Nothing Special   »   [go: up one dir, main page]

JP2010160969A - Fuel cell power generation system, and inspection method thereof - Google Patents

Fuel cell power generation system, and inspection method thereof Download PDF

Info

Publication number
JP2010160969A
JP2010160969A JP2009002585A JP2009002585A JP2010160969A JP 2010160969 A JP2010160969 A JP 2010160969A JP 2009002585 A JP2009002585 A JP 2009002585A JP 2009002585 A JP2009002585 A JP 2009002585A JP 2010160969 A JP2010160969 A JP 2010160969A
Authority
JP
Japan
Prior art keywords
fuel
cutoff valve
downstream
fuel cutoff
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009002585A
Other languages
Japanese (ja)
Other versions
JP5248337B2 (en
Inventor
Noritoshi Sanagi
徳寿 佐薙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2009002585A priority Critical patent/JP5248337B2/en
Publication of JP2010160969A publication Critical patent/JP2010160969A/en
Application granted granted Critical
Publication of JP5248337B2 publication Critical patent/JP5248337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable to easily confirm double shutoff of raw fuel of a fuel cell. <P>SOLUTION: In case, with the use of a first shutoff valve 16 and a second shutoff valve 17 provided at a raw-fuel gas supply piping 19 for supplying raw fuel gas to a reformer 12, and a control unit 15 capable of switching a downstream-side shutoff valve 24 provided at an anode offgas piping 20 connected to a downstream side of a fuel flow channel of a fuel cell body 11, a detection value of a pressure sensor 18 increases with time when the first fuel shutoff valve 16 and the downstream-side shutoff valve 24 are closed while the second fuel shutoff valve 17 is opened, sheet leak is determined to occur at the first fuel shutoff valve 16, and in case a detection value of the pressure sensor 18 increases with time when the second fuel shutoff valve 17 and the downstream-side shutoff valve 24 are closed while the first shutoff valve 16 is opened, sheet leak is determined to occur at the second fuel shutoff valve 17. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池発電システムおよびその検査方法に関する。   The present invention relates to a fuel cell power generation system and an inspection method thereof.

燃料電池発電システムでは、燃料ガスと空気などの酸化剤ガスとの電気化学反応により電気エネルギを発生する。このシステムは、燃料電池本体のほかに、改質器や、制御装置などを備えている。改質器は、炭化水素を含む原燃料ガスから水素リッチな改質ガスを生成する。燃料電池本体は、この改質器が生成した改質ガスを燃料ガスとして用いて発電する。改質器に原燃料を供給する原燃料系統には、燃料遮断弁が設けられている。   In a fuel cell power generation system, electric energy is generated by an electrochemical reaction between a fuel gas and an oxidant gas such as air. This system includes a reformer and a control device in addition to the fuel cell main body. The reformer generates hydrogen-rich reformed gas from raw fuel gas containing hydrocarbons. The fuel cell body generates power using the reformed gas generated by the reformer as fuel gas. A fuel cutoff valve is provided in a raw fuel system that supplies raw fuel to the reformer.

原燃料系統での原燃料の遮断は、安全上の観点から、二重遮断をすることが求められている(非特許文献1参照)。このため、一般的に、燃料遮断弁は、原燃料系統に直列に2つ設けられる。原燃料の二重遮断を確認するため、定期点検などにおいては、燃料遮断弁の健全性確認を実施する必要がある。   In order to cut off the raw fuel in the raw fuel system, a double cut-off is required from the viewpoint of safety (see Non-Patent Document 1). For this reason, generally, two fuel cutoff valves are provided in series in the raw fuel system. In order to confirm double shutoff of raw fuel, it is necessary to check the soundness of the fuel shutoff valve during periodic inspections.

日本電機工業規格 JIS C 8822、「小形固体高分子形燃料電池システムの安全基準」、2008年Japan Electrical Industry Standards JIS C 8822, “Safety Standards for Small Solid Polymer Fuel Cell Systems”, 2008

しかし、2つの燃料遮断弁のいずれか一方のシートリークが発生した場合、シートリークの発生していないもう一方の燃料遮断弁で燃料が遮断されるため、安全上求められている原燃料の二重遮断を確認することは困難である。そこで、燃料遮断弁の健全性確認は、定期点検などで行う必要がある。このため、余分な保守費用がかかるだけでなく、高頻度での健全性確認は困難であった。   However, if a seat leak occurs in one of the two fuel shut-off valves, the fuel is shut off by the other fuel shut-off valve that does not generate the seat leak. It is difficult to confirm double blockage. Therefore, it is necessary to check the soundness of the fuel shut-off valve through periodic inspections. For this reason, not only an extra maintenance cost is required, but it is difficult to check the soundness at a high frequency.

そこで、本発明は、燃料電池発電システムの原燃料系統における原燃料の二重遮断を容易に確認できるようにすることを目的とする。   Therefore, an object of the present invention is to make it possible to easily confirm double blocking of raw fuel in a raw fuel system of a fuel cell power generation system.

上述の目的を達成するため、本発明は、燃料電池発電システムにおいて、炭化水素を含有する原燃料ガスから水素リッチな改質ガスを生成する改質器と、前記改質器に原燃料ガスを供給する原燃料ガス供給配管と、前記原燃料ガス供給配管に設けられた第1燃料遮断弁と、前記原燃料ガス供給配管の前記第1燃料遮断弁よりも下流側に設けられた第2燃料遮断弁と、前記原燃料ガス供給配管の前記第2燃料遮断弁よりも下流側に設けられた圧力センサと、燃料流路が形成されたアノードおよび酸化剤流路が形成されたカソードを備えた燃料電池本体と、前記改質器と前記燃料流路とを接続する改質ガス供給配管と、前記燃料流路の下流側の端部に接続されたアノード排ガス配管と、前記アノード排ガス配管に設けられた下流側遮断弁と、前記圧力センサの検出値を受信し、前記第1燃料遮断弁と前記第2燃料遮断弁と前記下流側遮断弁とを開閉可能に設けられ、前記第1燃料遮断弁および前記下流側遮断弁を閉じかつ前記第2燃料遮断弁を開いて前記圧力センサの検出値が時間とともに増加する場合に前記第1燃料遮断弁にシートリークが発生していると判定し、前記第2燃料遮断弁および前記下流側遮断弁を閉じかつ前記第1燃料遮断弁を開いて前記圧力センサの検出値が時間とともに増加する場合に前記第2燃料遮断弁にシートリークが発生していると判定する、制御器と、を有することを特徴とする。   In order to achieve the above-described object, the present invention provides a fuel cell power generation system that includes a reformer that generates a hydrogen-rich reformed gas from a raw fuel gas containing hydrocarbons, and a raw fuel gas that is supplied to the reformer. A raw fuel gas supply pipe to be supplied, a first fuel cutoff valve provided in the raw fuel gas supply pipe, and a second fuel provided downstream of the first fuel cutoff valve in the raw fuel gas supply pipe A shut-off valve, a pressure sensor provided on the downstream side of the second fuel shut-off valve of the raw fuel gas supply pipe, an anode formed with a fuel flow path, and a cathode formed with an oxidant flow path Provided in the fuel cell main body, a reformed gas supply pipe connecting the reformer and the fuel flow path, an anode exhaust gas pipe connected to the downstream end of the fuel flow path, and the anode exhaust gas pipe A downstream shut-off valve, and The detection value of the force sensor is received, the first fuel cutoff valve, the second fuel cutoff valve, and the downstream side cutoff valve are provided to be openable and closable, and the first fuel cutoff valve and the downstream side cutoff valve are closed. In addition, when the second fuel cutoff valve is opened and the detected value of the pressure sensor increases with time, it is determined that a seat leak has occurred in the first fuel cutoff valve, and the second fuel cutoff valve and the downstream side A controller for closing the side shut-off valve and opening the first fuel shut-off valve to determine that a seat leak has occurred in the second fuel shut-off valve when the detected value of the pressure sensor increases with time; It is characterized by having.

また、本発明は、炭化水素を含有する原燃料ガスから水素リッチな改質ガスを生成する改質器と、前記改質器に原燃料ガスを供給する原燃料ガス供給配管と、前記原燃料ガス供給配管に設けられた第1燃料遮断弁と、前記原燃料ガス供給配管の前記第1燃料遮断弁よりも下流側に設けられた第2燃料遮断弁と、燃料流路が形成されたアノードおよび酸化剤流路が形成されたカソードを備えた燃料電池本体と、前記改質器と前記燃料流路とを接続する改質ガス供給配管と、前記燃料流路の下流側の端部に接続されたアノード排ガス配管と、前記アノード排ガス配管に設けられた下流側遮断弁と、を備えた燃料電池発電システムの発電停止中の検査方法において、前記第1燃料遮断弁および前記下流側遮断弁を閉じかつ前記第2燃料遮断弁を開いて前記第2燃料遮断弁の下流で前記原燃料ガス供給配管の内部の圧力を測定する第1測定工程と、前記第1測定工程で測定した圧力が時間とともに増加する場合に前記第1燃料遮断弁にシートリークが発生していると判定する工程と、前記第2燃料遮断弁および前記下流側遮断弁を閉じかつ前記第1燃料遮断弁を開いて前記第2燃料遮断弁の下流で前記原燃料ガス供給配管の内部の圧力を測定する第2測定工程と、前記第2測定工程で測定した圧力が時間とともに増加する場合に前記第2燃料遮断弁にシートリークが発生していると判定する工程と、を有することを特徴とする。   The present invention also provides a reformer that generates a hydrogen-rich reformed gas from a raw fuel gas containing hydrocarbons, a raw fuel gas supply pipe that supplies the raw fuel gas to the reformer, and the raw fuel A first fuel cutoff valve provided in a gas supply pipe; a second fuel cutoff valve provided downstream of the first fuel cutoff valve in the raw fuel gas supply pipe; and an anode formed with a fuel flow path And a fuel cell body having a cathode in which an oxidant channel is formed, a reformed gas supply pipe connecting the reformer and the fuel channel, and a downstream end of the fuel channel In the inspection method during the stoppage of power generation in the fuel cell power generation system, comprising: the anode exhaust gas pipe formed; and the downstream cutoff valve provided in the anode exhaust pipe. The first fuel cutoff valve and the downstream cutoff valve include Close and open the second fuel shut-off valve A first measurement step of measuring the pressure inside the raw fuel gas supply pipe downstream of the second fuel cutoff valve, and the first fuel cutoff valve when the pressure measured in the first measurement step increases with time Determining that a seat leak has occurred, closing the second fuel shut-off valve and the downstream shut-off valve and opening the first fuel shut-off valve, and downstream of the second fuel shut-off valve, the raw fuel A second measurement step of measuring the pressure inside the gas supply pipe, and a step of determining that a seat leak has occurred in the second fuel cutoff valve when the pressure measured in the second measurement step increases with time It is characterized by having.

本発明によれば、燃料電池発電システムの原燃料系統における原燃料の二重遮断を容易に確認できるようになる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to confirm easily the double interruption | blocking of the raw fuel in the raw fuel system | strain of a fuel cell power generation system.

本発明に係る燃料電池発電システムの一実施の形態におけるブロック図である。It is a block diagram in one embodiment of a fuel cell power generation system according to the present invention. 本発明に係る燃料電池発電システムの一実施の形態における検査方法のフローチャートである。It is a flowchart of the inspection method in one embodiment of the fuel cell power generation system according to the present invention.

本発明に係る燃料電池発電システムの一実施の形態を、図面を参照して説明する。なお、この実施の形態は単なる例示であり、本発明はこれらに限定されない。   An embodiment of a fuel cell power generation system according to the present invention will be described with reference to the drawings. Note that this embodiment is merely an example, and the present invention is not limited thereto.

図1は、本発明に係る燃料電池発電システムの一実施の形態におけるブロック図である。   FIG. 1 is a block diagram of an embodiment of a fuel cell power generation system according to the present invention.

本実施の形態の燃料電池発電システムは、原燃料ガス供給配管19と、改質器12と、一酸化炭素変成器13と、一酸化炭素除去器14と、燃料電池本体11と、制御器15を備えている。燃料電池本体11は、燃料流路が形成されたアノードおよび酸化剤流路が形成されたカソードを備えている。   The fuel cell power generation system of the present embodiment includes a raw fuel gas supply pipe 19, a reformer 12, a carbon monoxide converter 13, a carbon monoxide remover 14, a fuel cell main body 11, and a controller 15. It has. The fuel cell main body 11 includes an anode in which a fuel channel is formed and a cathode in which an oxidant channel is formed.

原燃料ガス供給配管19は、炭化水素を含有する都市ガスなどの原燃料を供給する供給源と改質器12とを接続していて、改質器12に原燃料ガスを供給する。原燃料ガス供給配管19の途中には、第1燃料遮断弁16および第2燃料遮断弁17が直列に設けられている。第2燃料遮断弁17は、第1燃料遮断弁16よりも下流側に設けられている。原燃料ガス供給配管19の第2燃料遮断弁17よりも下流側には、圧力センサ18が取り付けられている。   The raw fuel gas supply pipe 19 connects a supply source for supplying raw fuel such as city gas containing hydrocarbons and the reformer 12, and supplies the raw fuel gas to the reformer 12. In the middle of the raw fuel gas supply pipe 19, a first fuel cutoff valve 16 and a second fuel cutoff valve 17 are provided in series. The second fuel cutoff valve 17 is provided on the downstream side of the first fuel cutoff valve 16. A pressure sensor 18 is attached to the raw fuel gas supply pipe 19 downstream of the second fuel cutoff valve 17.

制御器15は、圧力センサ18に接続されていて、圧力センサ18が測定した圧力を示す信号を受信する。また、第1燃料遮断弁16および第2燃料遮断弁17は、制御器15によって開閉される電磁弁である。   The controller 15 is connected to the pressure sensor 18 and receives a signal indicating the pressure measured by the pressure sensor 18. The first fuel cutoff valve 16 and the second fuel cutoff valve 17 are electromagnetic valves that are opened and closed by the controller 15.

改質器12は、供給された原燃料を水素リッチな改質ガスに改質する。改質器12と燃料電池本体11の燃料流路との間には、改質ガス供給配管21が延びている。改質器12によって生成された改質ガスには一酸化炭素が含有されている。改質ガスに含有されている一酸化炭素は、改質ガス供給配管21の途中に設けられた一酸化炭素変成器13および一酸化炭素除去器14で除去される。改質ガスは、一酸化炭素が除去された後、燃料電池本体11のアノードに供給される。   The reformer 12 reforms the supplied raw fuel into a hydrogen-rich reformed gas. A reformed gas supply pipe 21 extends between the reformer 12 and the fuel flow path of the fuel cell main body 11. The reformed gas generated by the reformer 12 contains carbon monoxide. Carbon monoxide contained in the reformed gas is removed by a carbon monoxide converter 13 and a carbon monoxide remover 14 provided in the middle of the reformed gas supply pipe 21. The reformed gas is supplied to the anode of the fuel cell body 11 after carbon monoxide is removed.

燃料電池本体11は、酸化剤流路に供給される空気などに含まれる酸素および燃料流路に供給される改質ガスに含まれる水素ガスを用いて発電する。燃料電池本体11の燃料流路に供給されたガスは、電池反応によって水素濃度が減少し、燃料流路の下流側に接続されたアノード排ガス配管20から排出される。アノード排ガス配管20の燃料電池本体11に対して反対側の端部は、大気に開放されている。アノード排ガス配管20には、下流遮断弁24が設けられている。   The fuel cell main body 11 generates power using oxygen contained in the air supplied to the oxidant flow path and hydrogen gas contained in the reformed gas supplied to the fuel flow path. The gas supplied to the fuel flow path of the fuel cell main body 11 is reduced in hydrogen concentration by the cell reaction, and is discharged from the anode exhaust gas pipe 20 connected to the downstream side of the fuel flow path. The end of the anode exhaust pipe 20 opposite to the fuel cell main body 11 is open to the atmosphere. A downstream shut-off valve 24 is provided in the anode exhaust gas pipe 20.

なお、電池反応に用いられなかった水素をバーナーなどの燃料とするために、アノード排ガス配管20は、燃料電池本体11と開放端との間で改質器12などに接続されていてもよい。また、改質ガス供給配管とアノード排ガス配管との間に、バイパス弁を備えたバイパス配管を設けてもよい。   The anode exhaust gas pipe 20 may be connected to the reformer 12 or the like between the fuel cell main body 11 and the open end in order to use hydrogen that has not been used in the cell reaction as a fuel such as a burner. Further, a bypass pipe provided with a bypass valve may be provided between the reformed gas supply pipe and the anode exhaust gas pipe.

このような燃料電池発電システムにおいて、第1燃料遮断弁16および第2燃料遮断弁17の下流に設置された圧力センサ18を用いて、第1燃料遮断弁16および第2燃料遮断弁17のシートリークを検出する。燃料遮断弁のシートリークの検査は、燃料電池発電システムの停止中、すなわち、燃料電池本体11の発電停止中に行われる。   In such a fuel cell power generation system, the pressure sensor 18 installed downstream of the first fuel cutoff valve 16 and the second fuel cutoff valve 17 is used to seat the first fuel cutoff valve 16 and the second fuel cutoff valve 17. Detect leaks. The inspection of the fuel leak valve seat leak is performed while the fuel cell power generation system is stopped, that is, while the fuel cell main body 11 is stopped.

図2は、本実施の形態における検査方法のフローチャートである。   FIG. 2 is a flowchart of the inspection method in the present embodiment.

燃料遮断弁のシートリークの検査では、まず、第1燃料遮断弁16を閉、第2燃料遮断弁17を開、燃料系の下流の下流遮断弁24を開とすることにより、第1燃料遮断弁16の出口より下流の部分を大気開放とする(S1)。次に、下流遮断弁24を閉とし(S2)、圧力センサ18の検出値が上昇するかどうかを確認する(S3)。   In the inspection of the fuel leakage of the fuel cutoff valve, first, the first fuel cutoff valve 16 is closed, the second fuel cutoff valve 17 is opened, and the downstream cutoff valve 24 downstream of the fuel system is opened. The part downstream from the outlet of the valve 16 is opened to the atmosphere (S1). Next, the downstream shut-off valve 24 is closed (S2), and it is confirmed whether or not the detection value of the pressure sensor 18 increases (S3).

第1燃料遮断弁16が健全であるならば、第2燃料遮断弁17を開けても、圧力センサ18の検出値は上昇しないはずである。第1燃料遮断弁16にシートリークがある場合は、原燃料の供給圧が圧力センサ18の部分にかかり、検出値が供給圧程度まで上昇する。圧力センサ18の検出値に上昇が見られた場合、第1燃料遮断弁16のシートリークと判定される(S8)。   If the first fuel cutoff valve 16 is healthy, the detected value of the pressure sensor 18 should not increase even if the second fuel cutoff valve 17 is opened. When there is a seat leak in the first fuel cutoff valve 16, the supply pressure of the raw fuel is applied to the pressure sensor 18, and the detected value rises to about the supply pressure. If an increase is detected in the detection value of the pressure sensor 18, it is determined that the seat leak of the first fuel cutoff valve 16 (S8).

続いて、第2燃料遮断弁17を閉とし(S4)、その後、第1燃料遮断弁16を開とし(S5)、圧力センサ18の検出値が上昇するかどうかを確認する(S6)。第2燃料遮断弁17が健全であるならば、第1燃料遮断弁16を開けても、圧力センサ18の検出値は上昇しないはずである。第2燃料遮断弁17にシートリークがある場合は、原燃料の供給圧が圧力センサ18の部分にかかり、検出値が供給圧程度まで上昇する。圧力センサ18の検出値に上昇が見られた場合、第2燃料遮断弁17のシートリークと判定される(S9)。   Subsequently, the second fuel cutoff valve 17 is closed (S4), and then the first fuel cutoff valve 16 is opened (S5), and it is confirmed whether the detected value of the pressure sensor 18 increases (S6). If the second fuel cutoff valve 17 is healthy, the detection value of the pressure sensor 18 should not increase even if the first fuel cutoff valve 16 is opened. When there is a seat leak in the second fuel cutoff valve 17, the supply pressure of the raw fuel is applied to the pressure sensor 18, and the detected value rises to about the supply pressure. If an increase is detected in the detection value of the pressure sensor 18, it is determined that the seat leak of the second fuel cutoff valve 17 (S9).

上記のいずれの場合も圧力センサ18の検出値に上昇が見られない場合、第1燃料遮断弁16および第2燃料遮断弁17にシートリークがなく、健全な状態であると判定する(S7)。   In any of the above cases, when no increase is observed in the detection value of the pressure sensor 18, it is determined that the first fuel cutoff valve 16 and the second fuel cutoff valve 17 are in a healthy state with no seat leak (S7). .

この燃料遮断弁のシートリークの検査は、たとえば燃料電池発電システムに電源が投入される毎に行われる。また、燃料電池発電システムを起動する、すなわち、燃料電池本体11に発電を開始させる毎に行ってもよい。さらに、燃料電池発電システムの停止期間中に、定期的に検査してもよい。   This inspection of the fuel shut-off valve seat leak is performed, for example, every time power is turned on to the fuel cell power generation system. Alternatively, it may be performed each time the fuel cell power generation system is started, that is, the fuel cell main body 11 starts power generation. Further, the fuel cell power generation system may be periodically inspected during the stop period.

また、燃料電池システムによる発電中は第1燃料遮断弁16および第2燃料遮断弁17が常時開の状態にある。このため、何らかの原因で弁の一部がスティッキングして閉状態にできないおそれがある。そこで、燃料遮断弁のシートリークの検査を、燃料電池システムを停止した直後に行ってもよい。   Further, during power generation by the fuel cell system, the first fuel cutoff valve 16 and the second fuel cutoff valve 17 are normally open. For this reason, a part of the valve may be stuck for some reason and cannot be closed. Accordingly, the seat leak inspection of the fuel cutoff valve may be performed immediately after the fuel cell system is stopped.

第1燃料遮断弁16および第2燃料遮断弁17の少なくとも一方にシートリークが発生していると判定した場合、システムの起動を中止するように制御器15を構成してもよい。また、第1燃料遮断弁16および第2燃料遮断弁17の少なくとも一方にシートリークが発生していると判定した場合に、警報を発報するように制御器15を構成してもよい。   If it is determined that a seat leak has occurred in at least one of the first fuel cutoff valve 16 and the second fuel cutoff valve 17, the controller 15 may be configured to stop the activation of the system. Further, the controller 15 may be configured to issue an alarm when it is determined that at least one of the first fuel cutoff valve 16 and the second fuel cutoff valve 17 has a seat leak.

このように本実施の形態の燃料電池発電システムでは、原燃料系統における原燃料の二重遮断を容易に確認できる。このため、燃料電池発電システムは、簡便かつ高頻度に原燃料の二重遮断を確認することができる。したがって、燃料電池発電システムの保守費用を低減し、安全性を向上させることができる。また、原燃料の二重遮断の確認のためのユーザーの負担も小さい。   As described above, in the fuel cell power generation system according to the present embodiment, it is possible to easily confirm the double cutoff of the raw fuel in the raw fuel system. For this reason, the fuel cell power generation system can confirm double blocking of the raw fuel easily and frequently. Therefore, the maintenance cost of the fuel cell power generation system can be reduced and the safety can be improved. In addition, the burden on the user for confirming double shutoff of raw fuel is small.

11…燃料電池本体、12…改質器、13…一酸化炭素変成器、14…一酸化炭素除去器、15…制御器、16…第1燃料遮断弁、17…第2燃料遮断弁、18…圧力センサ、19…原燃料ガス供給配管、20…アノード排ガス配管、21…改質ガス供給配管、24…下流遮断弁 DESCRIPTION OF SYMBOLS 11 ... Fuel cell main body, 12 ... Reformer, 13 ... Carbon monoxide converter, 14 ... Carbon monoxide remover, 15 ... Controller, 16 ... 1st fuel cutoff valve, 17 ... 2nd fuel cutoff valve, 18 ... Pressure sensor, 19 ... Raw fuel gas supply pipe, 20 ... Anode exhaust gas pipe, 21 ... Reformed gas supply pipe, 24 ... Downstream shutoff valve

Claims (4)

炭化水素を含有する原燃料ガスから水素リッチな改質ガスを生成する改質器と、
前記改質器に原燃料ガスを供給する原燃料ガス供給配管と、
前記原燃料ガス供給配管に設けられた第1燃料遮断弁と、
前記原燃料ガス供給配管の前記第1燃料遮断弁よりも下流側に設けられた第2燃料遮断弁と、
前記原燃料ガス供給配管の前記第2燃料遮断弁よりも下流側に設けられた圧力センサと、
燃料流路が形成されたアノードおよび酸化剤流路が形成されたカソードを備えた燃料電池本体と、
前記改質器と前記燃料流路とを接続する改質ガス供給配管と、
前記燃料流路の下流側の端部に接続されたアノード排ガス配管と、
前記アノード排ガス配管に設けられた下流側遮断弁と、
前記圧力センサの検出値を受信し、前記第1燃料遮断弁と前記第2燃料遮断弁と前記下流側遮断弁とを開閉可能に設けられ、前記第1燃料遮断弁および前記下流側遮断弁を閉じかつ前記第2燃料遮断弁を開いて前記圧力センサの検出値が時間とともに増加する場合に前記第1燃料遮断弁にシートリークが発生していると判定し、前記第2燃料遮断弁および前記下流側遮断弁を閉じかつ前記第1燃料遮断弁を開いて前記圧力センサの検出値が時間とともに増加する場合に前記第2燃料遮断弁にシートリークが発生していると判定する、制御器と、
を有することを特徴とする燃料電池発電システム。
A reformer that produces hydrogen-rich reformed gas from a raw fuel gas containing hydrocarbons;
Raw fuel gas supply piping for supplying raw fuel gas to the reformer;
A first fuel cutoff valve provided in the raw fuel gas supply pipe;
A second fuel cutoff valve provided downstream of the first fuel cutoff valve of the raw fuel gas supply pipe;
A pressure sensor provided downstream of the second fuel cutoff valve of the raw fuel gas supply pipe;
A fuel cell body comprising an anode formed with a fuel flow path and a cathode formed with an oxidant flow path;
A reformed gas supply pipe connecting the reformer and the fuel flow path;
An anode exhaust gas pipe connected to the downstream end of the fuel flow path;
A downstream shut-off valve provided in the anode exhaust gas pipe;
The detection value of the pressure sensor is received, and the first fuel cutoff valve, the second fuel cutoff valve, and the downstream cutoff valve are provided to be openable and closable, and the first fuel cutoff valve and the downstream cutoff valve are provided. When the detected value of the pressure sensor increases with time by closing and opening the second fuel cutoff valve, it is determined that a seat leak has occurred in the first fuel cutoff valve, and the second fuel cutoff valve and the A controller that determines that a seat leak has occurred in the second fuel cutoff valve when the downstream side cutoff valve is closed and the first fuel cutoff valve is opened and the detected value of the pressure sensor increases with time; ,
A fuel cell power generation system comprising:
前記制御器は、前記第1燃料遮断弁および前記第2燃料遮断弁の少なくとも一方にシートリークが発生していると判定した場合に、前記燃料電池本体に発電を開始させないように構成されていることを特徴とする燃料電池発電システム。   The controller is configured not to cause the fuel cell body to start power generation when it is determined that seat leak has occurred in at least one of the first fuel cutoff valve and the second fuel cutoff valve. A fuel cell power generation system. 前記制御器は前記第1燃料遮断弁および前記第2燃料遮断弁の少なくとも一方にシートリークが発生していると判定した場合に警報を発するように構成されていることを特徴とする燃料電池発電システム。   The controller is configured to issue an alarm when it is determined that a seat leak has occurred in at least one of the first fuel cutoff valve and the second fuel cutoff valve. system. 炭化水素を含有する原燃料ガスから水素リッチな改質ガスを生成する改質器と、前記改質器に原燃料ガスを供給する原燃料ガス供給配管と、前記原燃料ガス供給配管に設けられた第1燃料遮断弁と、前記原燃料ガス供給配管の前記第1燃料遮断弁よりも下流側に設けられた第2燃料遮断弁と、燃料流路が形成されたアノードおよび酸化剤流路が形成されたカソードを備えた燃料電池本体と、前記改質器と前記燃料流路とを接続する改質ガス供給配管と、前記燃料流路の下流側の端部に接続されたアノード排ガス配管と、前記アノード排ガス配管に設けられた下流側遮断弁と、を備えた燃料電池発電システムの発電停止中の検査方法において、
前記第1燃料遮断弁および前記下流側遮断弁を閉じかつ前記第2燃料遮断弁を開いて前記第2燃料遮断弁の下流で前記原燃料ガス供給配管の内部の圧力を測定する第1測定工程と、
前記第1測定工程で測定した圧力が時間とともに増加する場合に前記第1燃料遮断弁にシートリークが発生していると判定する工程と、
前記第2燃料遮断弁および前記下流側遮断弁を閉じかつ前記第1燃料遮断弁を開いて前記第2燃料遮断弁の下流で前記原燃料ガス供給配管の内部の圧力を測定する第2測定工程と、
前記第2測定工程で測定した圧力が時間とともに増加する場合に前記第2燃料遮断弁にシートリークが発生していると判定する工程と、
を有することを特徴とする燃料電池発電システムの検査方法。
A reformer for generating hydrogen-rich reformed gas from a raw fuel gas containing hydrocarbons, a raw fuel gas supply pipe for supplying the raw fuel gas to the reformer, and the raw fuel gas supply pipe; A first fuel cutoff valve, a second fuel cutoff valve provided downstream of the first fuel cutoff valve of the raw fuel gas supply pipe, an anode in which a fuel channel is formed, and an oxidant channel. A fuel cell main body having a formed cathode; a reformed gas supply pipe connecting the reformer and the fuel flow path; an anode exhaust gas pipe connected to an end portion on the downstream side of the fuel flow path; In the inspection method during the power generation stop of the fuel cell power generation system, comprising a downstream side shutoff valve provided in the anode exhaust gas pipe,
A first measurement step of measuring the pressure inside the raw fuel gas supply pipe downstream of the second fuel cutoff valve by closing the first fuel cutoff valve and the downstream side cutoff valve and opening the second fuel cutoff valve When,
Determining that a seat leak has occurred in the first fuel cutoff valve when the pressure measured in the first measurement step increases with time;
A second measuring step of closing the second fuel cutoff valve and the downstream side cutoff valve and opening the first fuel cutoff valve to measure the pressure inside the raw fuel gas supply pipe downstream of the second fuel cutoff valve; When,
A step of determining that a seat leak has occurred in the second fuel cutoff valve when the pressure measured in the second measurement step increases with time;
A method for inspecting a fuel cell power generation system, comprising:
JP2009002585A 2009-01-08 2009-01-08 Fuel cell power generation system and inspection method thereof Active JP5248337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002585A JP5248337B2 (en) 2009-01-08 2009-01-08 Fuel cell power generation system and inspection method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002585A JP5248337B2 (en) 2009-01-08 2009-01-08 Fuel cell power generation system and inspection method thereof

Publications (2)

Publication Number Publication Date
JP2010160969A true JP2010160969A (en) 2010-07-22
JP5248337B2 JP5248337B2 (en) 2013-07-31

Family

ID=42577996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002585A Active JP5248337B2 (en) 2009-01-08 2009-01-08 Fuel cell power generation system and inspection method thereof

Country Status (1)

Country Link
JP (1) JP5248337B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114852A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system
JP2013114850A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system
JP2015152512A (en) * 2014-02-18 2015-08-24 アズビル株式会社 Flow control valve leakage diagnostic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302340A (en) * 1987-03-16 1988-12-09 ゲー・クロムシユロエデル・アクチイエンゲゼルシヤフト Method and apparatus for implementing airtightness test of two valves arranged in fluid pipeline
JPH08184523A (en) * 1994-12-28 1996-07-16 Miura Co Ltd Method for checking multiple isolation valve system
JPH0922711A (en) * 1995-07-05 1997-01-21 Sanyo Electric Co Ltd Fuel cell and trouble diagnosing method for it
JP2006066100A (en) * 2004-08-24 2006-03-09 Toyota Motor Corp Fuel cell system
JP2007134063A (en) * 2005-11-08 2007-05-31 Toyota Motor Corp Fuel cell system and its gas leak detection method as well as moving body
JP2008083057A (en) * 2007-10-15 2008-04-10 Toyota Motor Corp Detection device of fluid leakage
JP2008108446A (en) * 2006-10-23 2008-05-08 Aisin Seiki Co Ltd Fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302340A (en) * 1987-03-16 1988-12-09 ゲー・クロムシユロエデル・アクチイエンゲゼルシヤフト Method and apparatus for implementing airtightness test of two valves arranged in fluid pipeline
JPH08184523A (en) * 1994-12-28 1996-07-16 Miura Co Ltd Method for checking multiple isolation valve system
JPH0922711A (en) * 1995-07-05 1997-01-21 Sanyo Electric Co Ltd Fuel cell and trouble diagnosing method for it
JP2006066100A (en) * 2004-08-24 2006-03-09 Toyota Motor Corp Fuel cell system
JP2007134063A (en) * 2005-11-08 2007-05-31 Toyota Motor Corp Fuel cell system and its gas leak detection method as well as moving body
JP2008108446A (en) * 2006-10-23 2008-05-08 Aisin Seiki Co Ltd Fuel cell system
JP2008083057A (en) * 2007-10-15 2008-04-10 Toyota Motor Corp Detection device of fluid leakage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114852A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system
JP2013114850A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system
JP2015152512A (en) * 2014-02-18 2015-08-24 アズビル株式会社 Flow control valve leakage diagnostic device

Also Published As

Publication number Publication date
JP5248337B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
EP2808298B1 (en) Method for operating hydrogen generation device and method for operating a fuel cell system
US20050074644A1 (en) Fuel cell system
JP5816842B2 (en) Gas leak detection system for fuel cell system
US20120237840A1 (en) Power generation system
JP5248337B2 (en) Fuel cell power generation system and inspection method thereof
US9070915B2 (en) Hydrogen generator, operating method of hydrogen generator, and fuel cell system
JP2018518015A (en) Heating system and method for operating a heating system
JP5193722B2 (en) Fuel cell power generation system and failure cause estimation method thereof
JP2007265669A (en) Leak detecting method in fuel cell power generation system
JP3908573B2 (en) Fuel cell power generation system
JP2010015808A (en) Gas leak detection method of fuel cell power generating system and fuel cell power generating system
JP2003201921A (en) Gas fuel supplying device
JP2007329105A (en) Abnormality detecting device of fuel cell system and abnormality detection method of the same
JP5851946B2 (en) Fuel cell system
JP5607951B2 (en) Method for maintaining a stopped state of a fuel cell system
JP2010521786A (en) Method for testing the impermeability of a fuel cell stack
JP2019110031A (en) Fuel cell system and operation method therefor
KR101488002B1 (en) Fuel cell system
JP2014035930A (en) Fuel cell power generation system and inspection method thereof
JP6268980B2 (en) Fuel cell system
JP2007173158A (en) Fuel cell system
WO2017204278A1 (en) Hydrogen generation device, fuel cell system provided with same, and method for operating hydrogen generation device
JP2012119201A (en) Fuel cell power generating system, and leakage detecting method of the same
JP2006164730A (en) Fuel cell system and method of detecting its gas leakage
JP2012079605A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

R150 Certificate of patent or registration of utility model

Ref document number: 5248337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350