Nothing Special   »   [go: up one dir, main page]

JP2010151670A - Automatic analysis apparatus - Google Patents

Automatic analysis apparatus Download PDF

Info

Publication number
JP2010151670A
JP2010151670A JP2008331173A JP2008331173A JP2010151670A JP 2010151670 A JP2010151670 A JP 2010151670A JP 2008331173 A JP2008331173 A JP 2008331173A JP 2008331173 A JP2008331173 A JP 2008331173A JP 2010151670 A JP2010151670 A JP 2010151670A
Authority
JP
Japan
Prior art keywords
reaction
container
point
sample
transfer means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008331173A
Other languages
Japanese (ja)
Other versions
JP5428332B2 (en
Inventor
Akio Tsutanaga
暁男 蔦永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008331173A priority Critical patent/JP5428332B2/en
Publication of JP2010151670A publication Critical patent/JP2010151670A/en
Application granted granted Critical
Publication of JP5428332B2 publication Critical patent/JP5428332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the maximum number of sample containers and reaction containers loaded and to achieve compactness in an automatic measuring apparatus for transferring the sample containers and the reaction containers in their mixture through the use of a single transfer means. <P>SOLUTION: An automatic analysis apparatus is constituted of: the transfer means for mounting and transferring the sample containers and the reaction containers in their mixture; an intermediate transfer means for receiving and mounting the reaction containers mounted to the transfer means; a reaction means for receiving the reaction containers from the intermediate transfer means and maintaining them at a prescribed temperature; a first reaction container transfer means for transferring the reaction containers mounted to the transfer means to the intermediate transfer means; a second reaction container transfer means for transferring the reaction containers mounted to the intermediate transfer means to the reaction means; and a dispensing means for drawing by suction samples in the sample containers mounted to the transfer means and dispensing them to the reaction containers mounted to the intermediate transfer means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば試料に対して所定の試薬を混合し、所定の時間反応を生じさせる分析装置に関するものである。本発明は、具体的には血清、血漿又は尿等の生体試料に含まれる微量成分を当該成分に対する抗体や抗原を用いて測定する免疫分析装置等に特に好適に適用され、従来のものと比較して、より小型かつ処理能力が向上した分析装置に関するものである。   The present invention relates to an analyzer that mixes a predetermined reagent with a sample, for example, and causes a reaction for a predetermined time. Specifically, the present invention is particularly preferably applied to an immunoassay apparatus or the like for measuring a trace component contained in a biological sample such as serum, plasma or urine using an antibody or an antigen against the component, and compared with a conventional one. Thus, the present invention relates to a smaller and more improved analysis apparatus.

生体試料の臨床検査等は、操作者の技量が検査結果に及ぼす影響を排除し、また多くの試料を短時間で処理するために求められる処理スピードを考慮すると、自動分析装置で行うべきものである。一般に、生化学用の自動分析装置では、検査すべき生体試料を収容する複数の試料容器を準備する設備と、試料と反応させる試薬を準備する設備と、試料と試薬とを反応させるための反応容器を準備する設備と、反応容器のなかに所定量の試料及び試薬を分注する設備と、試料と試薬が分注された反応容器を一定時間所定の条件下に置く設備と、反応後の測定を実施する設備と、これらの設備間で試料容器及び/又は反応容器を搬送する設備とからなる。このように、自動分析装置には多くの設備が必要であるため、処理スピードの向上等の要請に応えると装置が大型化し、各設備の構成や操作性は複雑化する傾向がある。   Biological sample clinical tests should be performed with an automatic analyzer in consideration of the processing speed required to process many samples in a short time, eliminating the effect of operator skill on the test results. is there. In general, in an automatic analyzer for biochemistry, a facility for preparing a plurality of sample containers for storing a biological sample to be examined, a facility for preparing a reagent to be reacted with the sample, and a reaction for reacting the sample with the reagent Equipment for preparing the container, equipment for dispensing a predetermined amount of sample and reagent in the reaction container, equipment for placing the reaction container in which the sample and the reagent are dispensed under a predetermined condition for a certain period of time, It consists of equipment for carrying out the measurement and equipment for transporting the sample container and / or reaction container between these equipments. As described above, since many apparatuses are required for the automatic analyzer, the apparatus tends to increase in size when the request for improving the processing speed is satisfied, and the configuration and operability of each facility tend to be complicated.

前記のような要請がある一方で、処理スピード等の向上よりも、むしろ、設置面積の低減や各設備の構成・操作性の簡略化の要請もある。生体試料についての免疫分析を自動的に行う自動免疫分析装置を具体例として説明すると、このような要請に対しては従来、試料容器と反応容器をそれぞれ異なる搬送ラインに手動で並べ、測定結果の出力までを自動でおこなう卓上型の自動免疫分析装置が提案されている(特許文献1)。この装置では、試料容器と反応容器を搬送するラインはともにエンドレスのコンベア式スネークチェーンで構成されているが、試料容器の搬送ラインと反応容器の搬送ラインの一部領域では、両者は同期しつつ並行して間欠移動するよう制御される。また更に、特許文献1の装置と比較して、各設備の構成・操作性、及び、設置面積等をより一層簡略化・小型化した装置として、単一の搬送ラインを用いて試料容器と反応容器を混在した状態で搬送する装置が提案されている(特許文献2)。   While there is a request as described above, there is also a request for reducing the installation area and simplifying the configuration and operability of each facility rather than improving the processing speed and the like. An automatic immunoanalyzer that automatically performs immunoassay on biological samples will be described as a specific example. Conventionally, in order to meet such demands, sample containers and reaction containers are manually arranged on different transport lines, and the measurement results A desktop autoimmune analyzer that automatically performs output has been proposed (Patent Document 1). In this apparatus, both the sample container and the reaction container transport line are configured by an endless conveyor type snake chain. However, in the partial region of the sample container transport line and the reaction container transport line, both are synchronized. It is controlled to intermittently move in parallel. Furthermore, as compared with the device of Patent Document 1, the configuration and operability of each facility, the installation area, etc. are further simplified and miniaturized as a device that uses a single transfer line to react with the sample container. An apparatus for transporting containers in a mixed state has been proposed (Patent Document 2).

ところで、自動分析装置は、装置の稼働中、常に操作者の監視が必要というものではなく、特に問題がなければ操作者は装置から離れ、他の仕事に従事することが可能である。しかし、自動分析装置では、容器に付着した先の試料や反応溶液を短時間に洗浄することがむずかしいことから、一度使用した反応容器は再利用することなく廃棄するのが普通である。このため、特許文献1又は2の装置では、操作者不在の場合、環状の搬送軌道に最初に載せられた試料容器や反応容器の総数(最大架設数)が処理数の上限となり、上限を超える測定を実施しようとすれば、最初に載せた試料容器や反応容器の処理が終わる前に処理を終えた容器を取り出して新たな容器を載置しなければならない。最大架設数を増やせれば操作者が他の仕事に従事できる時間を延ばすことができるが、そのためには環状軌道を大きくする等の必要があり、装置の大型化という課題を生じる。   By the way, the automatic analyzer is not always required to be monitored by the operator during the operation of the apparatus. If there is no problem, the operator can leave the apparatus and engage in other work. However, in the automatic analyzer, it is difficult to wash the sample and the reaction solution attached to the container in a short time, and therefore the reaction container once used is usually discarded without being reused. For this reason, in the apparatus of Patent Document 1 or 2, in the absence of an operator, the total number of sample containers and reaction containers (maximum erection number) initially placed on the annular transport track is the upper limit of the processing number, which exceeds the upper limit. In order to carry out the measurement, the processed container must be taken out and a new container must be placed before the processing of the sample container or the reaction container that has been placed first. If the maximum number of erections can be increased, the time that the operator can engage in other tasks can be extended. However, for this purpose, it is necessary to enlarge the annular track, which causes a problem of increasing the size of the apparatus.

特許第2884604号公報Japanese Patent No. 2884604 特許第3991495号公報Japanese Patent No. 399495

本発明は前記課題に鑑みてなされたものであり、試料容器と反応容器を混在した状態で搬送する単一の搬送手段とともに、搬送手段に載置された反応容器を中間的な搬送手段に移送した上で搬送手段に載置された試料容器から試料を分注するという構成を採用することにより、小型でありながら、装置に載置できる試料容器・反応容器の最大架設数を向上した自動分析装置を提供するものである。   The present invention has been made in view of the above problems, and transfers a reaction vessel placed on a conveyance means to an intermediate conveyance means together with a single conveyance means for conveying a sample container and a reaction container in a mixed state. In addition, by adopting a configuration in which the sample is dispensed from the sample container placed on the transport means, automatic analysis improves the maximum number of sample containers and reaction containers that can be placed on the device while being compact. A device is provided.

上記目的を達成するために完成された本発明は、試料容器及び反応容器を両者が混在した状態で載置して搬送する搬送手段、搬送手段に載置された反応容器を受け入れて載置する中間搬送手段、中間搬送手段から反応容器を受け入れて所定の温度に維持する反応手段、搬送手段に載置された反応容器を中間搬送手段へ移送する第1反応容器移送手段、中間搬送手段に載置された反応容器を反応手段へ移送する第2反応容器移送手段、及び、搬送手段に載置された試料容器中の試料を吸引し中間搬送手段に載置された反応容器に分注する分注手段とから構成され、ここで前記各手段は、以下のような特徴を有する、自動分析装置である。
(1)前記搬送手段は、当該手段に載置された容器を順次地点A及びBに搬送することが可能であり、
(2)前記中間搬送手段は、第1反応容器移送手段によって搬送手段から搬送された反応容器を地点Cにて受け入れること、及び、受け入れた反応容器を地点Cと地点Dの間で搬送することが可能であり、
(3)前記反応手段は、第2反応容器移送手段によって中間搬送手段から搬送された反応容器を地点Eにて受け入れることが可能であり、
(4)前記第1反応容器移送手段は、前記地点Aに搬送された反応容器を地点Cに移送することが可能であり、前記第2反応容器移送手段は地点Cに搬送された反応容器を地点Eに移送することが可能であり、そして、
(5)前記分注手段は、前記地点Bでそこに搬送された試料容器中の試料を吸引し、地点Dでそこに搬送された反応容器に分注することが可能である。
The present invention completed in order to achieve the above-described object is to receive and place the reaction container placed on the carrying means, carrying means for placing and carrying the sample container and the reaction container in a mixed state. The intermediate transfer means, the reaction means for receiving the reaction container from the intermediate transfer means and maintaining it at a predetermined temperature, the first reaction container transfer means for transferring the reaction container placed on the transfer means to the intermediate transfer means, and the intermediate transfer means A second reaction container transfer means for transferring the placed reaction container to the reaction means, and a part for sucking the sample in the sample container placed on the transport means and dispensing it to the reaction container placed on the intermediate transport means Here, each means is an automatic analyzer having the following characteristics.
(1) The conveying means can sequentially convey the containers placed on the means to the points A and B,
(2) The intermediate transfer means receives the reaction container transferred from the transfer means by the first reaction container transfer means at the point C, and transfers the received reaction container between the point C and the point D. Is possible,
(3) The reaction means can receive the reaction container conveyed from the intermediate conveyance means by the second reaction container transfer means at the point E,
(4) The first reaction vessel transfer means can transfer the reaction vessel transferred to the point A to the point C, and the second reaction vessel transfer means sets the reaction vessel transferred to the point C. Can be transferred to point E, and
(5) The dispensing means can suck the sample in the sample container transported there at the point B and dispense it into the reaction container transported there at the point D.

以下、免疫分析のための自動免疫分析装置を例にして、本発明を説明する。   Hereinafter, the present invention will be described by taking an automatic immune analyzer for immunoassay as an example.

図1は、本発明の自動免疫分析装置の模式図である。搬送手段1は、ステッピングモーター等の制御が容易な駆動装置等によって構成される環状軌道(無限軌道)であり、試料容器6と反応容器7を両者が混在した状態で載置して矢印方向に搬送し、容器毎に、順次、地点A及びBに搬送する。本例での反応容器には、分析項目に対応した固相化抗体と酵素標識抗体が予め凍結乾燥状態で封入されている。また本例の試料容器には、例えば血液、血清、血漿、尿といった生体試料や、それらを定量するための標準試料、そして、分析装置の精度管理用の試料が収容されている。なお前記のように、反応容器に予め試薬が封入されている場合には、搬送手段1により反応容器が地点Aに搬送される前か、又は、第1反応容器移送手段により反応容器が地点Aから地点Cに移送された後であって地点Dにおいて試料の分注が行われる前に、容器の封入を破開するためのブレーカを配置する。   FIG. 1 is a schematic diagram of an automatic immunoanalyzer according to the present invention. The transport means 1 is an annular track (infinite track) constituted by a drive device that can be easily controlled, such as a stepping motor, and the sample container 6 and the reaction container 7 are placed in a mixed state in the direction of the arrow. It conveys and it conveys to the points A and B sequentially for every container. In the reaction container in this example, a solid-phased antibody and an enzyme-labeled antibody corresponding to the analysis item are sealed in a freeze-dried state in advance. The sample container of this example contains biological samples such as blood, serum, plasma, and urine, standard samples for quantifying them, and samples for quality control of the analyzer. As described above, when the reagent is previously sealed in the reaction container, the reaction container is moved to the point A before the reaction container is transferred to the point A by the transfer unit 1 or by the first reaction container transfer unit. A breaker for breaking the enclosure of the container is disposed after the sample is transferred to point C and before the sample is dispensed at point D.

本例では、試料容器及び反応容器を担持する市販の容器ラック8を搬送する構成であるが、これ以外にも例えば、試料容器又は反応容器を載置可能な凹部を有するトレイをスネークチェーンで環状に連結し、スプロケットで駆動する方式や、前記トレイを1つずつ通すだけの幅をもった溝形の環状経路の底部にベルトコンベアを設け、トレイを1つずつ搬送する方式等、従来公知の構成を採用することができる。本例では概ね長方形の搬送軌道9を描くように搬送されるが、搬送軌道は円や多角形、又は不定形であっても良い。また本例では、概ね長方形の搬送軌道9のうちの短辺部分では容器ラックを短辺方向に搬送し、搬送軌道9のうちの長辺部分では容器ラックの長辺方向に搬送するような構成とすることで、搬送軌道上の最大架設数を向上している。更に本例では、搬送手段はそこに載置され搬送される容器に関する情報を取得するためのセンサー10を具備する。センサーは、容器ラックに容器が載置されているか否か、容器が存在する場合の当該容器の種別(試料容器か反応容器か)、等をセンシングすることが例示できるが、反応容器中に、予め所定の反応のための試薬の一部又は全部が封入されているような場合、当該反応容器がいかなる反応用の容器であるのかという種別についても、予め容器側にラベルを添付しておき、当該センサーでセンシングして、その結果に応じて後述する分注手段による試料の分注量を変更する等ということも可能になる。なお、後述するように、本発明は位置Aに搬送された反応容器を中間搬送手段に移送するため、それ以前の地点にて容器種別等の情報を取得する必要があり、センサーを設ける場合、地点Aに至る以前の地点に設けることが好ましい。もちろん、搬送手段1によって搬送される容器の種別について、例えば独立した市販の容器ラックの先端の先頭に必ず試料容器を載置する等といったルールを設けてあれば、容器の種別をセンシングするセンサーを設ける必要はない。   In this example, a commercially available container rack 8 carrying the sample container and the reaction container is transported. In addition to this, for example, a tray having a recess in which the sample container or the reaction container can be placed is annularly formed by a snake chain. And a method of driving by a sprocket, a method of providing a belt conveyor at the bottom of a groove-shaped annular path having a width enough to pass the trays one by one, and conveying the trays one by one, etc. A configuration can be employed. In this example, it is transported so as to draw a substantially rectangular transport track 9, but the transport track may be a circle, a polygon, or an indeterminate shape. In this example, the container rack is transported in the short side direction in the short side portion of the substantially rectangular transport track 9, and is transported in the long side direction of the container rack in the long side portion of the transport track 9. By doing so, the maximum number of installations on the transport track is improved. Furthermore, in this example, the transport means includes a sensor 10 for acquiring information about a container placed and transported thereon. The sensor can be exemplified by sensing whether or not a container is placed on a container rack, the type of the container when the container is present (sample container or reaction container), and the like. When some or all of the reagent for a predetermined reaction is sealed in advance, a label is attached to the container side in advance as to the type of reaction container the reaction container is, It is also possible to sense with the sensor and change the amount of sample dispensed by the dispensing means described later according to the result. As will be described later, in the present invention, since the reaction container transported to the position A is transferred to the intermediate transport means, it is necessary to acquire information such as the container type at a previous point, and when a sensor is provided, It is preferably provided at a point before reaching point A. Of course, if there is a rule such as placing a sample container at the top of the tip of an independent commercially available container rack as to the type of container to be transported by the transport means 1, a sensor for sensing the type of container is provided. There is no need to provide it.

搬送手段1は、一平面上で容器を搬送するものであることが設備の簡略化等の面で好ましい。しかし、例えばその搬送途中にZ軸方向に容器を搬送する手段を配置することにより、平行な二平面以上で容器を搬送するように構成することも可能であり、この場合には空間の効率的な利用により、搬送軌道上の最大架設数を更に向上できる。   It is preferable in terms of simplification of equipment and the like that the transport unit 1 transports the container on a single plane. However, for example, by arranging a means for transporting the container in the Z-axis direction in the middle of the transport, it is possible to transport the container on two or more parallel planes. The maximum number of erections on the transport track can be further improved by proper use.

搬送手段1に載置された反応容器7は、搬送手段のセンサーにより認識され、地点Aに到達後、後述する移送手段14により地点Cに移送され地点Cにて中間搬送手段2に受け入れられて載置される。図1の例では、試料容器6に続いて5個の反応容器が載置されているが、これら5個の反応容器のそれぞれは、搬送手段1により地点Aに搬送された段階で移送手段14により中間搬送手段2に移送される。中間搬送手段2は、地点Cで反応容器を受け入れるとともに、受け入れた反応容器を地点Dに搬送する。この地点Dでは、後述する分注手段15により、地点Bに搬送された試料容器から吸引された試料の所定量が分注される。このように、搬送手段上の任意の場所に試料容器を載置し、それに続いて1又は複数の反応容器を載置した場合、先頭に位置する試料容器(1個)とそれに続く反応容器の合計個数が位置AからBに至る部分に載置可能な容器数以下となる限り、先頭の試料容器から吸引した試料を後続する反応容器に分注して分析することができる。位置AからBに至る部分にどれくらいの数の容器を載置可能に構成するかは、1つの試料について実施が予想される分析の回数、即ち、1つの試料に対して消費され得る反応容器数(例えば、1つの試料について同一の分析をX回繰り返す場合や異なるX回の分析を行う場合には、X)を考慮して決定することが例示できる。また例えば、市販の容器ラックに載置可能な容器の数に基づいてAB間に載置し得る容器の数を決定することも可能である。図1の装置では、市販の容器ラックに載置可能な容器の数(6個)に基づき、AB間には合計で6個の容器を載置可能にしてある。従って、反応容器7がすべて同じ試薬を収容しているならば、5回の繰り返し分析が可能であり、すべて異なる分析に対応した試薬を収容しているならば、同一試料に対して5回の異なる分析を実施することができる。なお、多数の容器をAB間に載置するには、AからBに至るまでの搬送軌道を図に示した例とは異なるものに変更すれば良い。   The reaction vessel 7 placed on the conveying means 1 is recognized by the sensor of the conveying means, and after reaching the point A, it is transferred to the point C by the transferring means 14 described later and received by the intermediate conveying means 2 at the point C. Placed. In the example of FIG. 1, five reaction containers are placed following the sample container 6. Each of the five reaction containers is transferred to the point A by the transfer means 1 and is transferred to the transfer means 14. Is transferred to the intermediate transfer means 2. The intermediate transport unit 2 receives the reaction container at the point C and transports the received reaction container to the point D. At this point D, a predetermined amount of the sample sucked from the sample container transported to the point B is dispensed by the dispensing means 15 described later. In this way, when a sample container is placed at an arbitrary location on the transport means and subsequently one or more reaction containers are placed, the sample container (one piece) located at the head and the subsequent reaction container As long as the total number is equal to or less than the number of containers that can be placed in the portion from position A to position B, the sample sucked from the first sample container can be dispensed into the subsequent reaction container for analysis. How many containers can be placed in the portion from the position A to the position B depends on the number of analyzes expected to be performed on one sample, that is, the number of reaction containers that can be consumed for one sample. (For example, when the same analysis is repeated X times for one sample or when different X times of analysis are performed, it can be exemplified that X is taken into consideration.) Further, for example, the number of containers that can be placed between the ABs can be determined based on the number of containers that can be placed on a commercially available container rack. In the apparatus of FIG. 1, a total of six containers can be placed between AB based on the number (6) of containers that can be placed on a commercially available container rack. Therefore, if the reaction containers 7 all contain the same reagent, five repeated analyzes are possible, and if all the reagents corresponding to different analyzes are accommodated, five times for the same sample. Different analyzes can be performed. In order to place a large number of containers between AB, the transport trajectory from A to B may be changed to a different one from the example shown in the figure.

中間搬送手段2は、それが担持する反応容器を地点CとDとの間で搬送するものであることから、搬送手段1とは異なり、環状軌道とするよりもむしろ本例に示したように所定数の反応容器を担持し、それを直線軌道上で往復搬送する構成とすることが設備の簡略化の面でも好ましい。中間搬送手段2を所定数の反応容器を担持し得る構成とする場合、当該所定数としては、搬送手段1における位置AからBに至る部分に載置可能な容器の数と同数にすることが特に好ましい。なお、搬送手段1から中間搬送手段2に対しては、反応容器7の移送に加え、搬送手段に載置された試料容器から吸引された試料の分注操作が行われるため、これら手段は同一平面上に配置することが好ましい。しかし、例えばZ軸方向に反応容器を搬送可能な手段を後述する第1反応容器移送手段として採用すれば、搬送手段1による搬送軌道が属する平面と平行な平面上で反応容器を往復搬送するように構成することも可能である。更に、図面に示した構成のように、搬送手段における地点AからBへの容器の搬送経路と前記中間搬送手段における地点CとDの間での反応容器の搬送経路をいずれも直線とし、かつ、両者を平行としておくことにより、第1反応容器移送手段や分注手段の移送経路をも単純化することができ、分析装置の設備を一層簡略にできる。いずれの場合にも、搬送手段1と中間搬送手段2おいて、容器を載置した場合の隣り合う容器間の間隔をほぼ同一にしておき、かつ、当該間隔分ずつ両搬送手段で容器を間欠搬送することが、装置を制御する上で特に好ましい。間欠搬送の速度に特別の制限はなく、例えば10〜100秒ごとに前記間隔分ずつ搬送することが例示できる。もっとも、常に同じ速度、間隔で搬送する必要はなく、例えば試料容器が地点Bに搬送された場合には、分注手段による分注の操作を確実に実施する上で必要な時間搬送を停止すること等が例示できる。   Since the intermediate transport means 2 transports the reaction vessel carried by it between the points C and D, unlike the transport means 1, as shown in this example rather than being an annular track. It is preferable also in terms of simplification of equipment to carry a predetermined number of reaction vessels and to reciprocate them on a straight track. When the intermediate transport unit 2 is configured to carry a predetermined number of reaction vessels, the predetermined number may be the same as the number of containers that can be placed on the portion from the position A to B in the transport unit 1. Particularly preferred. In addition to the transfer of the reaction vessel 7 from the transfer means 1 to the intermediate transfer means 2, the dispensing operation of the sample sucked from the sample container placed on the transfer means is performed. It is preferable to arrange on a plane. However, if, for example, a means capable of transporting the reaction container in the Z-axis direction is adopted as a first reaction container transfer means described later, the reaction container is reciprocally transported on a plane parallel to the plane to which the transport track by the transport means 1 belongs. It is also possible to configure. Furthermore, as in the configuration shown in the drawings, the container transport path from point A to B in the transport means and the transport path of the reaction container between points C and D in the intermediate transport means are both straight, and By setting both in parallel, the transfer path of the first reaction vessel transfer means and the dispensing means can be simplified, and the equipment of the analyzer can be further simplified. In any case, in the transfer means 1 and the intermediate transfer means 2, the interval between the adjacent containers when the containers are placed is made substantially the same, and the containers are intermittently moved by the both transfer means for the interval. It is particularly preferable to carry it in order to control the apparatus. There is no particular limitation on the speed of intermittent conveyance, and for example, conveyance can be exemplified by the interval every 10 to 100 seconds. However, it is not always necessary to transport at the same speed and interval. For example, when the sample container is transported to the point B, the transport is stopped for a time necessary for reliably performing the dispensing operation by the dispensing means. This can be illustrated.

中間搬送手段2は、反応容器に分注された試料を分析のための試薬と混合し、均一化を図るために、撹拌手段を具備することが好ましい。撹拌手段としては、例えば反応容器の上部から撹拌パドルを反応容器中に差し込んで撹拌するパドル装置や、中間搬送手段下部に偏心カムを取り付けておき、その回転によって加振するカム装置、水平面内の振動のためのガイド部材を介してモータと係合した振動伝達板を中間搬送手段に取り付ける等、従来公知のものが例示できるが、反応液と非接触での撹拌が可能なものが特に好ましい。   The intermediate transport unit 2 preferably includes a stirring unit in order to mix the sample dispensed in the reaction container with a reagent for analysis and to make the sample uniform. As the stirring means, for example, a paddle device for stirring by inserting a stirring paddle into the reaction vessel from the upper part of the reaction vessel, an eccentric cam attached to the lower part of the intermediate conveying means, and a cam device for vibrating by rotation thereof, Conventionally known ones can be exemplified, for example, a vibration transmission plate engaged with a motor via a guide member for vibration is attached to the intermediate conveying means, but those capable of stirring without contact with the reaction liquid are particularly preferable.

反応手段3は、後述する第2反応容器移送手段によって中間搬送手段から移送された反応容器を地点Eで受け入れ、これを所定の温度に維持し、一定温度条件下での免疫反応等所定の反応を進めるものである。本例における反応手段3は、同心円上に反応容器担持用の孔が設けられ、ステッピングモーター等の不図示の駆動手段で回転駆動される円板であるが、これに限定されるものではなく、例えば搬送手段1と同様に環状経路であっても良い。また免疫分析装置として構成された本例の装置では、いわゆるB/F分離のための装置(不図示)、標識酵素の作用を受けて蛍光物質に変化する酵素基質を分注する装置(不図示)、反応を促進するための撹拌装置等(不図示)とともに、蛍光を測定するための装置11が、円周上に担持された反応容器に対してそれぞれB/F分離、基質分注及び蛍光測定を実施し得るように配置されている。   The reaction means 3 receives a reaction container transferred from the intermediate transfer means by a second reaction container transfer means described later at a point E, maintains this at a predetermined temperature, and performs a predetermined reaction such as an immune reaction under a constant temperature condition. Is to advance. The reaction means 3 in this example is a disk provided with holes for supporting the reaction vessel on concentric circles and driven to rotate by a driving means (not shown) such as a stepping motor, but is not limited thereto. For example, an annular path may be used similarly to the transport unit 1. In the apparatus of this example configured as an immunoassay apparatus, a so-called B / F separation apparatus (not shown), an apparatus (not shown) for dispensing an enzyme substrate that changes to a fluorescent substance under the action of a labeling enzyme. ), A stirrer for accelerating the reaction (not shown), and a device 11 for measuring fluorescence are respectively provided for B / F separation, substrate dispensing and fluorescence for the reaction vessel supported on the circumference. It is arranged so that the measurement can be performed.

反応手段3における反応容器を所定の温度に維持するための温調装置は、例えば前記円板自体を所定温度に維持することや、反応手段3を、反応容器の受け入れ地点E等を除いて筐体で覆い、当該筐体の内部温度をヒーター等で温調する等が例示できる。また必要によっては、反応手段には反応を促進するための撹拌装置を付加することもできる。例えば反応容器中に微小の磁性物質を投入しておき、反応手段3においては磁石手段を用い、反応容器中で磁性物質を移動させる構成を例示することができる。   A temperature control device for maintaining the reaction vessel in the reaction means 3 at a predetermined temperature is, for example, maintaining the disk itself at a predetermined temperature, or the reaction means 3 except for the receiving point E of the reaction vessel. Covering with a body and adjusting the temperature of the inside of the housing with a heater or the like can be exemplified. If necessary, a stirring device for promoting the reaction can be added to the reaction means. For example, it is possible to exemplify a configuration in which a minute magnetic substance is put in a reaction container and a magnetic means is used in the reaction means 3 to move the magnetic substance in the reaction container.

反応手段3が載置可能な反応容器の数は、搬送手段1の搬送能力、分注手段15の分注処理能力、反応手段3に配置された測定装置11の処理能力等に加えて、分析のための反応に要する時間を勘案して適宜決定される。載置すべき反応容器の数が小さい場合、反応手段3自体は小型化することが可能であるが、反応手段3のために大きなスペースが必要な場合、反応手段3を搬送手段1及び中間搬送手段2を設置する平面と平行な平面上に設置することが例示できる。このように反応手段3と搬送手段1等を空間的に階層化すれば、装置を小型化して設置面積を小さくすることが可能となる。   The number of reaction vessels on which the reaction means 3 can be placed is analyzed in addition to the conveyance capacity of the conveyance means 1, the dispensing capacity of the dispensing means 15, the processing capacity of the measuring device 11 arranged in the reaction means 3, etc. It is determined as appropriate in consideration of the time required for the reaction. When the number of reaction containers to be placed is small, the reaction means 3 itself can be reduced in size, but when a large space is required for the reaction means 3, the reaction means 3 is transferred to the transfer means 1 and the intermediate transfer. It can be exemplified that it is installed on a plane parallel to the plane on which the means 2 is installed. Thus, if the reaction means 3 and the transport means 1 are hierarchically arranged, the apparatus can be miniaturized and the installation area can be reduced.

搬送手段1の地点Aから中間搬送手段2の地点Cへの反応容器の移送は第1容器移送手段14により、中間搬送手段2の地点Cから反応手段3の地点Eへの反応容器の移送は第2反応容器移送手段により行われる。第1反応容器移送手段が移送する反応容器は試料が分注される以前のものであるが、第2反応容器移送手段が移送する反応容器は試料分注後のものである。このため、第1と比較して、第2反応容器移送手段は、より高い精度で容器を移送し得るものが好ましいが、高い精度で容器を移送し得る手段を採用する場合、第1と第2の反応容器移送手段を単一の手段で兼用できる。このように単一の手段を第1及び第2反応容器移送手段として使用することにより、装置構成を一層簡略化することができる。具体的に、高い精度で容器を移送し得る手段としては、例えば反応容器がフランジを有する容器である場合には、従来公知であるような、フランジ部と係合する挟持部(チャックヘッド)等の挟持装置とこれを移動する装置を採用することが例示できる。   The transfer of the reaction container from the point A of the transfer means 1 to the point C of the intermediate transfer means 2 is performed by the first container transfer means 14, and the reaction container is transferred from the point C of the intermediate transfer means 2 to the point E of the reaction means 3. It is carried out by the second reaction vessel transfer means. The reaction container transferred by the first reaction container transfer means is the one before the sample is dispensed, while the reaction container transferred by the second reaction container transfer means is the one after the sample dispensing. For this reason, compared with the first, the second reaction container transfer means is preferably capable of transferring the container with higher accuracy. However, when adopting means capable of transferring the container with high precision, the first and first Two reaction vessel transfer means can be combined with a single means. Thus, the apparatus configuration can be further simplified by using a single means as the first and second reaction vessel transfer means. Specifically, as a means for transferring the container with high accuracy, for example, when the reaction container is a container having a flange, a conventionally known clamping part (chuck head) that engages with the flange part, etc. It is possible to exemplify adopting a holding device and a device that moves the holding device.

第1反応容器移送手段による反応容器の移送は搬送手段1から中間搬送手段2への一方的な移送であるのに対し、第2反応容器移送手段による反応容器の移送は、中間搬送手段2から反応手段3への移送に加え、場合によっては反応手段3から中間搬送手段2への移送を加えた、中間搬送手段2と反応手段3との間の移送である。反応手段3から中間搬送手段2への反応容器の移送が行われる場合としては、例えば、試料を反応容器に分注した後、所定温度条件下で第1の反応を行った後、更に試薬を分注し、後述する中間搬送手段が具備する撹拌手段による撹拌を行って所定温度条件下で第2の反応を行う必要がある場合があげられる。ここで、第1及び第2の反応は、多段免疫反応の各ステップに対応するものであってもよい。また例えば、全血試料を溶血したり血清試料中のタンパク質をアルカリ変性する処理を中間搬送手段上でおこなった後、反応容器を反応手段3に移して一定時間温置処理する工程を第1の反応とみなし、その工程後に反応容器を中間搬送手段2に戻して中和剤を分注し攪拌操作をともなう中和処理をほどこす工程を第2の反応とみなすことができる。   While the transfer of the reaction container by the first reaction container transfer means is a unilateral transfer from the transfer means 1 to the intermediate transfer means 2, the transfer of the reaction container by the second reaction container transfer means is from the intermediate transfer means 2. In addition to the transfer to the reaction means 3, the transfer from the reaction means 3 to the intermediate transfer means 2 is added in some cases, and the transfer is between the intermediate transfer means 2 and the reaction means 3. As a case where the reaction container is transferred from the reaction means 3 to the intermediate transport means 2, for example, after dispensing a sample into the reaction container, after performing a first reaction under a predetermined temperature condition, a reagent is further added. There is a case where it is necessary to perform the second reaction under a predetermined temperature condition by dispensing and stirring by the stirring means included in the intermediate conveying means described later. Here, the first and second reactions may correspond to each step of the multistage immune reaction. In addition, for example, a process of performing hemolysis of a whole blood sample or alkali denaturation of a protein in a serum sample on the intermediate transport unit, and then transferring the reaction container to the reaction unit 3 and incubating for a certain time is a first step. It is regarded as a reaction, and after that step, the step of returning the reaction vessel to the intermediate conveying means 2, dispensing the neutralizing agent, and performing a neutralization process with a stirring operation can be regarded as the second reaction.

上記した第1反応容器移送手段と第2反応容器移送手段は、単一の手段で兼用する場合であっても、またそれぞれ異なる手段で構成する場合であっても、その移送経路が直線となり、かつ、地点AとCの移送経路と地点CとEの移送経路が直線となるようにすることが、装置構成を単純化するために特に好ましい。   Even if the first reaction container transfer means and the second reaction container transfer means described above are used as a single means or are configured as different means, the transfer path is a straight line. In addition, it is particularly preferable to make the transfer path of the points A and C and the transfer path of the points C and E straight.

搬送手段1に載置された試料容器中の試料は、中間搬送手段2に移送・載置された反応容器7に分注手段15によって分注される。試料を希釈する必要がある場合には、希釈液を供給する構成を採用し、分注手段が地点Bで試料を吸引する前又は吸引した後に、希釈液を吸引するようにしても良い。分注手段15それ自体は、ポンプに接続されたノズル軸と、当該ノズル軸を試料吸引地点Bから試料分注地点Dに移動する装置で構成されるが、これらは従来公知のものを採用することができる。ところで、分析にあたって試料間の汚染を避けるには、試料毎に異なるノズルチップを使用すべきであり、本発明の装置でも試料毎にノズルチップを交換する分注手段を採用することが好ましい。この場合、分注手段に対して交換用のノズルチップを供給するため、分注手段が移動する地点Bから地点Dの途中に交換用ノズル12を搬送する装置を追加するとともに、使用後のノズルチップを廃棄するための廃棄箱を分注手段の移送経路内に配置することが例示できる。このような構成を採用する場合には、分注手段にはノズルチップの有無を検出するセンサを取り付け、ノズルチップが装着されていない状態で分注動作が生じないようにすることが好ましい。また分注手段の移動に関しては、地点Bにて試料を吸引した後、分注地点Dに移動させる際に、ノズルチップの先端外部に付着した試料の液だれが生じる可能性に備え、ノズルチップをいったん分注手段の移送経路直下から待避させることが例示できる。   The sample in the sample container placed on the transport means 1 is dispensed by the dispensing means 15 to the reaction container 7 transferred and placed on the intermediate transport means 2. When it is necessary to dilute the sample, a configuration in which a diluent is supplied may be adopted, and the diluent may be sucked before or after the dispensing means sucks the sample at the point B. The dispensing means 15 itself is composed of a nozzle shaft connected to a pump and a device for moving the nozzle shaft from the sample suction point B to the sample dispensing point D, and these are conventionally known ones. be able to. By the way, in order to avoid contamination between samples in analysis, different nozzle tips should be used for each sample, and it is preferable to employ a dispensing means for exchanging nozzle tips for each sample in the apparatus of the present invention. In this case, in order to supply the replacement nozzle tip to the dispensing means, a device for transporting the replacement nozzle 12 is added in the middle of the point D from the point B where the dispensing means moves, and the used nozzle It can be exemplified that a disposal box for discarding chips is arranged in the transfer path of the dispensing means. In the case of adopting such a configuration, it is preferable that a sensor for detecting the presence / absence of the nozzle tip is attached to the dispensing means so that the dispensing operation does not occur when the nozzle tip is not attached. Further, regarding the movement of the dispensing means, in preparation for the possibility of the sample dripping adhering to the outside of the tip of the nozzle tip when the sample is sucked at the point B and then moved to the dispensing point D, the nozzle tip is prepared. Can be temporarily saved from directly under the transfer path of the dispensing means.

分注手段は、必要な場合には、反応手段3に受け入れられた反応容器に対し、反応手段上の地点Fにて試薬を分注可能に構成することができる。例えば、当初は分析のために必要な試薬の一部のみしか反応容器7には分注されておらず、まず温調状態で所定の反応を行った後に、追加的に残りの試薬を分注する必要のある場合(例えば、いわゆる2ステップ免疫分析をおこなう場合、標識試薬を追加的に分注することになる)等が例示できる。このような場合、追加的に分注する試薬を吸引するために、分注手段の移送経路である地点Bから地点Dの途中又は地点Dから地点Fの途中に追加分注すべき試薬を保持する容器13を配置し、又は、当該位置に試薬を保持する容器を搬送する手段を追加することが例示できる。なお図1の装置では、交換用のノズルチップ12と追加試薬を保持する容器13を一体的に搬送して供給する構成を例示したが、これらは別個に搬送する構成としても良い。   If necessary, the dispensing means can be configured so that the reagent can be dispensed at a point F on the reaction means with respect to the reaction container received by the reaction means 3. For example, only a part of the reagent necessary for analysis is initially dispensed into the reaction vessel 7, and after the predetermined reaction is first performed in a temperature-controlled state, the remaining reagent is additionally dispensed. For example, when a so-called two-step immunoassay is performed, a labeling reagent is additionally dispensed. In such a case, in order to aspirate the reagent to be additionally dispensed, the reagent to be additionally dispensed is held in the middle of point D from point B, which is the transfer path of the dispensing means, or in the middle of point F from point D. It is possible to exemplify that a container 13 to be placed is arranged or a means for transporting a container holding the reagent at the position is added. In the apparatus of FIG. 1, the configuration in which the replacement nozzle chip 12 and the container 13 holding the additional reagent are integrally transported and supplied is exemplified, but these may be transported separately.

上記の、地点Fにて追加的に試薬を分注するための手段は、分注手段15とは別個に設けることも可能である。しかしながら、装置のメンテナンス利便性を向上し、装置構成を簡略するためには、不要な駆動系を排除して単純化すべく、分注手段15を地点Fまで移動する構成が特に好ましい。   The above-described means for additionally dispensing the reagent at the point F can be provided separately from the dispensing means 15. However, in order to improve the maintenance convenience of the apparatus and simplify the apparatus configuration, a configuration in which the dispensing means 15 is moved to the point F is particularly preferable in order to eliminate unnecessary drive systems and simplify the apparatus configuration.

分注手段の地点BからDへの移送経路は、移動のための装置を単純化するためにも、直線であることが好ましい。また必要に応じて地点Dから地点Fに分注手段を移動する場合には、当該移送経路は、地点BからDへの移送経路の延長線上に、一本の直線となるように構成することが、装置構成の単純化のために特に好ましい。   The transfer path from the point B to the point D of the dispensing means is preferably a straight line in order to simplify the device for movement. Further, when the dispensing means is moved from the point D to the point F as necessary, the transfer route is configured to be a straight line on the extension line of the transfer route from the point B to the point D. Is particularly preferable for simplifying the device configuration.

次に、本発明の装置による分析について、図2から図9に基づき説明する。以下の説明において、タクトタイムとは、搬送手段により容器を間欠的に搬送する時間間隔をいい、連続的に装置を駆動した場合は測定結果が次々に得られるが、その測定結果の得られる時間間隔と一致するものである。タクトタイムは装置の同期的動作の単位と見なすことができ、動作の経過をタクト1、タクト2などと表現することができる。タクトタイムは、10〜100秒から選択された特定の時間に設定されることが多く、一タクトの間に一以上の部位で一以上の処理工程を進行させることができる。   Next, the analysis by the apparatus of this invention is demonstrated based on FIGS. In the following description, the takt time refers to a time interval in which a container is intermittently transported by a transport means, and when the apparatus is continuously driven, measurement results are obtained one after another. It matches the interval. The tact time can be regarded as a unit of synchronous operation of the apparatus, and the progress of the operation can be expressed as tact 1, tact 2, and the like. The tact time is often set to a specific time selected from 10 to 100 seconds, and one or more processing steps can be performed at one or more sites during one tact.

図2は、容器ラック8に試料容器S及び反応容器R1〜R5をこの順に進行方向から載置した場合について説明したものである。図中、試料が収容された試料容器は黒丸(●)で、試薬が入っていてもよい反応容器は白丸(○)で表わされている。また、容器ラック又は中間搬送手段上の容器保持部は白四角(□)で表わされている。   FIG. 2 illustrates a case where the sample container S and the reaction containers R1 to R5 are placed on the container rack 8 in this order from the traveling direction. In the figure, a sample container containing a sample is represented by a black circle (●), and a reaction container that may contain a reagent is represented by a white circle (◯). Further, the container holding part on the container rack or the intermediate conveying means is represented by a white square (□).

図2の時点をタクト1とする。このとき容器ラック8上の試料容器Sは、位置Aに達した状態にある。また、中間搬送手段2の先頭の反応容器保持部は、位置Cに達した状態にある。図3は、図2の時点から1タクト進んだタクト2の状態を示す。ここでは、間欠移動する容器ラック8が1ピッチ移動し、反応容器R1が位置Aに移動する。同一タクト内で引き続き、第1反応容器移送手段が反応容器R1を位置Aから位置Cまで軌道4に沿って移送し、そこで反応容器R1を中間搬送手段2上に載置する。   The time point in FIG. At this time, the sample container S on the container rack 8 has reached the position A. Further, the leading reaction container holding part of the intermediate conveying means 2 has reached the position C. FIG. 3 shows a state of tact 2 that is advanced by one tact from the time of FIG. Here, the intermittently moving container rack 8 moves one pitch, and the reaction container R1 moves to position A. Within the same tact, the first reaction container transfer means transfers the reaction container R1 from position A to position C along the track 4 and places the reaction container R1 on the intermediate transport means 2.

図4は、図3の時点から1タクト進んだタクト3の状態を示す。ここでは、間欠移動する容器ラック8がさらに1ピッチ移動し、反応容器R2が位置Aに移動する。容器ラックの移動に同期して、中間搬送手段2も1ピッチ右方に移動する。同一タクト内で引き続き、第1反応容器移送手段が反応容器R2を位置Aから位置Cまで軌道4に沿って移送する。この結果、中間搬送手段には、反応容器R1とR2とが並んだ状態で載置される。図5は、図4の時点から1タクト進んだタクト4の状態を示す。ここでは、間欠移動する容器ラック8がさらに1ピッチ移動し、反応容器R3が位置Aに移動する。容器ラックの移動に同期して、中間搬送ユニット2も1ピッチ右方に移動する。同一タクト内で引き続き、第1反応容器移送手段が反応容器R3を位置Aから位置Cまで軌道4に沿って移送する。この結果、中間搬送手段には、反応容器R1、R2及びR3が並んだ状態で載置される。   FIG. 4 shows a state of tact 3 that is advanced by one tact from the time of FIG. Here, the intermittently moving container rack 8 further moves one pitch, and the reaction container R2 moves to the position A. In synchronization with the movement of the container rack, the intermediate conveying means 2 also moves to the right by one pitch. Within the same tact, the first reaction vessel transfer means transfers the reaction vessel R2 along the track 4 from the position A to the position C. As a result, the reaction containers R1 and R2 are placed side by side on the intermediate conveying means. FIG. 5 shows the state of tact 4 that is one tact advanced from the time of FIG. Here, the intermittently moving container rack 8 further moves one pitch, and the reaction container R3 moves to the position A. In synchronization with the movement of the container rack, the intermediate transport unit 2 also moves to the right by one pitch. In the same tact, the first reaction vessel transfer means transfers the reaction vessel R3 from position A to position C along the track 4. As a result, the reaction containers R1, R2, and R3 are placed on the intermediate transport unit in a state where they are aligned.

図6は、図5の時点から1タクト進んだタクト5の状態を示す。ここでは、間欠移動する容器ラック8がさらに1ピッチ移動し、反応容器R4が位置Aに移動する。容器ラックの移動に同期して、中間搬送手段2も1ピッチ右方に移動する。同一タクト内で引き続き、第1反応容器移送手段が反応容器R4を位置Aから位置Cまで軌道4に沿って移送する。この結果、中間搬送手段には、反応容器R1、R2、R3及びR4が並んだ状態で載置される。   FIG. 6 shows a state of tact 5 that is advanced by one tact from the time of FIG. Here, the intermittently moving container rack 8 further moves one pitch, and the reaction container R4 moves to the position A. In synchronization with the movement of the container rack, the intermediate conveying means 2 also moves to the right by one pitch. Within the same tact, the first reaction vessel transfer means transfers the reaction vessel R4 along the track 4 from the position A to the position C. As a result, the reaction containers R1, R2, R3, and R4 are placed on the intermediate transport unit in a state where they are aligned.

図7は、図6の時点から1タクト進んだタクト6の初期状態(タクト6−1)を示す。ここでは、間欠移動する容器ラック8がさらに1ピッチ移動し、試料容器が位置Bに達し、反応容器R5が位置Aに移動する。容器ラックの移動に同期して、中間搬送手段2も1ピッチ右方に移動する。同一タクト内で引き続き、第1反応容器移送手段が反応容器R5を位置Aから位置Cまで軌道4に沿って移送する。この結果、中間搬送手段には、反応容器R1、R2、R3、R4及びR5が並んだ状態で載置される。図8は、タクト6の中期状態(タクト6−2)を示す。ここでは、中間搬送手段が移動して、反応容器R1は位置Dに到達する。同一タクト内で、分注手段は位置Bにある試料容器から試料を吸引し、軌道5に沿って位置Dまで移動して、位置Dに位置する反応容器R1に試料を分注する。図中、試料が分注された試料容器は二重丸(◎)で表している。   FIG. 7 shows an initial state (tact 6-1) of the tact 6 that has advanced one tact from the time point of FIG. Here, the intermittently moving container rack 8 further moves one pitch, the sample container reaches position B, and the reaction container R5 moves to position A. In synchronization with the movement of the container rack, the intermediate conveying means 2 also moves to the right by one pitch. Within the same tact, the first reaction vessel transfer means transfers the reaction vessel R5 along the track 4 from the position A to the position C. As a result, the reaction containers R1, R2, R3, R4, and R5 are placed on the intermediate transport unit in a state where they are aligned. FIG. 8 shows an intermediate state of the tact 6 (tact 6-2). Here, the intermediate transfer means moves and the reaction vessel R1 reaches the position D. Within the same tact, the dispensing means sucks the sample from the sample container at the position B, moves along the track 5 to the position D, and dispenses the sample into the reaction container R1 located at the position D. In the figure, a sample container into which a sample has been dispensed is represented by a double circle (◎).

図9は、タクト6の後期状態(タクト6−3)を示す。ここでは、中間搬送手段が移動して、試料の入った反応容器R1を位置Cに戻す。同一タクト内で、第2反応容器移送手段は試料の入った反応容器R1を位置E(不図示)に移送し、反応手段上に載置する。反応手段では、一定時間、所定温度に制御され、分析のための抗原抗体反応が進行し、必要な洗浄工程を経て蛍光測定が行われ、分析結果が出力される。   FIG. 9 shows the late state of the tact 6 (tact 6-3). Here, the intermediate transport means moves to return the reaction container R1 containing the sample to the position C. Within the same tact, the second reaction container transfer means transfers the reaction container R1 containing the sample to a position E (not shown) and places it on the reaction means. The reaction means is controlled to a predetermined temperature for a predetermined time, the antigen-antibody reaction for analysis proceeds, the fluorescence measurement is performed through a necessary washing step, and the analysis result is output.

本発明は、循環軌道による単一搬送手段を用いて試料容器と反応容器を混在した状態で循環搬送する構成であるため、試料容器と反応容器を別個の搬送手段で搬送するよりも簡略化された、より小型の装置を提供することができる。また搬送手段から反応容器をピックアップする位置と中間搬送手段の受け入れ位置を固定することにより、中間搬送手段の搬送軌道を直線軌道とすることが可能となり、反応容器の移送のための装置を単純化し、かつ、精密化することが可能である。加えて、搬送手段に載置された試料容器から試料を吸引する位置と中間搬送手段に載置された反応容器に試料を分注する位置を固定することにより、分注手段の移送軌道を直線軌道とすることが可能となり、分注手段の移動のための装置を単純化し、かつ、精密化することが可能である。   Since the present invention is configured to circulate and transport a sample container and a reaction container in a mixed state using a single transport means using a circulation trajectory, it is more simplified than transporting the sample container and the reaction container by separate transport means. In addition, a smaller device can be provided. In addition, by fixing the position for picking up the reaction container from the transfer means and the receiving position for the intermediate transfer means, the transfer track of the intermediate transfer means can be made a straight track, and the apparatus for transferring the reaction vessel is simplified. And can be refined. In addition, by fixing the position where the sample is aspirated from the sample container placed on the transport means and the position where the sample is dispensed to the reaction container placed on the intermediate transport means, the transfer path of the dispensing means is straightened. It is possible to make a track, and it is possible to simplify and refine the device for moving the dispensing means.

本発明では、搬送手段上の任意の場所に試料容器を載置し、それに続いて1又は複数の反応容器を載置した場合、先頭に位置する試料容器(1個)とそれに続く反応容器の合計個数が位置AからBに至る部分に載置可能な容器数以下となる限り、先頭の試料容器から吸引した試料を後続する反応容器に分注して分析することができる。   In the present invention, when a sample container is placed at an arbitrary location on the transport means and subsequently one or more reaction containers are placed, the sample container (one piece) located at the head and the subsequent reaction container As long as the total number is equal to or less than the number of containers that can be placed in the portion from position A to position B, the sample sucked from the first sample container can be dispensed into the subsequent reaction container for analysis.

本発明に係る自動分析装置の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the automatic analyzer which concerns on this invention. 本発明に係る自動分析装置の各構成の駆動状態を説明するための模式図である。It is a schematic diagram for demonstrating the drive state of each structure of the automatic analyzer which concerns on this invention. 本発明に係る自動分析装置の各構成の駆動状態を説明するための模式図である。It is a schematic diagram for demonstrating the drive state of each structure of the automatic analyzer which concerns on this invention. 本発明に係る自動分析装置の各構成の駆動状態を説明するための模式図である。It is a schematic diagram for demonstrating the drive state of each structure of the automatic analyzer which concerns on this invention. 本発明に係る自動分析装置の各構成の駆動状態を説明するための模式図である。It is a schematic diagram for demonstrating the drive state of each structure of the automatic analyzer which concerns on this invention. 本発明に係る自動分析装置の各構成の駆動状態を説明するための模式図である。It is a schematic diagram for demonstrating the drive state of each structure of the automatic analyzer which concerns on this invention. 本発明に係る自動分析装置の各構成の駆動状態を説明するための模式図である。It is a schematic diagram for demonstrating the drive state of each structure of the automatic analyzer which concerns on this invention. 本発明に係る自動分析装置の各構成の駆動状態を説明するための模式図である。It is a schematic diagram for demonstrating the drive state of each structure of the automatic analyzer which concerns on this invention. 本発明に係る自動分析装置の各構成の駆動状態を説明するための模式図である。It is a schematic diagram for demonstrating the drive state of each structure of the automatic analyzer which concerns on this invention.

符号の説明Explanation of symbols

1 搬送手段
2 中間搬送手段
3 反応手段
4 第1及び第2反応容器移送手段の軌道
5 分注手段の軌道
6 試料容器
7 反応容器
8 容器ラック
9 循環軌道
10 センサ
11 検出器
12 ピペットチップのラック
13 試薬のラック
14 第1及び第2反応容器移送手段
15 分注手段
DESCRIPTION OF SYMBOLS 1 Conveyance means 2 Intermediate | middle conveyance means 3 Reaction means 4 Orbit of 1st and 2nd reaction container transfer means 5 Orbit of dispensing means 6 Sample container 7 Reaction container 8 Container rack 9 Circulation orbit 10 Sensor 11 Detector 12 Rack of pipette tip 13 Reagent rack 14 First and second reaction vessel transfer means 15 Dispensing means

Claims (7)

試料容器及び反応容器を両者が混在した状態で載置して搬送する搬送手段、搬送手段に載置された反応容器を受け入れて載置する中間搬送手段、中間搬送手段から反応容器を受け入れて所定の温度に維持する反応手段、搬送手段に載置された反応容器を中間搬送手段へ移送する第1反応容器移送手段、中間搬送手段に載置された反応容器を反応手段へ移送する第2反応容器移送手段、及び、搬送手段に載置された試料容器中の試料を吸引し中間搬送手段に載置された反応容器に分注する分注手段とから構成され、ここで前記各手段は、以下のような特徴を有する、自動分析装置。
(1)前記搬送手段は、当該手段に載置された容器を順次地点A及びBに搬送することが可能であり、
(2)前記中間搬送手段は、第1反応容器移送手段によって搬送手段から搬送された反応容器を地点Cにて受け入れること、及び、受け入れた反応容器を地点Cと地点Dの間で搬送することが可能であり、
(3)前記反応手段は、第2反応容器移送手段によって中間搬送手段から搬送された反応容器を地点Eにて受け入れることが可能であり、
(4)前記第1反応容器移送手段は、前記地点Aに搬送された反応容器を地点Cに移送することが可能であり、前記第2反応容器移送手段は地点Cに搬送された反応容器を地点Eに移送することが可能であり、そして、
(5)前記分注手段は、前記地点Bでそこに搬送された試料容器中の試料を吸引し、地点Dでそこに搬送された反応容器に分注することが可能である。
A transport means for placing and transporting a sample container and a reaction container in a mixed state, an intermediate transport means for receiving and placing a reaction container placed on the transport means, a reaction container received from the intermediate transport means, and a predetermined A reaction means for maintaining the temperature at the temperature, a first reaction container transfer means for transferring the reaction vessel placed on the transfer means to the intermediate transfer means, and a second reaction for transferring the reaction vessel placed on the intermediate transfer means to the reaction means A container transfer means, and a dispensing means for sucking the sample in the sample container placed on the transport means and dispensing it into the reaction container placed on the intermediate transport means, wherein each means is An automatic analyzer having the following characteristics.
(1) The conveying means can sequentially convey the containers placed on the means to the points A and B,
(2) The intermediate transfer means receives the reaction container transferred from the transfer means by the first reaction container transfer means at the point C, and transfers the received reaction container between the point C and the point D. Is possible,
(3) The reaction means can receive the reaction container conveyed from the intermediate conveyance means by the second reaction container transfer means at the point E,
(4) The first reaction vessel transfer means can transfer the reaction vessel transferred to the point A to the point C, and the second reaction vessel transfer means sets the reaction vessel transferred to the point C. Can be transferred to point E, and
(5) The dispensing means is capable of sucking the sample in the sample container transported there at the point B and dispensing it into the reaction container transported there at the point D.
前記搬送手段における地点AからBへの容器の搬送経路と前記中間搬送手段における地点CとDの間での反応容器の搬送経路がいずれも直線で、かつ、平行であることを特徴とする、請求項1の装置。   The container transport path from the point A to B in the transport means and the transport path of the reaction container between the points C and D in the intermediate transport means are both straight and parallel, The apparatus of claim 1. 前記反応容器移送手段における地点AからCへの反応容器の移送経路と地点CからEへの反応容器の移送経路が一本の直線であり、前記分注手段の地点BからDへの移送経路が直線であり、両者は平行であることを特徴とする、請求項1の装置。   The transfer path of the reaction container from point A to C and the transfer path of the reaction container from point C to E in the reaction container transfer means are one straight line, and the transfer path from point B to D of the dispensing means The apparatus of claim 1, wherein is straight and both are parallel. 前記搬送手段は、当該手段に載置され搬送される容器に関する情報を取得するためのセンサーを具備することを特徴とする、請求項1の装置。   The apparatus according to claim 1, wherein the transport unit includes a sensor for acquiring information on a container placed on and transported by the unit. 前記中間搬送手段は、位置Dにおいて分注手段により試料が分注された反応容器について撹拌を行う撹拌手段を具備することを特徴とする、請求項1の装置。 The apparatus according to claim 1, wherein the intermediate transport unit includes a stirring unit that stirs the reaction vessel in which the sample is dispensed by the dispensing unit at the position D. 前記反応手段は、受け入れた反応容器を地点Fに搬送することが可能であり、地点BとDとの間及び/又は地点DとFとの間に、試薬を入れた試薬容器を配置することを特徴とする、請求項1の装置。   The reaction means is capable of transporting the received reaction container to the point F, and disposing a reagent container containing a reagent between the points B and D and / or between the points D and F. The apparatus of claim 1, wherein: 前記分注手段は、前記試薬容器中の試薬を吸引し、地点Fに搬送された反応容器に分注することが可能であることを特徴とする、請求項6の装置。   The apparatus according to claim 6, wherein the dispensing unit is capable of sucking the reagent in the reagent container and dispensing it into the reaction container transported to the point F.
JP2008331173A 2008-12-25 2008-12-25 Automatic analyzer Active JP5428332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008331173A JP5428332B2 (en) 2008-12-25 2008-12-25 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008331173A JP5428332B2 (en) 2008-12-25 2008-12-25 Automatic analyzer

Publications (2)

Publication Number Publication Date
JP2010151670A true JP2010151670A (en) 2010-07-08
JP5428332B2 JP5428332B2 (en) 2014-02-26

Family

ID=42570930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008331173A Active JP5428332B2 (en) 2008-12-25 2008-12-25 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP5428332B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033401A (en) * 2009-07-30 2011-02-17 Tosoh Corp Automatic analyzer capable of switching means of supplying reaction vessel
EP2402218A1 (en) 2010-07-02 2012-01-04 Yazaki Corporation Electric junction box

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246675A (en) * 1987-03-31 1988-10-13 Shin Meiwa Ind Co Ltd Conveyance distributor for object to be inspected
JP2884604B2 (en) * 1989-07-19 1999-04-19 東ソー株式会社 Automatic immunoassay device and method of using the same
JP2000014638A (en) * 1998-06-27 2000-01-18 Morita Mfg Co Ltd Dental diagnostic system
JP2000046841A (en) * 1998-07-31 2000-02-18 Tosoh Corp Automatic measuring apparatus
JP3991495B2 (en) * 1999-03-25 2007-10-17 東ソー株式会社 Analysis equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246675A (en) * 1987-03-31 1988-10-13 Shin Meiwa Ind Co Ltd Conveyance distributor for object to be inspected
JP2884604B2 (en) * 1989-07-19 1999-04-19 東ソー株式会社 Automatic immunoassay device and method of using the same
JP2000014638A (en) * 1998-06-27 2000-01-18 Morita Mfg Co Ltd Dental diagnostic system
JP2000046841A (en) * 1998-07-31 2000-02-18 Tosoh Corp Automatic measuring apparatus
JP3991495B2 (en) * 1999-03-25 2007-10-17 東ソー株式会社 Analysis equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033401A (en) * 2009-07-30 2011-02-17 Tosoh Corp Automatic analyzer capable of switching means of supplying reaction vessel
EP2402218A1 (en) 2010-07-02 2012-01-04 Yazaki Corporation Electric junction box

Also Published As

Publication number Publication date
JP5428332B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP3582240B2 (en) Automatic sample pretreatment device and automatic sample pretreatment method
CN103674672B (en) Analytical equipment and agitating device
JP5564037B2 (en) Automatic analyzer
CN102565437B (en) Sample analyzer
CN104111343B (en) A kind of sample reagent dispenser, immunity analysis instrument and its method
KR101890128B1 (en) Measurement device and measurement method
JP6120763B2 (en) Apparatus and process for transporting reaction vessel
WO2018163674A1 (en) Automated analyzer
JPH10123136A (en) Automatic immunoanalysis device
JP5400021B2 (en) Automatic analyzer
WO2007139212A1 (en) Automatic analyzer
JPWO2008050396A1 (en) Analysis equipment
US20170315047A1 (en) Pretreatment apparatus and sample analyzer
CN113711053B (en) Automatic analysis device
JP6201581B2 (en) Automatic analyzer
JP5428332B2 (en) Automatic analyzer
JP3991495B2 (en) Analysis equipment
JP2001165936A (en) Analytical apparatus
JP5990974B2 (en) Automatic analyzer
JPH0996643A (en) Enzyme immunoassay system
JP5880604B2 (en) Automatic analyzer
JP5217332B2 (en) Automatic analyzer
JP5321324B2 (en) Automatic analyzer capable of switching reaction vessel supply means
WO2020152991A1 (en) Automatic analysis system and specimen conveying method
JP3329093B2 (en) Enzyme immunoassay analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R151 Written notification of patent or utility model registration

Ref document number: 5428332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151