Nothing Special   »   [go: up one dir, main page]

JP2007265669A - Leak detecting method in fuel cell power generation system - Google Patents

Leak detecting method in fuel cell power generation system Download PDF

Info

Publication number
JP2007265669A
JP2007265669A JP2006086049A JP2006086049A JP2007265669A JP 2007265669 A JP2007265669 A JP 2007265669A JP 2006086049 A JP2006086049 A JP 2006086049A JP 2006086049 A JP2006086049 A JP 2006086049A JP 2007265669 A JP2007265669 A JP 2007265669A
Authority
JP
Japan
Prior art keywords
pressure
fuel cell
holding
gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006086049A
Other languages
Japanese (ja)
Inventor
Masashi Tanaka
雅士 田中
Norihisa Kamiya
規寿 神家
Takeshi Tabata
健 田畑
Mitsuaki Echigo
満秋 越後
Yukio Yasuda
征雄 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2006086049A priority Critical patent/JP2007265669A/en
Publication of JP2007265669A publication Critical patent/JP2007265669A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a leak detecting method in a fuel cell power generation system capable of detecting a minute leak in a normal operation without relying on periodic inspection. <P>SOLUTION: The fuel cell power generation system is provided with a fuel cell body, and a dwelling means keeping the inner pressure of the fuel cell body and/or a fuel reforming device (hereinafter called objects for dwelling) at pressure higher than atmospheric pressure. The dwelling means is constituted of a sealing means for sealing the inside of the objects for dwelling, a dwelling gas supply source supplying the dwelling objects with dwelling gas, and a dwelling gas supply channel equipped with a switching valve on the way. In the leak detecting method of the fuel cell power generation system, in the case that the inner pressure of the objects for dwelling gets below a given value at the stoppage of operation, the switching valve is opened to supply the dwelling gas to the objects for dwelling, and then closing the switching valve to keep them at pressure higher than the atmospheric pressure. A leak is determined to occur in the case that number of times per hour of opening operations of the switching valve for supplying the fuel cell with dwelling gas exceeds a given number of times. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池発電システムにおけるリーク検出方法に関するものである。   The present invention relates to a leak detection method in a fuel cell power generation system.

燃料電池発電システムは、原燃料から水素リッチな改質ガスを生成する燃料改質装置と、改質ガスと空気とを化学反応させて発電を行う燃料電池本体とを備え、燃料電池本体の燃料極に水素リッチな改質ガスを供給すると共に、空気極に酸化剤として酸素を含む空気を供給して直流発電を行い、通常は得られた直流電流をインバータにて交流に変換して利用すると共に、燃料電池本体からの排熱を回収して利用するものである。   A fuel cell power generation system includes a fuel reformer that generates hydrogen-rich reformed gas from raw fuel, and a fuel cell body that generates electricity by chemically reacting the reformed gas and air. While supplying the hydrogen-rich reformed gas to the electrode and supplying air containing oxygen as an oxidant to the air electrode, DC power generation is performed, and usually the obtained DC current is converted into AC by an inverter and used. At the same time, exhaust heat from the fuel cell body is recovered and used.

この燃料電池発電システムは、運転休止時において、外部より燃料電池本体に大気が侵入すると、電極に用いている触媒が酸化等によって活性が損なわれたり、大気中の水蒸気が燃料電池本体内で凝縮してしまったり、燃料電池本体の温度が下がって燃料電池本体の内気圧が負圧(外気圧より低い圧力)となることで燃料電池本体が損傷されたりする、というような問題があった。そこで、運転休止時に燃料電池本体の内気圧が負圧となるのを防止するシステムが開発されている(例えば特許文献1参照)。   In this fuel cell power generation system, when the atmosphere enters the fuel cell main body from the outside when the operation is stopped, the activity of the catalyst used for the electrode is lost due to oxidation or the like, and water vapor in the air condenses in the fuel cell main body. There is a problem that the temperature of the fuel cell body decreases and the internal pressure of the fuel cell body becomes a negative pressure (a pressure lower than the external pressure), so that the fuel cell body is damaged. Thus, a system has been developed that prevents the internal pressure of the fuel cell main body from becoming negative when the operation is stopped (see, for example, Patent Document 1).

保圧手段は、燃料電池本体内を密閉させる密閉手段、保圧用ガス供給源、保圧用ガス供給路で主体が構成され、運転休止時に燃料電池本体内を密閉させ、保圧用ガス供給路の途中に設けた開閉弁を開いて保圧用ガス供給源から保圧用ガスを外気圧よりも高い圧力で燃料電池本体に供給した後、開閉弁を閉じて燃料電池本体の内気圧を正圧(外気圧よりも高い圧力)で保持し、時間経過によって燃料電池本体の内気圧が所定値以下に下がると、再び上記のように保圧用ガスを燃料電池本体に供給して正圧で保圧するものである。これにより、上述した問題を解決していた。   The pressure holding means is composed mainly of a sealing means for sealing the inside of the fuel cell body, a pressure holding gas supply source, and a pressure holding gas supply path. After opening the on-off valve provided on the fuel cell and supplying the holding gas from the holding gas supply source to the fuel cell main body at a pressure higher than the external atmospheric pressure, the on-off valve is closed to set the internal pressure of the fuel cell main body to a positive pressure (external pressure). When the internal pressure of the fuel cell body falls below a predetermined value over time, the pressure-holding gas is again supplied to the fuel cell body and held at a positive pressure as described above. . This solved the above-described problem.

ところで、このような従来の燃料電池発電システムにおいては、燃料電池の改質ガス、空気等の流路のリークを定期点検を行うことで発見するものであった。通常の発電運転に影響を及ぼすような大きなリークは点検するまでもなく発見されるが、微小なリークは前記定期点検を行わない限り発見し難いものであった。リークが発生していると発電効率が悪いうえに、更に大きなリークに発展する惧れもあり、定期点検で発見された時にはメンテナンスの準備や作業のために長期にわたって運転休止しなければならないものであった。また、定期点検においても検査項目としてリークの検査を行わなければならず、検査項目が多くなって作業が煩雑となっていた。
特開2002−329520号公報
By the way, in such a conventional fuel cell power generation system, the leak of the flow path of the reformed gas, air, etc. of the fuel cell has been discovered by performing periodic inspection. Large leaks that affect normal power generation operation are discovered without inspection, but minute leaks are difficult to detect unless the periodic inspection is performed. If a leak occurs, the power generation efficiency is poor, and there is a possibility that it will develop into a larger leak. there were. In addition, in periodic inspections, it is necessary to inspect for leaks as inspection items, and the number of inspection items increases, which complicates work.
JP 2002-329520 A

本発明は上記の点に鑑みてなされたものであり、その目的とするところは、微小なリークを定期点検によらずに通常の動作において検出することができる燃料電池発電システムにおけるリーク検出方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a leak detection method in a fuel cell power generation system that can detect a minute leak in a normal operation without performing periodic inspection. It is to provide.

上記課題を解決するために請求項1に係る発明は、原燃料のガスを改質して水素リッチな改質ガスを生成する燃料改質装置と、前記改質ガスと空気とを化学反応させて発電を行う燃料電池本体と、燃料電池発電の運転休止時に燃料電池本体の内気圧を外気圧よりも高い圧力で保圧する保圧手段とを備え、前記保圧手段を、燃料電池本体内を密閉させるための閉止弁からなる密閉手段と、保圧用ガスを外気圧よりも高い圧力で燃料電池本体に供給する保圧用ガス供給源と、前記保圧用ガス供給源から燃料電池本体に至り途中に開閉弁を備えた保圧用ガス供給路とで構成し、運転休止時に燃料電池本体内を密閉させた状態として、燃料電池本体の内気圧が所定値以下になると前記開閉弁を開いて保圧用ガスを燃料電池本体に供給した後開閉弁を閉じて外気圧よりも高い圧力で保圧する燃料電池発電システムにおけるリーク検出方法であって、保圧用ガスを燃料電池に供給するための前記開閉弁の開動作の時間当たりの回数が所定回数以上となった場合にリークが発生していると判定することを特徴とするものである。   In order to solve the above problems, an invention according to claim 1 is directed to a fuel reformer that reforms a raw fuel gas to generate a hydrogen-rich reformed gas, and a chemical reaction between the reformed gas and air. A fuel cell main body for generating electric power, and a pressure holding means for holding the internal pressure of the fuel cell main body at a pressure higher than the external pressure when the fuel cell power generation is stopped, and the pressure holding means is disposed inside the fuel cell main body. A sealing means comprising a shut-off valve for sealing, a pressure holding gas supply source for supplying pressure holding gas to the fuel cell main body at a pressure higher than the external pressure, and a halfway from the pressure holding gas supply source to the fuel cell main body The pressure holding gas supply passage having an on / off valve is configured to close the fuel cell main body when the operation is stopped. When the internal pressure of the fuel cell main body becomes a predetermined value or less, the on / off valve is opened to hold the pressure holding gas. After supplying to the fuel cell body, close the open / close valve A leak detection method in a fuel cell power generation system that holds pressure at a pressure higher than the external pressure, and the number of opening operations of the on-off valve for supplying pressure holding gas to the fuel cell is greater than or equal to a predetermined number of times. In this case, it is determined that a leak has occurred.

このような方法によれば、通常の発電運転においては殆ど影響を及ぼさない微小なリークを通常の動作において容易に検出することができ、リークによる発電効率の低下を防止することができると共に、修復の準備や作業のために長期にわたって発電運転を休止するといったことをなくすことができる。   According to such a method, it is possible to easily detect a minute leak that hardly influences in a normal power generation operation in a normal operation, and it is possible to prevent a decrease in power generation efficiency due to the leak and to repair it. It is possible to eliminate such a situation that the power generation operation is suspended for a long period of time for preparation and work.

また、上記課題を解決するために請求項2に係る発明は、原燃料のガスを改質して水素リッチな改質ガスを生成する燃料改質装置と、前記改質ガスと空気とを化学反応させて発電を行う燃料電池本体と、燃料電池発電の運転休止時に燃料改質装置の内気圧を外気圧よりも高い圧力で保圧する保圧手段とを備え、前記保圧手段を、燃料改質装置内を密閉させるための閉止弁からなる密閉手段と、保圧用ガスを外気圧よりも高い圧力で燃料改質装置に供給する保圧用ガス供給源と、前記保圧用ガス供給源から燃料改質装置に至り途中に開閉弁を備えた保圧用ガス供給路とで構成し、運転休止時に燃料改質装置内を密閉させた状態として、燃料改質装置の内気圧が所定値以下になると前記開閉弁を開いて保圧用ガスを燃料改質装置に供給した後開閉弁を閉じて外気圧よりも高い圧力で保圧する燃料電池発電システムにおけるリーク検出方法であって、保圧用ガスを燃料電池に供給するための前記開閉弁の開動作の時間当たりの回数が所定回数以上となった場合にリークが発生していると判定することを特徴とするものである。   In order to solve the above-mentioned problem, the invention according to claim 2 is directed to a fuel reformer that reforms a raw fuel gas to generate a hydrogen-rich reformed gas, and a chemical reaction between the reformed gas and air. A fuel cell main body that generates electricity by reacting; and a pressure holding means that holds the internal pressure of the fuel reformer at a pressure higher than the external pressure when the fuel cell power generation is stopped. A sealing means comprising a shut-off valve for sealing the inside of the gas storage device, a pressure-holding gas supply source for supplying pressure-holding gas to the fuel reformer at a pressure higher than the external pressure, and a fuel modification from the pressure-holding gas supply source. When the internal pressure of the fuel reformer becomes a predetermined value or less as a state in which the inside of the fuel reformer is sealed when the operation is stopped Open / close after opening the on-off valve and supplying the gas for holding pressure to the fuel reformer Is a leak detection method in a fuel cell power generation system in which the pressure is maintained at a pressure higher than the external pressure, and the number of opening operations of the on-off valve for supplying the pressure holding gas to the fuel cell is greater than or equal to a predetermined number of times. In this case, it is determined that a leak has occurred.

このような方法によれば、通常の発電運転においては殆ど影響を及ぼさない微小なリークを通常の動作において容易に検出することができ、リークによる発電効率の低下を防止することができると共に、修復の準備や作業のために長期にわたって発電運転を休止するといったことをなくすことができる。   According to such a method, it is possible to easily detect a minute leak that hardly influences in a normal power generation operation in a normal operation, and it is possible to prevent a decrease in power generation efficiency due to the leak and to repair it. It is possible to eliminate such a situation that the power generation operation is suspended for a long period of time for preparation and work.

本発明にあっては、通常の発電運転においては殆ど影響を及ぼさない微小なリークを通常の動作において容易に検出することができて、リークによる発電効率の低下を防止することができると共に、早期の微小な段階で発見することができて修復の準備や作業のために長期にわたって発電運転を休止する必要がないものであり、発電運転の休止による損失や修復にかかるコストを低く抑えることができる。また定期点検でリークの検査を行う必要がなくなり、検査項目を減らして作業を容易にすることができる。またこれにあたり、開閉弁の開閉の回数をカウントするだけでよいため、特にリークの検出のための装置を設ける必要がなく低コストで達成することができる。   In the present invention, it is possible to easily detect a minute leak that has almost no effect in a normal power generation operation in a normal operation, and to prevent a decrease in power generation efficiency due to the leak. It is not necessary to stop the power generation operation for a long time for repair preparation and work, and it is possible to keep down the loss due to the suspension of power generation operation and the cost of repair . In addition, it is not necessary to inspect for leaks during regular inspections, and the number of inspection items can be reduced to facilitate work. In this case, since it is only necessary to count the number of times of opening and closing the on-off valve, it is not necessary to provide a device for detecting a leak, and this can be achieved at low cost.

以下、本発明の一実施形態について説明する。まず、燃料電池発電システムの基本構成について説明する。図1に燃料電池発電システムの全体概略構成図を示し、図2に燃料電池本体の説明図を示す。   Hereinafter, an embodiment of the present invention will be described. First, the basic configuration of the fuel cell power generation system will be described. FIG. 1 shows an overall schematic configuration diagram of the fuel cell power generation system, and FIG. 2 shows an explanatory diagram of the fuel cell main body.

燃料電池発電システムは、原燃料から改質ガスを生成する燃料改質装置と、改質ガスと酸化剤とを化学反応させて発電を行う燃料電池本体とを必須構成として備えると共に、発電により得られた直流電流を交流に変換するインバータと、燃料電池本体を冷却する冷却水により燃料電池本体からの排熱を回収する排熱回収手段(凝縮器等)とを備えている。本実施形態では固体高分子形燃料電池として説明するが特に限定されない。   A fuel cell power generation system includes a fuel reformer that generates reformed gas from raw fuel, and a fuel cell main body that generates power by chemically reacting the reformed gas and an oxidant as essential components. An inverter that converts the direct current generated into alternating current, and exhaust heat recovery means (such as a condenser) that recovers exhaust heat from the fuel cell main body by cooling water that cools the fuel cell main body. In this embodiment, the polymer electrolyte fuel cell will be described, but is not particularly limited.

図1に示すように、燃料改質装置1は、都市ガスや天然ガス等のガスを原燃料とし、触媒の存在下で原燃料aと水蒸気bとを加熱手段のバーナ11により高温に加熱することで水素リッチな改質ガスcに改質するものである。燃料電池本体2は、図2に示すように、空気極21および空気極21側の流路22と、燃料極23および燃料極23側の流路24と、前記流路22、24の間に介在する電解質膜25とでセルが構成され、複数のセルをセパレータ(図示せず)を介して積層してセルスタックが構成される。但し図2では一つのセルのみを示している。燃料極23側の流路24を流れる改質ガスcの水素は燃料極23に設けた触媒によって水素イオンと電子とに電離し、この時発生した電子が空気極21に流れる際の電流iが電力として利用される。図中の符号3はインバータを示す。燃料極23側で生成された水素イオンは電解質膜25を通って空気dが流れる空気極21側の流路22に移動し、空気極21側の流路22において電子を受容すると共に酸化剤としての空気d中の酸素と化学反応して水が生成される。また、図示しないがセルスタックには冷却水が流されて燃料電池本体2が冷却され、排熱が回収されて利用される。   As shown in FIG. 1, the fuel reformer 1 uses gas such as city gas or natural gas as raw fuel, and heats the raw fuel a and water vapor b to a high temperature by a burner 11 of heating means in the presence of a catalyst. In this way, the reformed gas is reformed into a hydrogen-rich reformed gas c. As shown in FIG. 2, the fuel cell main body 2 includes an air electrode 21 and a flow path 22 on the air electrode 21 side, a fuel electrode 23 and a flow path 24 on the fuel electrode 23 side, and the flow paths 22 and 24. The intervening electrolyte membrane 25 constitutes a cell, and a cell stack is constituted by stacking a plurality of cells via a separator (not shown). However, only one cell is shown in FIG. Hydrogen in the reformed gas c flowing in the flow path 24 on the fuel electrode 23 side is ionized into hydrogen ions and electrons by the catalyst provided in the fuel electrode 23, and a current i generated when the generated electrons flow to the air electrode 21 is generated. Used as electric power. Reference numeral 3 in the figure denotes an inverter. Hydrogen ions generated on the fuel electrode 23 side move to the flow path 22 on the air electrode 21 side through which the air d flows through the electrolyte membrane 25, accept electrons in the flow path 22 on the air electrode 21 side, and serve as an oxidizing agent. Water is produced by a chemical reaction with oxygen in the air d. Although not shown, cooling water is flowed through the cell stack to cool the fuel cell body 2 and the exhaust heat is recovered and used.

また、燃料電池本体2の燃料極23側の流路24から排出される、発電に利用されなかった水素を含む未燃ガスeは、燃料改質装置1の加熱手段のバーナ11の燃料として利用される。そして、燃料改質装置1のバーナの排ガスfと、燃料電池本体2の空気極21側の流路22から排出される排気gは、凝縮器4にて熱回収されて排熱の利用がなされ、回収された凝縮水hは蒸気発生器6で水蒸気bとして利用したり燃料電池本体2の冷却水として利用される。   Further, the unburned gas e containing hydrogen that has not been used for power generation and is discharged from the flow path 24 on the fuel electrode 23 side of the fuel cell body 2 is used as fuel for the burner 11 of the heating means of the fuel reformer 1. Is done. The exhaust gas f of the burner of the fuel reformer 1 and the exhaust g discharged from the flow path 22 on the air electrode 21 side of the fuel cell main body 2 are recovered by the condenser 4 and used as exhaust heat. The collected condensed water h is used as steam b by the steam generator 6 or as cooling water for the fuel cell main body 2.

ここで、冷却手段の仔細や冷却水の利用については特に限定されないものである。また特に説明を行わないが、燃料改質手段にて生成された改質ガスcのCO変成を行うCO変成器やCO除去を行うCO除去器、燃料電池本体2に供給する改質ガスcや空気dを加湿する加湿装置、といった機器についても仔細や有無は特に限定されないものである。   Here, the details of the cooling means and the use of the cooling water are not particularly limited. Although not specifically described, a CO converter for performing CO conversion of the reformed gas c generated by the fuel reforming means, a CO remover for removing CO, the reformed gas c supplied to the fuel cell main body 2, There is no particular limitation on the details and presence of devices such as a humidifier that humidifies the air d.

燃料装置発電システムは、燃料電池発電の運転休止時に燃料電池本体2の内気圧を外気圧よりも高い圧力で保圧する保圧手段5を備えている。保圧手段5は、燃料電池本体2内を密閉させる密閉手段と、保圧用ガスを外気圧よりも高い圧力で燃料電池本体2に供給する保圧用ガス供給源51と、前記保圧用ガス供給源51から燃料電池本体2に燃料電池本体2に至る流路の途中に開閉弁52を備えた保圧用ガス供給路53とで構成される。保圧用ガスとしては、窒素ガス、メタンガスや都市ガス等の安定したガスが好適に用いられる。密閉手段は、燃料電池本体2に接続される流路、すなわち、燃料電池本体2の燃料極23側の流路24への給排気流路および空気極21側の流路22への給排気流路に閉止弁(図示せず)を設けて構成され、閉止弁および後述する開閉弁52を閉じることで燃料電池本体2内を密閉させることができる。   The fuel device power generation system includes a pressure holding means 5 that holds the internal pressure of the fuel cell main body 2 at a pressure higher than the external pressure when the operation of the fuel cell power generation is stopped. The pressure holding means 5 includes a sealing means for sealing the inside of the fuel cell main body 2, a pressure holding gas supply source 51 for supplying the pressure holding gas to the fuel cell main body 2 at a pressure higher than the external pressure, and the pressure holding gas supply source. The pressure holding gas supply path 53 is provided with an on-off valve 52 in the middle of the flow path from 51 to the fuel cell body 2 to the fuel cell body 2. As the holding gas, a stable gas such as nitrogen gas, methane gas, or city gas is preferably used. The sealing means is a flow path connected to the fuel cell body 2, that is, a supply / exhaust flow path to the flow path 24 on the fuel electrode 23 side of the fuel cell body 2 and a supply / exhaust flow to the flow path 22 on the air electrode 21 side. The fuel cell main body 2 can be sealed by closing a stop valve and an on-off valve 52 described later.

保圧用ガス供給源51は、保圧用ガスを収容した高圧ボンベやタンク等からなり、通常は減圧弁(図示せず)を介して所定の圧力に減圧して保圧用ガス供給路53に供給される。保圧用ガス供給路53は燃料電池本体2の流路に連通接続されており、途中に電磁弁からなる開閉弁52を設けてある。以下、燃料電池発電の運転休止時の動作について説明する。   The pressure-holding gas supply source 51 includes a high-pressure cylinder, a tank, or the like that stores the pressure-holding gas, and is usually supplied to the pressure-holding gas supply path 53 by reducing the pressure to a predetermined pressure via a pressure reducing valve (not shown). The The pressure-holding gas supply path 53 is connected to the flow path of the fuel cell main body 2, and an open / close valve 52 formed of an electromagnetic valve is provided in the middle. Hereinafter, the operation when the fuel cell power generation is stopped will be described.

まず、閉止弁を閉じて燃料電池本体2の流路を閉塞する。次に開閉弁52を開いて保圧用ガスを外気圧(大気圧)よりも高い圧力(以下、正圧という)で燃料電池本体2内に供給し、開閉弁52を閉じる(これを保圧動作というものとする)。これにより、燃料電池本体2内の内気圧が保圧用ガスにて正圧に保圧される。特に不具合としてのリークが発生していなくても、時間経過とともに温度が低下して、燃料電池本体2の内気圧は下がってくるために、この圧力低下は起こるものである。この燃料電池本体2の内気圧が所定値以下に下がると、再び上述した保圧動作を行って燃料電池本体2の内気圧を保圧開始時の圧力に上昇させ、以降これを繰り返して燃料電池本体2の保護を行っている。これらの弁の開閉やその他機器の制御は図示しない制御部によって制御される。   First, the shutoff valve is closed to close the flow path of the fuel cell main body 2. Next, the on-off valve 52 is opened, and the holding pressure gas is supplied into the fuel cell main body 2 at a pressure higher than the external pressure (atmospheric pressure) (hereinafter referred to as a positive pressure), and the on-off valve 52 is closed (this is a holding operation). ). Thereby, the internal pressure in the fuel cell main body 2 is held at a positive pressure by the holding pressure gas. Even if no leak as a malfunction has occurred, the temperature decreases with time and the internal pressure of the fuel cell body 2 decreases, so this pressure decrease occurs. When the internal pressure of the fuel cell main body 2 falls below a predetermined value, the above-described pressure holding operation is performed again to increase the internal pressure of the fuel cell main body 2 to the pressure at the start of pressure holding. The main body 2 is protected. The opening and closing of these valves and the control of other devices are controlled by a control unit (not shown).

燃料電池本体2が正常な場合には、図3に示すように時間当たりの上記保圧動作は略所定回数で安定しているが、燃料電池本体2に不具合としてのリークが発生していると、図4に示すように時間当たりの保圧動作の回数が前記所定回数よりも増加する。図中のイは保圧動作の開閉弁を開いた時点を示す。そこで、時間当たりの保圧動作が所定回数以上となった場合に、不具合としてのリークが発生していると判定してリークの検出がなされるものである。リークの検出すなわち、保圧動作の回数のカウント、前記回数が所定回数以上か否かの判定は制御部にて行われ、リークが検出されると音声や光、その他の方法により報知される。   When the fuel cell main body 2 is normal, as shown in FIG. 3, the pressure holding operation per time is stable at a predetermined number of times. However, if the fuel cell main body 2 has leaked as a problem, As shown in FIG. 4, the number of pressure holding operations per time is increased from the predetermined number. “A” in the figure indicates the time when the on-off valve for the pressure holding operation is opened. Therefore, when the pressure holding operation per time exceeds a predetermined number of times, it is determined that a leak as a malfunction has occurred, and the leak is detected. Detection of leak, that is, counting of the number of times of pressure holding operation and determination of whether or not the number of times is equal to or greater than a predetermined number is performed by the control unit, and when leak is detected, it is notified by voice, light, or other methods.

上記のようなリーク検出方法を採用することで、通常の発電運転においては殆ど影響を及ぼさない微小なリークを通常の動作において容易に検出することができて、リークによる発電効率の低下を防止することができると共に、早期の微小な段階で発見することができて、修復の準備や作業のために長期にわたって発電運転を休止する必要がなく、発電運転の休止による損失や修復にかかるコストを低く抑えることができるものであり、これにあたって、開閉弁52の開閉の回数をカウントするだけでよく、特にリークの検出のための装置を設ける必要がなく低コストで達成することができる。また、定期点検でリークの検査を行う必要がなくなって、検査項目を減らして作業を容易にすることができてコストダウンを図ることができる。   By adopting the leak detection method as described above, it is possible to easily detect a minute leak that hardly affects the normal power generation operation in a normal operation, and to prevent a decrease in power generation efficiency due to the leak. Can be detected at an early minute stage, and there is no need to suspend power generation for a long period of time to prepare for and work on repairs. In this case, it is only necessary to count the number of times of opening / closing of the on-off valve 52. In particular, it is not necessary to provide a device for detecting a leak and can be achieved at low cost. In addition, it is not necessary to inspect for leaks during periodic inspections, and the number of inspection items can be reduced to facilitate work, thereby reducing costs.

また、図1に示す上実施形態においては、保圧手段5による保圧対象は燃料電池本体2内であり、燃料電池本体2に至る改質ガスcの流路、空気dの流路、燃料電池本体2からの未燃ガスeの流路、排気gの流路の途中に設けた図示しない閉止弁によってこの内部を密閉させて、この密閉された部分を保圧しているが、図5に示すように燃料改質装置1を保圧対象としてもよい。燃料改質装置1に至る原燃料aの流路、未燃ガスeの流路、燃料改質装置1からの改質ガスcの流路、排ガスfの流路の途中に設けた閉止弁によって内部を密閉させる密閉手段と、保圧用ガスを外気圧よりも高い圧力でケーシング内に供給する保圧用ガス供給源51と、途中に開閉弁52を備え前記保圧用ガス供給源51からケーシングに至る保圧用ガス供給路53とで構成される保圧手段5とを備えている。   Further, in the above embodiment shown in FIG. 1, the object of pressure holding by the pressure holding means 5 is in the fuel cell main body 2, and the flow path of the reformed gas c, the flow path of the air d, the fuel reaching the fuel cell main body 2 The inside is sealed by a not-shown stop valve provided in the middle of the flow path of unburned gas e from the battery body 2 and the flow path of the exhaust g, and the sealed portion is held in pressure. As shown, the fuel reformer 1 may be a pressure holding target. By a closing valve provided in the middle of the flow path of the raw fuel a leading to the fuel reformer 1, the flow path of the unburned gas e, the flow path of the reformed gas c from the fuel reformer 1, and the flow path of the exhaust gas f A sealing means for sealing the inside, a pressure-holding gas supply source 51 for supplying pressure-holding gas to the casing at a pressure higher than the external pressure, and an on-off valve 52 in the middle are provided from the pressure-holding gas supply source 51 to the casing. And a pressure holding means 5 constituted by a pressure holding gas supply path 53.

この場合の保圧動作およびリークの検出については上実施形態と同様であり、このようにすることで、燃料改質装置1を保圧対象としたものにあっても上述したのと同様の効果が得られる。また、燃料電池本体2および燃料改質装置1を保圧対象としたものであっても、同様の効果が得られるものである。   The pressure holding operation and leak detection in this case are the same as in the above embodiment, and by doing so, the same effect as described above can be obtained even when the fuel reformer 1 is a pressure holding target. Is obtained. Moreover, even if the fuel cell main body 2 and the fuel reforming apparatus 1 are intended for holding pressure, the same effect can be obtained.

燃料電池発電システムの全体構成図である。1 is an overall configuration diagram of a fuel cell power generation system. 同上の燃料電池本体の構成図である。It is a block diagram of a fuel cell main body same as the above. リークが発生していない場合の開閉弁の動作状況を示す時間−圧力関係線図である。It is a time-pressure relationship diagram which shows the operation | movement condition of an on-off valve when the leak has not generate | occur | produced. リークが発生している場合の開閉弁の動作状況を示す時間−圧力関係線図である。It is a time-pressure relationship diagram which shows the operation | movement condition of an on-off valve when the leak has generate | occur | produced. 他の実施形態の全体構成図である。It is a whole block diagram of other embodiment.

符号の説明Explanation of symbols

1 燃料改質装置
11 加熱手段のバーナ
2 燃料電池本体
3 インバータ
4 凝縮器
5 保圧手段
51 保圧用ガス供給源
52 開閉弁
53 保圧用ガス供給路
6 蒸気発生器
a 原燃料
c 改質ガス
d 空気
DESCRIPTION OF SYMBOLS 1 Fuel reformer 11 Burner of heating means 2 Fuel cell main body 3 Inverter 4 Condenser 5 Holding pressure means 51 Holding pressure gas supply source 52 On-off valve 53 Holding pressure gas supply path 6 Steam generator a Raw fuel c Reformed gas d air

Claims (2)

原燃料のガスを改質して水素リッチな改質ガスを生成する燃料改質装置と、前記改質ガスと空気とを化学反応させて発電を行う燃料電池本体と、燃料電池発電の運転休止時に燃料電池本体の内気圧を外気圧よりも高い圧力で保圧する保圧手段とを備え、前記保圧手段を、燃料電池本体内を密閉させるための閉止弁からなる密閉手段と、保圧用ガスを外気圧よりも高い圧力で燃料電池本体に供給する保圧用ガス供給源と、前記保圧用ガス供給源から燃料電池本体に至り途中に開閉弁を備えた保圧用ガス供給路とで構成し、運転休止時に燃料電池本体内を密閉させた状態として、燃料電池本体の内気圧が所定値以下になると前記開閉弁を開いて保圧用ガスを燃料電池本体に供給した後開閉弁を閉じて外気圧よりも高い圧力で保圧する燃料電池発電システムにおけるリーク検出方法であって、保圧用ガスを燃料電池に供給するための前記開閉弁の開動作の時間当たりの回数が所定回数以上となった場合にリークが発生していると判定することを特徴とする燃料電池発電システムにおけるリーク検出方法。   A fuel reformer that reforms the raw fuel gas to produce a hydrogen-rich reformed gas, a fuel cell main body that generates electricity by chemically reacting the reformed gas and air, and a suspension of fuel cell power generation Pressure holding means for holding the internal pressure of the fuel cell body at a pressure higher than the external pressure, and the pressure holding means includes a sealing means comprising a shut-off valve for sealing the inside of the fuel cell body, and a pressure holding gas. A pressure-holding gas supply source that supplies the fuel cell body with a pressure higher than the external pressure, and a pressure-holding gas supply path that includes an on-off valve from the pressure-holding gas supply source to the fuel cell body. When the internal pressure of the fuel cell body falls below a predetermined value with the fuel cell main body sealed when the operation is stopped, the on-off valve is opened and the holding gas is supplied to the fuel cell main body. Fuel cell power generation with higher pressure A method for detecting a leak in a stem, wherein a determination is made that a leak has occurred when the number of opening operations of the on-off valve for supplying the holding pressure gas to the fuel cell exceeds a predetermined number of times. A leak detection method in a fuel cell power generation system. 原燃料のガスを改質して水素リッチな改質ガスを生成する燃料改質装置と、前記改質ガスと空気とを化学反応させて発電を行う燃料電池本体と、燃料電池発電の運転休止時に燃料改質装置の内気圧を外気圧よりも高い圧力で保圧する保圧手段とを備え、前記保圧手段を、燃料改質装置内を密閉させるための閉止弁からなる密閉手段と、保圧用ガスを外気圧よりも高い圧力で燃料改質装置に供給する保圧用ガス供給源と、前記保圧用ガス供給源から燃料改質装置に至り途中に開閉弁を備えた保圧用ガス供給路とで構成し、運転休止時に燃料改質装置内を密閉させた状態として、燃料改質装置の内気圧が所定値以下になると前記開閉弁を開いて保圧用ガスを燃料改質装置に供給した後開閉弁を閉じて外気圧よりも高い圧力で保圧する燃料電池発電システムにおけるリーク検出方法であって、保圧用ガスを燃料電池に供給するための前記開閉弁の開動作の時間当たりの回数が所定回数以上となった場合にリークが発生していると判定することを特徴とする燃料電池発電システムにおけるリーク検出方法。
A fuel reformer that reforms the raw fuel gas to produce a hydrogen-rich reformed gas, a fuel cell main body that generates electricity by chemically reacting the reformed gas and air, and a suspension of fuel cell power generation Pressure holding means for holding the internal pressure of the fuel reformer at a pressure higher than the external pressure, and the pressure holding means includes a sealing means including a shut-off valve for sealing the inside of the fuel reformer. A pressure-holding gas supply source for supplying the pressure gas to the fuel reformer at a pressure higher than the external pressure, and a pressure-holding gas supply path having an on-off valve from the pressure-holding gas supply source to the fuel reformer. After the fuel reformer is sealed when the operation is stopped, the on-off valve is opened and the holding pressure gas is supplied to the fuel reformer when the internal pressure of the fuel reformer falls below a predetermined value. Fuel cell power generation that closes the on-off valve and keeps the pressure higher than the outside A method for detecting a leak in a stem, wherein a determination is made that a leak has occurred when the number of opening operations of the on-off valve for supplying the holding pressure gas to the fuel cell exceeds a predetermined number of times. A leak detection method in a fuel cell power generation system.
JP2006086049A 2006-03-27 2006-03-27 Leak detecting method in fuel cell power generation system Pending JP2007265669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086049A JP2007265669A (en) 2006-03-27 2006-03-27 Leak detecting method in fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086049A JP2007265669A (en) 2006-03-27 2006-03-27 Leak detecting method in fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2007265669A true JP2007265669A (en) 2007-10-11

Family

ID=38638467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086049A Pending JP2007265669A (en) 2006-03-27 2006-03-27 Leak detecting method in fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2007265669A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108446A (en) * 2006-10-23 2008-05-08 Aisin Seiki Co Ltd Fuel cell system
JP2010086949A (en) * 2008-09-02 2010-04-15 Osaka Gas Co Ltd Shutdown and storing method of fuel cell system
JP2011181263A (en) * 2010-02-26 2011-09-15 Osaka Gas Co Ltd Method of maintaining shutdown state of fuel cell system
JP2012119201A (en) * 2010-12-02 2012-06-21 Toshiba Fuel Cell Power Systems Corp Fuel cell power generating system, and leakage detecting method of the same
JP2013114850A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103860A (en) * 1979-02-06 1980-08-08 American Sterilizer Co Sterilization by life killing gas and decision of leakage of gas
JPH08329965A (en) * 1995-05-29 1996-12-13 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JPH09113400A (en) * 1995-10-17 1997-05-02 Matsushita Electric Ind Co Ltd Leakage detector for piping
JPH09182785A (en) * 1995-12-28 1997-07-15 Nippon Zeon Co Ltd Actuator for medical instrument application
JP2003308866A (en) * 2002-04-16 2003-10-31 Nissan Motor Co Ltd Gas leakage detecting method and device for fuel cell system
JP2005071934A (en) * 2003-08-27 2005-03-17 Toshiba International Fuel Cells Corp Fuel cell system, and starting, stopping, and maintaining method of same
JP2005071778A (en) * 2003-08-25 2005-03-17 Matsushita Electric Ind Co Ltd Fuel cell system and its operation method
JP2005174694A (en) * 2003-12-10 2005-06-30 Toyota Motor Corp Fuel cell degradation diagnostic apparatus
JP2005294127A (en) * 2004-04-01 2005-10-20 Ebara Ballard Corp Fuel cell power generation system
JP2006066107A (en) * 2004-08-24 2006-03-09 Matsushita Electric Ind Co Ltd Fuel cell system and shutdown method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103860A (en) * 1979-02-06 1980-08-08 American Sterilizer Co Sterilization by life killing gas and decision of leakage of gas
JPH08329965A (en) * 1995-05-29 1996-12-13 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JPH09113400A (en) * 1995-10-17 1997-05-02 Matsushita Electric Ind Co Ltd Leakage detector for piping
JPH09182785A (en) * 1995-12-28 1997-07-15 Nippon Zeon Co Ltd Actuator for medical instrument application
JP2003308866A (en) * 2002-04-16 2003-10-31 Nissan Motor Co Ltd Gas leakage detecting method and device for fuel cell system
JP2005071778A (en) * 2003-08-25 2005-03-17 Matsushita Electric Ind Co Ltd Fuel cell system and its operation method
JP2005071934A (en) * 2003-08-27 2005-03-17 Toshiba International Fuel Cells Corp Fuel cell system, and starting, stopping, and maintaining method of same
JP2005174694A (en) * 2003-12-10 2005-06-30 Toyota Motor Corp Fuel cell degradation diagnostic apparatus
JP2005294127A (en) * 2004-04-01 2005-10-20 Ebara Ballard Corp Fuel cell power generation system
JP2006066107A (en) * 2004-08-24 2006-03-09 Matsushita Electric Ind Co Ltd Fuel cell system and shutdown method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108446A (en) * 2006-10-23 2008-05-08 Aisin Seiki Co Ltd Fuel cell system
JP2010086949A (en) * 2008-09-02 2010-04-15 Osaka Gas Co Ltd Shutdown and storing method of fuel cell system
JP2011181263A (en) * 2010-02-26 2011-09-15 Osaka Gas Co Ltd Method of maintaining shutdown state of fuel cell system
JP2012119201A (en) * 2010-12-02 2012-06-21 Toshiba Fuel Cell Power Systems Corp Fuel cell power generating system, and leakage detecting method of the same
JP2013114850A (en) * 2011-11-28 2013-06-10 Aisin Seiki Co Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
JP5133165B2 (en) Fuel cell system
KR100827954B1 (en) Apparatus and method for protecting molten carbonate fuel cell
JP5490102B2 (en) Hydrogen generator, fuel cell system, and operation method of hydrogen generator
JPWO2009087973A1 (en) Hydrogen generator and fuel cell system
US9711806B2 (en) Device and method for heating fuel cell stack and fuel cell system having the device
JP2007265669A (en) Leak detecting method in fuel cell power generation system
US20220223892A1 (en) Fuel cell system
JP2019102283A (en) Fuel cell system
JP5057295B2 (en) Fuel cell device
JP4687039B2 (en) Polymer electrolyte fuel cell system
JP2018518015A (en) Heating system and method for operating a heating system
JP2009104814A (en) Fuel cell power generation system
JP2006210019A (en) Fuel cell system
JPWO2010079561A1 (en) Fuel cell system
JP2014007169A (en) Shutdown and storing method of fuel cell system
JP5607951B2 (en) Method for maintaining a stopped state of a fuel cell system
KR20100063994A (en) Connecting apparatus in fuel cell system and fuel cell system having the same
JPH0729586A (en) Fuel cell operation method
JP2010160969A (en) Fuel cell power generation system, and inspection method thereof
JP2004342389A (en) Fuel cell device
JP2007165073A (en) Fuel cell power generation system and operation method therefor
WO2013145761A1 (en) Electricity generation system and operating method therefor
JP2015201351A (en) Power unit and power generation method thereof
WO2010134317A1 (en) Hydrogen generation device and fuel cell system
JP6791740B2 (en) Fuel cell power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205