1) WO2009021489A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508865A (en) * 2012-12-17 2016-03-24 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA Multi-stage method for coating steel before thermoforming
JP2016176142A (en) * 2015-02-13 2016-10-06 ムール ウント ベンダー コマンディートゲゼルシャフトMuhr und Bender KG Method for producing product from rolled strip material
JP2018538439A (en) * 2015-11-09 2018-12-27 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj Method for producing austenitic steel member and use of member

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008020216B4 (en) * 2008-04-22 2013-10-10 Nano-X Gmbh Method for protecting a metal from corrosion and use of the method
DE102008051883A1 (en) * 2008-10-16 2010-04-22 Nano-X Gmbh Coating for cathodic corrosion protection of metal, method for producing the coating and use of the coating.
DE102009015160A1 (en) * 2009-03-26 2010-09-30 Bayerische Motoren Werke Aktiengesellschaft Process for producing a coated and / or available sheet metal part with a corrosion protection coating
DE102009026251A1 (en) * 2009-07-24 2011-02-03 Thyssenkrupp Steel Europe Ag Method and device for energy-efficient hot forming
DE102009044043A1 (en) * 2009-09-17 2011-03-31 Kerona Gmbh Use of a room temperature-curing coating composition
CN102134163B (en) * 2011-02-28 2013-03-06 西北有色金属研究院 Preparation method of heat-treated obstruction layer of Bi-system high-temperature superconducting line strip
DE102011013067A1 (en) * 2011-03-04 2012-09-06 Mahle International Gmbh Method for producing a piston for an internal combustion engine
ES2389188B1 (en) * 2011-03-29 2013-09-02 Rovalma Sa CATHODIC PROTECTION THROUGH COATING FOR COOLING CIRCUITS OR OTHER HOLES OR CHANNELS.
DE102011100974A1 (en) * 2011-05-09 2012-11-15 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Rail wheel and method for producing a rail wheel
CN103582531A (en) * 2011-06-07 2014-02-12 塔塔钢铁艾默伊登有限责任公司 Hot formable strip, sheet or blank, process for the production thereof, method for hot forming a product and hot formed product
DE102011053634B3 (en) 2011-09-15 2013-03-21 Benteler Automobiltechnik Gmbh Method and device for heating a precoated steel plate
CN102423168A (en) * 2011-11-04 2012-04-25 昆山龙鹰金属制品有限公司 201 stainless steel mid-sole production process
DE102012015431A1 (en) * 2012-08-03 2014-02-06 Voestalpine Stahl Gmbh Component with sandwich structure and method for its production
DE102013001498A1 (en) 2013-01-29 2014-07-31 NANO - X GmbH Paint structure and its use as vehicle paint, marine paint, building protection or industrial paint
DE102013213790A1 (en) * 2013-07-15 2015-06-11 Ford Global Technologies, Llc Method for producing a brake disk and brake disk
TWI488925B (en) * 2014-09-16 2015-06-21 China Steel Corp Anti - high temperature oxidation coating steel plate and its hot stamping method
CN105618360A (en) * 2014-10-30 2016-06-01 中国钢铁股份有限公司 High-temperature oxidation resisting coating steel plate and hot stamping forming method thereof
DE102016115746A1 (en) * 2016-08-24 2018-03-01 Dechema-Forschungsinstitut Multilayer scale protection system for press-hardenable steels
CN106398331B (en) * 2016-08-31 2019-12-03 中钢集团邢台机械轧辊有限公司 A kind of centrifugal compound high-speed steel roll end face is heat-treated coating and preparation method thereof and application method
MX2019008165A (en) 2017-01-09 2019-09-06 Henkel Ag & Co Kgaa A curable protective coating composition.
DE102017116514A1 (en) 2017-07-21 2019-01-24 Schaeffler Technologies AG & Co. KG Wheel bearing assembly with a coating
CN110093603B (en) * 2019-03-27 2020-11-27 广东求精电气有限公司 Coating method of metal base material of high-voltage switch cabinet
CN110629216B (en) * 2019-09-11 2022-04-26 武汉市赟巨科技有限公司 Preparation method of steel plate heat radiation prevention coating
DE102021105576A1 (en) 2021-03-09 2022-09-15 Bayerische Motoren Werke Aktiengesellschaft Method of manufacturing a hot-formed predetermined component from sheet metal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040030A1 (en) * 2004-10-08 2006-04-20 Volkswagen Aktiengesellschaft Method for coating metal surfaces
WO2007028629A2 (en) * 2005-09-08 2007-03-15 Ewald Dörken Ag Weldable corrosion protection agent and binding agent
WO2007076766A2 (en) * 2005-12-12 2007-07-12 Nano-X Gmbh Coating material for protecting metals, especially steel, from corrosion and/or scaling, method for coating metals and metal element

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086095A (en) * 1970-09-24 1978-04-25 Mobile Oil Corporation Coating composition
DE2560072C2 (en) * 1975-08-23 1980-07-31 Bayer Ag, 5090 Leverkusen Process for the production of pigments based on iron oxide and their use for corrosion protection
US4678717A (en) * 1983-07-07 1987-07-07 Inland Steel Company Powder metal and/or refractory coated ferrous metals
WO1993020254A1 (en) * 1992-03-30 1993-10-14 Kawasaki Steel Corporation Surface-treated steel sheet reduced in plating defects and production thereof
DE4338361A1 (en) * 1993-11-10 1995-05-11 Inst Neue Mat Gemein Gmbh Process for the preparation of compositions based on silanes containing epoxy groups
SE503422C2 (en) * 1994-01-19 1996-06-10 Soederfors Powder Ab Process when making a composite product of stainless steel
DE19700319B4 (en) * 1996-01-19 2007-08-16 Volkswagen Ag Method for producing a corrosion-protected body and painted body
DE19813709A1 (en) * 1998-03-27 1999-09-30 Inst Neue Mat Gemein Gmbh Process for protecting a metallic substrate from corrosion
DE19838332A1 (en) * 1998-08-24 2000-03-02 Schloemann Siemag Ag Quality monitoring of galvannealed coating of steel strip involves determining the visual appearance of the coating as a variable relevant to its quality and using it for controlling the annealing furnace
FR2787735B1 (en) 1998-12-24 2001-02-02 Lorraine Laminage PROCESS FOR PRODUCING A WORKPIECE FROM A STRIP OF ROLLED STEEL SHEET AND ESPECIALLY HOT ROLLED
DE19940857A1 (en) * 1999-08-27 2001-03-01 Basf Coatings Ag Sol-gel coating for single-layer or multi-layer coatings
EP1330498B1 (en) * 2000-10-11 2006-05-24 Chemetall GmbH Method for coating metallic surfaces with an aqueous composition, the aqueous composition and use of the coated substrates
DE10149148B4 (en) * 2000-10-11 2006-06-14 Chemetall Gmbh A method of coating metallic surfaces with an aqueous polymer-containing composition, the aqueous composition, and the use of the coated substrates
DE10141687A1 (en) * 2001-08-25 2003-03-06 Degussa Agent for coating surfaces containing silicon compounds
JP3950370B2 (en) * 2001-09-19 2007-08-01 新日本製鐵株式会社 Precoated metal sheet having excellent press formability and method for producing the same
KR100678406B1 (en) 2001-10-23 2007-02-02 수미도모 메탈 인더스트리즈, 리미티드 Hot press forming method for steel material
DE10202543A1 (en) * 2002-01-24 2003-08-07 Basf Coatings Ag Coating materials and their use for the production of weldable coatings
PL1651789T3 (en) 2003-07-29 2011-03-31 Voestalpine Stahl Gmbh Method for producing hardened parts from sheet steel
AT412878B (en) 2003-07-29 2005-08-25 Voestalpine Stahl Gmbh Method for production of a hardened profile part from a hardenable steel alloy having cathodic corrosion protection useful in the production of hardened steel sections, e.g. for automobile construction
EP1844112A1 (en) * 2005-01-28 2007-10-17 Basf Aktiengesellschaft Method for applying corrosion protection layers comprising thioamides to metallic surfaces
DE102005059613A1 (en) * 2005-12-12 2007-06-28 Nano-X Gmbh Coating material, useful for substrates e.g. steel and leather, comprises lubricant, binder, pigment or filler material, a solid substrate that bounds to the surface, and deformable substrate by cold- or warm deforming process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040030A1 (en) * 2004-10-08 2006-04-20 Volkswagen Aktiengesellschaft Method for coating metal surfaces
WO2007028629A2 (en) * 2005-09-08 2007-03-15 Ewald Dörken Ag Weldable corrosion protection agent and binding agent
WO2007076766A2 (en) * 2005-12-12 2007-07-12 Nano-X Gmbh Coating material for protecting metals, especially steel, from corrosion and/or scaling, method for coating metals and metal element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508865A (en) * 2012-12-17 2016-03-24 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA Multi-stage method for coating steel before thermoforming
JP2016176142A (en) * 2015-02-13 2016-10-06 ムール ウント ベンダー コマンディートゲゼルシャフトMuhr und Bender KG Method for producing product from rolled strip material
JP2018538439A (en) * 2015-11-09 2018-12-27 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj Method for producing austenitic steel member and use of member

Also Published As

Publication number Publication date
WO2009021489A2 (en) 2009-02-19
CN101815805B (en) 2013-06-26
KR20100052534A (en) 2010-05-19
CN101815805A (en) 2010-08-25
DE102007038215A1 (en) 2009-02-19
WO2009021489A3 (en) 2010-02-18
EP2191030A2 (en) 2010-06-02
US20100175794A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP2010535944A (en) Method for making an active cathode anti-corrosion coating on steel parts
KR101169175B1 (en) Coating material for protecting metals, especially steel, from corrosion and/or scaling, method for coating metals and metal element
JP2010535944A5 (en)
JP6551519B2 (en) Hot-dip galvanized steel sheet
JP6551518B2 (en) Galvanized steel sheet
US20120009340A1 (en) Method for producing deformable corrosion protection layers on metal surfaces
KR100740068B1 (en) Conductive organic coatings
EP3305944B1 (en) Surface treatment liquid for plated steel sheet to be hot-pressed
EP1960484A2 (en) Coating material for substrates
WO2013056848A1 (en) Anti-scale and anti-corrosion coatings for steel substrates
JP6631623B2 (en) Galvanized steel sheet
US20150064354A1 (en) Cr(VI)-FREE CORROSION PROTECTION LAYERS OR ADHESION PROMOTER LAYERS PRODUCED USING A SOLUTION COMPRISING PHOSPHATE IONS AND METAL POWDER, WHEREIN THE METAL POWDER IS COATED AT LEAST PARTLY WITH Si OR Si ALLOYS
ES2381614T3 (en) Procedure for corrosion protection of body, chassis, engine or exhaust systems components
US20100310806A1 (en) Coating material for coating a metal surface and coated structural components and steel pipes
JP2008290440A (en) Surface treatment metal, and its manufacturing process and surface treatment liquid
JP6733467B2 (en) Zn-based plated steel sheet for hot pressing
JP2018053323A (en) Zn-BASED PLATED SHEET STEEL

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422