JP2006147348A - Fuel cell power generation device and water quality control method of the same - Google Patents
Fuel cell power generation device and water quality control method of the same Download PDFInfo
- Publication number
- JP2006147348A JP2006147348A JP2004335936A JP2004335936A JP2006147348A JP 2006147348 A JP2006147348 A JP 2006147348A JP 2004335936 A JP2004335936 A JP 2004335936A JP 2004335936 A JP2004335936 A JP 2004335936A JP 2006147348 A JP2006147348 A JP 2006147348A
- Authority
- JP
- Japan
- Prior art keywords
- water
- fuel cell
- recovered
- tank
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
この発明は、燃料電池発電装置、特に電池冷却水や、反応生成水、改質器燃焼生成水等を回収して用いる燃料電池発電装置ならびにその水質管理方法に関する。 The present invention relates to a fuel cell power generation device, and more particularly to a fuel cell power generation device that recovers and uses battery cooling water, reaction product water, reformer combustion product water, and the like, and a water quality management method thereof.
燃料電池発電装置は発電効率が高く、大気汚染物質をほとんど排出しない環境にやさしい発電装置である。また、燃料電池発電装置は発電の際に熱を発生するので、これを回収することによってコージェネシステムが構築でき、全エネルギー効率は70〜80%に達するものと期待されている。燃料電池の方式にはりん酸形、固体高分子形等があり、規模の大きい燃料電池コージェネシステムとして主にりん酸形が検討されてきたが、近年、家庭用のコージェネシステムの開発の進展に伴って、動作温度が60〜90℃と低く、起動時間が短い固体高分子形の燃料電池の適用が検討されている。
燃料電池で燃料ガスとして用いられる水素リッチなガスは、一般に、都市ガスなどの原燃料を改質器において水と反応させて改質することにより得られる。改質器で効率良く水素を生成させるためには、改質触媒の被毒による性能低下や、金属イオンなどの不純物の付着による改質器の性能低下等を防止する必要があり、改質器に供給される水は、触媒被毒物質や金属イオンなどの不純物を除去したものでなければならない。また、発電効率を高めるには燃料電池本体を最適温度に保持する必要があり、起動時には起動時間短縮のために加熱が必要であり、発電運転時には冷却が必要となる。加熱、冷却用の熱媒体としては、通常、水が用いられるが、漏電を防ぐためには導電率の低い水でなければならない。このため、通常、水処理装置を通して不純物を除去した水が用いられる。
The fuel cell power generation device is an environmentally friendly power generation device that has high power generation efficiency and emits almost no air pollutants. In addition, since the fuel cell power generator generates heat during power generation, it is expected that a cogeneration system can be constructed by collecting the heat, and the total energy efficiency reaches 70 to 80%. There are phosphoric acid type and solid polymer type in the fuel cell system, and the phosphoric acid type has been mainly studied as a large scale fuel cell cogeneration system. However, in recent years, the development of the cogeneration system for home use has progressed. Accordingly, application of a polymer electrolyte fuel cell having a low operating temperature of 60 to 90 ° C. and a short start-up time has been studied.
A hydrogen-rich gas used as a fuel gas in a fuel cell is generally obtained by reforming raw fuel such as city gas by reacting with water in a reformer. In order to efficiently generate hydrogen in the reformer, it is necessary to prevent the performance degradation due to poisoning of the reforming catalyst and the reformer performance due to adhesion of impurities such as metal ions. The water supplied to the water must be free from impurities such as catalyst poisons and metal ions. Further, in order to increase the power generation efficiency, it is necessary to keep the fuel cell body at the optimum temperature, heating is necessary to shorten the starting time at the time of startup, and cooling is required at the time of the power generation operation. As the heating medium for heating and cooling, water is usually used, but water with low conductivity must be used to prevent leakage. For this reason, usually, water from which impurities have been removed through a water treatment device is used.
発電運転を継続すると装置内の水の一部は蒸発、飛散するので、水冷却系を連続して運転させるためには、この飛散分相当量の水を補給して循環利用する必要がある。発電に伴って燃料電池では反応生成水が生じ、改質器では燃焼生成水が生じるので、排ガスを冷却し、凝縮、回収して得られたこれらの生成水が補給水として使用される。しかしながら、これらの回収量は運転条件に依存して変化するので、不足する場合には外部からの補給水を受けて運転される。補給水は随時補給可能である必要があり、かつ補給流量の制御ができる必要があるので、上記の回収水や外部からの補給水は一旦貯水タンクに貯えられたのち、冷却系へと導入される。
しかしながら、上記のごとく構成される冷却系において、凝縮、回収して貯水タンクに貯えられた回収水はほぼ純水であり、菌が繁殖しやすい条件下にあるので、外部からの水の導入に伴う菌類の侵入や空気排気口からの菌類の侵入によって、回収水タンク内に菌類や藻が繁殖し、さらにはこれらの菌類や藻が配管内に詰まって冷却系の運転に不具合を生じる危険性がある。菌類や藻の繁殖に起因するこの種の不具合を回避する方法としては、既に特許文献2に引用されているように、抗菌作用のある銅、亜鉛などの金属材料を水経路内に用いる方法、紫外線による殺菌装置を用いる方法、抗菌フィルターを水経路内に設ける方法、水を強酸性にする方法等が開示されており、さらに、特許文献1および特許文献2には、水の温度を加熱殺菌に必要な温度以上に保持して殺菌する方法が開示されている。このうち特許文献1に開示されている方法においては、外部から水道水を導入する際に、冷却水の流量を通常運転時より絞って冷却効果を低下させ、回収水タンク内の水の温度を加熱殺菌に必要な温度以上に一時的に保持することによって殺菌している。また、特許文献2に開示されている方法においては、電池冷却水と改質用水の少なくともいずれか一方に用いる水を貯える貯水タンクに、貯水を所定の温度以上に加熱して戻す加熱流路、例えば燃料電池本体の発電に伴う排熱や改質器の排熱により加熱する加熱流路を設け、この流路を流して一時的に加熱することによって殺菌された水を貯えることとしている。
However, in the cooling system configured as described above, the recovered water that is condensed and recovered and stored in the water storage tank is almost pure water, and is in a condition where bacteria can easily propagate. Risk of fungus and algae breeding in the recovery water tank due to the invading fungi and the invading fungi from the air exhaust port, and these fungi and algae clogging in the piping and causing malfunction of the cooling system There is. As a method of avoiding this type of malfunction caused by the growth of fungi and algae, as already cited in Patent Document 2, a method using a metal material such as copper or zinc having antibacterial action in the water pathway, A method of using a sterilizer using ultraviolet rays, a method of providing an antibacterial filter in a water path, a method of making water strongly acidic, and the like are disclosed in
上記のように、燃料電池発電装置においては、冷却水系に生じる菌類や藻の繁殖を適切に抑止する必要があり、種々の方策が考案され、試行されているが、いずれの方法にも一長一短があり、解決すべき課題が残存している。例えば上記の特許文献1に開示されている方法の場合には、従来のりん酸形燃料電池を用いた発電システムにおいては燃料電池の動作温度が百数十℃であるため、回収水の温度を加熱殺菌に必要な所定温度以上に加熱することは比較的容易であるが、家庭用として注目されている固体高分子形燃料電池を用いた発電システムでは動作温度が60〜90℃と低く、排ガスからの熱回収や水の回収を行う際にはさらに低い温度に冷却することが必要となるので、特許文献1のごとく回収水の温度を加熱殺菌に必要な所定温度以上に加熱することは困難である。
また、上記の特許文献2に開示されている方法のように、貯水タンクに、貯水を所定の温度以上に加熱して戻す加熱流路を付設し、この流路を流して一時的に加熱し、殺菌した水を貯える方法の場合には、構造が複雑になるという難点があるとともに、加熱殺菌されていない水がポンプやイオン交換樹脂等の水処理装置を流通するため、ポンプの詰まりの発生や水処理装置の特性の劣化を加速する危険性が高くなる。また、貯水タンクの水が加熱される水と加熱されない水とに区別されていないため、ポンプや加熱器等の加熱手段の能力を十分余裕のあるものとする必要があり、ポンプ能力や加熱能力を過剰に投入せざるを得なくなる。また、上記の特許文献1の場合と同様に、固体高分子形燃料電池を用いた発電システムでは動作温度が低いので、装置の生成熱による加熱では殺菌が十分に行えない恐れがある。
As described above, in the fuel cell power generation apparatus, it is necessary to appropriately suppress the growth of fungi and algae that occur in the cooling water system, and various measures have been devised and tried, but each method has advantages and disadvantages. There are still problems to be solved. For example, in the case of the method disclosed in
Further, as in the method disclosed in Patent Document 2 above, the water storage tank is provided with a heating flow path for heating and returning the stored water to a predetermined temperature or higher, and this flow path is temporarily heated. In the case of the method of storing sterilized water, there is a problem that the structure becomes complicated, and water that has not been heat sterilized flows through a water treatment device such as a pump or an ion exchange resin, so that clogging of the pump occurs. And the risk of accelerating the deterioration of the characteristics of the water treatment device increases. In addition, since the water in the water storage tank is not differentiated between heated water and unheated water, it is necessary to have sufficient capacity of the heating means such as pumps and heaters. Pump capacity and heating capacity Must be put in excess. Similarly to the case of
本発明は、上記のごとき現状技術の問題点に鑑みてなされたもので、本発明の目的は、反応生成水や改質器燃焼生成水を回収して電池冷却水等として用いる固体高分子形の燃料電池発電装置において、回収水が菌類や藻を繁殖させることなく貯水され、ポンプや水処理装置の不具合を生じることなく、長期にわたり安定して運転可能な回収水流通系を備えた燃料電池発電装置を提供するとともに、菌類や藻の繁殖を生じることなく回収水が電池冷却水系の貯水タンクに供給される水質管理方法を提供することにある。 The present invention has been made in view of the problems of the current state of the art as described above, and an object of the present invention is to recover a reaction product water or a reformer combustion product water and use it as a battery cooling water or the like In the fuel cell power generation device, the recovered water is stored without breeding fungi and algae, and the fuel cell has a recovered water distribution system that can be operated stably for a long time without causing malfunction of the pump or water treatment device In addition to providing a power generation device, it is an object to provide a water quality management method in which recovered water is supplied to a storage tank of a battery cooling water system without causing propagation of fungi and algae.
本発明においては、上記の目的を達成するために、
燃料電池本体と、この燃料電池本体を冷却する冷却水を通流させる冷却水循環流路と、原燃料を水蒸気改質して前記燃料電池本体に供給する燃料ガスを生成する改質器と、前記の燃料電池本体から排出される反応生成水を含むオフガスと前記の改質器から排出される燃焼生成水を含む排ガスの少なくともいずれか一方を導入して生成水を回収する回収水タンクと、この回収水タンクより送られた水を貯留し、貯留した水を前記の冷却水循環流路と改質器の少なくともいずれか一方に供給する貯水タンクとを備える燃料電池発電装置において、
(1)前記の回収水タンクに回収された回収水を開閉弁を通して前記の貯水タンクへと送る流路に、流路を流れる水を加熱する加熱手段を備えることとし、
(2)さらに、上記の(1)において、回収水を前記の回収水タンクから前記の貯水タンクへと送る流路の前記の加熱手段の下流側に、流路を流れる水を冷却する冷却手段を備えることとする。
In the present invention, in order to achieve the above object,
A fuel cell main body, a cooling water circulation passage through which cooling water that cools the fuel cell main body flows, a reformer that generates steam to reform raw fuel and supply fuel gas to the fuel cell main body, A recovery water tank for recovering the generated water by introducing at least one of off-gas containing reaction product water discharged from the fuel cell main body and exhaust gas containing combustion product water discharged from the reformer, and In a fuel cell power generator comprising a water storage tank that stores water sent from a recovered water tank and supplies the stored water to at least one of the cooling water circulation channel and the reformer,
(1) The flow path for sending the recovered water collected in the recovered water tank to the water storage tank through an on-off valve is provided with a heating means for heating the water flowing through the flow path,
(2) Further, in the above (1), the cooling means for cooling the water flowing through the flow path to the downstream side of the heating means of the flow path for sending the recovered water from the recovered water tank to the water storage tank It shall be provided with.
(3)また、上記の(1)または(2)において、回収水を前記の回収水タンクから前記の貯水タンクへと送る流路の前記の加熱手段の下流側に、流路を流れる水を前記の回収水タンクから前記の貯水タンクへと駆動する駆動手段を備えることとする。
(4)また、上記の(1)または(2)または(3)において、前記の回収水タンク中に回収水の温度を検知する温度センサーを、また、前記の貯水タンク中に貯水の温度を検知する温度センサーと水位を検知する水位センサーとを備えることとする。
(5)また、上記の(4)において、前記の水位センサーで検知された貯水タンク中の貯水の水位が所定水位以下のとき前記の開閉弁を開状態とし、駆動手段を作動させることによって回収水を通流させ、さらに、前記の回収水タンク中の前記の温度センサーで検知された温度が第一の所定温度以下のとき前記の加熱手段を作動させて回収水を加熱、殺菌することによって燃料電池発電装置の冷却水の水質を管理することとする。
(3) In the above (1) or (2), the water flowing through the flow path is disposed downstream of the heating means of the flow path for sending the recovered water from the recovered water tank to the water storage tank. Drive means for driving from the recovered water tank to the water storage tank is provided.
(4) In the above (1), (2) or (3), a temperature sensor for detecting the temperature of the recovered water in the recovered water tank, and a temperature of the stored water in the water storage tank. A temperature sensor for detecting and a water level sensor for detecting the water level are provided.
(5) In the above (4), when the water level in the water storage tank detected by the water level sensor is below a predetermined water level, the on-off valve is opened and the drive means is operated to collect the water. By passing water, and further, heating and sterilizing the recovered water by operating the heating means when the temperature detected by the temperature sensor in the recovered water tank is equal to or lower than a first predetermined temperature. The water quality of the cooling water for the fuel cell power generator will be managed.
(6)あるいは、上記の(4)において、前記の水位センサーで検知された貯水タンク中の貯水の水位が所定水位以下のとき前記の開閉弁を開状態とし、駆動手段を作動させることによって回収水を通流させ、さらに、前記の回収水タンク中の前記の温度センサーで検知された温度が第一の所定温度以下で、かつ、前記の貯水タンク中の前記温度センサーで検知された温度が第二の所定温度以下のとき前記の加熱手段を作動させて回収水を加熱、殺菌することによって燃料電池発電装置の冷却水の水質を管理することとする。 (6) Alternatively, in (4) above, when the water level in the water storage tank detected by the water level sensor is below a predetermined water level, the on-off valve is opened and the drive means is operated to collect the water. Water is further passed, and the temperature detected by the temperature sensor in the recovered water tank is equal to or lower than a first predetermined temperature, and the temperature detected by the temperature sensor in the water storage tank is When the temperature is equal to or lower than the second predetermined temperature, the quality of the cooling water of the fuel cell power generator is controlled by operating the heating means to heat and sterilize the recovered water.
上記の(1)のように、回収された水を回収水タンクから貯水タンクへと送る流路に、流路を流れる水を加熱する加熱手段を備えれば、この加熱手段を作動させることによって、流路を流れる水を一次的に加熱し、殺菌可能な温度条件下におくことができるので、回収水は確実に殺菌される。したがって、外部から菌類や藻が侵入しても、その繁殖が防止されるので、これらの菌類や藻による水流路の閉塞や水処理装置の特性劣化が抑制されて、長期間安定して運転できることとなる。
また、さらに上記の(2)のごとく、前記の加熱手段の下流側に冷却手段を備えれば、加熱手段により温度上昇した回収水を冷却し、適正な温度に保持して貯水することができる。また、上記の(3)のごとく、回収水を貯水タンクへと駆動する駆動手段を加熱手段の下流側に備えれば、駆動手段の上流側で菌類や藻の繁殖が防止されるので、駆動手段は閉塞等の不具合を生じることなく、安定して運転できることとなる。
If heating means for heating the water flowing through the flow path is provided in the flow path for sending the collected water from the recovered water tank to the water storage tank as in (1) above, by operating this heating means, Since the water flowing through the flow path can be primarily heated to be sterilized, the recovered water is surely sterilized. Therefore, even if fungi and algae invade from the outside, their growth is prevented, so that these fungi and algae can control the blockage of the water flow path and deterioration of the characteristics of the water treatment device, and can be operated stably for a long time. It becomes.
Further, as described in (2) above, if a cooling means is provided on the downstream side of the heating means, the recovered water whose temperature has risen by the heating means can be cooled and stored at an appropriate temperature. . Further, as described in (3) above, if the driving means for driving the recovered water to the water storage tank is provided on the downstream side of the heating means, it is possible to prevent the growth of fungi and algae on the upstream side of the driving means. The means can be stably operated without causing problems such as blockage.
また、上記の(4)のごとく、さらに前記の回収水タンクや前記の貯水タンクに温度センサーや水位センサーを備えて、上記の(5)あるいは(6)のごとく、温度や水位を検知して、その検知信号によって冷却水流路の開閉弁を操作し、さらに前記の加熱手段の運転を制御すれば、加熱手段が適正、確実に制御されて、流路を流れる回収水が加熱され、菌類や藻による水流路の閉塞や水処理装置の特性劣化を抑制することができる。 In addition, as described in (4) above, a temperature sensor and a water level sensor are further provided in the recovered water tank and the water storage tank to detect the temperature and water level as described in (5) or (6) above. By operating the on / off valve of the cooling water flow path according to the detection signal and further controlling the operation of the heating means, the heating means is appropriately and surely controlled, the recovered water flowing through the flow path is heated, and fungi and It is possible to suppress the blockage of the water flow path by algae and the deterioration of the characteristics of the water treatment apparatus.
本発明の最良の実施形態は、燃料電池本体と、この燃料電池本体を冷却する冷却水循環流路と、原燃料を水蒸気改質して前記の燃料電池本体に供給する燃料ガスを生成する改質器と、前記の燃料電池本体から排出される反応生成水を含むオフガスと前記の改質器から排出される燃焼生成水を含む排ガスの少なくともいずれか一方のガスを導入して生成水を回収する回収水タンクと、この回収水タンクより送られた水を貯留し、貯留した水を前記の冷却水循環流路と改質器の少なくともいずれか一方に供給する貯水タンクとを備えた燃料電池発電装置において、前記の回収水タンクに回収された回収水を前記の貯水タンクへと送る流路に、流路を流れる水を加熱する加熱手段を備えた形態にある。
また、上記の実施形態の燃料電池発電装置において、前記の回収水タンク中に回収水の温度を検知する温度センサーを、また、前記の貯水タンク中に貯水の温度を検知する温度センサーと水位を検知する水位センサーとを備え、前記の水位センサーで検知された貯水タンク中の貯水の水位が所定水位以下のとき、前記の開閉弁を開状態とし、駆動手段を作動させることによって回収水を通流させ、さらに、前記の回収水タンク中の前記の温度センサーで検知された温度が第一の所定温度以下のとき前記の加熱手段を作動させて回収水を加熱、殺菌することにより燃料電池発電装置の冷却水の水質を管理する水質管理方法にある。
The best mode of the present invention includes a fuel cell main body, a cooling water circulation passage for cooling the fuel cell main body, and reforming for generating fuel gas to be supplied to the fuel cell main body by steam reforming the raw fuel. And at least one of an off-gas containing reaction product water discharged from the fuel cell main body and exhaust gas containing combustion product water discharged from the reformer, and recovering the generated water A fuel cell power generator comprising: a recovered water tank; and a water storage tank that stores the water sent from the recovered water tank and supplies the stored water to at least one of the cooling water circulation channel and the reformer In the embodiment, the flow path for sending the recovered water collected in the recovered water tank to the water storage tank is provided with a heating means for heating the water flowing through the flow path.
In the fuel cell power generator of the above embodiment, a temperature sensor that detects the temperature of the recovered water in the recovered water tank, and a temperature sensor and a water level that detect the temperature of the stored water in the water tank. A water level sensor that detects the water level, and when the water level in the water storage tank detected by the water level sensor is below a predetermined water level, the on-off valve is opened and the drive means is operated to pass the recovered water. Further, when the temperature detected by the temperature sensor in the recovered water tank is equal to or lower than a first predetermined temperature, the heating means is operated to heat and sterilize the recovered water, thereby generating fuel cell power. It is in the water quality management method which manages the quality of the cooling water of the equipment.
図1は、本発明の燃料電池発電装置の実施例のシステム構成図である。本図において、10は、燃料極11、空気極12および電池冷却水流路13を備えた燃料電池本体であり、20は改質器、21は改質器バーナーである。また、30は、空気流路31と加湿水流路32を備えた空気加湿器、40は蒸発器、50は回収水タンク、60は貯水タンク、71は回収水排出用の開閉弁である。都市ガス等からなる原燃料は、貯水タンク60から供給される改質用水蒸気とともに改質器20へ取り込まれ、水蒸気改質反応によって水素リッチな改質ガスへと改質されて、燃料電池本体10の燃料極11へと送られる。一方、反応空気は、空気加湿器30の空気流路31を通流して加湿水流路32を流れる加湿水により加湿されたのち、燃料電池本体10の空気極12へと送られる。このように加湿された反応空気を送ることによって燃料電池本体10の固体高分子膜が湿潤に保持され電解質として機能する。また、電気化学反応に寄与したのち燃料極11より排出された燃料極オフガスは、蒸発器を経てその一部が改質器バーナー21へ送られ、燃焼されて改質反応の促進に用いられる。電池冷却水流路13より排出された電池冷却水、空気極12より排出された空気極オフガス、燃料極オフガスの一部、ならびに改質器バーナー21より排出された燃焼排ガスは、回収水タンク50へと回収され、駆動手段であるポンプ75によって貯水タンク60に送られたのち、再び燃料電池本体10の電池冷却水流路13、改質器20、空気加湿器30の加湿水流路32へと送られ、循環して使用される。
FIG. 1 is a system configuration diagram of an embodiment of a fuel cell power generator according to the present invention. In this figure,
本図に示した実施例の特徴は、上述の電池冷却水循環流路の回収水タンク50と貯水タンク60との間に循環する水を規定温度以上に加熱する加熱手段として電気ヒーター72が備えられていること、さらに、この電気ヒーター72の下流側に循環する水を冷却する冷却手段としての冷却器73が使用選択可能に備えられていること、また、水を循環させる駆動手段としてのポンプ75、および水を純化させる水処理装置が上記の電気ヒーター72の下流側に備えられていることにある。
したがって、本装置では、上記のように回収水タンク50と貯水タンク60との間に備えられた加熱手段によって回収水が加熱処理されて、菌類や藻が排除されるので、貯水タンク60には清浄な水が貯水され、再び燃料電池本体10の電池冷却水流路13へと送られることとなる。また、加熱手段の下流側に冷却手段として冷却器73が選択可能に備えられているので、この冷却器73を用いることとすれば殺菌処理後の循環水を冷却して適切な温度に保持することができる。また、駆動手段としてのポンプ75、および水を純化させる水処理装置が上記の加熱手段の下流側に配されているので、ポンプ75や水処理装置は菌類や藻に起因する不具合を生じることなく安定して運転することができる。
The feature of the embodiment shown in the figure is that an
Therefore, in this apparatus, since the recovered water is heat-treated by the heating means provided between the recovered
本装置での回収水の水質管理、すなわち菌類や藻の殺菌処理は、以下のごとく行われる。すなわち、回収水を回収水タンク50から貯水タンク60へと送る流路に備えられた開閉弁71と電気ヒーター72、ポンプ75は、いずれも、回収水タンク50の温度センサー51、貯水タンク60の温度センサー61および水位センサー62の検出信号によって動作が制御されており、水位センサー62で検出される貯水タンク60の水位が所定値以上である場合には、循環される水量が十分であるので、回収水タンク50から補給する必要はなく、開閉弁71は閉状態に、また、電気ヒーター72とポンプ75は運転停止の状態に保持される。貯水タンク60の貯水量が減少し、水位が所定値を下回ると、水位センサーの検出信号によって開閉弁71が開状態に移行され、ポンプ75の運転が開始されて回収水が貯水タンク60へと送られる。このとき、温度センサー51で検知される回収水タンク50中の回収水の温度が所定値以上の高い温度にあれば改めて加熱するまでもなく藻類や細菌類の繁殖が抑制される。一方回収水の温度が所定値以下であれば、電気ヒーター72の作動が開始されて、流路を流れる回収水が加熱されて、藻類や細菌類の殺菌が行われる。このとき、冷却器73は電気ヒーター72の作動に準じて運転され、殺菌のために加熱された回収水を電池冷却水として使用可能な所定温度以下に冷却する役割を果す。
The quality control of recovered water in this apparatus, that is, sterilization of fungi and algae is performed as follows. That is, the on-off
上記の回収水タンク50から貯水タンク60への回収水の供給、ならびに電気ヒーター72による加熱が進み、貯水タンク60からの排出量に比べて、回収水の供給量が多量になると貯水タンク60の水位が上昇し、水位センサー62で検出される水位が所定値を超えると、ポンプ75の運転が停止され、開閉弁71が閉状態に移行されて回収水の貯水タンク60への供給が停止されるとともに、電気ヒーター72の作動が停止され、さらに冷却器73の作動が停止される。
なお、上記の実施例では、冷却器73を電気ヒーター72の作動に準じて運転、停止することとしているが、冷却器73は独立して運転するものとしてもよく、貯水タンク60の温度センサー61の検出温度が所定値以上となったときに運転するもの、あるいは、常時運転するものとしてもよい。
When the supply of recovered water from the recovered
In the above-described embodiment, the cooler 73 is operated and stopped in accordance with the operation of the
以上述べたように、燃料電池発電装置を本発明のごとく構成すれば、回収水が菌類や藻を繁殖させることなく貯水され、ポンプや水処理装置の不具合を生じることなく、長期にわたり安定して運転可能な回収水流通系を備えた燃料電池発電装置が得られ、また、本発明の燃料電池発電装置の水質管理方法を用いれば、菌類や藻の繁殖を生じることなく回収水が電池冷却水系の貯水タンクに供給されることとなるので、これらの発明はこの種の燃料電池発電装置に広く適用されるものと期待される。 As described above, if the fuel cell power generator is configured as in the present invention, the recovered water is stored without causing fungi and algae to propagate, and stable over a long period of time without causing problems with the pump and water treatment device. A fuel cell power generation device having an operable recovered water distribution system is obtained, and if the water quality management method of the fuel cell power generation device of the present invention is used, the recovered water can be recovered from the battery cooling water system without causing the growth of fungi and algae. These inventions are expected to be widely applied to this type of fuel cell power generator.
10 燃料電池本体
20 改質器
30 空気加湿器
40 蒸発器
50 回収水タンク
51 温度センサー
60 貯水タンク
61 温度センサー
62 水位センサー
71 開閉弁(回収水排出用)
72 電気ヒーター
73 冷却器
74 水処理装置
75 ポンプ
DESCRIPTION OF
72
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004335936A JP2006147348A (en) | 2004-11-19 | 2004-11-19 | Fuel cell power generation device and water quality control method of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004335936A JP2006147348A (en) | 2004-11-19 | 2004-11-19 | Fuel cell power generation device and water quality control method of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006147348A true JP2006147348A (en) | 2006-06-08 |
Family
ID=36626788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004335936A Pending JP2006147348A (en) | 2004-11-19 | 2004-11-19 | Fuel cell power generation device and water quality control method of the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006147348A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009104832A (en) * | 2007-10-22 | 2009-05-14 | Ebara Ballard Corp | Gas-liquid separator and fuel cell system |
JP2010170877A (en) * | 2009-01-23 | 2010-08-05 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation system and operation method thereof |
JP2010277752A (en) * | 2009-05-27 | 2010-12-09 | Panasonic Corp | Fuel cell system |
JP2011210399A (en) * | 2010-03-29 | 2011-10-20 | Osaka Gas Co Ltd | Fuel cell system |
US20120115052A1 (en) * | 2010-03-04 | 2012-05-10 | Panasonic Corporation | Fuel cell system and operation method therefor |
JP2012191910A (en) * | 2011-03-17 | 2012-10-11 | Tokyo Electric Power Co Inc:The | Sterilization system |
CN114927717A (en) * | 2022-05-10 | 2022-08-19 | 徐州华清京昆能源有限公司 | Solid oxide fuel cell heat dormancy starting device with insulation construction |
-
2004
- 2004-11-19 JP JP2004335936A patent/JP2006147348A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009104832A (en) * | 2007-10-22 | 2009-05-14 | Ebara Ballard Corp | Gas-liquid separator and fuel cell system |
JP2010170877A (en) * | 2009-01-23 | 2010-08-05 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation system and operation method thereof |
JP2010277752A (en) * | 2009-05-27 | 2010-12-09 | Panasonic Corp | Fuel cell system |
US20120115052A1 (en) * | 2010-03-04 | 2012-05-10 | Panasonic Corporation | Fuel cell system and operation method therefor |
CN102484273A (en) * | 2010-03-04 | 2012-05-30 | 松下电器产业株式会社 | Fuel cell system and method for operating fuel cell system |
US8871400B2 (en) * | 2010-03-04 | 2014-10-28 | Panasonic Corporation | Fuel cell system and method for operating fuel cell system |
JP2011210399A (en) * | 2010-03-29 | 2011-10-20 | Osaka Gas Co Ltd | Fuel cell system |
JP2012191910A (en) * | 2011-03-17 | 2012-10-11 | Tokyo Electric Power Co Inc:The | Sterilization system |
CN114927717A (en) * | 2022-05-10 | 2022-08-19 | 徐州华清京昆能源有限公司 | Solid oxide fuel cell heat dormancy starting device with insulation construction |
CN114927717B (en) * | 2022-05-10 | 2023-10-24 | 徐州华清京昆能源有限公司 | Solid oxide fuel cell hot dormancy starting device with heat preservation structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7981555B2 (en) | Method of operating a fuel cell system | |
US7763388B2 (en) | Fuel cell system | |
JP4944382B2 (en) | Fuel cell system | |
WO2002035632A1 (en) | Fuel cell system and method of operating the system | |
JP5092186B2 (en) | Fuel cell cogeneration system | |
JP3921935B2 (en) | Fuel cell cogeneration system | |
JP2017016961A (en) | Fuel battery system and operation method for the same | |
JP2012155978A (en) | Fuel cell system | |
JP2006147348A (en) | Fuel cell power generation device and water quality control method of the same | |
JP2013004295A (en) | Fuel cell device | |
JP2006093157A (en) | Solid polymer fuel cell system | |
JP3642285B2 (en) | Fuel cell system and microbial control method thereof | |
JP2010250948A (en) | Fuel cell system | |
JP4926298B2 (en) | FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM | |
JP2008276948A (en) | Fuel cell device | |
JP2010170877A (en) | Fuel cell power generation system and operation method thereof | |
JP3906677B2 (en) | Water treatment device for fuel cell | |
JP5891443B2 (en) | Fuel cell system and operation method thereof | |
JP2003007320A (en) | Fuel cell system, method for generating electricity by fuel cell, program and medium | |
JP2012160329A (en) | Fuel cell system and operation method of the same | |
KR101200689B1 (en) | Heat recovery apparatus of fuel cell | |
JP2018106952A (en) | Fuel cell system and operational method of the same | |
JP4158468B2 (en) | Fuel cell power generation system | |
JP5110929B2 (en) | Fuel cell device | |
JP7109218B2 (en) | fuel cell system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060703 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060704 |