Nothing Special   »   [go: up one dir, main page]

JP2010246020A - Tuning fork type crystal unit - Google Patents

Tuning fork type crystal unit Download PDF

Info

Publication number
JP2010246020A
JP2010246020A JP2009095089A JP2009095089A JP2010246020A JP 2010246020 A JP2010246020 A JP 2010246020A JP 2009095089 A JP2009095089 A JP 2009095089A JP 2009095089 A JP2009095089 A JP 2009095089A JP 2010246020 A JP2010246020 A JP 2010246020A
Authority
JP
Japan
Prior art keywords
tuning fork
base
fork arm
surface longitudinal
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009095089A
Other languages
Japanese (ja)
Inventor
Masahiro Yoshimatsu
昌裕 吉松
Tamotsu Kurosawa
保 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2009095089A priority Critical patent/JP2010246020A/en
Publication of JP2010246020A publication Critical patent/JP2010246020A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

【課題】特に表面縦溝によってCIを小さく維持して耐衝撃性を向上し、さらには垂直振動の発生を抑制する音叉型振動子を提供することを目的とする。
【解決手段】
一対の音叉腕2(ab)が音叉基部1から一方向に延出した音叉状水晶片3を備え、前記音叉腕の両主面に長さ方向の表面縦溝5を設けた音叉型水晶振動子において、前記表面縦溝5は前記音叉腕2(ab)の幅方向を底辺とした三角形状とした構成とし、また前記表面縦溝は単一として前記三角形状は前記音叉腕の延出始端部となる前記音叉基部の根本部を底辺とし、前記音叉腕の先端側を残る2辺の頂点とする構成とする。
【選択図】図1
An object of the present invention is to provide a tuning fork vibrator that improves the impact resistance by maintaining the CI small particularly by the surface longitudinal grooves, and further suppresses the occurrence of vertical vibration.
[Solution]
A pair of tuning fork arms 2 (ab) includes a tuning fork crystal piece 3 extending in one direction from the tuning fork base 1, and a tuning fork type crystal vibration in which longitudinal longitudinal grooves 5 are provided on both main surfaces of the tuning fork arm. In the child, the surface longitudinal groove 5 has a triangular shape with the width direction of the tuning fork arm 2 (ab) as a base, and the surface longitudinal groove is a single shape, and the triangular shape is the starting end of the extension of the tuning fork arm. The base of the tuning fork base, which is a part, is the base, and the tip side of the tuning fork arm is the remaining two vertices.
[Selection] Figure 1

Description

本発明は音叉腕に表面縦溝を設けてクリスタルインピーダンス(CI)を小さくした音叉型水晶振動子(以下、音叉型振動子とする)を技術分野とし、特に、CIを小さくした上で機械的強度を高めた音叉型振動子に関する。   The present invention has a technical field of a tuning fork type crystal resonator (hereinafter referred to as a tuning fork type resonator) in which a surface longitudinal groove is provided in a tuning fork arm to reduce a crystal impedance (CI), and in particular, a mechanical structure with a small CI. The present invention relates to a tuning fork type vibrator with increased strength.

(発明の背景)
音叉型振動子は腕時計を含めて時計機能を有する各種の電子機器に内蔵される。このようなものの一つに、音叉腕の両主面に表面縦溝を設けて電界効率を高め、小型化を促進した音叉型振動子がある。近年では、両主面の表面縦溝による機械的強度の低下を防止することが求められている。
(Background of the Invention)
Tuning fork vibrators are built into various electronic devices having a clock function, including wristwatches. One of these is a tuning fork vibrator in which surface longitudinal grooves are provided on both main surfaces of a tuning fork arm to improve electric field efficiency and promote miniaturization. In recent years, it has been required to prevent a decrease in mechanical strength due to surface longitudinal grooves on both main surfaces.

(従来技術の一例)
第5図は一従来例を説明する音叉型振動子の図で、同図(a)は音叉型振動子の正面図、同図(b)は電界方向を示す同拡大平面図である。
(Example of conventional technology)
FIG. 5 is a view of a tuning fork type vibrator for explaining a conventional example. FIG. 5 (a) is a front view of the tuning fork type vibrator, and FIG. 5 (b) is an enlarged plan view showing the electric field direction.

音叉型振動子は音叉基部1と一対の音叉腕2(ab)からなる音叉状水晶片3を備えてなる。音叉状水晶片3は結晶軸(XYZ)のX軸(電気軸)を幅、Y軸(機械軸)を長さ、Z軸(光軸)を厚み方向とし、音叉基部1から一対の音叉腕2(ab)がY軸方向に平行に延出する。一対の音叉腕2(ab)の両主面及び両側面には音叉振動を誘起する励振電極4が形成される。これらは、Zカットとした図示しない水晶ウェハに対するフォトリソグラフィック及びウェットエッチングによって、外形形状及び各電極が形成される。   The tuning fork vibrator includes a tuning fork crystal piece 3 including a tuning fork base 1 and a pair of tuning fork arms 2 (ab). The tuning fork crystal piece 3 has a crystal axis (XYZ) whose X axis (electric axis) is a width, Y axis (mechanical axis) is a length, Z axis (optical axis) is a thickness direction, and a pair of tuning fork arms from the tuning fork base 1. 2 (ab) extends parallel to the Y-axis direction. Excitation electrodes 4 for inducing tuning fork vibration are formed on both main surfaces and both side surfaces of the pair of tuning fork arms 2 (ab). In these, the outer shape and each electrode are formed by photolithography and wet etching on a crystal wafer (not shown) which is Z-cut.

励振電極4は一方の音叉腕2(ab)の両主面及び他方の音叉腕2(ab)の両側面を同電位とし、一方の音叉腕2(ab)の両側面及び他方の両主面を同電位とし、両者間では異符号とする。各励振電極4は図示しない配線路によって共通接続し、音叉基部1に導出端子として延出される。通常では、各音叉腕2(ab)の先端側には周波数調整用の図示しないレーザ等によって切削される金属膜が形成されるが、ここでは便宜的に省略してある。そして、音叉基部1が図示しない容器の内底面に固着されて密閉封入される。   The excitation electrode 4 has both main surfaces of one tuning fork arm 2 (ab) and both side surfaces of the other tuning fork arm 2 (ab) at the same potential, and both side surfaces of one tuning fork arm 2 (ab) and both main surfaces of the other tuning fork arm 2 (ab). Are the same potential, and the two have different signs. Each excitation electrode 4 is connected in common by a wiring path (not shown) and extends to the tuning fork base 1 as a lead-out terminal. Normally, a metal film cut by a laser or the like (not shown) for frequency adjustment is formed on the tip side of each tuning fork arm 2 (ab), but is omitted here for convenience. The tuning fork base 1 is fixed to an inner bottom surface of a container (not shown) and hermetically sealed.

ここでは、各音叉腕2(ab)の両主面には、Y軸方向(長さ方向)に沿った表面縦溝5が設けられる。表面縦溝5は音叉腕2(ab)の音叉基部1に対する根本部を延出始端部とし、表面縦溝5内には内周側面を含めて前述の励振電極4が形成される。これにより、各音叉腕2(ab)の両主面及び両側面の励振電極4によってX軸方向(幅方向)での矢印で示す電界が生ずる。   Here, surface longitudinal grooves 5 along the Y-axis direction (length direction) are provided on both main surfaces of each tuning fork arm 2 (ab). The surface longitudinal groove 5 has a base portion of the tuning fork arm 2 (ab) with respect to the tuning fork base 1 as an extension start end, and the excitation electrode 4 including the inner peripheral side surface is formed in the surface longitudinal groove 5. Thus, an electric field indicated by an arrow in the X-axis direction (width direction) is generated by the excitation electrodes 4 on both main surfaces and both side surfaces of each tuning fork arm 2 (ab).

この場合、表面縦溝5によって、特に音叉腕2(ab)の内外側面と表面縦溝5の内周側面との励振電極4によるX軸方向での電界が直線的になる。したがって、各音叉腕2(ab)のX軸方向での電界効率が高まるので、音叉振動のCIを小さくできる。そして、音叉腕2(ab)の内外側面と表面縦溝5との間の距離dが短いほど電界強度が高まるので、基本的にCIはさらに小さくなる。   In this case, the surface vertical groove 5 makes the electric field in the X-axis direction linearly generated by the excitation electrodes 4 on the inner and outer surfaces of the tuning fork arm 2 (ab) and the inner peripheral side surface of the surface vertical groove 5 in particular. Therefore, the electric field efficiency in the X-axis direction of each tuning fork arm 2 (ab) is increased, and the CI of tuning fork vibration can be reduced. Since the electric field strength increases as the distance d between the inner and outer surfaces of the tuning fork arm 2 (ab) and the surface longitudinal groove 5 is shorter, the CI is basically further reduced.

なお、音叉振動は各音叉腕2(ab)の中心から互いに反対方向となるX軸方向の電界によって、各音叉腕2(ab)の例えば外側面が伸張して内側面が伸縮する(所謂屈曲振動)。これにより、各音叉腕2(ab)が互いに水平方向の反対方向に変位して各音叉腕2(ab)が物理的に共振する。したがって、単一の音叉棒の場合よりも振動しやすくなって高さ寸法を小さくできる。   The tuning fork vibration is caused by the electric field in the X-axis direction that is opposite to each other from the center of each tuning fork arm 2 (ab), for example, the outer side surface of each tuning fork arm 2 (ab) expands and the inner side surface expands and contracts (so-called bending). vibration). As a result, the tuning fork arms 2 (ab) are displaced in the opposite horizontal directions, and the tuning fork arms 2 (ab) physically resonate. Therefore, it becomes easier to vibrate than the case of a single tuning fork bar, and the height dimension can be reduced.

特開2003−133895号公報JP 2003-133895 A 特開2007−6091号公報JP 2007-6091 A

(従来技術の問題点)
しかしながら、上記構成の音叉型振動子では、各音叉腕2(ab)に両主面から表面縦溝5を設けるので機械的強度も小さくなり、例えば落下衝撃試験では破損等を生じて耐衝撃性に欠ける問題があった。また、表面縦溝5によって厚み方向の剛性も小さくなって、音叉腕の板面(主面)に対して垂直方向となる垂直振動を発生させ、音叉振動の振動エネルギーが損なわれてCIを増加させてしまう問題もあった。
(Problems of conventional technology)
However, in the tuning fork vibrator having the above-described configuration, the surface longitudinal grooves 5 are provided from both main surfaces to each tuning fork arm 2 (ab), so that the mechanical strength is also reduced. There was a problem lacking. Further, the surface longitudinal grooves 5 also reduce the rigidity in the thickness direction, generate vertical vibration perpendicular to the plate surface (main surface) of the tuning fork arm, and increase the CI by impairing the vibration energy of the tuning fork vibration. There was also a problem that let me.

(発明の目的)
本発明は特に表面縦溝によってCIを小さく維持して耐衝撃性を向上し、さらには垂直振動の発生を抑制する音叉型振動子を提供することを目的とする。
(Object of invention)
It is an object of the present invention to provide a tuning fork vibrator that maintains a small CI by means of a surface longitudinal groove to improve impact resistance and further suppress the occurrence of vertical vibration.

本発明は、特許請求の範囲(請求項1)に示したように、一対の音叉腕が音叉基部から一方向に延出した音叉状水晶片を備え、前記音叉腕の両主面に長さ方向の表面縦溝を設けた音叉型水晶振動子において、前記表面縦溝は前記音叉腕の幅方向を底辺とした三角形状とした構成とする。   The present invention includes a tuning fork crystal piece in which a pair of tuning fork arms extends in one direction from a tuning fork base, as shown in the claims (Claim 1), and has a length on both main surfaces of the tuning fork arm. In the tuning fork type crystal resonator provided with the surface longitudinal groove in the direction, the surface longitudinal groove has a triangular shape with the width direction of the tuning fork arm as a base.

このような構成であれば、表面縦溝によって直線的な電界が作用するので、表面縦溝を設けない場合よりも電界効率を高めて音叉振動のCIを小さくできる。そして、音叉腕の表面縦溝を三角形状とするので、音叉腕に沿った矩形状とする場合よりも、機械的強度を高められる。したがって、CIを小さくした上で、耐衝撃性を向上できる。さらに、表面縦溝を三角形状として、矩形状とするよりも音叉腕の実部の面積を大きくするので、板面に垂直方向の剛性を高め、板面に対する垂直振動の発生を抑制する。   With such a configuration, since a linear electric field acts by the surface longitudinal grooves, the electric field efficiency can be improved and the tuning fork vibration CI can be reduced as compared with the case where no surface longitudinal grooves are provided. Since the surface longitudinal groove of the tuning fork arm is triangular, the mechanical strength can be increased as compared with the case where the tuning fork arm is rectangular along the tuning fork arm. Therefore, it is possible to improve the impact resistance while reducing the CI. Furthermore, since the surface longitudinal grooves are triangular, and the area of the real part of the tuning fork arm is made larger than that of the rectangular shape, the rigidity in the direction perpendicular to the plate surface is increased, and the occurrence of vertical vibration on the plate surface is suppressed.

(実施態様項)
本発明の請求項2では、請求項1において、前記表面縦溝は単一として前記三角形状は前記音叉腕の延出始端部となる前記音叉基部の根本部を底辺とし、前記音叉腕の先端側を残る2辺の頂点とする。これによれば、三角形状の底辺を音叉基部の延出始端部(一対の音叉腕の根本部)とするので、表面縦溝の底辺側の内周と音叉腕の両側面との距離を小さくする。したがって、一対の音叉腕の根本部での電界が最も大きくなる。
(Embodiment section)
According to a second aspect of the present invention, in the first aspect, the surface longitudinal groove is single, and the triangular shape has a base portion of the tuning fork base that becomes an extension start end of the tuning fork arm as a base, and a tip of the tuning fork arm. Let the side be the vertices of the remaining two sides. According to this, since the triangular base is the extended start end of the tuning fork base (the root of the pair of tuning fork arms), the distance between the inner circumference on the bottom side of the surface longitudinal groove and both sides of the tuning fork arm is reduced. To do. Therefore, the electric field at the base part of the pair of tuning fork arms is the largest.

この場合、電界が最も大きくなる音叉腕の根本部は音叉振動の節(振動支点)なので、根本部からの振動を容易にして振動効率を高める。また、各音叉腕は音叉基部側よりも先端側の質量が大きくなるので、慣性によっての音叉振動が強勢される。これらから、三角形状の頂点を音叉基部の延出始端部とするよりも、音叉振動のCIを小さく維持できる。   In this case, the root portion of the tuning fork arm having the largest electric field is a node (vibration fulcrum) of the tuning fork vibration, so that vibration from the root portion is facilitated to increase vibration efficiency. Further, each tuning fork arm has a larger mass on the tip side than on the tuning fork base side, so that tuning fork vibration due to inertia is urged. From these, it is possible to maintain the CI of the tuning fork vibration smaller than when the triangular apex is used as the extending start end of the tuning fork base.

同請求項3では、請求項1において、前記表面縦溝は単一として前記三角形状は前記音叉腕の先端側を底辺とし、前記音叉腕の延出始端部となる前記音叉基部の根本部を残る2辺の頂点とする。これによれば、各音叉腕は音叉基部側よりも先端側の質量が小さくなるので、衝撃時の慣性による揺動が少なくなる。したがって、衝撃による破損等をさらに防止できる。但し、請求項2の場合よりもCIは上昇するので、これらは仕様等によって選択される。   In the third aspect of the invention, in the first aspect, the surface longitudinal groove is single, and the triangular shape has a base on the tip side of the tuning fork arm, and a base portion of the tuning fork base that becomes an extension start end of the tuning fork arm. The remaining two vertices are assumed. According to this, each tuning fork arm has a smaller mass on the tip side than on the tuning fork base side, so that the swing due to inertia at the time of impact is reduced. Therefore, damage due to impact can be further prevented. However, since CI increases more than in the case of claim 2, these are selected according to the specifications.

同請求項4では、請求項1、2又は3において、請求項1において、前記三角形状とした表面縦溝の底辺に対する残りの2辺は外側に湾曲した曲線状とする。これにより、各音叉腕の内外側面と表面縦溝の内周側面との間の距離が小さくなって電界強度が高まるので、CIをさらに小さくできる。   In the fourth aspect of the present invention, in the first, second, or third aspect, in the first aspect, the remaining two sides with respect to the bottom of the triangular surface longitudinal groove are curved outwardly. As a result, the distance between the inner and outer surfaces of each tuning fork arm and the inner peripheral side surface of the surface longitudinal groove is reduced and the electric field strength is increased, so that CI can be further reduced.

同請求項5では、請求項1において、前記三角形状とした表面縦溝は前記音叉腕の長さ方向に複数個が並べられる。この場合でも、請求項1と同様に、機械的強度を高めてCIを小さくできる。そして、表面縦溝の合計面積は単一とした表面縦溝の場合よりも減少して、各音叉腕の実部となる面積を大きくするので、各音叉腕の板面に対する垂直方向の剛性を高める。   In the fifth aspect of the present invention, in the first aspect, a plurality of the triangular surface longitudinal grooves are arranged in the length direction of the tuning fork arm. Even in this case, similarly to the first aspect, the mechanical strength can be increased to reduce the CI. The total area of the surface longitudinal grooves is smaller than that of a single surface longitudinal groove, and the real area of each tuning fork arm is increased, so that the rigidity in the direction perpendicular to the plate surface of each tuning fork arm is increased. Increase.

本発明の第1実施形態を説明する音叉型振動子の正面図である。It is a front view of a tuning fork type vibrator explaining a 1st embodiment of the present invention. 本発明の第2実施形態を説明する音叉型振動子の正面図である。It is a front view of a tuning fork vibrator explaining a second embodiment of the present invention. 本発明の第3実施形態を説明する音叉型振動子の正面図である。It is a front view of a tuning fork type vibrator explaining a third embodiment of the present invention. 本発明の他の実施形態を説明する音叉型振動子の正面図である。It is a front view of a tuning fork type vibrator explaining other embodiments of the present invention. 従来例を説明する音叉型振動子の図で、同図(a)は音叉型振動子の正面図、同図(b)は電界方向を示す同拡大平面図である。FIG. 2 is a diagram of a tuning fork vibrator for explaining a conventional example, in which FIG. 1A is a front view of the tuning fork vibrator and FIG. 2B is an enlarged plan view showing an electric field direction.

(第1実施形態、請求項1、2、4に相当)
以下、本発明の一実施形態を第1図(音叉型振動子の正面図)によって説明する。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。
(Equivalent to the first embodiment, claims 1, 2, and 4)
Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 (a front view of a tuning fork vibrator). In addition, the same number is attached | subjected to the same part as a prior art example, and the description is simplified or abbreviate | omitted.

音叉型振動子は、前述したように、X軸を幅、Y軸を長さ、Z軸を厚み方向とし、音叉基部1からY軸方向に一対の音叉腕2(ab)が延出した音叉状水晶片3を備える。そして、各音叉腕2(ab)の両主面には表面縦溝5を設け、表面縦溝5の内周側面を含む両主面及び両側面には励振電極4が形成される。これらは、フォトリソグラフィック及びウェットエッチングによって一体的に形成される。   As described above, the tuning fork vibrator has the X axis as the width, the Y axis as the length, the Z axis as the thickness direction, and a tuning fork arm 2 (ab) extending from the tuning fork base 1 in the Y axis direction. A crystal piece 3 is provided. Then, surface longitudinal grooves 5 are provided on both principal surfaces of each tuning fork arm 2 (ab), and excitation electrodes 4 are formed on both principal surfaces and both side surfaces including the inner peripheral side surface of the surface longitudinal groove 5. These are integrally formed by photolithography and wet etching.

ここでは、各音叉腕2(ab)の表面縦溝5は単一とし、例えば二等辺三角形の三角形状とする。そして、音叉腕2(ab)の延出始端部となる音叉基部1の根本部を三角形状の底辺とし、頂点を音叉腕2(ab)の先端側(頭部側)とする。三角形状の底辺は音叉腕2(ab)の幅方向(X軸方向)に一致する。そして、三角形状は底辺を除いた残りの2辺が外側に湾曲した曲線状とする。   Here, the surface longitudinal groove 5 of each tuning fork arm 2 (ab) is single, for example, isosceles triangle. The root of the tuning fork base 1 serving as the starting extension of the tuning fork arm 2 (ab) is defined as a triangular base, and the apex is defined as the tip side (head side) of the tuning fork arm 2 (ab). The triangular base coincides with the width direction (X-axis direction) of the tuning fork arm 2 (ab). The triangular shape is a curved shape in which the remaining two sides excluding the bottom are curved outward.

このような構成であれば、発明の効果の欄で記載したように、表面縦溝5によって直線的な電界が作用するので、表面縦溝5を設けない場合よりも電界効率を高めて音叉振動のCIを小さくできる。そして、音叉腕2(ab)の表面縦溝5を三角形状とするので、音叉腕2(ab)に沿った矩形状とする場合よりも、機械的強度を高められる。したがって、CIを小さくした上で、耐衝撃性を向上できる。また、従来例のように表面縦溝5を矩形状とするよりも音叉腕2(ab)の実部の面積を大きくするので、板面に垂直方向の剛性を高め、板面に対する垂直振動の発生を抑制する。   With such a configuration, as described in the column of the effect of the invention, a linear electric field acts on the surface longitudinal grooves 5, so that the electric field efficiency is improved compared with the case where the surface longitudinal grooves 5 are not provided, and the tuning fork vibration is increased. CI can be reduced. And since the surface longitudinal groove 5 of the tuning fork arm 2 (ab) has a triangular shape, the mechanical strength can be increased as compared with the case where the tuning fork arm 2 (ab) has a rectangular shape along the tuning fork arm 2 (ab). Therefore, it is possible to improve the impact resistance while reducing the CI. Further, since the area of the real part of the tuning fork arm 2 (ab) is made larger than the rectangular shape of the surface longitudinal groove 5 as in the conventional example, the rigidity in the direction perpendicular to the plate surface is increased, and the vertical vibration with respect to the plate surface is increased. Suppresses the occurrence.

そして、この実施形態では、表面縦溝5は単一として三角形状は音叉腕2(ab)の延出始端部となる音叉基部1の根本部を底辺とし、音叉腕2(ab)の先端側を残る2辺の頂点とする。したがって、表面縦溝5の底辺側の内周と音叉腕2(ab)の両側面との距離が小さくなるので、一対の音叉腕2(ab)の根本部での電界が最も大きくなる。   In this embodiment, the surface longitudinal groove 5 is single, and the triangular shape is the base of the tuning fork base 1 that is the extending start end of the tuning fork arm 2 (ab), and the tip side of the tuning fork arm 2 (ab). Are the vertices of the remaining two sides. Therefore, since the distance between the inner circumference on the bottom side of the surface longitudinal groove 5 and both side surfaces of the tuning fork arm 2 (ab) is reduced, the electric field at the root portion of the pair of tuning fork arms 2 (ab) is maximized.

この場合、電界が最も大きくなる音叉腕2(ab)の根本部は音叉振動の節(振動支点)なので、根本部からの振動を容易にして振動効率を高める。また、各音叉腕2(ab)は音叉基部1側よりも先端側の質量が大きくなるので、慣性によっての音叉振動が強勢される。これらから、三角形状の頂点を音叉基部1の延出始端部とするよりも、音叉振動のCIを小さく維持できる。   In this case, the root portion of the tuning fork arm 2 (ab) where the electric field is the largest is a node (vibration fulcrum) of the tuning fork vibration. Further, each tuning fork arm 2 (ab) has a larger mass on the tip side than on the tuning fork base 1 side, so that tuning fork vibration due to inertia is urged. Therefore, the CI of the tuning fork vibration can be kept smaller than the triangular vertex as the starting extension of the tuning fork base 1.

また、三角形状とした表面縦溝5の底辺に対する残りの2辺は外側に湾曲した曲線状とする。したがって、各音叉腕2(ab)の内外側面と表面縦溝5の内周側面との間の距離が小さくなって電界強度が高まるので、CIをさらに小さくできる。   The remaining two sides with respect to the bottom side of the surface longitudinal groove 5 having a triangular shape are curved outwardly. Accordingly, since the distance between the inner and outer surfaces of each tuning fork arm 2 (ab) and the inner peripheral side surface of the surface longitudinal groove 5 is reduced and the electric field strength is increased, CI can be further reduced.

(第2実施形態、請求項1、3、4)
以下、本発明の第2実施形態を第2図(音叉型振動子の正面図)によって説明する。なお、前実施形態と同一部分の説明は省略する。
(Second embodiment, claims 1, 3, 4)
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. 2 (a front view of a tuning fork vibrator). In addition, description of the same part as previous embodiment is abbreviate | omitted.

第2実施形態では、単一の三角形状とした表面縦溝5の上下を逆とし、音叉腕2(ab)の先端側を底辺とし、音叉腕2(ab)の延出始端部となる音叉基部1の根本部を残る2辺の頂点とする。このようにすれば、各音叉腕2(ab)は音叉基部1側よりも先端側の質量が小さくなるので、衝撃時の慣性による揺動が少なくなる。したがって、衝撃による破損等をさらに防止できる。   In the second embodiment, the top and bottom of the surface longitudinal groove 5 having a single triangular shape is turned upside down, the tip side of the tuning fork arm 2 (ab) is the bottom side, and the tuning fork that becomes the extended starting end of the tuning fork arm 2 (ab) is used. Let the base part of the base 1 be the remaining two vertices. In this way, each tuning fork arm 2 (ab) has a smaller mass on the tip side than on the tuning fork base 1 side, so that the swing due to inertia at the time of impact is reduced. Therefore, damage due to impact can be further prevented.

(第3実施形態、請求項1、4、5)
以下、本発明の第3実施形態を第3図(音叉型振動子の正面図)によって説明する。なお、前実施形態と同一部分の説明は省略する。
(Third embodiment, claims 1, 4, 5)
Hereinafter, a third embodiment of the present invention will be described with reference to FIG. 3 (a front view of a tuning fork vibrator). In addition, description of the same part as previous embodiment is abbreviate | omitted.

第3実施形態では、三角形状とした表面縦溝5を各音叉腕2(ab)の長さ方向に複数個が並べられる。この場合でも、前実施形態と同様に、複数の表面縦溝5によってCIを小さくするとともに、各表面縦溝5を三角形状とすることによって機械的強度を高める。そして、表面縦溝5の合計面積は単一とした表面縦溝5の場合よりも減少し、各音叉腕2(ab)の実部となる面積を大きくするので、各音叉腕2(ab)の板面に対する垂直方向の剛性をさらに高める。   In the third embodiment, a plurality of triangular surface longitudinal grooves 5 are arranged in the length direction of each tuning fork arm 2 (ab). Even in this case, similarly to the previous embodiment, the CI is reduced by the plurality of surface longitudinal grooves 5, and the mechanical strength is increased by making each surface longitudinal groove 5 triangular. Further, the total area of the surface longitudinal grooves 5 is smaller than that of the single surface longitudinal groove 5, and the area that is the real part of each tuning fork arm 2 (ab) is increased. Therefore, each tuning fork arm 2 (ab) The rigidity in the direction perpendicular to the plate surface is further increased.

上記実施形態では表面縦溝5の底辺に対する二辺は外側に湾曲する曲線状としたが、直線状とした場合でも基本的には同様な効果を奏する。また、第4図に示したように三角形状とした表面縦溝5の底辺以外の2辺の頂点を対向させたり、図示しない底辺同士を対向したりしても同様な効果を得られる。さらに、三角形状は二等辺三角形のみならず、例えば直角三角形とした場合でも適用可能である。   In the above embodiment, the two sides with respect to the bottom side of the surface longitudinal groove 5 have a curved shape that curves outward. However, even when the shape is linear, the same effect is basically obtained. Further, the same effect can be obtained by making the vertices of two sides other than the bottom of the surface longitudinal groove 5 in a triangular shape face each other as shown in FIG. Furthermore, the triangular shape is applicable not only to an isosceles triangle but also to a right triangle, for example.

1 音叉基部、2 音叉腕、3 音叉状水晶片、4 励振電極、5 表面縦溝。   1 tuning fork base, 2 tuning fork arm, 3 tuning fork crystal piece, 4 excitation electrode, 5 surface longitudinal groove.

Claims (5)

一対の音叉腕が音叉基部から一方向に延出した音叉状水晶片を備え、前記音叉腕の両主面に長さ方向の表面縦溝を設けた音叉型水晶振動子において、前記表面縦溝は前記音叉腕の幅方向を底辺とした三角形状としたことを特徴とする音叉型水晶振動子。   A tuning fork-type crystal resonator in which a pair of tuning fork arms includes a tuning fork crystal piece extending in one direction from a tuning fork base, and a longitudinal longitudinal groove is provided on both main surfaces of the tuning fork arm. A tuning fork type crystal resonator having a triangular shape with the width direction of the tuning fork arm as a base. 請求項1において、前記表面縦溝は単一として前記三角形状は前記音叉腕の延出始端部となる前記音叉基部の根本部を底辺とし、前記音叉腕の先端側を残る2辺の頂点とする音叉型水晶振動子。   In Claim 1, the said surface longitudinal groove is single, and the said triangular shape makes the base part of the said tuning fork base part used as the extension start end part of the said tuning fork arm a base, and the vertex of two sides which remain | survives the front end side of the said tuning fork arm. Tuning fork type crystal resonator. 請求項1において、前記表面縦溝は単一として前記三角形状は前記音叉腕の先端側を底辺とし、前記音叉腕の延出始端部となる前記音叉基部の根本部を残る2辺の頂点とする音叉型水晶振動子。   In Claim 1, the said surface longitudinal groove is single, and the said triangular shape makes the front end side of the said tuning fork arm a base, and the vertex of two sides which leaves the fundamental part of the said tuning fork base used as the extension start end part of the said tuning fork arm, Tuning fork type crystal resonator. 請求項1、2又は3において、請求項1において、前記三角形状とした表面縦溝の底辺に対する残りの2辺は外側に湾曲した曲線状とする音叉型水晶振動子。   4. The tuning fork type crystal resonator according to claim 1, wherein the remaining two sides with respect to the bottom side of the triangular surface longitudinal groove according to claim 1 have a curved shape curved outward. 請求項1において、前記三角形状とした表面縦溝は前記音叉腕の長さ方向に複数個が並べられる音叉型水晶振動子。   2. The tuning fork type crystal resonator according to claim 1, wherein a plurality of triangular surface longitudinal grooves are arranged in a length direction of the tuning fork arm.
JP2009095089A 2009-04-09 2009-04-09 Tuning fork type crystal unit Pending JP2010246020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009095089A JP2010246020A (en) 2009-04-09 2009-04-09 Tuning fork type crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009095089A JP2010246020A (en) 2009-04-09 2009-04-09 Tuning fork type crystal unit

Publications (1)

Publication Number Publication Date
JP2010246020A true JP2010246020A (en) 2010-10-28

Family

ID=43098515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009095089A Pending JP2010246020A (en) 2009-04-09 2009-04-09 Tuning fork type crystal unit

Country Status (1)

Country Link
JP (1) JP2010246020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156873A (en) * 2011-01-27 2012-08-16 Seiko Instruments Inc Piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic device, and radio clock
JP2013074518A (en) * 2011-09-28 2013-04-22 Seiko Instruments Inc Piezoelectric vibration piece, piezoelectric transducer, oscillator, electronic apparatus, and radio controlled watch
JP2013229751A (en) * 2012-04-25 2013-11-07 Kyocera Crystal Device Corp Turning fork type bending crystal vibration element
JP2014232965A (en) * 2013-05-29 2014-12-11 シチズンファインテックミヨタ株式会社 Crystal vibrator and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156873A (en) * 2011-01-27 2012-08-16 Seiko Instruments Inc Piezoelectric vibration piece, piezoelectric vibrator, oscillator, electronic device, and radio clock
JP2013074518A (en) * 2011-09-28 2013-04-22 Seiko Instruments Inc Piezoelectric vibration piece, piezoelectric transducer, oscillator, electronic apparatus, and radio controlled watch
JP2013229751A (en) * 2012-04-25 2013-11-07 Kyocera Crystal Device Corp Turning fork type bending crystal vibration element
JP2014232965A (en) * 2013-05-29 2014-12-11 シチズンファインテックミヨタ株式会社 Crystal vibrator and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4319657B2 (en) Piezoelectric vibrator
JP5168464B2 (en) Vibrating piece, vibrator, and oscillator
JP5085679B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP5534828B2 (en) Tuning fork type bending crystal resonator element
JP5565163B2 (en) Vibrating piece, vibrator, oscillator, and electronic device
JP4879963B2 (en) Piezoelectric vibrating piece, piezoelectric vibrator and piezoelectric oscillator
JP2004343541A (en) Tuning fork type piezoelectric vibrating reed and tuning fork type piezoelectric vibrator
JP2010098531A (en) Piezoelectric vibration piece and piezoelectric device
JP5085681B2 (en) Piezoelectric vibrating piece, piezoelectric device, and method of manufacturing piezoelectric vibrating piece
JP5789914B2 (en) Tuning fork type piezoelectric vibrating piece and piezoelectric device
JP5789913B2 (en) Tuning fork type piezoelectric vibrating piece and piezoelectric device
JP5652122B2 (en) Vibrating piece, vibrating device and electronic device
JP2010283804A (en) Piezoelectric frame and piezoelectric device
JP2010246020A (en) Tuning fork type crystal unit
JP2007013910A (en) Piezoelectric resonator
JP5605501B2 (en) Tuning fork type vibrator
JP5504999B2 (en) Vibrating piece, vibrator, oscillator
JP5847540B2 (en) Crystal wafer
JP5671821B2 (en) Vibrating piece and device
JP5674241B2 (en) Piezoelectric vibrator, piezoelectric vibrator, electronic device
JP4900489B2 (en) Tuning fork type piezoelectric vibrator
JP2011223228A (en) Vibration chip, vibrator and oscillator
JP5130502B2 (en) Piezoelectric vibrator and piezoelectric oscillator
JP4508204B2 (en) Tuning fork type piezoelectric vibrator
JPWO2014002892A1 (en) Tuning fork crystal unit