JP2010018854A - Lightweight and high strength aluminum alloy excellent in heat resistance - Google Patents
Lightweight and high strength aluminum alloy excellent in heat resistance Download PDFInfo
- Publication number
- JP2010018854A JP2010018854A JP2008181183A JP2008181183A JP2010018854A JP 2010018854 A JP2010018854 A JP 2010018854A JP 2008181183 A JP2008181183 A JP 2008181183A JP 2008181183 A JP2008181183 A JP 2008181183A JP 2010018854 A JP2010018854 A JP 2010018854A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- heat resistance
- lightweight
- strength
- strength aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Extrusion Of Metal (AREA)
Abstract
Description
本発明は、自動車用部品などに適した耐熱性に優れた軽量・高強度アルミニウム合金およびその製造方法に関する。 The present invention relates to a lightweight and high-strength aluminum alloy having excellent heat resistance suitable for automobile parts and the like, and a method for producing the same.
近年、地球環境保護の観点から、自動車の軽量化によるCO2の排出量削減や内燃機関の燃費向上が求められている。アルミニウム材の適用による自動車部品の軽量化が進められる中で、エンジン部品など内燃機関用部品などでは、従来以上に室温および高温において、さらに強度に優れたアルミニウム合金への要求が高まっている。 In recent years, from the viewpoint of protecting the global environment, there has been a demand for reduction in CO 2 emissions and improvement in fuel consumption of internal combustion engines by reducing the weight of automobiles. With the progress of weight reduction of automobile parts by the application of aluminum materials, parts for internal combustion engines such as engine parts are increasingly demanded for aluminum alloys having higher strength at room temperature and higher temperature than before.
従来、エンジン部品には、耐熱アルミニウム合金として知られているA2618合金やその改良合金(特許文献1参照)が使用されてきたが、A2618合金やその改良合金は150℃近傍の温度に対して耐熱性を有する軽量な合金であるものの、200℃以上の高温では強度が低下し易いため、高温の300℃程度まで温度が上がる部品においては、部品としての強度を確保するために、厚肉化あるいは太径化する設計がなされてきた。 Conventionally, A2618 alloy known as a heat-resistant aluminum alloy and its improved alloy (see Patent Document 1) have been used for engine parts, but the A2618 alloy and its improved alloy are resistant to temperatures near 150 ° C. Although it is a lightweight alloy having properties, the strength tends to decrease at a high temperature of 200 ° C. or higher. Therefore, in a component whose temperature rises to a high temperature of about 300 ° C., in order to ensure the strength as the component, Designs to increase the diameter have been made.
300℃付近での高温強度が優れるアルミニウム合金としてA2219などがあるが、室温での強度がA2618系の合金より低く、さらにCu添加量が多いために密度が2.80g/cm3以上になるため軽量化効果が少ないという難点がある。
本発明は、耐熱アルミニウム合金における上記従来の問題点を解消するためになされたものであり、その目的は、300℃付近の温度において耐熱性に優れ、軽量で且つ高強度をそなえたアルミニウム合金およびその製造方法を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems in heat-resistant aluminum alloys, and the object thereof is an aluminum alloy having excellent heat resistance at a temperature around 300 ° C., light weight and high strength, and It is in providing the manufacturing method.
上記の目的を達成するための請求項1による耐熱性に優れた軽量・高強度アルミニウム合金は、Cu:2.5〜3.3%、Mg:1.5〜2.2%、Si:0.2〜0.4%、Fe:0.5〜1.1%、Ni:0.8〜1.3%、Mn:0.40〜0.70%、Zr:0.10〜0.20%、Sc:0.10〜0.60%、Ti:0.005〜0.15%を含み、残部Alおよび不純物からなり、密度(g/cm3)が2.80未満であることを特徴とする。 The lightweight and high-strength aluminum alloy excellent in heat resistance according to claim 1 for achieving the above object is Cu: 2.5 to 3.3%, Mg: 1.5 to 2.2%, Si: 0 0.2 to 0.4%, Fe: 0.5 to 1.1%, Ni: 0.8 to 1.3%, Mn: 0.40 to 0.70%, Zr: 0.10 to 0.20 %, Sc: 0.10 to 0.60%, Ti: 0.005 to 0.15%, the balance is Al and impurities, and the density (g / cm 3 ) is less than 2.80. And
請求項2による耐熱性に優れた軽量・高強度アルミニウム合金は、請求項1において、CuとMgの含有比率(Cu%/Mg%)が1.1〜2.2の範囲であることを特徴とする。 The lightweight and high-strength aluminum alloy having excellent heat resistance according to claim 2 is characterized in that, in claim 1, the content ratio of Cu and Mg (Cu% / Mg%) is in the range of 1.1 to 2.2. And
請求項3による耐熱性に優れた軽量・高強度アルミニウム合金は、請求項1または請求項2において、300℃で100h保持した後の高度が25HRB以上であることを特徴とする。 The lightweight and high-strength aluminum alloy excellent in heat resistance according to claim 3 is characterized in that, in claim 1 or claim 2, the altitude after being held at 300 ° C. for 100 hours is 25 HRB or more.
請求項4による耐熱性に優れた軽量・高強度アルミニウム合金の製造方法は、請求項1または請求項2記載の組成を有するアルミニウム合金の鋳塊を均質化処理した後、1回以上の熱間加工を行って熱間加工材を作製し、その後、測定された熱間加工材の共晶融解開始温度より1〜5℃低い温度域で溶体化処理を行い、人工時効処理を施すことことを特徴とする。 The method for producing a lightweight, high-strength aluminum alloy having excellent heat resistance according to claim 4 is a method of homogenizing the ingot of the aluminum alloy having the composition according to claim 1 or 2 and performing one or more hot The material is processed to produce a hot-worked material, and then subjected to a solution treatment in a temperature range 1 to 5 ° C. lower than the measured eutectic melting start temperature of the hot-worked material, and an artificial aging treatment is performed. Features.
本発明によれば、300℃付近の温度において耐熱性に優れ、軽量で且つ高強度をそなえたアルミニウム合金およびその製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy which was excellent in heat resistance in the temperature of about 300 degreeC, and was lightweight and provided with high intensity | strength and its manufacturing method are provided.
本発明に係るアルミニウム合金の合金成分の意義およびその限定理由について説明すると、Cuは強度向上に寄与する元素であり、好ましい含有量は2.5〜3.3%の範囲である。2.5 %未満では強度向上の効果が小さく、3.3 %を超えると融点が大幅に低下するため溶体化処理温度を低くしなければならず、そのため溶体化処理後のマトリックス中の過飽和度が小さくなり強度向上が得られない。 The significance of the alloy component of the aluminum alloy according to the present invention and the reason for its limitation will be described. Cu is an element contributing to strength improvement, and the preferred content is in the range of 2.5 to 3.3%. If it is less than 2.5%, the effect of improving the strength is small, and if it exceeds 3.3%, the melting point is greatly lowered, so the solution treatment temperature must be lowered, and therefore the degree of supersaturation in the matrix after solution treatment Becomes smaller and the strength cannot be improved.
MgはCuと共存して強度を高めるよう機能する。好ましい含有量は1.5〜2.2%の範囲であり、1.5%未満ではその効果が小さく、2.2%を超えると押出などの熱間加工において変形抵抗が高いために生産性が劣る。 Mg functions together with Cu to increase strength. Preferable content is in the range of 1.5 to 2.2%, and if it is less than 1.5%, the effect is small, and if it exceeds 2.2%, the deformation resistance is high in hot working such as extrusion, so that productivity is high. Is inferior.
CuとMgの含有比率(Cu%/Mg%)は1.1〜2.2の範囲が好ましく、含有比率(Cu%/Mg%)が1.1未満では、主要強化相であるGPBゾーンおよびS’相の形成が少ないために強度が低下し易く、含有比率(Cu%/Mg%)が2.2を超えると、Al2CuおよびAl2MgCuが形成されて、AlとAl2CuとAl2MgCuの共晶融解が508℃で生じるため、この温度未満の温度で溶体化処理しなければならず、溶体化が十分に行われないため強度低下が生じ易くなる。 The content ratio of Cu and Mg (Cu% / Mg%) is preferably in the range of 1.1 to 2.2. When the content ratio (Cu% / Mg%) is less than 1.1, the GPB zone which is the main strengthening phase and Since the formation of the S ′ phase is small, the strength tends to decrease, and when the content ratio (Cu% / Mg%) exceeds 2.2, Al 2 Cu and Al 2 MgCu are formed, and Al, Al 2 Cu, and Since eutectic melting of Al 2 MgCu occurs at 508 ° C., solution treatment must be performed at a temperature lower than this temperature, and strength reduction is likely to occur because solution treatment is not sufficiently performed.
Siは、Mnと共にAl−Mn−Si系化合物の微細分散相を析出させ、転位のピンニング効果を高めて、溶体化処理中の再結晶粒の粗大化を防止し強度を高める。好ましい含有量は0.2〜0.4%の範囲であり、0.2%未満ではその効果が小さく、0.4%を超えるとMgとSiの化合物を形成し、耐熱性を低下させる。 Si precipitates a finely dispersed phase of an Al—Mn—Si based compound together with Mn, enhances the pinning effect of dislocation, prevents coarsening of recrystallized grains during solution treatment, and increases strength. The preferable content is in the range of 0.2 to 0.4%. If the content is less than 0.2%, the effect is small. If the content exceeds 0.4%, a compound of Mg and Si is formed and the heat resistance is lowered.
Feは、Niとの化合物を形成し、耐熱性を向上させる元素である。Feの好ましい含有量は0.5〜1.1%の範囲であり、0.5%未満では効果が小さく、1.1%を超えて含有すると、母相中に分散するAl−Fe系、Al−Fe−Cu系等のFe系化合物が発生するため効果が小さくなる。 Fe is an element that forms a compound with Ni and improves heat resistance. The preferable content of Fe is in the range of 0.5 to 1.1%, and if the content is less than 0.5%, the effect is small, and if the content exceeds 1.1%, an Al—Fe system dispersed in the matrix phase, Since an Fe-based compound such as an Al-Fe-Cu-based compound is generated, the effect becomes small.
Niは、Feとの化合物を形成し、耐熱性を向上させる元素である。Niの好ましい含有量は0.8〜1.3%の範囲であり、0.8%未満では効果が小さく、1.3%を超えると、母相中に分散するAl−Ni系、Al−Ni−Cu系等のNi系金属間化合物が発生するため効果が小さくなる。 Ni is an element that forms a compound with Fe and improves heat resistance. A preferable content of Ni is in the range of 0.8 to 1.3%, and if the content is less than 0.8%, the effect is small. If the content exceeds 1.3%, an Al—Ni-based material that disperses in the parent phase, Al— Since the Ni-based intermetallic compound such as Ni-Cu is generated, the effect is reduced.
Mnは、Siと共に微細なAl−Mn−Si系化合物を析出、分散させて、合金の溶体化処理中に生じる再結晶を抑制し強度を向上させる。好ましい含有範囲は0.4〜0.7%であり、0.4%未満では効果が小さく、0.7%を超えると、微細に析出せず巨大晶出物が発生し易くなるため効果が小さくなる。 Mn precipitates and disperses a fine Al—Mn—Si compound together with Si, thereby suppressing recrystallization that occurs during solution treatment of the alloy and improving the strength. The preferable content range is 0.4 to 0.7%, and if the content is less than 0.4%, the effect is small. If the content exceeds 0.7%, the crystal is not precipitated finely, and a large crystallized product is easily generated. Get smaller.
Zrは、Al3 Zr化合物の微細分散により、溶体化処理中に生じる再結晶を抑制して強度を高める。好ましい含有範囲は0.10〜0.20%であり、0.10%未満では効果が小さく、0.20 %を超えると微細に析出せず巨大晶出物が発生し易くなるため効果が小さくなる。 Zr suppresses recrystallization that occurs during the solution treatment and increases the strength due to fine dispersion of the Al 3 Zr compound. The preferable content range is 0.10 to 0.20%, and if the content is less than 0.10%, the effect is small, and if it exceeds 0.20%, the effect is small because a large crystallized product is easily generated without being finely precipitated. Become.
Scは、Al3Sc化合物の微細分散により、溶体化処理中に生じる再結晶を抑制するとともに、300℃付近で析出硬化に寄与するため、耐熱性を向上させる。好ましい含有範囲は0.10〜0.60%であり、0.10未満では効果が小さく、0.60%を超えると微細に析出せず巨大晶出物が発生し易くなるため効果が小さくなる。 Sc suppresses recrystallization that occurs during the solution treatment by fine dispersion of the Al 3 Sc compound, and contributes to precipitation hardening at around 300 ° C., thereby improving heat resistance. The preferable content range is 0.10 to 0.60%, and if it is less than 0.10, the effect is small, and if it exceeds 0.60%, it does not precipitate finely and a large crystallized product is likely to be generated, so the effect is small. .
発明者による試験、検討の結果、一般的な2000系合金においては、θ'相、S'相などのAlとCuあるいはAlとMgとCuの微細な析出強化相が、300℃保持中に粗大化するため強度が低下するが、Scを0.10〜0.60%を添加した場合、アルミニウムと整合なL12構造の結晶構造を有するAl3Sc化合物が300℃保持中に析出し強度を高めるため、素材全体として、高温保持による軟化が抑制されることが見出され、特に本発明の合金中の他の元素の含有量の範囲でScの効果が高いことが明らかとなった。 As a result of tests and studies by the inventors, in general 2000 series alloys, fine precipitation strengthening phases of Al and Cu or Al, Mg and Cu such as θ ′ phase and S ′ phase are coarse during holding at 300 ° C. However, when Sc is added in an amount of 0.10 to 0.60%, an Al 3 Sc compound having an L12 crystal structure consistent with aluminum precipitates during holding at 300 ° C. to increase the strength. Therefore, it was found that the softening due to holding at high temperature was suppressed as a whole material, and it became clear that the effect of Sc was particularly high in the range of the content of other elements in the alloy of the present invention.
Tiは、微細結晶粒組織を安定させるとともに耐熱性を得るために添加される。好ましい含有範囲は0.005〜0.15%であり、0.005%未満では効果が少なく、0.15%を超えて含有されると、微細に析出せず巨大晶出物が発生し易くなるため効果が小さくなる。 Ti is added to stabilize the fine grain structure and to obtain heat resistance. The preferable content range is 0.005 to 0.15%, and if it is less than 0.005%, the effect is small, and if it exceeds 0.15%, it does not precipitate finely and is likely to generate a giant crystallized product. Therefore, the effect becomes small.
本発明のアルミニウム合金において、Cr、Znがそれぞれ0.10%以下の範囲で含有されていても、本発明の特性に悪影響を及ぼすことはない。 Even if Cr and Zn are each contained in the range of 0.10% or less in the aluminum alloy of the present invention, the characteristics of the present invention are not adversely affected.
本発明のアルミニウム合金の密度は2.80g/cm3未満が好ましい。合金の密度は、各元素の密度と配合比率から計算できる。現在量産されている大部分のアルミニウム合金の密度は2.80g/cm3未満であるが耐熱性が低い。A2219合金のようにCu合金を多く添加した合金では、耐熱性は優れるものの、含有元素のCuの密度が大きいため、合金の密度が大きくなり、軽量化の効果が小さくなる。耐熱合金といえども軽量であることが必要であるため密度を2.80g/cm3未満とする。 The density of the aluminum alloy of the present invention is preferably less than 2.80 g / cm 3 . The density of the alloy can be calculated from the density of each element and the mixing ratio. The density of most aluminum alloys currently mass-produced is less than 2.80 g / cm 3 but has low heat resistance. An alloy to which a large amount of Cu alloy is added, such as A2219 alloy, is excellent in heat resistance, but since the density of the contained element Cu is large, the density of the alloy increases and the effect of weight reduction decreases. Even a heat-resistant alloy needs to be lightweight, so the density is less than 2.80 g / cm 3 .
本発明のアルミニウム合金の製造方法について説明する。
前記の組成を有するアルミニウム合金を常法により溶解、鋳造し、造塊された鋳塊(ビレット)を均質化処理した後、熱間加工を行って熱間加工材を作製する。熱間加工は押出加工、鍛造加工が好ましい。押出や鍛造などの熱間加工により10μm以下の亜結晶粒が形成されて強度が高まるため、高強度を得るためには1回以上の熱間加工を施すことがより好ましい。
The manufacturing method of the aluminum alloy of this invention is demonstrated.
The aluminum alloy having the above composition is melted and cast by a conventional method, and the ingot (billet) is homogenized and then hot-worked to produce a hot-worked material. The hot working is preferably extrusion or forging. Since hot crystals such as extrusion and forging form sub-crystal grains of 10 μm or less and increase the strength, it is more preferable to perform one or more hot workings in order to obtain high strength.
製造工程としては、押出材であれば、例えば、鋳造、均質化処理、押出、溶体化処理、時効の工程、鍛造材であれば、例えば、鋳造、均質化処理、押出、鍛造、溶体化処理、時効の工程を行う。製造工程は用途に合わせて選択される。また、調質も用途に合わせて選択すればよいが、高強度を得るためにはT6、T7、T8調質が好ましい。 As the manufacturing process, if it is an extruded material, for example, casting, homogenization treatment, extrusion, solution treatment, aging process, if it is a forging material, for example, casting, homogenization treatment, extrusion, forging, solution treatment The aging process is performed. The manufacturing process is selected according to the application. Further, the tempering may be selected according to the use, but T6, T7, and T8 tempering are preferable in order to obtain high strength.
さらに高強度を得るために、熱間加工材について、示差走査熱量計により共晶融解開始温度を測定し、測定された共晶融解開始温度より1〜5℃低い温度域に加熱して、その温度に0.5〜5h保持する溶体化処理を行い、その後、150〜220℃の温度で3〜30h保持する人工時効処理を施すことが好ましい。 In order to obtain higher strength, the hot work material is measured for eutectic melting start temperature with a differential scanning calorimeter, heated to a temperature range 1 to 5 ° C. lower than the measured eutectic melting start temperature, It is preferable to perform a solution treatment that is held at a temperature of 0.5 to 5 hours, and then perform an artificial aging treatment that is held at a temperature of 150 to 220 ° C. for 3 to 30 hours.
以下、本発明の実施例を比較例と対比して説明するとともに、それに基づいて本発明の効果を実証する。なお、これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されない。 Examples of the present invention will be described below in comparison with comparative examples, and the effects of the present invention will be demonstrated based on the examples. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.
実施例1
表1に示す成分組成と密度を有するアルミニウム合金(A1〜A18)のビレット(直径90mm)を、均質化処理(470℃×25h)した後、450℃にて熱間押出加工し、得られた押出材(押出形状:直径15mmの丸棒材)について、示差走査熱量計を用いて共晶融解温度の開始温度を求め、その温度より3℃低い温度で溶体化処理を行い、常法の焼入れ、190℃×20hの人工時効処理を行い、T6調質の押出材を得た。
Example 1
A billet (diameter 90 mm) of aluminum alloys (A1 to A18) having the composition and density shown in Table 1 was homogenized (470 ° C. × 25 h) and then hot extruded at 450 ° C. to obtain For the extruded material (extruded shape: round bar with a diameter of 15 mm), the starting temperature of the eutectic melting temperature is obtained using a differential scanning calorimeter, and solution treatment is performed at a temperature 3 ° C. lower than that temperature, followed by quenching in the usual manner Then, an artificial aging treatment of 190 ° C. × 20 h was performed to obtain a T6 tempered extruded material.
得られた押出材を試験材として、JIS Z 2241に準拠にした引張試験(試験片はJIS Z 2201、金属材料引張試験片4号試験片の備考2.による試験片)を室温で実施して、引張強さを評価した。また、耐熱性を評価する目的で、300℃で100h保持の加熱処理を行った試験材について、JIS Z 2245に準拠して、室温でロックウェル硬さ(HRB)を測定した。引張強さは500MPa以上、300℃で100h保持の加熱処理を行った後の硬さは25HRB以上を合格とする判定を行った。評価結果を表2に示す。 Using the obtained extruded material as a test material, a tensile test based on JIS Z 2241 (the test piece is a test piece according to JIS Z 2201, Remark 2 of the metal material tensile test piece No. 4 test piece) is performed at room temperature. The tensile strength was evaluated. Further, for the purpose of evaluating heat resistance, Rockwell hardness (HRB) was measured at room temperature according to JIS Z 2245 for a test material that was heat-treated at 300 ° C. for 100 hours. The tensile strength was 500 MPa or more, and the hardness after heat treatment for 100 hours at 300 ° C. was determined to pass 25 HRB or more. The evaluation results are shown in Table 2.
表2にみられるように、本発明に従う試験材1〜18はいずれも、引張強さは500MPa以上、300℃で100h保持の加熱処理を行った後の硬さは25HRB以上を満足し、高強度をそなえ耐熱性にも優れていた。また、試験材1〜18の密度はいずれも2.80g/cm3未満であり軽量性もそなえていた。 As can be seen from Table 2, all of the test materials 1 to 18 according to the present invention have a tensile strength of 500 MPa or more and a hardness after heat treatment of holding at 300 ° C. for 100 hours satisfies 25 HRB or more. It was strong and heat resistant. Further, the density of each of the test materials 1 to 18 was less than 2.80 g / cm 3 and had light weight.
比較例1
表3に示す成分組成と密度を有するアルミニウム合金(B1〜19)のビレット(直径90mm)を、実施例1と同様に処理してT6調質の押出材とし、得られた押出材を試験材として、実施例1と同様に、引張強さを評価し、また、300℃で100h保持の加熱処理を行った試験材について、室温でロックウェル硬さ(HRB)を測定した、評価結果を表4に示す。なお、表3において、本発明の条件を外れたものには下線を付した。
Comparative Example 1
Billets (90 mm in diameter) of aluminum alloys (B1-19) having the component composition and density shown in Table 3 were processed in the same manner as in Example 1 to obtain T6 tempered extruded materials, and the obtained extruded materials were used as test materials. As in Example 1, the tensile strength was evaluated, and the Rockwell hardness (HRB) was measured at room temperature for the test material that was heat-treated at 300 ° C. for 100 hours. 4 shows. In Table 3, those outside the conditions of the present invention are underlined.
表4に示すように、試験材19、20はCu量が少ないため、試験材21はMg量が少ないため、試験材23はSi含有量が少ないため、試験材29、30はMn量が本発明の範囲を外れているため、試験材31、32はZr量が本発明の範囲を外れているため、いずれも引張強さが低かった。 As shown in Table 4, since the test materials 19 and 20 have a small amount of Cu, the test material 21 has a small amount of Mg, and the test material 23 has a small Si content. Since it was outside the scope of the invention, the test materials 31 and 32 were low in tensile strength because the Zr amount was outside the scope of the present invention.
試験材22は、材料特性は満足していたが、Mg量が多いため、熱間加工性(押出性)が悪く生産性に問題があった。試験材24はSi量が多いため、試験材25、26はFe量が本発明の範囲を外れているため、試験材27、28はNi量が本発明の範囲を外れているため、試験材33、34はSc量が本発明の範囲を外れているため、試験材35、36はTi量が本発明の範囲を外れているため、いずれも耐熱性が劣っていた。試験材37は合金組成は本発明の条件を満たすが、密度が大きく問題であった。 Although the test material 22 was satisfactory in material properties, it had a problem in productivity due to poor hot workability (extrusibility) due to a large amount of Mg. Since the test material 24 has a large amount of Si, the test materials 25 and 26 have an Fe content outside the range of the present invention, and the test materials 27 and 28 have a Ni content outside the range of the present invention. Since Nos. 33 and 34 were out of the scope of the present invention, the test materials 35 and 36 were inferior in heat resistance because the Ti quantity was outside the range of the present invention. The test material 37 has a problem in that the alloy composition satisfies the conditions of the present invention, but the density is large.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008181183A JP2010018854A (en) | 2008-07-11 | 2008-07-11 | Lightweight and high strength aluminum alloy excellent in heat resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008181183A JP2010018854A (en) | 2008-07-11 | 2008-07-11 | Lightweight and high strength aluminum alloy excellent in heat resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010018854A true JP2010018854A (en) | 2010-01-28 |
Family
ID=41704039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008181183A Pending JP2010018854A (en) | 2008-07-11 | 2008-07-11 | Lightweight and high strength aluminum alloy excellent in heat resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010018854A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017043802A (en) * | 2015-08-25 | 2017-03-02 | 株式会社Uacj | Aluminum alloy extrusion material and manufacturing method therefor |
JP2019190365A (en) * | 2018-04-25 | 2019-10-31 | 昭和電工株式会社 | Forged product for impeller |
JP2019190364A (en) * | 2018-04-25 | 2019-10-31 | 昭和電工株式会社 | Forged product for impeller |
JP2019190366A (en) * | 2018-04-25 | 2019-10-31 | 昭和電工株式会社 | Forged product for impeller |
JP2020056059A (en) * | 2018-10-01 | 2020-04-09 | 株式会社Uacj | Aluminum alloy and manufacturing method therefor |
CN111593234A (en) * | 2020-07-10 | 2020-08-28 | 中南大学 | Aluminum alloy material for laser additive manufacturing |
CN114959387A (en) * | 2022-05-13 | 2022-08-30 | 内蒙古工业大学 | High-strength heat-resistant cast aluminum alloy and preparation method thereof |
CN116005045A (en) * | 2022-12-30 | 2023-04-25 | 佛山市三水凤铝铝业有限公司 | Aluminum alloy material for battery tray and preparation method thereof |
-
2008
- 2008-07-11 JP JP2008181183A patent/JP2010018854A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017043802A (en) * | 2015-08-25 | 2017-03-02 | 株式会社Uacj | Aluminum alloy extrusion material and manufacturing method therefor |
WO2017033663A1 (en) * | 2015-08-25 | 2017-03-02 | 株式会社Uacj | Aluminum alloy extruded material and method for producing same |
CN107636181A (en) * | 2015-08-25 | 2018-01-26 | 株式会社Uacj | Aluminium alloy extruded product and its manufacture method |
CN107636181B (en) * | 2015-08-25 | 2019-04-19 | 株式会社Uacj | Aluminium alloy extruded product and its manufacturing method |
JP2019190366A (en) * | 2018-04-25 | 2019-10-31 | 昭和電工株式会社 | Forged product for impeller |
JP2019190364A (en) * | 2018-04-25 | 2019-10-31 | 昭和電工株式会社 | Forged product for impeller |
JP2019190365A (en) * | 2018-04-25 | 2019-10-31 | 昭和電工株式会社 | Forged product for impeller |
JP2020056059A (en) * | 2018-10-01 | 2020-04-09 | 株式会社Uacj | Aluminum alloy and manufacturing method therefor |
JP7126915B2 (en) | 2018-10-01 | 2022-08-29 | 株式会社Uacj | Aluminum alloy extruded material and its manufacturing method |
CN111593234A (en) * | 2020-07-10 | 2020-08-28 | 中南大学 | Aluminum alloy material for laser additive manufacturing |
CN114959387A (en) * | 2022-05-13 | 2022-08-30 | 内蒙古工业大学 | High-strength heat-resistant cast aluminum alloy and preparation method thereof |
CN116005045A (en) * | 2022-12-30 | 2023-04-25 | 佛山市三水凤铝铝业有限公司 | Aluminum alloy material for battery tray and preparation method thereof |
CN116005045B (en) * | 2022-12-30 | 2024-06-04 | 佛山市三水凤铝铝业有限公司 | Aluminum alloy material for battery tray and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4277113B2 (en) | Ni-base alloy for heat-resistant springs | |
JP2010018854A (en) | Lightweight and high strength aluminum alloy excellent in heat resistance | |
JP5463795B2 (en) | Aluminum alloy and heat-resistant aluminum alloy material and method for producing the same | |
JP6348466B2 (en) | Aluminum alloy extruded material and method for producing the same | |
US20130206287A1 (en) | Co-based alloy | |
JPH0559477A (en) | Aluminum alloy for forging | |
KR101604855B1 (en) | Aluminum alloy with excellent castability and mechanical property and method of manufacturing thereof | |
JP2018197366A (en) | Aluminum alloy material | |
JP2018087362A (en) | METHOD FOR PRODUCING Ni-BASED SUPERALLOY MATERIAL | |
JP6315319B2 (en) | Method for producing Fe-Ni base superalloy | |
CN109642275B (en) | High-strength aluminum alloy, piston for internal combustion engine containing same, and method for producing piston for internal combustion engine | |
CN108118206A (en) | Aluminum alloy plate materials and its manufacturing method with high natrual ageing stability and high baking hardenability | |
JP6015536B2 (en) | Heat treatment type aluminum alloy for cold plastic working and manufacturing method thereof | |
JP2019108579A (en) | Aluminum alloy material, and method for producing aluminum alloy product | |
JP2008115413A (en) | High-strength and high-toughness aluminum alloy superior in heat resistance, and manufacturing method therefor | |
JP5004032B2 (en) | Aluminum-based alloy having excellent high-temperature strength and low thermal expansibility and method for producing the same | |
JP4676906B2 (en) | Heat-resistant aluminum alloy for drawing | |
JP4351609B2 (en) | Aluminum alloy, heat-resistant and high-strength aluminum alloy part, and manufacturing method thereof | |
JP2013053361A (en) | Aluminum alloy for flying body excellent in heat-resistant strength | |
JPH06330264A (en) | Production of aluminum alloy forged material excellent in strength and toughness | |
JPH08144003A (en) | High strength aluminum alloy excellent in heat resistance | |
JPH05271834A (en) | Aluminum alloy having stable artificial ageing characteristic | |
JP7126915B2 (en) | Aluminum alloy extruded material and its manufacturing method | |
WO2016121495A1 (en) | Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CREEP CHARACTERISTICS, AND GAS TURBINE MEMBER USING SAME | |
KR20070084246A (en) | Aluminium-based alloy and moulded part consisting of said alloy |