Nothing Special   »   [go: up one dir, main page]

JP2010182236A - 移動領域予測装置 - Google Patents

移動領域予測装置 Download PDF

Info

Publication number
JP2010182236A
JP2010182236A JP2009027262A JP2009027262A JP2010182236A JP 2010182236 A JP2010182236 A JP 2010182236A JP 2009027262 A JP2009027262 A JP 2009027262A JP 2009027262 A JP2009027262 A JP 2009027262A JP 2010182236 A JP2010182236 A JP 2010182236A
Authority
JP
Japan
Prior art keywords
prediction
moving
normality
movement
moving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009027262A
Other languages
English (en)
Other versions
JP4853525B2 (ja
Inventor
Katsuhiro Sakai
克弘 坂井
Kazuaki Aso
和昭 麻生
Masahiro Harada
将弘 原田
Toshiki Kanemichi
敏樹 金道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009027262A priority Critical patent/JP4853525B2/ja
Priority to DE112010000802.7T priority patent/DE112010000802B4/de
Priority to PCT/IB2010/000230 priority patent/WO2010089661A2/en
Priority to US13/148,507 priority patent/US8676487B2/en
Priority to CN201080007066.3A priority patent/CN102307769B/zh
Publication of JP2010182236A publication Critical patent/JP2010182236A/ja
Application granted granted Critical
Publication of JP4853525B2 publication Critical patent/JP4853525B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】自車両周辺において正常な移動体と異常な移動体が混在する環境においても移動体毎に適切な移動領域を予測できる移動領域予測装置を提供することを課題とする。
【解決手段】自車両周辺の移動体を検知する移動体検知手段(走行情報取得手段10、対象検出手段11)と、移動体検知手段で検知した移動体の移動領域を予測する予測手段(動き予測モデル選択手段13、動き予測手段14)と、移動体検知手段で検知した移動体の移動状況の正常度を取得する正常度取得手段(正常度推定手段12)とを備え、予測手段は、移動体の移動領域を予測するための複数の移動予測モデルを備え、前記正常度取得手段で取得した正常度に基づいて前記複数の移動予測モデルの中から移動予測モデルを選択し、当該選択した移動予測モデルを用いて移動体の移動領域を予測することを特徴とする。
【選択図】図1

Description

本発明は、移動体の移動領域を予測する移動領域予測装置に関する。
自車両の走行進路を予測し、その予測進路において自車両の周辺に存在する他車両などの移動体との衝突を防止するための技術が開発されている。また、自車両が目的地に向かうための目標進路を取得し、その目標進路に従って各種走行制御を行ったりあるいは自動運転を行う技術も開発されており、この技術においても周辺の移動体との衝突を回避しながら走行することが重要となる。特許文献1に記載の装置では、センサで検出された自車両のヨーレートや速度に基づいて自車両の予測走行軌跡及びその予測走行軌跡の両側に所定距離を有する予測走行エリアを求めるとともに、レーダで検出された障害物の位置や速度に基づいて障害物(他車両など)の予測走行軌跡及びその予測走行軌跡の両側に所定距離を有する予測走行エリアを求める。さらに、その自車両の予測走行エリアと障害物の予測走行エリアに基づいて衝突点又は近接点を算出し、目標減速加速度及び目標減速度を算出することにより衝突危険性を判別し、衝突の危険性が生じたときには目標減速加速度及び目標減速度に応じた自車両の速度制御を行う。
特開平7−104062号公報 特開2003−58994号公報 特開2007−233646号公報 特開2006−85285号公報 特開2008−3707号公報
一般的な交通環境では、運転者の居眠り、飲酒、交通ルールの遵守状況などによって異常な走行を行う車両と正常な走行を行う車両とが混在していることは不可避である。しかし、従来の装置では、上記のように、他車両が移動するエリアを各車両に対して一律に設定している。そのため、異常な車両を想定し、周辺の全ての他車両に対して広いエリアを設定した場合、周辺の全ての車両(正常な車両の場合あり)との衝突危険性が高くなり、自車両の走行の効率が著しく低下する(図2(a)参照)。一方、正常な車両を想定し、周辺の全ての他車両に対して狭いエリアを設定した場合、周辺の全ての車両との衝突危険性が低くなり、異常な他車両が存在する場合には自車両の走行の安全性が低下する(図2(b)参照)。
そこで、本発明は、自車両周辺において正常な移動体と異常な移動体が混在する環境においても移動体毎に適切な移動領域を予測できる移動領域予測装置を提供することを課題とする。
本発明に係る移動領域予測装置は、自車両周辺の移動体を検知する移動体検知手段と、移動体検知手段で検知した移動体の移動領域を予測する予測手段と、移動体検知手段で検知した移動体の移動状況の正常度を取得する正常度取得手段とを備え、予測手段は、移動体の移動領域を予測するための複数の移動予測モデルを備え、正常度取得手段で取得した正常度に基づいて複数の移動予測モデルの中から移動予測モデルを選択し、当該選択した移動予測モデルを用いて移動体の移動領域を予測することを特徴とする。
この移動領域予測装置では、移動体検知手段により自車両周辺の移動体を検知する。そして、移動領域予測装置では、正常度取得手段により自車両周辺の移動体の移動状況におおける正常度(逆に言えば、異常度)を取得する。さらに、移動領域予測装置では、予測手段により、移動体毎に、正常度に基づいて複数の移動予測モデルの中から移動予測モデルを選択し(複数個選択してもよい)、その選択した移動予測モデルを用いて移動体の移動領域を予測する。例えば、正常度の高い移動体に対しては、移動する範囲をある程度絞ることができる。一方、正常度の低い(異常度の高い)移動体に対しては、どのように移動するのか予測するのが難しい。よって、移動領域を正常度が高いほど限定し、低いほど広げるような移動予測モデルを適用する。このように、移動領域予測装置では、移動体毎に正常度に応じた移動予測モデルを適用して移動領域を予測することにより、正常な移動体と異常な移動体が混在するような環境においても移動体毎に適切な移動領域を予測できる。この移動体毎の移動領域を用いて自車両を走行支援や自動運転することにより、正常な移動体と異常な移動体が混在するような環境においても、移動体との関係での安全と自車両が目的地に向かって進む効率とを両立することができる。
なお、移動体は、例えば、車両、自動二輪車、自転車、歩行者である。移動体の移動状況の正常度は、例えば、その移動体のふらつき度、交通ルールの遵守度、加減速度、他の対象との衝突に対してその移動体が受け入れているリスク(衝突確率)から求められる。複数の移動予測モデルとしては、各正常度に対応する個々の移動予測モデルとしてもよい。
本発明に係る移動領域予測装置は、自車両周辺の移動体を検知する移動体検知手段と、移動体検知手段で検知した移動体の移動領域を予測する予測手段と、移動体検知手段で検知した移動体の移動状況の正常度を取得する正常度取得手段とを備え、予測手段は、移動体の移動領域を予測するための予測パラメータを有する移動予測モデルを備え、正常度取得手段で取得した正常度に基づいて予測パラメータ値を決定し、当該決定した予測パラメータ値の移動予測モデルを用いて移動体の移動領域を予測することを特徴とする。
この移動領域予測装置では、移動体検知手段により自車両周辺の移動体を検知する。そして、移動領域予測装置では、正常度取得手段により自車両周辺の移動体の移動状況におおける正常度を取得する。さらに、移動領域予測装置では、予測手段により、移動体毎に、正常度に基づいて移動予測モデルの予測パラメータのパラメータ値(1つでも、複数でもよい)を決定し、その決定したパラメータ値の移動予測モデルを用いて移動体の移動領域を予測する。このように、移動領域予測装置では、移動体毎に正常度に応じた予測パラメータ値の移動予測モデルを適用して移動領域を予測することにより、正常な移動体と異常な移動体が混在するような環境においても移動体毎に適切な移動領域を予測できる。
なお、予測パラメータとしては、例えば、移動体のふらつき度、交通ルールの遵守度、加減速度、操舵角、他の対象との衝突に対してその移動体が受け入れているリスク(衝突確率)などがある。予測パラメータは、正常度と同じパラメータとしてもよい。ちなみに、正常度をパラメータに持つ一つの移動予測モデルに正常度に応じた異なるパラメータ値を代入することによって複数の移動予測モデルとしてもよい。1つの移動予測モデルが有する予測パラメータは、1つでもよいし、複数でもよい。
本発明の上記移動領域予測装置では、正常度取得手段は、移動体の移動の履歴に基づいて正常度を取得する構成としてもよい。
この移動領域予測装置では、正常度取得手段により、移動体の移動の履歴(過去の動き)を検出し、その移動の履歴に基づいて正常度を取得する。移動体の移動の履歴としては、移動体が過去に走行したときの時系列の位置の軌跡、速度の時間変化(加減速度)、走行方向の時間変化などがある。例えば、過去の走行において位置の変化が大きい(車両のふらつき度合いが大きい)場合、速度の変化が大きい場合、走行方向の変化が大きい場合には正常度が低い。
本発明の上記移動領域予測装置では、移動体の位置に基づいて正常度を取得する構成としてもよい。さらに、本発明の上記移動領域予測装置では、正常度取得手段は、移動体の位置及び速度に基づいて正常度を取得する構成としてもよい。
この移動領域予測装置では、正常度取得手段により、移動体の位置や速度を検出し、その位置や速度に基づいて正常度を取得する。位置の変化が大きく、車両のふらつき度合いが大きい場合や速度の変化が大きい場合には正常度が低い。
本発明の上記移動領域予測装置では、正常度取得手段は、移動体の運転者の状態に基づいて正常度を取得する構成としてもよい。
この移動領域予測装置では、正常度取得手段により、移動体の運転者の状態を検出し、運転者の状態に基づいて移動体の移動状況の正常度を取得する。運転者の状態としては、飲酒状態、覚醒状態、疲労状態、心理状態(イライラなど)などがある。例えば、飲酒している場合や覚醒度が低い場合には車両のふらつき度合いが大きくなる可能性が高く、イライラしている場合には加減速度が大きくなる可能性が高く、これらの場合には正常度が低い。移動体の運転者についての情報の取得方法としては、例えば、移動領域予測装置に設けられたセンサでその移動体の運転者の状態を検出する方法でもよいし、その移動体又はインフラ等に取り付けられているセンサでその移動体の運転者の状態を検出し、車車間通信や路車間通信を用いて移動領域予測装置に配信する方法でもよい。配信データとしては、正常度に関連する運転者の状態でもよいし、その運転者の状態から求められた正常度でもよい。
本発明の上記移動領域予測装置では、正常度取得手段は、移動体の交通ルールの遵守状況に基づいて正常度を取得する構成としてもよい。特に、交通ルールの遵守状況を、優先順位付けされた複数の交通ルールに対する遵守度の組み合わせとすると好適である。
この移動領域予測装置では、正常度取得手段により、移動体の交通ルールの遵守状況を検出し、交通ルールの遵守状況に基づいて移動体の移動状況の正常度を取得する。交通ルールを遵守する傾向が高いほど正常度が高く、遵守する傾向が低いほど正常度が低い。しかし、多数の交通ルールの中には重要度が異なる様々なルールがある。そこで、交通ルールの遵守状況として優先順位付けされた複数の交通ルールに対する遵守度の組み合わせとすることにより、どのレベルの交通ルールまで遵守度が高く、どのレベルの交通ルールから遵守度が低くなるのかに応じた適切な移動予測モデルを選択できる。遵守度は、遵守と違反の二値でもよいし、三段階以上で表したものでもよい。
本発明に係る移動領域予測装置は、自車両周辺の移動体を検知する移動体検知手段と、移動体検知手段で検知した移動体の移動領域を予測する予測手段とを備え、予測手段は、移動体の移動領域を予測するための予測時間の異なる複数の移動予測モデルを備え、複数の移動予測モデルで予測を行い、移動体の移動領域を予測することを特徴とする。
この移動領域予測装置では、移動体検知手段により自車両周辺の移動体を検知する。そして、移動領域予測装置では、予測手段により、移動体毎に、予測時間の異なる複数の移動予測モデルを用いて並行して予測を行い、移動体の移動領域を予測する。このように、移動領域予測装置では、移動体毎に予測時間の異なる複数の移動予測モデルを用いて移動領域を予測することにより、正常な移動体と異常な移動体が混在するような環境においても移動体毎に適切な移動領域を予測できる。なお、複数の移動予測モデルの予測時間は、同じ時間があってもよいし、全て異なる時間でもよい。
本発明の上記移動領域予測装置では、移動体検知手段で検知した移動体の移動状況の正常度を取得する正常度取得手段を備え、予測手段は、正常度取得手段で取得した正常度に基づいて複数の移動予測モデルの中から移動予測モデルを選択し、当該選択した移動予測モデルを用いて移動体の移動領域を予測する構成としてもよい。
この移動領域予測装置では、正常度取得手段により自車両周辺の移動体の移動状況におおける正常度を取得する。そして、移動領域予測装置では、予測手段により、移動体毎に、正常度に基づいて複数の移動予測モデルの中から予測時間の異なる移動予測モデルを選択し、当該選択した予測時間の異なる移動予測モデルを用いて並行して予測を行い、移動体の移動領域を予測する。移動状況が正常な移動体に対して正常な移動予測モデルで予測する場合、予測時間が長くなっても移動領域がある程度限定されるので、長い予測時間においても予測結果に信頼性があり、その移動体と自車両との安全性を確保できる。一方、移動状況が異常な移動体に対して正常な移動予測モデルで予測する場合、予測時間が長くなるにつれて移動領域が広い範囲に拡散していくので、長い予測時間においては予測結果の信頼性がなく、その移動体と自車両との安全性を確保できない。しかしながら、異常な移動予測モデルで予測する場合でも、短い予測時間であれば、移動領域が限定されるため、予測結果に信頼性があり、その移動体と自車両との安全性を確保できる。
したがって、移動状況が正常な移動体の予測をする場合であっても、予測時間の短い予測をする際には、あえて移動状況が異常な移動予測モデルを用いて予測することにより、予測結果の信頼性を失うことなく、その移動体が急に異常な移動状況に陥った場合にも対応できるため、安全性を更に高めることができる。また、予測時間の長い予測をする際には、移動状況が正常な移動予測モデルを用いて予測することにより、必要な予測をすることができる。したがって、この移動領域予測装置では、移動状況が正常な移動体の予測を複数の移動予測モデルで並行して予測する場合、短い予測時間については移動状況が異常な移動予測モデルで予測し、長い予測時間については移動状況が正常な移動予測モデルで予測すると好適である。
本発明に係る移動領域予測装置は、自車両周辺の移動体を検知する移動体検知手段と、移動体検知手段で検知した移動体の移動領域を予測する予測手段とを備え、予測手段は、移動体の移動領域を予測するための予測時間が可変である移動予測モデルを備え、予測時間が可変の移動予測モデルで予測を行い、移動体の移動領域を予測することを特徴とする。
この移動領域予測装置では、移動体検知手段により自車両周辺の移動体を検知する。そして、移動領域予測装置では、予測手段により、移動体毎に、移動予測モデルでの予測時間を変え、各予測時間で予測を行い、移動体の移動領域を予測する。このように、移動領域予測装置では、移動体毎に予測時間を変えた移動予測モデルを用いて移動領域を予測することにより、正常な移動体と異常な移動体が混在するような環境においても移動体毎に適切な移動領域を予測できる。
本発明の上記移動領域予測装置では、移動体検知手段で検知した移動体の移動状況の正常度を取得する正常度取得手段を備え、予測手段は、正常度取得手段で取得した正常度に基づいて予測時間を決定し、当該決定した予測時間とした移動予測モデルを用いて移動体の移動領域を予測する構成としてもよい。
この移動領域予測装置では、正常度取得手段により自車両周辺の移動体の移動状況におおける正常度を取得する。そして、移動領域予測装置では、予測手段により、移動体毎に、正常度に基づいて予測時間を決定し、当該選択した予測時間の移動予測モデルを用いて予測を行い、移動体の移動領域を予測する。
本発明の上記移動領域予測装置では、複数の移動予測モデルで並行して予測した複数の予測結果において予測時間の短い予測結果から順に評価すると好適である。
移動予測モデルは、予測時間が短いほど、信頼性が高く、予測した移動領域も狭くなる。したがって、移動体と自車両との関係で安全性を高めるためには、短い予測時間(近い未来)の移動領域ほど確実に回避する必要がある。そこで、この移動領域予測装置では、予測時間の短い予測結果(移動領域)から順に評価することにより、安全性を確保することができる。例えば、予測時間の短い予測結果から後段の処理部に出力し、後段の処理部である予測時間の予測結果と未来の自車両の位置とが交差すると判定した場合には衝突が差し迫っていると判断できるので、移動領域予測装置ではその予測時間の予測結果を評価するところまでで処理を打ち切り、衝突を回避するための処理に移行する。
本発明は、移動体の運転者の正常度や予測時間に応じた移動予測モデルを適用して移動領域を予測することにより、正常な移動体と異常な移動体が混在するような環境においても移動体毎に適切な移動領域を予測できる。
第1の実施の形態に係る動き予測装置の構成図である。 従来の動き予測装置での前方の他車両に対する動き予測結果の一例であり、(a)が全ての車両を異常な車両と想定した場合であり、(b)が全ての車両が正常な車両と想定した場合である。 図1の動き予測装置での前方の他車両に対する動き予測結果の一例である。 図1の動き予測装置での動作の流れを示すフローチャートである。 第2の実施の形態に係る動き予測装置の構成図である。 カーブ路における車両の動きの一例である。 前方に車両が停止している場合の後方の車両の動きの一例である。 動き予測モデルによる動き予測結果の一例であり、(a)が対向車両が逆走していない場合の対向車線の逆走を想定した動き予測モデルによる動き予測結果であり、(b)が対向車両が逆走している場合の対向車線の逆走を想定した動き予測モデルによる動き予測結果であり、(c)が対向車両が逆走していない場合の車線維持を想定した動き予測モデルによる動き予測結果である。 図5の動き予測装置での動作の流れを示すフローチャートである。 第3の実施の形態に係る動き予測装置の構成図である。 各種動き予測モデルによる動き予測結果の一例であり、(a)が予測時間が1秒間で操作確率が一様分布の動き予測モデルによる動き予測結果であり、(b)が予測時間が1秒間で車線維持を想定した動き予測モデルによる動き予測結果である。(c)が予測時間が5秒間で操作確率が一様分布の動き予測モデルによる動き予測結果であり、(d)が予測時間が5秒間で車線維持を想定した動き予測モデルによる動き予測結果である。 図10の動き予測装置での動作の流れを示すフローチャートである。 シーケンシャル処理と並行予測を組み合わせた場合の動き予測モデルの選択方法の一例を示す表である。
以下、図面を参照して、本発明に係る移動領域予測装置の実施の形態を説明する。
本実施の形態では、本発明に係る移動領域予測装置を、車両に搭載される動き予測装置に適用する。本実施の形態に係る動き予測装置は、複数の動き予測モデルを利用して自車両周辺の対象(移動体)の動きを予測し、その予測結果を各種運転支援装置(衝突防止装置など)あるいは自動運転装置などに提供する。本実施の形態には、3つの形態があり、第1の実施の形態が周辺対象の正常度に応じて動き予測モデルを選択する形態であり、第2の実施の形態が周辺対象の交通ルールの遵守状況に応じて動き予測モデルを選択する形態であり、第3の実施の形態が複数の動き予測モデルで並行して予測する形態である。
図1〜図3を参照して、第1の実施の形態に係る動き予測装置1について説明する。図1は、第1の実施の形態に係る動き予測装置の構成図である。図2は、従来の動き予測装置での前方の他車両に対する動き予測結果の一例であり、(a)が全ての車両を異常な車両と想定した場合であり、(b)が全ての車両が正常な車両と想定した場合である。図3は、図1の動き予測装置での前方の他車両に対する動き予測結果の一例である。
動き予測装置1は、自車両周辺の対象毎に複数の動き予測モデルの中から周辺対象に適した動き予測モデルを選択し、その選択した動き予測モデルに基づいて周辺対象の動きを予測する。特に、動き予測装置1では、周辺対象毎に、移動状況における正常度を推定し、正常度に応じた動き予測モデルを選択する。そのために、動き予測装置1は、走行情報取得手段10、対象検出手段11、正常度推定手段12、動き予測モデル選択手段13、動き予測手段14を備えている。対象検出手段11、正常度推定手段12、動き予測モデル選択手段13、動き予測手段14は、CPU[Central Processing Unit]、ROM[ReadOnly Memory]、RAM[Random Access Memory]などからなるECU[Electronic Control Unit]内に構成される。
なお、第1の実施の形態では、走行情報取得手段10及び対象検出手段11が特許請求の範囲に記載する移動体検知手段に相当し、正常度推定手段12が特許請求の範囲に記載する正常度取得手段に相当し、動き予測モデル選択手段13及び動き予測手段14が特許請求の範囲に記載する予測手段に相当し、動き予測モデル選択手段13で予め用意される複数の動き予測モデルが特許請求の範囲に記載する複数の移動予測モデルに相当する。
走行情報取得手段10は、自車両の走行状態、自車両周辺のセンシング情報、事前知識などを走行情報として取得する手段である。
自車両の走行状態としては、速度、加速度、操舵角、現在位置などがある。これらの情報の検出手段としては、速度、加速度、操舵角などの各種センサ、GPS受信装置、カーナビゲーション装置などである。
自車両周辺のセンシング手段としては、ミリ波レーダなどの各種レーダ、ステレオカメラなどのカメラ(画像センサ)、レーザレンジファインダなどがある。そのセンシング情報としては、レーダでの検出点毎のデータ(発光時刻、受光時刻、走査方向、反射強度など)、カメラの撮像画像、レーザレンジファインダでの検出データなどである。
事前知識は、事前に取得可能な車両走行に必要な各種情報であり、道路地図、道路上の位置に対応付けた各種交通ルール(例えば、一方通行、制限速度、一旦停止、区画線(黄線、白線)、優先道路と非優先道路)や信号機などがある。事前知識は動き予測装置1に構成されるデータベースに予め格納され、自車両の現在位置に応じてデータベースからその周辺の情報が取り出される。
対象検出手段11は、走行情報取得手段10での自車両周辺のセンシング情報に基づいて自車両周辺の対象を検出する手段である。具体的には、対象検出手段11では、レーザでの検出点毎のデータに対する処理や撮像画像に対する画像処理などを行い、周辺対象を検出し、周辺対象を検出できた場合には周辺対象毎の情報を算出する。周辺対象としては、車両、自動二輪車、自転車、歩行者などの移動体である。周辺対象の情報としては、自車両に対する相対的な位置(x,y)、自車両に対する相対的な速度あるいは絶対的な速度、自車両に対する相対的な向きあるいは絶対的な向き、車両の場合には車体に対するタイヤ向きなどがある。
正常度推定手段12は、対象検出手段11で検出した周辺対象毎に、周辺対象の過去の動きを利用して、周辺対象の行動(移動状況)の正常度を推定する手段である。過去の動きとしては、時系列の位置の軌跡、速度の時間変化(加減速度)、向きの時間変化などがある。正常度の推定方法としては、その周辺対象のふらつき度、交通ルールの遵守度、加減速度(許容される加減速度有り)、他の対象との衝突に対してその周辺対象が受け入れているリスク(衝突確率)などから推定する。ふらつき度は、周辺対象の時系列の位置の軌跡などから推定される。交通ルールの遵守度は、現在位置周辺の各種交通ルール、信号機の状態などと周辺対象の時系列の位置の軌跡、速度などとを比較して推定される。衝突確率は、周辺対象と他の周辺対象及び自車両との時系列の位置の軌跡、速度の時間変化、向きの時間変化などから推定される。
正常度は、周辺対象の移動状況が正常な度合いであり、正常なほど高く、異常なほど低い。例えば、ふらつきが大きいほど正常度が低く、交通ルールの遵守度が低いほど正常度が低く、受け入れている衝突確率が高いほど正常度が低く、加減速度が大きいほど正常度が低い。正常度としては複数のパラメータを持っていてもよく、パラメータ毎に正常な度合いが設定される。例えば、ふらつき度などに基づいて左右方向の正常度があり、ふらつき度が大きいほど左右方向の正常度が低くなる。また、加減速度などに基づいて進行方向の正常度があり、加減速度が大きいほど進行方向の正常度が低くなる。
動き予測モデル選択手段13は、対象検出手段11で検出した周辺対象毎に、正常度推定手段12で推定した正常度に応じた最適な動き予測モデルを選択する。複数の動き予測モデルは、動き予測装置1に構成されるデータベースに予め格納されている。動き予測モデル選択手段13では、正常度をキーとしてデータベースを検索し、データベースから正常度に応じた動き予測モデルを抽出する。
動き予測モデルは、正常度に応じてそれぞれ用意される。動き予測モデルは、周辺対象の情報(位置、速度、向きなど)を入力すると、その周辺対象の動きとして所定時間後(例えば、5秒後)の存在範囲を出力する。この存在範囲は、範囲のみでもよいし、その各範囲内での存在確率を持っているものでもよい。この各動き予測モデルは、正常度に応じて所定時間後の存在範囲(必要に応じて存在確率も)を予測する(図3参照)。この予測される存在範囲や存在確率は、正常度に応じて各範囲の大きさや形状、各範囲での確率値などが異なる。例えば、左右方向の正常度が低いほど、存在範囲が左右方向に広くなり、存在確率が低くなるような動き予測モデルである。また、進行方向の正常度が低いほど、進行方向に長くなり、存在確率が低くるような動き予測モデルである。
動き予測手段14は、対象検出手段11で検出した周辺対象毎に、動き予測モデル選択手段13で選択した動き予測モデルによって周辺対象の動きを予測する手段である。具体的には、動き予測手段14では、周辺対象毎に、選択された動き予測モデルにその周辺対象の情報を入力し、動き予測モデルによって所定時間後の存在範囲(必要に応じて存在確率も)を出力する。
図2には、片側三車線の道路において、自車両MVが左車線を走行し、自車両MVの前方において左車線に他車両PV1が走行し、更に前方において中央車線に他車両PV2が走行している場合を示している。ここでは、他車両PV1が正常な走行をしており、他車両PV2がふらつきが大きく異常な走行をしている。
図2(a)は、全ての他車両を異常な車両と想定して動き予測した場合であり、他車両PV1,PV2の所定時間後の存在範囲AA1,AA2として広い範囲が予測され、その範囲AA1,AA2が他車両PV1,PV2の走行車線から大きくはみ出している。そのため、自車両MVの目標進路を生成した場合、他車両PV1,PV2との関係で安全性を確保するために、他車両PV1の後方で少しずつ進むような目標進路TC1が生成される。この目標軌跡TC1に従って自車両MVが走行した場合、目的地に向かって進む効率が著しく低下する。
図2(b)は、全ての他車両を正常な車両と想定して動き予測した場合であり、他車両PV1,PV2の所定時間後の存在範囲NA1,NA2として狭い範囲が予測され、その範囲NA1,NA2が他車両PV1,PV2の走行車線内に十分に入っている。そのため、自車両MVの目標進路を生成した場合、他車両PV,PV2の側方車線を進むような進路を生成でき、車線変更して他車両PV2の右側方を進むような目標進路TC2が生成される。しかし、この目標軌跡TC2に従って自車両MVが走行した場合、ふらつきの大きい他車両PV2との衝突確率が高くなり、安全性が低下する。
図3は、図2に示す状況において、動き予測装置1を適用して他車両PV1,PV2の動きを予測した場合である。この場合、正常な走行している他車両PV1に対しては正常度の高い動き予測モデルが選択され、この動き予測モデルによって他車両PV1の所定時間後の存在範囲A1として狭い範囲が予測される。一方、異常な走行している他車両PV2に対しては正常度の低い動き予測モデルが選択され、この動き予測モデルによって他車両PV2の所定時間後の存在確率毎の範囲A2として広い範囲が予測される。そのため、自車両MVの目標進路を生成した場合、他車両PV1,PV2との関係で安全性を確保すると、他車両PV1の右側方(中央車線)に車線変更するとともに他車両PV2の後方で進むような目標進路TCが生成される。この目標軌跡TCに従って自車両MVが走行した場合、安全性を確保した上で目的地に向かって進む効率も向上する。
図1を参照して、動き予測装置1の動作を図4のフローチャートに沿って説明する。図4は、図1の動き予測装置での動作の流れを示すフローチャートである。
動き予測装置1では、自車両の走行状態を検出する(S10)。また、動き予測装置1では、自車両周辺の対象をセンシングする(S11)。そして、動き予測装置1では、そのセンシング情報に基づいて、周辺対象毎の情報を検出する(S12)。
周辺対象毎に、動き予測装置1では、周辺対象の過去の動きに基づいて行動の正常度を推定する(S13)。そして、動き予測装置1では、正常度に応じて最適な動き予測モデルを選択する(S14)。さらに、動き予測装置1では、その選択した動き予測モデルを利用し、周辺対象の動きを予測する(S15)。
そして、動き予測装置1では、周辺対象毎の動きの予測結果を各種運転支援装置あるいは自動運転装置に出力する。
この動き予測装置1によれば、周辺対象(移動体)の行動の正常度に応じた動き予測モデルで動きを予測することにより、正常な移動体と異常な移動体が混在するような環境においても移動体毎に適切な移動領域を予測できる。この各移動体の予測結果を利用して自車両を走行支援や自動運転することにより、正常な移動体と異常な移動体が混在するような環境においても、移動体との関係での安全と自車両が目的地に向かって進む効率とを両立することができる。
図5〜図8を参照して、第2の実施の形態に係る動き予測装置2について説明する。図5は、第2の実施の形態に係る動き予測装置の構成図である。図6は、カーブ路における車両の動きの一例である。図7は、前方に車両が停止している場合の後方の車両の動きの一例である。図8は、動き予測モデルによる動き予測結果の一例であり、(a)が対向車両が逆走していない場合の対向車線の逆走を想定した動き予測モデルによる動き予測結果であり、(b)が対向車両が逆走している場合の対向車線の逆走を想定した動き予測モデルによる動き予測結果であり、(c)が対向車両が逆走していない場合の車線維持を想定した動き予測モデルによる動き予測結果である。
動き予測装置2は、自車両周辺の対象毎に複数の動き予測モデルの中から周辺対象に適した動き予測モデルを選択し、その選択した動き予測モデルに基づいて周辺対象の動きを予測する。特に、動き予測装置2では、周辺対象毎に、複数の交通ルールの遵守度をそれぞれ判定し、遵守度の低い交通ルールの中で重要度の最も高い交通ルールに応じた動き予測モデルを選択する。そのために、動き予測装置2は、走行情報取得手段20、対象検出手段21、交通ルール判定手段22、動き予測モデル選択手段23、動き予測手段24を備えている。対象検出手段21、交通ルール判定手段22、動き予測モデル選択手段23、動き予測手段24は、CPU、ROM、RAMなどからなるECU内に構成される。なお、走行情報取得手段20、対象検出手段21、動き予測手段24は、第1の実施の形態に係る走行情報取得手段10、対象検出手段11、動き予測手段14と同様の手段なので、その説明を省略する。
なお、第2の実施の形態では、走行情報取得手段20及び対象検出手段21が特許請求の範囲に記載する移動体検知手段に相当し、交通ルール判定手段22が特許請求の範囲に記載する正常度取得手段に相当し、動き予測モデル選択手段23及び動き予測手段24が特許請求の範囲に記載する予測手段に相当し、動き予測モデル選択手段23で予め用意される複数の動き予測モデルが特許請求の範囲に記載する複数の移動予測モデルに相当する。
交通ルール判定手段22は、対象検出手段21で検出した周辺対象毎に、過去の動きや現在の走行状態に基づいて、複数の交通ルールについての遵守度を判定する手段である。本願発明での交通ルールは、交通の各種法規の他に交通のマナーも包括する概念である。したがって、車両走行においてスピンしないように走行(摩擦円に収まる走行)することや道路内を走行することなど、車両走行において最低限の守るべきことも交通ルールに含めることとする。
具体的には、交通ルール判定手段22では、周辺対象の過去の動きや現在の走行状態及び現在位置周辺における周辺対象の向きに応じた複数の交通ルールに基づいて、複数の交通ルールの遵守度をそれぞれ判定する。遵守度としては、遵守と違反の二値でもよいし、あるいは、三段階以上の遵守度(違反度)としてもよい。交通ルールは、周辺対象の現在位置や周辺対象の向きをキーとして、データベースから抽出されるもの(制限速度など)、周辺対象の現在位置や周辺対象の向きに関係なく常に周辺対象に適用されるもの(スピンしない走行など)がある。また、周辺対象に適用される交通ルールを、車車間通信や路車間通信を利用して取得してもよい。
周辺対象(特に、車両)が単に交通ルールを遵守しているかあるいは違反しているかを二者択一(全ての交通ルールを守っているかあるいは違反しているか)で判定した場合、その周辺対象の運転者の交通ルールに対しての行動を正確に判別できない。例えば、制限速度を10km/h程度オーバして走行している車両に対して、一律に交通ルールを違反する車両とするのは正確性に欠く。そこで、複数の交通ルールについて個別に判定し、周辺対象の交通ルールに対する行動を正確に判別する。
ここでは、複数の交通ルールとして、図13に示すように、「摩擦円に収まる」、「路外逸脱しない」、「逆走しない」、「遷移ルールを守る」、「後突しない」、「優先を守る」を例に挙げて説明する。「摩擦円に収まる」は車両の横力と前後力との合力がタイヤの摩擦力の限界を超えない範囲で走行することであり、摩擦円を超えると車両をコントロールできなくなる。「路外逸脱しない」は、車両が走行する際に道路内を走行することである。「逆走しない」は、車両が道路上を走行する際に対向車線を走行しないということである。「遷移ルールを守る」は、黄線を超えない走行や赤信号では停止線手前で停止などの遷移ルールを守ることである。「後突しない」は、前方車両に後方から衝突しないことである。「優先を守る」は、非優先道路を走行中の車両が優先道路を走行中の車両の走行を優先させることである。これらの6つの交通ルールについての遵守度を判定することにより、運転者の交通ルールに対する行動を正確に判別することができる。
動き予測モデル選択手段23は、対象検出手段21で検出した周辺対象毎に、交通ルール判定手段22で判定した複数の交通ルールに対する遵守度に応じた最適な動き予測モデルを選択する手段である。複数の動き予測モデルは、動き予測装置2に構成されるデータベースに予め格納されている。
具体的には、動き予測モデル選択手段23では、周辺対象に対する複数の交通ルールの遵守度を交通ルールの重要度に従ってソートする(複数の交通ルールに優先順位付けを行う)。これによって、複数の交通ルールにおいてどのレベルの交通ルールまでは遵守し(遵守度が高く)、どのレベルの交通ルールから違反する(遵守度が低い)かを判別できる。そして、動き予測モデル選択手段23では、遵守度が低かった(違反している)交通ルールの中で重要度の最も高い交通ルールをキーとしてデータベースを検索し、データベースからその交通ルールまで違反することを想定した場合に対応した動き予測モデルを抽出する。
安全上絶対に遵守しなければならない交通ルールなど、複数の交通ルールにはそれぞれ重要度があり、周辺対象の運転者も重要度に応じて交通ルールを遵守する傾向がある。例えば、対向車線を逆走や赤信号を無視するような運転者が非優先道路を走行中に優先道路の車両を優先させるような走行することは考えられない。逆に、優先道路と非優先道路の関係を守るような運転者が対向車線を逆走や赤信号を無視するような走行することは考えられない。したがって、複数の交通ルールに対して重要度に従って優先順位付けを行い、複数の交通ルールにおいてどのレベルの交通ルールまでは遵守し、どのレベルの交通ルールから違反するかを判定することにより、その運転者の交通ルールに対しての行動をより正確に判別できる。このような交通ルールを守っているレベルに応じて、その周辺対象の動きの範囲も予測することができる。
上記した6つの交通ルールについての重要度(優先順位)について考える。摩擦円を超えると車両のコントロールができなくなり、他の交通ルールを遵守できなくなる可能性があるので、「摩擦円に収まる」が重要度が最も高い。次に、道路内を走行することは必須要件となるので、「路外逸脱しない」がその次に重要度が高い。次に、対向車線の逆走禁止は安全上絶対に守らなければならないなので、「逆走しない」がその次に重要度が高い。図6に示す例の場合、カーブ路を自車両MVが走行中に対向車線において他車両PVが前方から走行してきているときに、他車両PVが走行車線をキープできないような状況になると、通常、他車両PVの運転者は道路外に出るよりは対向車線を一時的に逆走することを選択すると予測される。
次に、交通秩序として信号機や黄線などを守って走行しなければならないので、「遷移ルールを守る」がその次に重要度が高い。さらに、「後突しない」がその次に重要度が高い。図7に示す例の場合、自車両MVが停止線で停止中に後方から他車両PVが後方から高車速で走行してきているときに、他車両PVが自車両MVの後方で停止できないような状況になると、通常、他車両PVの運転者は対向車線を逆走するよりは自車両MVに後方から衝突することを選択すると予測される。
動き予測モデルは、優先順位付けされて複数の交通ルールに応じてそれぞれ用意される。この各動き予測モデルは、優先順位付けされた複数の交通ルールの中で任意の交通ルールまで違反すると想定した場合(なお、任意の交通ルールを違反する場合にはその交通ルールとそれより重要度が低い全ての交通ルールも違反していると想定する)に応じた所定時間後の存在範囲(必要に応じて存在確率も)を予測する。この予測される存在範囲や存在確率は、各交通ルールまで違反すると想定した場合に応じて各範囲の大きさや形状、各範囲での確率値などが異なる。例えば、重要度の高い交通ルールまで違反する場合、範囲が広くなり、存在確率が低くなるような動き予測モデルである。また、全ての交通ルールを遵守する場合、範囲全体が非常に狭くなり、中心の存在確率が高くなるような動き予測モデルである。
上記した6つの交通ルールの例の場合、全ての交通ルールを違反する場合に応じた動き予測モデル、路外逸脱しないまでの交通ルールを違反する場合に応じた動き予測モデル、逆走しないまでの交通ルールを違反する場合に応じた動き予測モデル、遷移ルールを守るまでの交通ルールを違反する場合に応じた動き予測モデル、後突しないまでの交通ルールを違反する場合に応じた動き予測モデル、優先を守るまでの交通ルールを違反する場合に応じた動き予測モデル、全ての交通ルールを守る場合に応じた動き予測モデルが用意される。
図8には、自車両MVが走行中に対向車線において他車両PVが前方から走行してきているときに、他車両PVが走行車線を走行している場合と対向車線(自車両MVの走行車線)を逆走している場合を示している。図8(a)に示す例では、他車両PVが走行車線を走行している場合、この他車両PVに対して対向車線を逆走する場合に応じた動き予測モデルが適用され、所定時間後の存在範囲A1が対向車線まで広がっている。この場合、自車両MVの目標進路を生成した場合、他車両PVとの関係で安全性を確保するために、少しずつ進むような目標進路が生成されるかあるいは停止する目標進路が生成される。この目標進路に従って自車両MVが走行した場合、他車両PVが車線維持して走行しているにもかかわらず、目的地に向かって進む効率が著しく低下する。また、図8(b)に示す例では、他車両PVが対向車線を走行している場合、この他車両PVに対して対向車線を逆走する場合に応じた動き予測モデルが適用され、所定時間後の存在範囲A2が対向車線まで広がっている。この場合も、自車両MVの目標進路を生成すると上記と同様の目標進路が生成される。しかし、この場合は実際に他車両PVが対向車線を逆走しているので、このような目標進路が生成されてもよい。
他車両PVが走行車線を維持して走行している場合、対向車線の逆走まで想定して動きを予測する必要はなく、車線維持を想定して動きを予測するのが妥当である。したがって、図8(c)に示すように、他車両PVが走行車線を維持して走行している場合(逆走しない交通ルールを遵守している場合)、この他車両PVに対して車線維持する場合に応じた動き予測モデルが適用され、所定時間後の存在範囲A3が走行車線内に限定されるべきである。この場合、自車両MVの目標進路を生成した場合、他車両PVとの関係で安全性を確保する上で、目的地に向かって大きく進むような目標進路が生成される。
図5を参照して、動き予測装置2の動作を図9のフローチャートに沿って説明する。図9は、図5の動き予測装置での動作の流れを示すフローチャートである。
動き予測装置2では、第1の実施の形態に係る動き予測装置1と同様の動作により、自車両の走行状態を検出するとともに周辺対象をセンシングし(S20,S21)、そのセンシング情報により周辺対象毎の情報を検出する(S22)。
周辺対象毎に、動き予測装置2では、周辺対象の動きに基づいて複数の交通ルールの遵守度を判定する(S23)。そして、動き予測装置2では、複数の交通ルールの遵守判定結果を交通ルールの重要度に従ってソートする(S24)。さらに、動き予測装置2では、その優先順位付けされた複数の交通ルールの遵守判定結果から遵守度の低い中で最も重要度の高い交通ルールに応じて最適な動き予測モデルを選択する(S25)。そして、動き予測装置2では、その選択した動き予測モデルを利用し、周辺対象の動きを予測する(S26)。
そして、動き予測装置2では、周辺対象毎の動きの予測結果を各種運転支援装置あるいは自動運転装置に出力する。
この動き予測装置2によれば、周辺対象(移動体)の複数の交通ルールに対する遵守判定結果に応じた最適な動き予測モデルで動きを予測することにより、正常な移動体と異常な移動体が混在するような環境においても移動体毎に適切な移動領域を予測できる。特に、動き予測装置2によれば、複数の交通ルールの遵守判定結果を重要度に従って優先順位付けし、シーケンシャルに動き予測モデルを選択することにより、効率的に最適な動き予測モデルを選択することができる。
図10〜図11を参照して、第3の実施の形態に係る動き予測装置3について説明する。図10は、第3の実施の形態に係る動き予測装置の構成図である。図11は、各種動き予測モデルによる動き予測結果の一例であり、(a)が予測時間が1秒間で操作確率が一様分布の動き予測モデルによる動き予測結果であり、(b)が予測時間が1秒間で車線維持を想定した動き予測モデルによる動き予測結果である。(c)が予測時間が5秒間で操作確率が一様分布の動き予測モデルによる動き予測結果であり、(d)が予測時間が5秒間で車線維持を想定した動き予測モデルによる動き予測結果である。
動き予測装置3は、自車両周辺の対象毎に複数の動き予測モデルに基づいて周辺対象の動きをそれぞれ予測する。特に、動き予測装置3では、予測時間が異なりかつ各予測時間に応じた予測を行う複数の動き予測モデルで並行して予測する。そのために、動き予測装置3は、走行情報取得手段30、第1対象検出手段31,・・・,第n対象検出手段31、第1動き予測手段34,・・・,第n動き予測手段34を備えている。第1対象検出手段31,・・・,第n対象検出手段31、第1動き予測手段34,・・・,第n動き予測手段34は、CPU、ROM、RAMなどからなるECU内に構成される。なお、走行情報取得手段30は、第1の実施の形態に係る走行情報取得手段10と同様の手段なので、その説明を省略する。
なお、第3の実施の形態では、走行情報取得手段30及び第1対象検出手段31,・・・,第n対象検出手段31が特許請求の範囲に記載する移動体検知手段に相当し、第1動き予測手段34,・・・,第n動き予測手段34が特許請求の範囲に記載する予測手段に相当し、第1動き予測手段34,・・・,第n動き予測手段34でそれぞれ予め用意される動き予測モデルが特許請求の範囲に記載する移動予測モデルに相当する。
第1対象検出手段31,・・・,第n対象検出手段31は、第1の実施の形態に係る対象検出手段11と同様に、走行情報取得手段30での自車両周辺の対象に対するセンシング情報に基づいて自車両周辺の対象を検出する手段である。特に、第1対象検出手段31,・・・,第n対象検出手段31は、同じ周辺対象を検出するが、第1〜第nの動き予測手段34〜34でそれぞれ用意される第1〜第nの動き予測モデルでそれぞれ必要とされる周辺対象の情報を算出する。なお、対象検出手段31を1つだけ構成し、この1つの対象検出手段31で第1〜第nの動き予測手段34〜34でそれぞれ用意される第1〜第nの動き予測モデルで必要とされる周辺対象の全ての情報を算出するようにしてもよい。
第1動き予測手段34,・・・,第n動き予測手段34は、対象検出手段31で検出した周辺対象毎に、各手段34〜34でそれぞれ用意されている動き予測モデルによって周辺対象の動きをそれぞれ予測する手段である。つまり、第1動き予測手段34,・・・,第n動き予測手段34では、周辺対象毎に、異なる動き予測モデルを利用して、並行して予測することになる。具体的には、例えば、第1動き予測手段34では、周辺対象毎に、第1対象検出手段31で算出された周辺対象の情報を入力し、第1動き予測モデルによって最も短い予測時間後の存在範囲(必要に応じて存在確率も)を出力する。また、第n動き予測手段34では、周辺対象毎に、第n対象検出手段31で算出された周辺対象の情報を入力し、第n動き予測モデルによって最も長い予測時間後の存在範囲(必要に応じて存在確率も)を出力する。
動き予測モデルとしては、予測時間が異なる複数のモデルが用意される。動き予測モデルは、予測時間が短いほど、信頼性が高く、予測した存在範囲も狭くなる。したがって、周辺対象と自車両との関係で安全性を高めるためには、短い予測時間(近い未来)の存在範囲ほど確実に回避する必要がある。
そこで、遠い未来に予測される周辺対象の動きと比較して、予測結果に含まれる不確定性が少ない近い未来に予測される周辺対象の動きを確実に回避するためには、予測時間が異なる複数の予測結果に対して予測時間の短い予測結果から優先的に安全性を評価する必要がある。
例えば、自車両の最適な進路を選択する場合、周辺対象についての最も短い予測時間の予測結果に対する複数の自車両の進路候補についての安全性をそれぞれ評価し、安全を確保できる進路候補のみを最適な進路候補として選択する。この選択された最適な進路候補が複数ある場合、周辺対象についての次に短い予測時間の予測結果に対する選択された最適な進路候補についての安全性をそれぞれ評価し、安全を確保できる最適な進路候補を更に絞り込む。このような評価及び絞り込みを、最適な進路候補の数が十分に少なくなるかあるいは最も長い予測時間に対する安全性の評価が終了するまで繰り返し行う。以上により、遠い未来に予測される周辺対象の動きと比較して、近い未来に予測される周辺対象の動きを優先的に回避することが可能となる。
なお、遠い未来に予測される周辺対象の動きと比較して、近い未来に予測される周辺対象の動きの優先的に回避する手段は、予測時間の短い予測結果から優先的に安全性を評価する方法に限らない。例えば、予測時間が短い予測結果ほど高い重みをつけ、全ての予測時間の予測結果に対する安全性を同時に評価してもよい。
また、全ての予測時間に対して必ずしも同一の予測モデルを適用する必要はなく、各予測時間に対して適切な予測方法の予測モデルを複数用意してもよい。例えば、交通ルールを守っている一般的な運転者(正常度が高い運転者)の場合、瞬間的に過剰な操作を行う可能性はあるが(例えば、障害物回避時、オーディオ操作時など)、その過剰な操作を長時間継続することは非常に稀である。よって、近い未来は過剰な操作を想定した動き予測モデルを利用し、遠い未来は限定された動き予測モデルを利用することにより、安全と走行の効率を両立する面から好適である。なお、限定された動き予測モデルは、周辺対象が交通ルールを守る前提を入れることなどで実現できる。
つまり、移動状況が正常な周辺対象に対して正常な動き予測モデルで予測する場合、予測時間が長くなっても存在範囲がある程度限定されるので、長い予測時間においても予測結果に信頼性があり、その移動体と自車両との安全性を確保できる。一方、移動状況が異常な周辺対象に対して正常な動き予測モデルで予測する場合、予測時間が長くなるにつれて存在範囲が広い範囲に拡散していくので、長い予測時間においては予測結果の信頼性がなく、その移動体と自車両との安全性を確保できない。しかしながら、異常な動き予測モデルで予測する場合でも、短い予測時間であれば、存在範囲が限定されるため、予測結果に信頼性があり、その周辺対象と自車両との安全性を確保できる。
したがって、移動状況が正常な周辺対象の予測をする場合であっても、予測時間の短い予測をする場合、移動状況が異常な動きモデルを用いて予測することにより、予測結果の信頼性を失うことなく、その周辺対象が急に異常な操作などを行った場合にも対応できるため、安全性を更に高めることができる。また、予測時間の長い予測をする場合、移動状況が正常な動きモデルを用いて予測することにより、必要な予測をすることができる。したがって、移動状況が正常な周辺対象の予測を複数の動き予測モデルで並行して予測する場合、短い予測時間については移動状況が異常な動きモデルで予測し、長い予測時間については移動状況が正常な動きモデルで予測するにより、安全と走行の効率を両立することができる。
図11には、自車両MVが走行中に、他車両PVが対向車線を前方から走行してきた場合を示している。図11(a)に示す例では、操作確率が一様分布(つまり、運転者が何をやるかわからない場合)の動き予測モデルによって他車両PVに対して1秒後の存在範囲A1を予測している。この動き予測モデルを用いた場合、車両が物理的に1秒間で動ける範囲となるので、1秒後でも他車両PVの走行車線一杯に広がる範囲A1を予測する。図11(b)に示す例では、車線維持を想定した動き予測モデルによって他車両PVに対して1秒後の存在範囲A2を予測している。この動き予測モデルを用いた場合、車両が車線逸脱しないので、他車両PVの走行車線内に限定される範囲A2を予測する。図11(c)に示す例では、操作確率が一様分布の動き予測モデルによって他車両PVに対して5秒後の存在範囲A3を予測している。この動き予測モデルを用いた場合、車両が物理的に5秒間で動ける範囲となるので、他車両PVの対向車線(自車両MVの走行車線)まで広がる範囲A3を予測する。図11(d)に示す例では、車線維持を想定した動き予測モデルによって他車両PVに対しての5秒後の存在範囲A4を予測している。この動き予測モデルを用いた場合、車両が車線逸脱しないので、5秒後でも他車両PVの走行車線内に限定される範囲A4を予測する。この例の場合、安全と走行の効率を両立するためには、操作確率が一様分布な動き予測モデルによる1秒間の予測結果(図11(a))と車線維持を想定した動き予測モデルによる5秒間の予測結果(図11(d))を利用する。
特に、予測時間が短い予測結果ほど、その予測結果の信頼性が高い。また、予測時間の短い予測結果ほど(つまり、近い未来の他車両の動きほど)、その動きとの安全性を確実に確保しなければならない。したがって、予測時間がそれぞれ異なる複数の予測結果を評価する場合、予測時間の短い予測結果から順に評価するとよい。
図10を参照して、動き予測装置3の動作を図12のフローチャートに沿って説明する。図12は、図10の動き予測装置での動作の流れを示すフローチャートである。
動き予測装置3では、第1の実施の形態に係る動き予測装置1と同様の動作により、自車両の走行状態を検出するとともに周辺対象をセンシングする(S30,S31)。そして、動き予測装置3では、そのセンシング情報に基づいて、周辺対象毎に、第1〜第nの動き予測モデルにそれぞれ対応した情報を検出する(S32〜S32)。
周辺対象毎に、動き予測装置3では、予測時間の異なる第1〜第nの動き予測モデルをそれぞれ利用し、周辺対象の動きをそれぞれ予測する(S33〜S33)。
そして、動き予測装置3では、周辺対象毎の複数の動きの予測結果を各種運転支援装置あるいは自動運転装置に出力する。この複数の動き予測結果を入力する装置側では、所定周期毎に、周辺対象毎に予測時間の異なる複数の予測結果が入力される。そして、装置側では、予測時間の短い予測結果から順次評価し、自車両の目標軌跡生成などを行う。
この動き予測装置3によれば、予測時間の異なる複数の動き予測モデルで並行して予測することにより、様々な移動体の移動状況に対応して適切な予測時間での予測が可能であり、正常な移動体と異常な移動体が混在するような環境においても移動体毎に適切な移動領域を予測できる。
図13を参照して、第2の実施の形態における優先順位付けされた交通ルールの遵守判定結果に応じた動き予測モデルの切り替え(シーケンシャル処理)と第3の実施の形態における予測時間の異なる動き予測モデルによる並行予測を組み合わせた動き予測について説明する。図13は、シーケンシャル処理と並行予測を組み合わせた場合の動き予測モデルの選択方法の一例を示す表である。
この例では、予測時間は、1秒、5秒、10秒である。この各予測時間に対して複数の動き予測モデルがそれぞれ用意される。なお、この例では、複数の交通ルールを第2の実施の形態で例示した6つの交通ルールとする。
予測時間が1秒の動き予測モデルとしては、この例では2つ用意されている。この2つの動き予測モデルは、摩擦円に収まらない場合に応じた動き予測モデルと摩擦円に収まる場合に応じた動き予測モデルである。この2つの動き予測モデルは、例えば、操作確率を一様分布にすることによって構成される。
予測時間が5秒の動き予測モデルとしては、この例では第2の実施の形態で説明した6つが用意される。路外逸脱しないまでの交通ルールを違反する場合に応じた動き予測モデルは、例えば、操作確率を一様分布にすることによって構成される。それ以外の5つの動き予測モデルは、操作確率を任意の分布にすることによって構成される。任意の分布としては、一様分布、正規分布、混合正規分布、ノンパラメトリック分布などがある。
予測時間が10秒の動き予測モデルとしては、この例では3つ用意される。この3つの動き予測モデルは、後突しないまでの交通ルールを違反する場合に応じた動き予測モデル、優先を守るまでの交通ルールを違反する場合に応じた動き予測モデル、全ての交通ルールを守る場合に応じた動き予測モデルが用意される。この3つの動き予測モデルは、例えば、車両の行動要素である直進、右左折、車線変更などの組み合わせによって構成される。
周辺対象毎に、各予測時間について複数の動き予測モデルの中から交通ルールの遵守判定結果に応じて1つの動き予測モデルがそれぞれ選択され、各予測時間の動き予測モデルで並行してそれぞれ予測を行う。このように、各予測時間についての優先順位付けした複数の交通ルールに対する遵守判定結果に応じた最適な動き予測モデルで並行して予測を行うことにより、上記した第2の実施の形態における効果と第3の実施の形態における効果を得ることができる。
以上、本発明に係る実施の形態について説明したが、本発明は上記実施の形態に限定されることなく様々な形態で実施される。
例えば、本実施の形態では動き予測装置に適用したが、移動体の動きの予測結果を必要とする各種運転支援装置(衝突防止装置など)あるいは自動運転装置などの他の装置に適用してもよい。
また、本実施の形態では自車両に搭載したセンサで周辺対象をセンシングする構成としたが、車車間通信や路車間通信などで周辺対象の情報を取得する構成としてもよい。この場合、周辺対象あるいはインフラに取り付けたセンサで周辺対象の運転者の状態を検出し、その検出した運転者の状態あるいはその運転者の状態から求められた運転者の正常度を車車間通信や路車間通信で自車両に配信する構成としてもよい。正常度として、他車両の運転者の状態(覚醒状態、飲酒状態、精神状態など)を取得してもよい。
また、第1の実施の形態では正常度毎に用意した複数の動き予測モデルを切り替える構成としたが、正常度をパラメータとして持つ一つの動き予測モデルが用意され、推定された正常度をパラメータ値とする動き予測モデルを設定する構成としてもよい。例えば、走行上許容される加減速度をパラメータとして持つ動き予測モデルの場合、周辺の移動体の加減速度を推定し、その加減速度の推定値をパラメータ値とする動き予測モデルを設定する。また、予測パラメータを持つ一つの動き予測モデルが用意され、推定された正常度に基づいてその予測パラメータのパラメータ値を決定し、そのパラメータ値の動き予測モデルを設定する構成としてもよい。例えば、走行上許容される加減速度を予測パラメータとして持つ動き予測モデルの場合、周辺の移動体の正常度に基づいてその移動体の加減速度の値を決定し、その結滞した加減速度をパラメータ値とする動き予測モデルを設定する。
また、第2の実施の形態では交通ルールの遵守状況として優先順位付けした複数の交通ルールの遵守判定結果をシーケンシャル的に評価する構成としたが、交通ルールの遵守状況については他のものでよく、例えば、複数の交通ルールの遵守/違反の結果に基づいて遵守度を複数の段階で設定する。また、重要度が高い順に交通ルールの遵守度を判定し、遵守度が低い交通ルールを判別できた時点でその交通ルールに応じて動き予測モデルを選択してもよい。
また、第3の実施の形態では複数の動き予測モデルでそれぞれ予測した複数の予測結果を下段側の装置に出力する構成としたが、複数の予測結果を時間のパラメータを加味した1つの結果に統合したものとしてもよい。
また、第3の実施の形態では予測時間の異なる複数の動き予測モデルで並行して予測し、その予測結果を評価する構成としたが、予測時間に可変に設定できる動き予測モデルを用いて、その動き予測モデルでの予測時間を変えて予測し、その予測結果を評価してもよい。この場合、正常度に基づいて予測時間を決定し、その動き予測モデルでの予測時間を決定した予測時間に変えて予測を行ってもよい。
また、交通ルールによらない正常度の推定方法として、ふらつき度の他に、線形予測の残差を利用して推定してもよい。残差は、例えば、式(1)のように求められる。式(1)におけるkは、予測のために予め定められた次数である。
Figure 2010182236
また、残差の大きさによる方法もある。この場合、残差が大きい場合、すなわち予測誤差が大きい場合には、正常度が低いとすればよい。また、この残差自体を予測モデルの広がり方のパラメータとして用いることも可能である。なお、正常度の推定方法は、予測の困難さを評価できるものであればよく、上記の方法に限定されるものではない。
1,2,3…動き予測装置、10,20,30…走行情報取得手段、11,21…対象検出手段、12…正常度推定手段、13,23…動き予測モデル選択手段、14,24…動き予測手段,22…交通ルール判定手段、31〜31…第1対象検出手段〜第n対象検出手段、34〜34…第1動き予測手段〜第n動き予測手段

Claims (13)

  1. 自車両周辺の移動体を検知する移動体検知手段と、
    前記移動体検知手段で検知した移動体の移動領域を予測する予測手段と、
    前記移動体検知手段で検知した移動体の移動状況の正常度を取得する正常度取得手段と
    を備え、
    前記予測手段は、移動体の移動領域を予測するための複数の移動予測モデルを備え、前記正常度取得手段で取得した正常度に基づいて前記複数の移動予測モデルの中から移動予測モデルを選択し、当該選択した移動予測モデルを用いて移動体の移動領域を予測することを特徴とする移動領域予測装置。
  2. 自車両周辺の移動体を検知する移動体検知手段と、
    前記移動体検知手段で検知した移動体の移動領域を予測する予測手段と、
    前記移動体検知手段で検知した移動体の移動状況の正常度を取得する正常度取得手段と
    を備え、
    前記予測手段は、移動体の移動領域を予測するための予測パラメータを有する移動予測モデルを備え、前記正常度取得手段で取得した正常度に基づいて予測パラメータ値を決定し、当該決定した予測パラメータ値の移動予測モデルを用いて移動体の移動領域を予測することを特徴とする移動領域予測装置。
  3. 前記正常度取得手段は、移動体の移動の履歴に基づいて正常度を取得することを特徴とする請求項1又は請求項2に記載する移動領域予測装置。
  4. 前記正常度取得手段は、移動体の位置に基づいて正常度を取得することを特徴とする請求項1又は請求項2に記載する移動領域予測装置。
  5. 前記正常度取得手段は、移動体の位置及び速度に基づいて正常度を取得することを特徴とする請求項4に記載する移動領域予測装置。
  6. 前記正常度取得手段は、移動体の運転者の状態に基づいて正常度を取得することを特徴とする請求項1又は請求項2に記載する移動領域予測装置。
  7. 前記正常度取得手段は、移動体の交通ルールの遵守状況に基づいて正常度を取得することを特徴とする請求項1又は請求項2に記載する移動領域予測装置。
  8. 交通ルールの遵守状況は、優先順位付けされた複数の交通ルールに対する遵守度の組み合わせであることを特徴とする請求項7に記載する移動領域予測装置。
  9. 自車両周辺の移動体を検知する移動体検知手段と、
    前記移動体検知手段で検知した移動体の移動領域を予測する予測手段と
    を備え、
    前記予測手段は、移動体の移動領域を予測するための予測時間の異なる複数の移動予測モデルを備え、前記複数の移動予測モデルで予測を行い、移動体の移動領域を予測することを特徴とする移動領域予測装置。
  10. 前記移動体検知手段で検知した移動体の移動状況の正常度を取得する正常度取得手段を備え、
    前記予測手段は、前記正常度取得手段で取得した正常度に基づいて前記複数の移動予測モデルの中から移動予測モデルを選択し、当該選択した移動予測モデルを用いて移動体の移動領域を予測することを特徴とする請求項9に記載の移動領域予測装置。
  11. 自車両周辺の移動体を検知する移動体検知手段と、
    前記移動体検知手段で検知した移動体の移動領域を予測する予測手段と
    を備え、
    前記予測手段は、移動体の移動領域を予測するための予測時間が可変である移動予測モデルを備え、前記予測時間が可変の移動予測モデルで予測を行い、移動体の移動領域を予測することを特徴とする移動領域予測装置。
  12. 前記移動体検知手段で検知した移動体の移動状況の正常度を取得する正常度取得手段を備え、
    前記予測手段は、前記正常度取得手段で取得した正常度に基づいて前記予測時間を決定し、当該決定した予測時間とした移動予測モデルを用いて移動体の移動領域を予測することを特徴とする請求項11に記載の移動領域予測装置。
  13. 前記複数の移動予測モデルで並行して予測した複数の予測結果において予測時間の短い予測結果から順に評価することを特徴とする請求項9〜請求項12のいずれか1項に記載する移動領域予測装置。
JP2009027262A 2009-02-09 2009-02-09 移動領域予測装置 Active JP4853525B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009027262A JP4853525B2 (ja) 2009-02-09 2009-02-09 移動領域予測装置
DE112010000802.7T DE112010000802B4 (de) 2009-02-09 2010-02-05 Vorrichtung zum vorhersagen der bewegung eines mobilen körpers
PCT/IB2010/000230 WO2010089661A2 (en) 2009-02-09 2010-02-05 Movement region prediction apparatus
US13/148,507 US8676487B2 (en) 2009-02-09 2010-02-05 Apparatus for predicting the movement of a mobile body
CN201080007066.3A CN102307769B (zh) 2009-02-09 2010-02-05 用于预测移动体的移动的设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009027262A JP4853525B2 (ja) 2009-02-09 2009-02-09 移動領域予測装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011024414A Division JP5252001B2 (ja) 2011-02-07 2011-02-07 移動領域予測装置

Publications (2)

Publication Number Publication Date
JP2010182236A true JP2010182236A (ja) 2010-08-19
JP4853525B2 JP4853525B2 (ja) 2012-01-11

Family

ID=42211923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009027262A Active JP4853525B2 (ja) 2009-02-09 2009-02-09 移動領域予測装置

Country Status (5)

Country Link
US (1) US8676487B2 (ja)
JP (1) JP4853525B2 (ja)
CN (1) CN102307769B (ja)
DE (1) DE112010000802B4 (ja)
WO (1) WO2010089661A2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079215A (ja) * 2010-10-05 2012-04-19 Toyota Motor Corp 進路評価装置
JP2013506931A (ja) * 2009-10-05 2013-02-28 ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー 道路車両用の衝突回避システムおよび方法ならびに各コンピュータプログラム製品
JP2015051761A (ja) * 2013-09-09 2015-03-19 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH アクティブ車両制御のための運転支援技術
KR101512428B1 (ko) 2010-11-30 2015-04-16 도요타 지도샤(주) 가동물의 목표 상태 결정 장치 및 방법
JP2016045636A (ja) * 2014-08-21 2016-04-04 日産自動車株式会社 移動物体進路予測装置
WO2016084487A1 (ja) * 2014-11-27 2016-06-02 日立オートモティブシステムズ株式会社 車両走行制御装置
KR20170050433A (ko) * 2015-10-30 2017-05-11 주식회사 만도 차량 제어 시스템 및 방법
JP2018055141A (ja) * 2016-09-26 2018-04-05 日立オートモティブシステムズ株式会社 移動体軌道予測システム
JP2019075055A (ja) * 2017-10-19 2019-05-16 株式会社東芝 情報処理装置、情報処理方法、およびプログラム
JP2019175130A (ja) * 2018-03-28 2019-10-10 トヨタ自動車株式会社 自動運転進路決定装置
JP2019182093A (ja) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 挙動予測装置
JP2020030806A (ja) * 2018-06-26 2020-02-27 トヨタ自動車株式会社 車両対モノ通信に基づく眠気を催している運転者の検出
US10754347B2 (en) 2017-09-08 2020-08-25 Toyota Jidosha Kabushiki Kaisha Vehicle control device
JP2021508902A (ja) * 2018-04-28 2021-03-11 深▲セン▼市商▲湯▼科技有限公司 衝突制御方法及び装置、電子機器並びに記憶媒体
JP2022506404A (ja) * 2019-07-17 2022-01-17 華為技術有限公司 車両速度を決定する方法及び装置
WO2022185870A1 (ja) * 2021-03-05 2022-09-09 株式会社デンソー 処理方法、処理システム、処理プログラム

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254844B2 (ja) * 2006-11-01 2009-04-15 トヨタ自動車株式会社 走行制御計画評価装置
JP4525670B2 (ja) 2006-11-20 2010-08-18 トヨタ自動車株式会社 走行制御計画生成システム
US20090005984A1 (en) * 2007-05-31 2009-01-01 James Roy Bradley Apparatus and method for transit prediction
WO2010140215A1 (ja) 2009-06-02 2010-12-09 トヨタ自動車株式会社 車両用周辺監視装置
US9182761B2 (en) * 2011-08-25 2015-11-10 Nissan Motor Co., Ltd. Autonomous driving control system for vehicle
CN104054119B (zh) * 2012-01-20 2016-08-24 丰田自动车株式会社 车辆行为预测装置及车辆行为预测方法、以及驾驶支援装置
US20130238181A1 (en) * 2012-03-12 2013-09-12 Toyota Motor Eng. & Man. North America (Tema) On-board vehicle path prediction using processed sensor information
US9495874B1 (en) 2012-04-13 2016-11-15 Google Inc. Automated system and method for modeling the behavior of vehicles and other agents
US8700251B1 (en) 2012-04-13 2014-04-15 Google Inc. System and method for automatically detecting key behaviors by vehicles
EP2654028B1 (en) * 2012-04-20 2018-09-26 Honda Research Institute Europe GmbH Orientation sensitive traffic collision warning system
US9421979B2 (en) * 2013-10-17 2016-08-23 Ford Global Technologies, Llc Road characteristic prediction
DE102013222586A1 (de) * 2013-11-07 2015-05-07 Robert Bosch Gmbh Verfahren zur Vermeidung einer Kollision eines Kraftfahrzeugs mit einem falschfahrenden Fahrzeug und Steuer- und Erfassungseinrichtung für ein Kraftfahrzeug zur Vermeidung einer Kollision des Kraftfahrzeugs mit einem falschfahrenden Fahrzeug
SE539157C2 (sv) 2014-02-19 2017-04-18 Scania Cv Ab Identifikation av säkerhetsrisker i ett fordon för att meddela medtrafikanter
WO2016035214A1 (ja) * 2014-09-05 2016-03-10 横浜ゴム株式会社 衝突回避システム及び衝突回避方法
US9786177B2 (en) 2015-04-10 2017-10-10 Honda Motor Co., Ltd. Pedestrian path predictions
KR101714250B1 (ko) 2015-10-28 2017-03-08 현대자동차주식회사 주변 차량의 이동 경로의 예측 방법
US10029682B2 (en) 2016-01-22 2018-07-24 Toyota Motor Engineering & Manufacturing North America, Inc. Surrounding vehicle classification and path prediction
CN106097734B (zh) * 2016-08-22 2019-03-12 安徽科力信息产业有限责任公司 一种用于路口交通信号控制的平面感知检测方法及系统
EP3533040A1 (en) * 2016-10-31 2019-09-04 Toyota Motor Europe Driving assistance method and system
WO2018092265A1 (ja) * 2016-11-18 2018-05-24 三菱電機株式会社 運転支援装置および運転支援方法
KR102343329B1 (ko) * 2017-02-07 2021-12-24 삼성전자주식회사 차량의 운전을 보조하는 전자 장치 및 방법
US20180374341A1 (en) * 2017-06-27 2018-12-27 GM Global Technology Operations LLC Systems and methods for predicting traffic patterns in an autonomous vehicle
JP6651486B2 (ja) * 2017-09-01 2020-02-19 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US10497264B2 (en) 2017-09-26 2019-12-03 Toyota Research Institute, Inc. Methods and systems for providing warnings of obstacle objects
US11748974B2 (en) 2017-11-28 2023-09-05 Bayerische Motoren Werke Aktiengesellschaft Method and apparatus for assisting driving
KR102463720B1 (ko) * 2017-12-18 2022-11-07 현대자동차주식회사 차량의 경로 생성 시스템 및 방법
CN108437983B (zh) * 2018-03-29 2020-08-25 吉林大学 一种基于预测安全的智能车辆避障系统
US10824155B2 (en) * 2018-08-22 2020-11-03 Ford Global Technologies, Llc Predicting movement intent of objects
US11192545B1 (en) * 2018-12-05 2021-12-07 Waymo Llc Risk mitigation in speed planning
CN109727469B (zh) * 2019-01-08 2021-04-20 南京航空航天大学 一种多车道下自动驾驶车辆综合危险度评估方法
CN109941275B (zh) * 2019-03-12 2020-09-15 杭州飞步科技有限公司 车道变换方法、装置、电子设备及存储介质
US10776243B1 (en) 2019-03-19 2020-09-15 Bank Of America Corporation Prediction tool
CN110362074B (zh) * 2019-06-18 2021-11-23 华南理工大学 一种基于航迹重规划的水面无人艇动态避碰方法
JP7260416B2 (ja) * 2019-06-25 2023-04-18 株式会社Soken 追跡装置
CN110341722A (zh) * 2019-07-25 2019-10-18 百度在线网络技术(北京)有限公司 自动驾驶车辆的行驶方法和装置、电子设备、可读介质
US11868136B2 (en) 2019-12-19 2024-01-09 Woven By Toyota, U.S., Inc. Geolocalized models for perception, prediction, or planning
CN112255628B (zh) * 2020-10-09 2024-11-08 新石器慧通(北京)科技有限公司 障碍物轨迹预测方法、装置、设备和介质
DE102020214032A1 (de) * 2020-11-09 2022-05-12 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Steuern einer Sicherheitseinrichtung eines Fahrzeugs und Sicherheitssystem für ein Fahrzeug
US11554794B2 (en) * 2020-11-25 2023-01-17 Argo AI, LLC Method and system for determining a mover model for motion forecasting in autonomous vehicle control
CN112486318B (zh) * 2020-11-26 2024-07-26 北京字跳网络技术有限公司 图像显示方法、装置、可读介质及电子设备
JP7409329B2 (ja) * 2021-01-13 2024-01-09 トヨタ自動車株式会社 信号機管理システム
US20220315047A1 (en) * 2021-03-30 2022-10-06 Honda Research Institute Europe Gmbh Method, system and vehicle with an uncertainty-based lane positioning control
DE102021205444A1 (de) 2021-05-28 2022-12-01 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Analysieren einer Verkehrsszene
DE102021206628A1 (de) 2021-06-25 2022-12-29 Continental Autonomous Mobility Germany GmbH Verfahren sowie Assistenzsystem zur automatisierten Führung eines Ego-Fahrzeugs
US20230192144A1 (en) * 2021-12-16 2023-06-22 Gm Cruise Holdings Llc Uncertainty prediction for a predicted path of an object that avoids infeasible paths

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223488A (ja) * 1994-02-14 1995-08-22 Mitsubishi Motors Corp 車両用周囲情報表示装置
JP2002046506A (ja) * 2000-04-24 2002-02-12 Matsushita Electric Ind Co Ltd ナビゲーション装置
JP2004203384A (ja) * 2004-01-16 2004-07-22 Nissan Motor Co Ltd 車両用運転操作補助装置
JP2004220348A (ja) * 2003-01-15 2004-08-05 Nissan Motor Co Ltd 車両走行状態検出装置及び車両走行制御装置
JP2005339432A (ja) * 2004-05-31 2005-12-08 Mitsubishi Electric Corp 衝突防止システム及び車載装置、中継装置、及び歩行者用位置送信装置。
JP2006085285A (ja) * 2004-09-14 2006-03-30 Matsushita Electric Ind Co Ltd 危険車両予測装置
JP2006131055A (ja) * 2004-11-04 2006-05-25 Denso Corp 車両走行制御装置
JP2008059171A (ja) * 2006-08-30 2008-03-13 Toyota Motor Corp 車両用運転支援装置、及び、運転支援システム
JP2008070998A (ja) * 2006-09-13 2008-03-27 Hitachi Ltd 車両周囲情報表示装置
JP2008117082A (ja) * 2006-11-01 2008-05-22 Toyota Motor Corp 走行制御計画評価装置
JP2008191781A (ja) * 2007-02-01 2008-08-21 Hitachi Ltd 衝突回避システム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799375B2 (ja) 1993-09-30 1998-09-17 本田技研工業株式会社 衝突防止装置
US7209221B2 (en) * 1994-05-23 2007-04-24 Automotive Technologies International, Inc. Method for obtaining and displaying information about objects in a vehicular blind spot
US6085151A (en) * 1998-01-20 2000-07-04 Automotive Systems Laboratory, Inc. Predictive collision sensing system
JP3659017B2 (ja) * 1998-09-18 2005-06-15 株式会社デンソー 自己診断装置を備えた車両用制御装置
US6445308B1 (en) 1999-01-12 2002-09-03 Toyota Jidosha Kabushiki Kaisha Positional data utilizing inter-vehicle communication method and traveling control apparatus
JP2003058994A (ja) 2001-08-14 2003-02-28 Nissan Motor Co Ltd 運転者将来状況予測装置及び方法
US6944543B2 (en) * 2001-09-21 2005-09-13 Ford Global Technologies Llc Integrated collision prediction and safety systems control for improved vehicle safety
JP2003216981A (ja) 2002-01-25 2003-07-31 Iwane Kenkyusho:Kk 自動作業システム
US20050114000A1 (en) 2003-11-25 2005-05-26 Cashler Robert J. Method and apparatus for deploying countermeasures in response to sensing an imminent vehicular collision
WO2006070865A1 (ja) * 2004-12-28 2006-07-06 Kabushiki Kaisha Toyota Chuo Kenkyusho 車両運動制御装置
US20060162985A1 (en) * 2005-01-26 2006-07-27 Takata Corporation System for crash prediction and avoidance
DE102005023832A1 (de) * 2005-05-24 2006-11-30 Daimlerchrysler Ag Verfahren und System zur Vermeidung einer Kollision eines Kraftfahrzeugs mit einem Objekt
JP4517972B2 (ja) * 2005-08-02 2010-08-04 日産自動車株式会社 障害物判断装置及び方法
JP4396653B2 (ja) 2006-02-28 2010-01-13 トヨタ自動車株式会社 物体進路予測方法、装置、およびプログラム
EP1990786B1 (en) * 2006-02-28 2021-05-19 Toyota Jidosha Kabushiki Kaisha Object path prediction method and apparatus
JP4400584B2 (ja) * 2006-03-01 2010-01-20 トヨタ自動車株式会社 障害物検出方法及び障害物検出装置
US7671725B2 (en) * 2006-03-24 2010-03-02 Honda Motor Co., Ltd. Vehicle surroundings monitoring apparatus, vehicle surroundings monitoring method, and vehicle surroundings monitoring program
JP2007276508A (ja) * 2006-04-03 2007-10-25 Fujitsu Ten Ltd 車両の衝突回避制御装置
JP2008003707A (ja) 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd 危険予測装置
US7579942B2 (en) * 2006-10-09 2009-08-25 Toyota Motor Engineering & Manufacturing North America, Inc. Extra-vehicular threat predictor
US8311730B2 (en) 2006-11-29 2012-11-13 Neff Ryan A Vehicle position determination system
US8447472B2 (en) * 2007-01-16 2013-05-21 Ford Global Technologies, Llc Method and system for impact time and velocity prediction
US20080306666A1 (en) * 2007-06-05 2008-12-11 Gm Global Technology Operations, Inc. Method and apparatus for rear cross traffic collision avoidance
JP4623057B2 (ja) 2007-06-05 2011-02-02 トヨタ自動車株式会社 自車両の移動領域取得装置
JP4207088B2 (ja) * 2007-06-20 2009-01-14 トヨタ自動車株式会社 車両走行推定装置
JP4416020B2 (ja) 2007-08-03 2010-02-17 トヨタ自動車株式会社 走行計画生成装置
DE102007052763A1 (de) * 2007-11-06 2008-06-12 Daimler Ag Verfahren zur Vorhersage einer Aktion eines bewegten Objekts

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223488A (ja) * 1994-02-14 1995-08-22 Mitsubishi Motors Corp 車両用周囲情報表示装置
JP2002046506A (ja) * 2000-04-24 2002-02-12 Matsushita Electric Ind Co Ltd ナビゲーション装置
JP2004220348A (ja) * 2003-01-15 2004-08-05 Nissan Motor Co Ltd 車両走行状態検出装置及び車両走行制御装置
JP2004203384A (ja) * 2004-01-16 2004-07-22 Nissan Motor Co Ltd 車両用運転操作補助装置
JP2005339432A (ja) * 2004-05-31 2005-12-08 Mitsubishi Electric Corp 衝突防止システム及び車載装置、中継装置、及び歩行者用位置送信装置。
JP2006085285A (ja) * 2004-09-14 2006-03-30 Matsushita Electric Ind Co Ltd 危険車両予測装置
JP2006131055A (ja) * 2004-11-04 2006-05-25 Denso Corp 車両走行制御装置
JP2008059171A (ja) * 2006-08-30 2008-03-13 Toyota Motor Corp 車両用運転支援装置、及び、運転支援システム
JP2008070998A (ja) * 2006-09-13 2008-03-27 Hitachi Ltd 車両周囲情報表示装置
JP2008117082A (ja) * 2006-11-01 2008-05-22 Toyota Motor Corp 走行制御計画評価装置
JP2008191781A (ja) * 2007-02-01 2008-08-21 Hitachi Ltd 衝突回避システム

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506931A (ja) * 2009-10-05 2013-02-28 ネーデルランドセ・オルガニサティ・フォール・トゥーヘパスト−ナトゥールウェテンスハッペライク・オンデルズーク・テーエヌオー 道路車両用の衝突回避システムおよび方法ならびに各コンピュータプログラム製品
JP2012079215A (ja) * 2010-10-05 2012-04-19 Toyota Motor Corp 進路評価装置
KR101512428B1 (ko) 2010-11-30 2015-04-16 도요타 지도샤(주) 가동물의 목표 상태 결정 장치 및 방법
JP2015051761A (ja) * 2013-09-09 2015-03-19 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH アクティブ車両制御のための運転支援技術
JP2016045636A (ja) * 2014-08-21 2016-04-04 日産自動車株式会社 移動物体進路予測装置
US10414398B2 (en) 2014-11-27 2019-09-17 Hitachi Automotive Systems, Ltd. Vehicle travel control device that controls following of a vehicle
WO2016084487A1 (ja) * 2014-11-27 2016-06-02 日立オートモティブシステムズ株式会社 車両走行制御装置
KR102374921B1 (ko) 2015-10-30 2022-03-16 주식회사 만도모빌리티솔루션즈 차량 제어 시스템 및 방법
KR20170050433A (ko) * 2015-10-30 2017-05-11 주식회사 만도 차량 제어 시스템 및 방법
JP2018055141A (ja) * 2016-09-26 2018-04-05 日立オートモティブシステムズ株式会社 移動体軌道予測システム
US11467596B2 (en) 2017-09-08 2022-10-11 Toyota Jidosha Kabushiki Kaisha Target abnormality determination device
US10754347B2 (en) 2017-09-08 2020-08-25 Toyota Jidosha Kabushiki Kaisha Vehicle control device
US11809194B2 (en) 2017-09-08 2023-11-07 Toyota Jidosha Kabushiki Kaisha Target abnormality determination device
JP2019075055A (ja) * 2017-10-19 2019-05-16 株式会社東芝 情報処理装置、情報処理方法、およびプログラム
JP2021184258A (ja) * 2017-10-19 2021-12-02 株式会社東芝 情報処理装置、情報処理方法、およびプログラム
JP7346499B2 (ja) 2017-10-19 2023-09-19 株式会社東芝 情報処理装置、情報処理方法、およびプログラム
JP2019175130A (ja) * 2018-03-28 2019-10-10 トヨタ自動車株式会社 自動運転進路決定装置
US11042160B2 (en) 2018-03-28 2021-06-22 Toyota Jidosha Kabushiki Kaisha Autonomous driving trajectory determination device
JP2019182093A (ja) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 挙動予測装置
JP2021508902A (ja) * 2018-04-28 2021-03-11 深▲セン▼市商▲湯▼科技有限公司 衝突制御方法及び装置、電子機器並びに記憶媒体
JP2020030806A (ja) * 2018-06-26 2020-02-27 トヨタ自動車株式会社 車両対モノ通信に基づく眠気を催している運転者の検出
JP7318360B2 (ja) 2018-06-26 2023-08-01 トヨタ自動車株式会社 車両対モノ通信に基づく眠気を催している運転者の検出
JP7200371B2 (ja) 2019-07-17 2023-01-06 華為技術有限公司 車両速度を決定する方法及び装置
JP2022506404A (ja) * 2019-07-17 2022-01-17 華為技術有限公司 車両速度を決定する方法及び装置
JPWO2022185870A1 (ja) * 2021-03-05 2022-09-09
WO2022185870A1 (ja) * 2021-03-05 2022-09-09 株式会社デンソー 処理方法、処理システム、処理プログラム
JP7533762B2 (ja) 2021-03-05 2024-08-14 株式会社デンソー 処理方法、処理システム、処理プログラム

Also Published As

Publication number Publication date
DE112010000802T5 (de) 2012-08-09
WO2010089661A3 (en) 2010-10-14
JP4853525B2 (ja) 2012-01-11
WO2010089661A2 (en) 2010-08-12
US8676487B2 (en) 2014-03-18
DE112010000802B4 (de) 2014-12-11
CN102307769B (zh) 2014-12-24
US20110313664A1 (en) 2011-12-22
CN102307769A (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
JP4853525B2 (ja) 移動領域予測装置
JP5252001B2 (ja) 移動領域予測装置
EP3361466B1 (en) Risk-based driver assistance for approaching intersections of limited visibility
JP6520862B2 (ja) 自動運転システム
JP6572847B2 (ja) 自動運転システム
JP4883248B2 (ja) 車両用周辺監視装置
JP6985203B2 (ja) 挙動予測装置
JP4905034B2 (ja) 走行制御装置及び走行制御方法
US9280899B2 (en) Dynamic safety shields for situation assessment and decision making in collision avoidance tasks
JP7347523B2 (ja) 車両制御装置及び車両制御方法
RU2760046C1 (ru) Способ помощи при вождении и устройство помощи при вождении
US10343686B2 (en) Autonomous driving system
JPWO2019171576A1 (ja) 車両制御装置、車両制御方法、およびプログラム
CN106064626A (zh) 车辆行驶控制装置
US10864912B2 (en) Vehicle state determination device and vehicle state determination method
JPWO2019220717A1 (ja) 車両制御装置
CN111731294B (zh) 行驶控制装置、行驶控制方法以及存储程序的存储介质
JP6970215B2 (ja) 車両制御装置、それを有する車両、および制御方法
JP2020157830A (ja) 走行制御装置、走行制御方法、およびプログラム
US20230174106A1 (en) Path checking device and path checking method
JP6900775B2 (ja) 車両の自動運転制御システム
US11390282B2 (en) System and method for intersection communication
JP2018090063A (ja) 車両制御システム
JP2021033536A (ja) 車両制御装置および車両制御方法
EP4372715A1 (en) Vehicle collision threat assessment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4853525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3