JP2010250948A - Fuel cell system - Google Patents
Fuel cell system Download PDFInfo
- Publication number
- JP2010250948A JP2010250948A JP2009095833A JP2009095833A JP2010250948A JP 2010250948 A JP2010250948 A JP 2010250948A JP 2009095833 A JP2009095833 A JP 2009095833A JP 2009095833 A JP2009095833 A JP 2009095833A JP 2010250948 A JP2010250948 A JP 2010250948A
- Authority
- JP
- Japan
- Prior art keywords
- condensed water
- water
- fuel cell
- hot water
- condensed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明は、燃料電池の発電に伴って発生する熱を回収利用して温水を生成する燃料電池システムに関する。 The present invention relates to a fuel cell system that generates hot water by recovering and using heat generated with power generation of a fuel cell.
近年、燃料電池は、水素と酸素の直接反応により電気エネルギーを生成するものであり、発電効率が高く、大気汚染物質もほとんど排出しないクリーンな発電装置として期待されている。特に、発電時に発生する熱を給湯や暖房などに回収利用する燃料電池システムは、総合的なエネルギー効率が高く、省エネルギー機器としての普及が望まれている。 In recent years, fuel cells generate electric energy by direct reaction of hydrogen and oxygen, and are expected as clean power generation devices that have high power generation efficiency and emit almost no air pollutants. In particular, a fuel cell system that recovers and uses the heat generated during power generation for hot water supply or heating has high overall energy efficiency, and is expected to spread as an energy saving device.
以下に、従来の燃料電池システムの構成について、図3を用いて説明する。 Hereinafter, the configuration of a conventional fuel cell system will be described with reference to FIG.
図3に示すように、燃料処理装置52は、例えば、メタンなどの原料ガスを水蒸気で改質することにより、燃料電池51の燃料ガスとなる水素を生成する。そして、燃料電池51は、燃料処理装置52で生成された水素をアノード62に、空気ブロワなどにより供給された空気中の酸素をカソード63に通流させ、電気化学的に反応させることで発電を行う。
As shown in FIG. 3, the
また、図3に示すように、貯湯タンク53および貯湯ポンプ54と、燃料処理装置52の排ガスから熱回収を行う排ガス熱交換器55と、燃料電池51のカソード63の出口に設けたオフガス熱交換器56と、燃料電池51の冷却水熱交換器57とを、この順番に配管接続し、貯湯タンク53の貯湯水を加熱するように貯湯水循環流路59を構成している。そして、冷却水循環ポンプ60は、冷却水タンク73に貯蔵された冷却水を、燃料電池51内部の冷却部64と冷却水熱交換器57とを接続した冷却水循環流路58に循環させる。
Further, as shown in FIG. 3, a hot
このとき、オフガス熱交換器56において燃料電池51のカソードオフガスを冷却することにより得られた凝縮水と、排ガス熱交換器55において燃料処理装置2の排ガスを冷却することにより得られた凝縮水とは、気液分離器70においてカソードオフガスおよび排ガスと分離される。そして、分離された凝縮水は、凝縮水タンク75に回収され、ポンプ74により冷却水タンク73に補給されて、燃料電池51の冷却水として利用される。なお、凝縮水タンク75に回収された凝縮水は、排ガスからの炭酸成分や若干の不純物を含むため、水処理装置を構成するイオン交換樹脂76を介して純水化され、冷却水タンク73に供給される。
At this time, the condensed water obtained by cooling the cathode offgas of the
しかし、凝縮水タンク75内に回収された凝縮水は、若干の不純物を有する略純水であり、市水のように殺菌作用を有する塩素成分などを含んでいない。また、凝縮水タンク75は一般に外気に開放されている。そのため、凝縮水タンク75内の凝縮水は、雑菌が繁殖しやすい環境にある。そして、凝縮水に雑菌が大量に繁殖すると、ポンプ74や純水処理装置としてのイオン交換樹脂76に、つまりなどを引き起こして冷却水の供給を阻害する。その結果、冷却水タンク73内の冷却水不足の原因となっている。
However, the condensed water recovered in the condensed
そこで、上記課題を解決するために、凝縮水タンク75に貯留した凝縮水をヒータ77などの加熱手段により定期的に加熱して殺菌し、凝縮水内での雑菌などの微生物の繁殖を抑制することが提案されている(例えば、特許文献1参照)。
Therefore, in order to solve the above-mentioned problem, the condensed water stored in the condensed
しかしながら、上記従来の構成では、凝縮水の純水化処理に用いられるイオン交換樹脂76は一般に加熱により劣化しやすいため、温水の流入によりイオン交換樹脂76が劣化して、十分な純水が冷却水タンク73に供給されないという課題があった。
However, in the above conventional configuration, the ion exchange resin 76 used for the purification of condensed water is generally easily deteriorated by heating. Therefore, the ion exchange resin 76 is deteriorated by the inflow of hot water, and sufficient pure water is cooled. There was a problem that the
これは、以下の理由によるものである。つまり、燃料電池システムに用いられるイオン交換樹脂76は、一般に、熱の影響を受けやすいため、例えば陽イオン交換樹脂の最高操作温度は100℃程度であり、陰イオン交換樹脂は50℃程度に制限した状態で用いることが好ましい。なぜなら、例えば操作温度を超えた温度条件で連続的にイオンを除去すると、熱分解により交換基が脱離してイオン交換樹脂の性能が低下して、イオンがそのまま流出する、いわゆるイオン破過の状態となる。具体的には、凝縮水タンク75内の凝縮水の温度が、例えば70℃以上と高い状態で、直接イオン交換樹脂76に供給すると、熱によるイオン交換樹脂76の劣化が促進され、比較的短い期間でイオン破過に至るからである。
This is due to the following reason. That is, since the ion exchange resin 76 used in the fuel cell system is generally susceptible to heat, for example, the maximum operating temperature of the cation exchange resin is about 100 ° C., and the anion exchange resin is limited to about 50 ° C. It is preferable to use in such a state. This is because, for example, when ions are continuously removed under temperature conditions exceeding the operating temperature, the exchange groups are desorbed by thermal decomposition, and the performance of the ion exchange resin deteriorates, so that ions flow out as they are, so-called ion breakthrough state It becomes. Specifically, if the condensed water in the condensed
また、冷却水タンク73内の冷却水が十分に清浄でないと、燃料電池51の寿命低下を引き起こす可能性がある。
In addition, if the cooling water in the
本発明は、上記従来の課題を解決するもので、簡単な構成で、凝縮水への雑菌の繁殖とイオン交換樹脂の劣化を抑制し、耐久性に優れた燃料電池システムを提供することを目的とする。 An object of the present invention is to solve the above-described conventional problems, and to provide a fuel cell system excellent in durability by suppressing the propagation of various bacteria in condensed water and the deterioration of an ion exchange resin with a simple configuration. And
上記従来の課題を解決するために、本発明の燃料電池システムは、燃料電池と、燃料電池に供給する燃料ガスを生成する燃料処理装置と、燃料電池から排出されるオフガスと燃料処理装置での燃焼により発生する排ガスとから得た凝縮水を貯留する凝縮水タンクと、凝縮水タンク内の凝縮水を加熱殺菌するためのヒータと、燃料電池で発電に伴って発生する熱を回収して燃料電池を所定温度に保つための冷却水が循環する冷却水循環流路に設けられた冷却水タンクと、凝縮水タンク内の凝縮水を冷却水として冷却水タンクに補給するための水供給管と、凝縮水タンク内の凝縮水を水供給管を通して冷却水タンクに送るポンプと、水供給管の途中に設けられ凝縮水タンクからの凝縮水を処理にするイオン交換樹脂と、凝縮水タンクとイオン交換樹脂との間に設けられイオン交換樹脂に送られる凝縮水を冷却する凝縮水冷却手段とを有する。 In order to solve the above-described conventional problems, a fuel cell system of the present invention includes a fuel cell, a fuel processing device that generates fuel gas to be supplied to the fuel cell, an off-gas discharged from the fuel cell, and a fuel processing device. A condensed water tank for storing condensed water obtained from exhaust gas generated by combustion, a heater for heating and sterilizing condensed water in the condensed water tank, and a fuel cell that recovers heat generated by power generation in the fuel cell A cooling water tank provided in a cooling water circulation passage through which cooling water for maintaining the battery at a predetermined temperature circulates, a water supply pipe for replenishing the cooling water tank with the condensed water in the condensed water tank as cooling water, A pump that sends the condensed water in the condensed water tank to the cooling water tank through the water supply pipe, an ion exchange resin that is provided in the middle of the water supply pipe to process the condensed water from the condensed water tank, and ion exchange with the condensed water tank And a condensed water cooling means for cooling the condensed water is sent to the ion exchange resin is provided between the fat.
これにより、凝縮水タンク内の凝縮水をヒータで加熱して微生物の繁殖を抑制することができる。また、イオン交換樹脂に送られる凝縮水を冷却することでイオン交換樹脂の温度による劣化を抑制し、消耗部品であるイオン交換樹脂の長寿命化を図ることができる。その結果、簡単な構成で、耐久性に優れた燃料電池システムを提供することができる。 Thereby, the condensed water in a condensed water tank can be heated with a heater, and the proliferation of microorganisms can be suppressed. Further, by cooling the condensed water sent to the ion exchange resin, deterioration due to the temperature of the ion exchange resin can be suppressed, and the life of the ion exchange resin which is a consumable part can be extended. As a result, a fuel cell system having a simple configuration and excellent durability can be provided.
本発明によれば、簡単な構成で、耐久性に優れた燃料電池システムを実現することができる。 According to the present invention, a fuel cell system having a simple configuration and excellent durability can be realized.
第1の発明は、燃料電池と、燃料電池に供給する燃料ガスを生成する燃料処理装置と、燃料電池から排出されるオフガスと燃料処理装置での燃焼により発生する排ガスとから得た凝縮水を貯留する凝縮水タンクと、凝縮水タンク内の凝縮水を加熱殺菌するためのヒータと、燃料電池で発電に伴って発生する熱を回収して燃料電池を所定温度に保つための冷却水が循環する冷却水循環流路に設けられた冷却水タンクと、凝縮水タンク内の凝縮水を冷却水として冷却水タンクに補給するための水供給管と、凝縮水タンク内の凝縮水を水供給管を通して冷却水タンクに送るポンプと、水供給管の途中に設けられ凝縮水タンクからの凝縮水を処理するイオン交換樹脂と、凝縮水タンクとイオン交換樹脂との間に設けられイオン交換樹脂に送られる凝縮水を冷却する凝縮水冷却手段とを有する燃料電池システムである。 According to a first aspect of the present invention, there is provided condensed water obtained from a fuel cell, a fuel processing device that generates fuel gas to be supplied to the fuel cell, off-gas discharged from the fuel cell, and exhaust gas generated by combustion in the fuel processing device. Condensed water tank to be stored, heater for sterilizing the condensed water in the condensed water tank, and cooling water for recovering the heat generated by power generation in the fuel cell and keeping the fuel cell at a predetermined temperature circulate A cooling water tank provided in the cooling water circulation channel, a water supply pipe for supplying the cooling water tank with the condensed water in the condensed water tank as cooling water, and the condensed water in the condensed water tank through the water supply pipe A pump for sending to the cooling water tank, an ion exchange resin provided in the middle of the water supply pipe for processing the condensed water from the condensed water tank, and provided between the condensed water tank and the ion exchange resin and sent to the ion exchange resin Condensation It is a fuel cell system including a condensed water cooling means for cooling the.
これにより、凝縮水タンク内の凝縮水をヒータで加熱して微生物の繁殖を抑制することができる。また、イオン交換樹脂に送られる凝縮水を冷却することでイオン交換樹脂の温度による劣化を抑制し、消耗部品であるイオン交換樹脂の長寿命化を図ることができる。その結果、簡単な構成で、耐久性に優れた燃料電池システムを提供することができる。 Thereby, the condensed water in a condensed water tank can be heated with a heater, and the proliferation of microorganisms can be suppressed. Further, by cooling the condensed water sent to the ion exchange resin, deterioration due to the temperature of the ion exchange resin can be suppressed, and the life of the ion exchange resin which is a consumable part can be extended. As a result, a fuel cell system having a simple configuration and excellent durability can be provided.
第2の発明は、第1の発明において、貯湯タンクと、貯湯タンクから流出した貯湯水が貯湯タンク内に戻るように貯湯水を循環させるための貯湯水循環流路と、冷却水循環流路を循環する冷却水と貯湯水循環流路を循環する貯湯水との間で熱交換させる冷却水熱交換器とを備え、さらに凝縮水冷却手段として冷却水循環流路を循環する冷却水と熱交換する前の貯湯水循環流路を流れる貯湯水とイオン交換樹脂に送られる凝縮水とを熱交換させる凝縮水熱交換器を有する燃料電池システムである。 According to a second invention, in the first invention, a hot water storage tank, a hot water circulation channel for circulating the hot water so that the hot water flowing out of the hot water tank returns into the hot water storage tank, and a cooling water circulation channel are circulated. A cooling water heat exchanger that exchanges heat between the cooling water that circulates and the hot water that circulates in the hot water circulating flow path, and further, before the heat exchange with the cooling water that circulates in the cooling water circulating flow path as a condensed water cooling means. It is a fuel cell system having a condensed water heat exchanger for exchanging heat between hot water flowing through a hot water circulation path and condensed water sent to an ion exchange resin.
これにより、貯湯タンクからの貯湯水で、容易にイオン交換樹脂に送られる凝縮水を冷却することできる。また、ヒータで加熱された凝縮水の熱を貯湯水に回収することができる。 Thereby, the condensed water sent to ion-exchange resin can be easily cooled with the hot water from a hot water storage tank. Moreover, the heat of the condensed water heated with the heater can be collect | recovered to hot water storage water.
第3の発明は、第2の発明において、貯湯水循環流路を循環する貯湯水との熱交換により燃料電池から排出されるオフガスの排熱を回収するとともにオフガスから凝縮水を得るオフガス熱交換器と、貯湯水循環流路を循環する貯湯水との熱交換により燃料処理装置からの排ガスの排熱を回収するとともに排ガスから凝縮水を得る排ガス熱交換器とを備え、凝縮水熱交換器は、オフガス熱交換器および排ガス熱交換器よりも貯湯水循環流路の上流側に位置する燃料電池システムである。 The third invention is the off-gas heat exchanger according to the second invention, wherein the off-gas heat exchanger recovers the exhaust heat of the off-gas discharged from the fuel cell by heat exchange with the hot water circulating through the hot water circulation passage and obtains condensed water from the off-gas. And an exhaust gas heat exchanger that recovers exhaust heat of exhaust gas from the fuel processing device by heat exchange with the hot water circulating through the hot water circulation path, and obtains condensed water from the exhaust gas. The fuel cell system is located on the upstream side of the hot water circulation path from the off-gas heat exchanger and the exhaust gas heat exchanger.
これにより、貯湯タンクから送られる貯湯水を最も温度の低い状態で利用することで、ヒータで加熱された凝縮水の冷却および熱回収を効率良く行うことができる。 Thereby, by using the hot water sent from the hot water storage tank in the lowest temperature state, the condensed water heated by the heater can be efficiently cooled and recovered.
第4の発明は、第2または第3の発明において、貯湯タンクから流出した貯湯水の温度を検知する貯湯水温度検知手段と、貯湯水温度検知手段が検知した温度が所定温度より高い場合にポンプを停止させるポンプ制御手段とを有する燃料電池システムである。 4th invention WHEREIN: In 2nd or 3rd invention, when the temperature detected by the stored hot water temperature detection means which detects the temperature of the stored hot water which flowed out from the hot water storage tank, and the stored hot water temperature detection means is higher than predetermined temperature A fuel cell system having pump control means for stopping the pump.
これにより、イオン交換樹脂への高温の凝縮水の供給を確実に防止することができる。 Thereby, supply of the high temperature condensed water to an ion exchange resin can be prevented reliably.
第5の発明は、第2または第3の発明において、貯湯タンクから流出した貯湯水の温度を検知する貯湯水温度検知手段と、凝縮水タンク内の凝縮水を凝縮水熱交換器を経由させずにイオン交換樹脂に送るためのバイパス管と、凝縮水タンク内の凝縮水をバイパス管に流すか凝縮水熱交換器に流すかを切り換える流路切換手段と、流路切換手段を制御する流
路切換制御手段とを備え、流路切換制御手段は、貯湯水温度検知手段が検知した温度が所定温度より高いか凝縮水タンク内の凝縮水の温度より高い場合に凝縮水タンク内の凝縮水をバイパス管に流し、貯湯水温度検知手段が検知した温度が所定温度以下もしくは凝縮水タンク内の凝縮水の温度以下より高い場合に凝縮水タンク内の凝縮水を凝縮水熱交換器に流すものである。
According to a fifth invention, in the second or third invention, the hot water temperature detecting means for detecting the temperature of the hot water flowing out of the hot water tank, and the condensed water in the condensed water tank are passed through the condensed water heat exchanger. A flow path for switching the flow path switching means, a flow path switching means for switching whether the condensed water in the condensed water tank flows to the bypass pipe or the condensed water heat exchanger, and a flow path for controlling the flow path switching means. Path switching control means, the flow path switching control means, when the temperature detected by the stored hot water temperature detection means is higher than a predetermined temperature or higher than the temperature of the condensed water in the condensed water tank, the condensed water in the condensed water tank. When the temperature detected by the hot water storage temperature detection means is lower than the specified temperature or higher than the temperature of the condensed water in the condensed water tank, the condensed water in the condensed water tank is flowed to the condensed water heat exchanger. It is.
例えば、貯湯タンクの沸き終り時のように、貯湯タンクから供給される貯湯水の温度が比較的高い条件では、貯湯水により凝縮水が冷却されず、反対に加熱されるような場合がある。 For example, when the temperature of the hot water supplied from the hot water storage tank is relatively high, such as at the end of boiling of the hot water storage tank, the condensed water may not be cooled by the hot water and may be heated in the opposite direction.
これにより、凝縮水の温度が低い場合に、冷却水タンクへの冷却水の補給を行うことができる。 Thereby, when the temperature of condensed water is low, the cooling water can be replenished to the cooling water tank.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.
(実施の形態1)
以下に、本発明の実施の形態1の燃料電池システムについて、図1を用いて説明する。
(Embodiment 1)
The fuel cell system according to
図1は、本発明の実施の形態1における燃料電池システムの構成図である。
FIG. 1 is a configuration diagram of a fuel cell system according to
図1に示すように、本実施の形態の燃料電池システムは、燃料電池1と燃料処理装置2と貯湯タンク3と、を少なくとも有している。そして、貯湯タンク3からの貯湯水は、貯湯ポンプ4により、燃料処理装置2の排ガスの排熱を回収する排ガス熱交換器5と、燃料電池1のカソードオフガスの排熱を回収するオフガス熱交換器6と、燃料電池1の冷却水の排熱を回収する冷却水熱交換器7と、以下で説明する凝縮水冷却手段11である凝縮水熱交換器とを介して貯湯タンク3に戻る貯湯水循環流路9を備える。以下では、凝縮水冷却手段11を凝縮水熱交換器11と記して説明する。
As shown in FIG. 1, the fuel cell system of the present embodiment has at least a
さらに、本実施の形態の燃料電池システムは、内部にヒータを有するとともに、凝縮水温度検知手段21を備えた凝縮水タンク25と、水供給管15を介して冷却水タンク23に凝縮水を送るポンプ24と、凝縮水を略純水に処理するイオン交換樹脂26と、凝縮水タンク25とイオン交換樹脂26との間に設けられた凝縮水を冷却する凝縮水熱交換器11とを有している。
Furthermore, the fuel cell system of the present embodiment has a heater inside, and sends condensed water to the cooling
ここで、凝縮水タンク25は、燃料電池1から排出されるオフガスと燃料処理装置2での燃焼により発生する排ガスとから得た凝縮水を貯留する。ヒータ27は、凝縮水タンク25内の凝縮水を加熱殺菌する。水供給管15は、凝縮水タンク25内の凝縮水を冷却水として冷却水タンク23に補給する。ポンプ24は、凝縮水タンク25内の凝縮水を水供給管15を通して冷却水タンク23に送る。イオン交換樹脂26は、水供給管15の途中に設けられ凝縮水タンク25からの凝縮水を略純水に処理する。凝縮水温度検知手段21は、凝縮水タンク25内の凝縮水の温度を検出する。
Here, the
そして、凝縮水熱交換器11は、凝縮水タンク25とイオン交換樹脂26との間で排ガス熱交換器5よりも上流側の位置に設けられ、凝縮水タンク25内の凝縮水の温度が所定温度(例えば、40℃)以上の場合にイオン交換樹脂26に送られる凝縮水を冷却する。つまり、凝縮水熱交換器11は、貯湯水循環流路9において、冷却水熱交換器7、オフガス熱交換器6および排ガス熱交換器5よりも上流側に設けられる。ここで、冷却水熱交換器7は燃料電池1の冷却水の排熱を回収し、オフガス熱交換器6は貯湯水循環流路9を循環する貯湯水との熱交換により燃料電池1から排出されるオフガスの排熱を回収するとと
もに、オフガスから凝縮水を生成する。また、オフガス熱交換器6は、貯湯水循環流路9を循環する貯湯水との熱交換により燃料処理装置2からの排ガスの排熱を回収するとともに、排ガスから凝縮水を生成する。なお、凝縮水熱交換器11としては、例えば二重管式やシェルアンドチューブ式、プレート式などの熱交換器を用いられる。
The condensed
また、燃料電池1は、燃料処理装置2で生成された燃料ガス(例えば、水素)と、空気ブロワなどから送られた空気中の酸素とを、燃料極であるアノード12および酸素極であるカソード13において電気化学的に反応させて発電を行う。そして、燃料電池1は、同時に、燃料ガスと酸素との反応により水を生成するため、燃料電池1のカソード13からは水蒸気成分を多く含んだオフガスを排出する。
Further, the
一方、燃料処理装置2は、メタンやプロパンなどの原料ガスから、触媒による改質反応(例えば水蒸気改質反応)により水素を生成し、燃料電池1のアノード12に送出する。そして、燃料処理装置2は、一般に、原料ガスの燃焼熱を用いて改質反応を促進するため、水蒸気成分を多く含んだ燃焼排ガスを排出する。
On the other hand, the
さらに、燃料電池1の冷却部14には、冷却水循環ポンプ10により、冷却水タンク23に貯蔵された冷却水が供給され、冷却水循環流路8によって冷却水熱交換器7との間を循環する。
Further, the cooling
また、本実施の形態の燃料電池システムは、貯湯タンク3から流出した貯湯水の温度を検知する貯湯水温度検知手段28と、ポンプ制御手段29を備えている。そして、ポンプ制御手段29は、貯湯水温度検知手段28が検知した温度が所定温度(例えば、40℃)より高い場合にポンプ24を停止させる。
The fuel cell system according to the present embodiment also includes hot water temperature detecting means 28 for detecting the temperature of hot water flowing out from the hot water storage tank 3 and a pump control means 29. And the pump control means 29 stops the
この場合、貯湯タンク3内の下部の貯湯水は、貯湯ポンプ4により貯湯水循環流路9に送られ、排ガス熱交換器5で燃料処理装置2から排出される燃焼排ガスの熱を回収し昇温される。そして、オフガス熱交換器6で燃料電池1のカソード13から排出されるカソードオフガスの熱を回収し昇温される。さらに、冷却水熱交換器7で、冷却水循環流路8を循環する燃料電池1の冷却水の熱を回収し昇温される。最後に、貯湯タンク3の上部に送られ、貯湯タンク3内に温度成層を形成する。
In this case, the hot water stored in the lower part of the hot water storage tank 3 is sent to the hot
そして、貯湯タンク3からの出湯は、貯湯タンク3下部から水道水を供給し、上部から高温の湯を押し出すことにより行われる。 And the hot water from the hot water storage tank 3 is performed by supplying tap water from the lower part of the hot water storage tank 3 and pushing out hot water from the upper part.
なお、排ガス熱交換器5、オフガス熱交換器6や冷却水熱交換器7としては、例えばシェルアンドチューブ式やプレート式などの熱交換器が用いられる。
In addition, as the exhaust
また、本実施の形態の燃料電池システムにおいては、燃料処理装置2からの排ガスは、水蒸気成分を含む燃焼排ガスであり、排ガス熱交換器5において貯湯タンク3からの貯湯水により冷却され、排ガス凝縮水を生成する。同様に、燃料電池1のカソード13からのオフガスも、水蒸気成分を含む空気であり、オフガス熱交換器6において貯湯タンク3からの貯湯水により冷却され、オフガス凝縮水を生成する。その後、排ガス凝縮水とオフガス凝縮水は、気液分離器20において、凝縮水成分とガス成分とに分離され、ガス成分であるオフガスと排ガスは外部に排気され、凝縮水は凝縮水タンク25に貯留される。
Further, in the fuel cell system of the present embodiment, the exhaust gas from the
そして、凝縮水タンク25に回収された凝縮水は、ポンプ24により水供給管15を通じて、冷却水タンク23に補給されて、燃料電池1の冷却水として利用される。そのため、燃料電池1の冷却水には、一般に、燃料電池1の長寿命化の観点から不純物を含まない清浄性が要求される。そこで、燃料処理装置2の排ガスや燃料電池1のオフガスから生成
された凝縮水は、排ガスからの炭酸成分や構成材料から溶出される不純物を若干含むため、イオン交換樹脂26を介して純水化され、冷却水タンク23に供給される。
The condensed water collected in the
しかし、凝縮水タンク25内の凝縮水は、若干の不純物を有する略純水であり、一般の市水のように殺菌作用を有する塩素成分などを含まない。また、凝縮水タンク25は一般に外気に開放されている。つまり、凝縮水タンク25内の凝縮水は、雑菌が繁殖しやすい環境にある。そのため、凝縮水に雑菌が大量に繁殖すると、冷却水を供給するポンプ24や純水処理装置としてのイオン交換樹脂26につまりを引き起こし、冷却水タンク23への送液を阻害して冷却水不足の原因となる。
However, the condensed water in the
そこで、凝縮水タンク25に回収された凝縮水を、ヒータ27により加熱殺菌し、微生物の繁殖を抑制している。なお、加熱殺菌は、例えば凝縮水温度検知手段21により凝縮水タンク25内の凝縮水の温度を検出し、定期的に(例えば1日1回)かつ所定温度以上(例えば70℃以上)で、例えば5秒程度維持して加熱することにより殺菌する。
Therefore, the condensed water collected in the
これにより、ヒータで凝縮水を定期的に加熱殺菌して微生物の繁殖を防止できる。 Thereby, the condensed water can be periodically heat sterilized with a heater to prevent the growth of microorganisms.
また、ヒータで凝縮水を加熱殺菌する期間以外は、凝縮水熱交換器11で冷却して凝縮水をイオン交換樹脂でイオン交換して、冷却水タンク23の供給する。その結果、高温の凝縮水が常時、イオン交換樹脂を通流しないため、イオン破過などのイオン交換樹脂の劣化を、長期間に亘って抑制できる。
Except for the period in which the condensed water is heated and sterilized by the heater, the condensed
本実施の形態によれば、凝縮水タンク25内の凝縮水をヒータ27により加熱し微生物の繁殖を抑制することができる。さらに、イオン交換樹脂26に送られる凝縮水を冷却することでイオン交換樹脂26の温度による劣化を抑制することができる。その結果、冷却水タンク23に純水を長期間に亘って安定して供給し、消耗部品であるイオン交換樹脂26の長寿命化を図ることができる。
According to the present embodiment, the condensed water in the
また、本実施の形態によれば、凝縮水の冷却に貯湯タンク3からの貯湯水を利用することで、容易にイオン交換樹脂26に送られる凝縮水を冷却することできる。さらに、ヒータ27で加熱された凝縮水の熱を貯湯水に回収することができるため、省エネルギー性を向上できる。
Moreover, according to this Embodiment, the condensed water sent to the
また、本実施の形態によれば、凝縮水熱交換器11をオフガス熱交換器6および排ガス熱交換器5よりも貯湯水循環流路9の上流側に配置し、貯湯タンク3からの貯湯水を最も温度の低い状態で利用することにより、ヒータ27で加熱された凝縮水の冷却および熱回収を効率良く行うことができる。
Further, according to the present embodiment, the
また、本実施の形態によれば、貯湯タンク3の沸き終り時の貯湯タンク3から供給される貯湯水の温度が比較的高い条件において、貯湯水により凝縮水が冷却されずに加熱されるような場合、貯湯タンク3から流出した貯湯水の温度を検知する貯湯水温度検知手段28と貯湯水温度検知手段28が検知した温度が所定温度(例えば40℃)より高い場合にポンプ24を停止させるポンプ制御手段29により、イオン交換樹脂26への高温の凝縮水の供給を確実に防止できる。
Further, according to the present embodiment, the condensed water is heated without being cooled by the hot water under the condition that the temperature of the hot water supplied from the hot water tank 3 at the end of boiling of the hot water tank 3 is relatively high. In such a case, the hot water temperature detecting means 28 for detecting the temperature of the hot water flowing out of the hot water storage tank 3 and the
すなわち、本実施の形態によれば、簡単な構成で、耐久性と省エネルギー性に優れた燃料電池システムを実現できる。 That is, according to the present embodiment, it is possible to realize a fuel cell system with a simple configuration and excellent durability and energy saving.
(実施の形態2)
以下に、本発明の実施の形態2の燃料電池システムについて、図2を用いて説明する。
(Embodiment 2)
The fuel cell system according to
図2は、本発明の実施の形態2における燃料電池システムの構成図である。なお、本実施の形態の燃料電池システムの構成およびその作用は、実施の形態1で説明したものと略同一であるので、詳細な説明は省略する。
FIG. 2 is a configuration diagram of the fuel cell system according to
すなわち、図2に示すように、凝縮水タンク25内の凝縮水を凝縮水熱交換器11を経由させずにイオン交換樹脂26に送るためのバイパス管30と、凝縮水タンク25内の凝縮水をバイパス管30に流すか凝縮水熱交換器11に流すかを切り換える流路切換手段31と、流路切換手段31を制御する流路切換制御手段32とを備えた点で、実施の形態1とは異なる。そして、流路切換制御手段32は、貯湯水温度検知手段28が検知した温度が、所定温度(例えば40℃)より高いか、凝縮水温度検知手段21が検知した凝縮水タンク25内の凝縮水の温度より高い場合、凝縮水タンク25内の凝縮水をバイパス管30に流す。一方、貯湯水温度検知手段28が検知した温度が所定温度以下もしくは凝縮水タンク25内の凝縮水の温度以下である場合、凝縮水タンク25内の凝縮水を凝縮水熱交換器11に流すものである。
That is, as shown in FIG. 2, the
これにより、例えば貯湯タンクの沸き終り時の貯湯タンクから供給される貯湯水の温度が比較的高い条件において、貯湯水により凝縮水が冷却されず、反対に加熱されるような場合、バイパス管に流すことにより、凝縮水の温度の上昇を抑制できる。また、凝縮水の温度が低い場合は、直接凝縮水を冷却水として冷却水タンクへ補給を行うことができる。 Thus, for example, when the temperature of the hot water supplied from the hot water storage tank at the end of boiling of the hot water storage tank is relatively high, the condensate is not cooled by the hot water but is heated on the contrary, By flowing, the rise in the temperature of the condensed water can be suppressed. Further, when the temperature of the condensed water is low, the cooling water tank can be replenished directly using the condensed water as the cooling water.
本発明にかかる燃料電池システムは、イオン交換樹脂に送られる凝縮水を冷却する冷却手段により、凝縮水への菌繁殖とイオン交換樹脂の温度による劣化とが抑制可能となるので、ガス発電や燃料電池を用いたコジェネレーションなどの技術分野において有用である。 In the fuel cell system according to the present invention, the cooling means for cooling the condensed water sent to the ion exchange resin can suppress the growth of bacteria in the condensed water and the deterioration due to the temperature of the ion exchange resin. This is useful in technical fields such as cogeneration using batteries.
1 燃料電池
2 燃料処理装置
3 貯湯タンク
4 貯湯ポンプ
5 排ガス熱交換器
6 オフガス熱交換器
7 冷却水熱交換器
8 冷却水循環流路
9 貯湯水循環流路
10 冷却水循環ポンプ
11 凝縮水熱交換器(凝縮水冷却手段)
12 アノード
13 カソード
14 冷却部
15 水供給管
20 気液分離器
21 凝縮水温度検知手段
23 冷却水タンク
24 ポンプ
25 凝縮水タンク
26 イオン交換樹脂
27 ヒータ
28 貯湯水温度検知手段
29 ポンプ制御手段
30 バイパス管
31 流路切換手段
32 流路切換制御手段
DESCRIPTION OF
DESCRIPTION OF
Claims (5)
さらに前記凝縮水冷却手段として前記冷却水循環流路を循環する冷却水と熱交換する前の前記貯湯水循環流路を流れる貯湯水と前記イオン交換樹脂に送られる凝縮水とを熱交換させる凝縮水熱交換器を有する請求項1に記載の燃料電池システム。 A hot water storage tank, a hot water circulation path for circulating the hot water so that the hot water flowing out of the hot water tank returns to the hot water storage tank, a cooling water circulating through the cooling water circulation path, and the hot water circulation path A cooling water heat exchanger for exchanging heat with the hot water circulating through
Further, the condensed water heat for exchanging heat between the hot water flowing through the hot water storage water circulation channel before heat exchange with the cooling water circulating through the cooling water circulation channel as the condensed water cooling means and the condensed water sent to the ion exchange resin. The fuel cell system according to claim 1, further comprising an exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009095833A JP2010250948A (en) | 2009-04-10 | 2009-04-10 | Fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009095833A JP2010250948A (en) | 2009-04-10 | 2009-04-10 | Fuel cell system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010250948A true JP2010250948A (en) | 2010-11-04 |
Family
ID=43313085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009095833A Pending JP2010250948A (en) | 2009-04-10 | 2009-04-10 | Fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010250948A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101349508B1 (en) * | 2012-06-29 | 2014-01-09 | 현대건설주식회사 | Fuel cell cogeneration system utilizing boiler |
KR101534543B1 (en) * | 2013-10-14 | 2015-07-07 | 현대건설 주식회사 | System for stack stabilization and heat utilization of fuel cell |
JP2016219303A (en) * | 2015-05-22 | 2016-12-22 | パナソニックIpマネジメント株式会社 | Solid oxide type fuel battery system |
JP2017220430A (en) * | 2016-06-10 | 2017-12-14 | パナソニックIpマネジメント株式会社 | Solid oxide fuel cell system |
CN109974320A (en) * | 2019-04-22 | 2019-07-05 | 苏州奥德机械有限公司 | A kind of high temperature deionized water cooling device |
-
2009
- 2009-04-10 JP JP2009095833A patent/JP2010250948A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101349508B1 (en) * | 2012-06-29 | 2014-01-09 | 현대건설주식회사 | Fuel cell cogeneration system utilizing boiler |
KR101534543B1 (en) * | 2013-10-14 | 2015-07-07 | 현대건설 주식회사 | System for stack stabilization and heat utilization of fuel cell |
JP2016219303A (en) * | 2015-05-22 | 2016-12-22 | パナソニックIpマネジメント株式会社 | Solid oxide type fuel battery system |
JP2017220430A (en) * | 2016-06-10 | 2017-12-14 | パナソニックIpマネジメント株式会社 | Solid oxide fuel cell system |
CN109974320A (en) * | 2019-04-22 | 2019-07-05 | 苏州奥德机械有限公司 | A kind of high temperature deionized water cooling device |
CN109974320B (en) * | 2019-04-22 | 2023-10-03 | 苏州奥德高端装备股份有限公司 | High-temperature deionized water cooling device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7763388B2 (en) | Fuel cell system | |
JP5092186B2 (en) | Fuel cell cogeneration system | |
JP2010250948A (en) | Fuel cell system | |
WO2017006554A1 (en) | Fuel cell system and operating method therefor | |
JP2009140782A (en) | Fuel cell device | |
JP2010033880A (en) | Fuel cell | |
JP2014182923A (en) | Fuel cell system and operation method thereof | |
JP2013004295A (en) | Fuel cell device | |
JP2010170877A (en) | Fuel cell power generation system and operation method thereof | |
JP4926298B2 (en) | FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM | |
JP2017069104A (en) | Fuel cell system | |
JP2009081084A (en) | Fuel cell power generation apparatus | |
JP2006147348A (en) | Fuel cell power generation device and water quality control method of the same | |
JP2012216358A (en) | Fuel cell system | |
JP2011096422A (en) | Fuel cell cogeneration system | |
JP2012160329A (en) | Fuel cell system and operation method of the same | |
JP2016157621A (en) | Fuel battery system | |
JPH1064566A (en) | Fuel cell power generator and waste heat recovery method therefor | |
JP7109218B2 (en) | fuel cell system | |
JP2010287519A (en) | Fuel cell system | |
JP6214364B2 (en) | Fuel cell system | |
JP2012115784A (en) | Water treatment system, and fuel cell electric power system using the same | |
KR101200689B1 (en) | Heat recovery apparatus of fuel cell | |
JP2016046222A (en) | Fuel cell power generation device | |
JP2010113885A (en) | Fuel cell power generation system and its operation method |