JP2010013039A - Rolling bearing unit for wheel support and method of manufacturing the same - Google Patents
Rolling bearing unit for wheel support and method of manufacturing the same Download PDFInfo
- Publication number
- JP2010013039A JP2010013039A JP2008176516A JP2008176516A JP2010013039A JP 2010013039 A JP2010013039 A JP 2010013039A JP 2008176516 A JP2008176516 A JP 2008176516A JP 2008176516 A JP2008176516 A JP 2008176516A JP 2010013039 A JP2010013039 A JP 2010013039A
- Authority
- JP
- Japan
- Prior art keywords
- bearing unit
- rolling bearing
- outward flange
- hub
- wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/64—Special methods of manufacture
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/18—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
- F16C19/181—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
- F16C19/183—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
- F16C19/184—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
- F16C19/186—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/01—Parts of vehicles in general
- F16C2326/02—Wheel hubs or castors
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
この発明は、懸架装置に対し車輪を回転自在に支持する為の車輪支持用転がり軸受ユニット及びその製造方法の改良に関する。 The present invention relates to a wheel bearing rolling bearing unit for rotatably supporting a wheel with respect to a suspension device and an improvement of a manufacturing method thereof.
懸架装置に対して車輪を回転自在に支持する為に、例えば図5に示す様な、車輪支持用の転がり軸受ユニット1が使用されている。この転がり軸受ユニット1は、外輪2の内径側にハブ3を、複数個の転動体4、4を介して回転自在に支持している。このうちの外輪2は、内周面に複列の外輪軌道5、5を、外周面に、この外輪2を上記懸架装置を構成するナックルに結合固定する為の、外向フランジ状の取付部6を、それぞれ設けている。又、上記ハブ3は、ハブ本体7と内輪8とを組み合わせて成り、外周面に複列の内輪軌道9a、9bを設けている。このうちのハブ本体7は、外周面の軸方向外端寄り(軸方向に関して外とは、懸架装置への組み付け状態で幅方向外側を言い、図1、5の左側、図4の下側、図6の上側)部分に、車輪を支持固定する為の外向フランジ部10を、同じく軸方向内端寄り(軸方向に関して内とは、懸架装置への組み付け状態で幅方向中央側を言い、図1、5の右側、図4の上側、図6の下側)部分に小径段部11を、それぞれ設けている。上記内輪8は、この小径段部11に外嵌した状態で、上記ハブ本体7の軸方向内端部を径方向外方に塑性変形させて成るかしめ部12により、このハブ本体7に対し結合固定している。この様な転がり軸受ユニット1の使用時には、上記取付部6を懸架装置に結合固定すると共に、上記外向フランジ部10に車輪を支持固定する事により、この懸架装置に対してこの車輪を回転自在に支持する。 In order to rotatably support the wheel with respect to the suspension device, for example, a rolling bearing unit 1 for supporting the wheel as shown in FIG. 5 is used. In the rolling bearing unit 1, a hub 3 is rotatably supported via a plurality of rolling elements 4 and 4 on the inner diameter side of an outer ring 2. Of these, the outer ring 2 has a double-row outer ring raceway 5, 5 on the inner peripheral surface, and an outer flange-like attachment portion 6 for fixing the outer ring 2 to the knuckle constituting the suspension device on the outer peripheral surface. Are provided. The hub 3 is formed by combining a hub body 7 and an inner ring 8, and has double-row inner ring raceways 9a and 9b on the outer peripheral surface. Of these, the hub body 7 is close to the outer end in the axial direction of the outer peripheral surface (outside with respect to the axial direction means the outer side in the width direction in the assembled state to the suspension device, the left side in FIGS. The outward flange portion 10 for supporting and fixing the wheel is fixed to the axially inner end portion (the inner side with respect to the axial direction means the center side in the width direction in the assembled state to the suspension device. Small diameter step portions 11 are provided on the right and left sides of 1 and 5, the upper side in FIG. 4, and the lower side in FIG. 6, respectively. The inner ring 8 is coupled to the hub body 7 by a caulking portion 12 formed by plastically deforming the axially inner end portion of the hub body 7 radially outward in a state of being externally fitted to the small diameter step portion 11. It is fixed. When such a rolling bearing unit 1 is used, the mounting portion 6 is coupled and fixed to the suspension device, and the wheel is supported and fixed to the outward flange portion 10 so that the wheel can be rotated with respect to the suspension device. To support.
上述の様な転がり軸受ユニット1を構成するハブ本体7を造るのに、材料の歩留向上や機械加工量の削減によるコスト低減等を目的として、冷間鍛造により造る事が考えられている。この様な、ハブ本体7を冷間鍛造により造る為の方法として、例えば特許文献1に記載された方法が知られている。図6は、この特許文献1に記載された、冷間鍛造によりハブ本体を造る方法の1例を示している。この冷間鍛造による製造方法では、先ず、(A)に示した円柱状の素材13を用意する。この素材13には、予め軟化焼鈍処理を施して、常温でも塑性変形し易くしておく。この様な素材13に前方押し出し加工を施して、(B)に示す様な、段付の第一中間素材14を得る。そして、この第一中間素材14を、フローティングダイを使用した冷間鍛造加工(押し出し加工)により、(C)に示す様な第二中間素材15とする。次いでこの第二中間素材15に、軸方向外側のアンギュラ型の内輪軌道9a(図5参照)を設ける為の段差部等を形成する段付加工を施して、(D)に示す様な第三中間素材16とする。更に、この第三中間素材16に側方押し出し加工及び上記内輪軌道9aを形成する加工を施して、(E)に示す様なハブ本体7とする。 In order to manufacture the hub body 7 constituting the rolling bearing unit 1 as described above, it is considered that the hub body 7 is manufactured by cold forging for the purpose of improving the material yield and reducing the cost of machining. As a method for manufacturing such a hub body 7 by cold forging, for example, a method described in Patent Document 1 is known. FIG. 6 shows an example of a method for manufacturing a hub body by cold forging described in Patent Document 1. In this manufacturing method by cold forging, first, the columnar material 13 shown in FIG. The material 13 is preliminarily softened and annealed to facilitate plastic deformation even at room temperature. Such a material 13 is subjected to a forward extrusion process to obtain a stepped first intermediate material 14 as shown in FIG. And this 1st intermediate material 14 is made into the 2nd intermediate material 15 as shown to (C) by the cold forging process (extrusion process) using a floating die. Next, the second intermediate material 15 is subjected to a stepping process for forming a stepped portion or the like for providing an axially-shaped angular inner ring raceway 9a (see FIG. 5), and the third intermediate material 15 as shown in FIG. The intermediate material 16 is used. Further, the third intermediate material 16 is subjected to a side extrusion process and a process for forming the inner ring raceway 9a to obtain a hub body 7 as shown in FIG.
この様にして造ったハブ本体7の必要個所には、前記内輪8を結合固定するのに先立って、本発明の実施の形態を説明する為の図1に斜格子で示す様に、焼き入れ硬化層17を形成する。即ち、上記ハブ本体7の外周面のうち、小径段部11から内輪軌道9aを含め、外向フランジ部10の軸方向内側面内径寄り端部迄の部分に、上記焼き入れ硬化層17を形成する。この焼き入れ硬化層17のうち、上記小径段部11部分は、この小径段部11に外嵌固定した内輪8(図5参照)から加わる衝撃荷重に拘らず、この小径段部11が塑性変形する事を防止する為に設ける。又、上記内輪軌道9a部分は、各転動体4、4(図5参照)から加わる荷重に拘らず、この内輪軌道9aの転がり疲れ寿命を確保する為に設ける。又、上記外向フランジ部10の軸方向内側面内径寄り端部には、車輪からこの外向フランジ部10に加わるモーメントに拘らず、この外向フランジ部10の基端部が塑性変形するのを防止する為に設ける。更に、上記小径段部11と上記内輪軌道9aとの間部分は、上記モーメント等により上記ハブ本体7の軸方向中間部が塑性変形するのを防止する為に設ける。 Prior to coupling and fixing the inner ring 8, the hub body 7 manufactured in this way is quenched as shown in FIG. 1 for explaining the embodiment of the present invention. A hardened layer 17 is formed. That is, the hardened hardened layer 17 is formed in the outer peripheral surface of the hub body 7 from the small diameter step portion 11 to the inner ring raceway 9a to the end portion closer to the inner diameter of the outward flange portion 10 in the axial direction. . Of the quenched and hardened layer 17, the small-diameter step 11 portion is plastically deformed regardless of the impact load applied from the inner ring 8 (see FIG. 5) fitted and fixed to the small-diameter step portion 11. Provided to prevent this from happening. The inner ring raceway 9a is provided to ensure the rolling fatigue life of the inner ring raceway 9a regardless of the load applied from the rolling elements 4, 4 (see FIG. 5). Further, the proximal end portion of the outward flange portion 10 is prevented from being plastically deformed at the end portion on the inner diameter side in the axial direction of the outward flange portion 10 regardless of the moment applied to the outward flange portion 10 from the wheel. Provided for this purpose. Further, a portion between the small diameter step portion 11 and the inner ring raceway 9a is provided to prevent the intermediate portion in the axial direction of the hub body 7 from being plastically deformed by the moment or the like.
ところで、上記外向フランジ部10の軸方向に関する厚さ寸法(肉厚)は、径方向内端部で大きく、同じく中間部乃至外端部で小さくしている。そして、これら厚さ寸法が異なる径方向内端部と中間部乃至外端部とを、上記フランジ部10の軸方向内側面の内径寄り部分に全周に亙り設けた、段差部18により連続させている。この段差部18は、後述する図2に示す様に、断面円弧形で、軸方向内側面のうちの径方向中間部とは接線方向で連続し、径方向内端部とは(母線形状を表す線が)微分不能な状態で連続して(角張って)いる。上記外向フランジ部10の軸方向内側面に上述の様な段差部18を形成する事で、この外向フランジ部10の肉厚を、上述の様に径方向位置に応じて異ならせる理由は、この外向フランジ部10を含む、上記ハブ本体7の重量増大を抑えつつ、この外向フランジ部10の基端部(径方向内端部)の強度及び剛性を確保する為である。 By the way, the thickness dimension (wall thickness) in the axial direction of the outward flange portion 10 is large at the radially inner end portion and is also small at the intermediate portion or the outer end portion. Then, the radially inner end portion and the intermediate portion or the outer end portion having different thickness dimensions are continuously provided by the step portion 18 provided over the entire circumference in the portion near the inner diameter of the axial inner side surface of the flange portion 10. ing. As shown in FIG. 2 which will be described later, the stepped portion 18 has a circular arc shape and is continuous in a tangential direction with a radially intermediate portion of the axially inner side surface. The line representing) is continuous (angular) in a non-differentiable state. The reason why the thickness of the outward flange portion 10 is made different according to the radial position as described above by forming the step portion 18 as described above on the axially inner side surface of the outward flange portion 10 is as follows. This is to ensure the strength and rigidity of the base end portion (radially inner end portion) of the outward flange portion 10 while suppressing an increase in the weight of the hub body 7 including the outward flange portion 10.
従来は、上述の様な段差部18の位置と、前述の様な焼き入れ硬化層17の外径側端縁の位置とに就いては、特に考慮してはいなかった。そして、従来一般的に使用されていた、温間鍛造や熱間鍛造により造られたハブ本体を備えた、車輪支持用の転がり軸受ユニットの場合には、特に問題を生じなかった。これに対して、前記特許文献1に記載された様に、冷間鍛造によりハブ本体7を造る場合には、焼き入れ硬化層17の外径側端縁の位置を段差部18の位置との関係で規制しないと、上記ハブ本体7を含む転がり軸受ユニットの耐久性を、必ずしも十分に確保できない事が、本発明者等の研究により分かった。この点に就いて、図7を参照しつつ説明する。 Conventionally, no particular consideration has been given to the position of the stepped portion 18 as described above and the position of the outer diameter side edge of the quenched and hardened layer 17 as described above. And in the case of the rolling bearing unit for wheel support provided with the hub main body which was generally used by the warm forging and hot forging conventionally used, there was no problem in particular. On the other hand, as described in Patent Document 1, when the hub body 7 is manufactured by cold forging, the position of the outer diameter side edge of the hardened hardened layer 17 is set to the position of the step portion 18. The inventors have found that the durability of the rolling bearing unit including the hub body 7 cannot always be sufficiently secured unless it is restricted by the relationship. This point will be described with reference to FIG.
冷間鍛造により造ったハブ本体7特有の問題点として、焼き入れ硬化層17の周縁部で、金属組織の再結晶に基づく強度低下を生じる事が分かった。即ち、この焼き入れ硬化層17を形成する為に高周波焼き入れを施す領域と、この領域から外れた領域(高周波焼き入れ等の熱処理を施さない領域)との界面部分に、微小ではあるが、再結晶により硬さが低下する領域が存在する。又、上記焼き入れ硬化層17の周縁部は、上記高周波焼き入れを施す領域とこの領域から外れた領域との境界に相当し、両領域同士の間での熱変形の相違等に起因する残留応力が発生する。この為、上記焼き入れ硬化層17の周縁部は、強度的に弱くなる。一方、上記段差部18に就いては、前記車輪支持用の転がり軸受ユニット1の使用時、車輪から上記外向フランジ部10に加わるモーメントに基づく応力が集中し易い部位である。この為、図7に示す様に、上記段差部18に上記焼き入れ硬化層17の周縁部が存在すると、車輪を路面の段差に勢い良く乗り上げさせる等、厳しい使用条件下では、上記外向フランジ部10に、上記段差部18で亀裂等の損傷が発生する可能性がある。 As a problem peculiar to the hub main body 7 made by cold forging, it has been found that a decrease in strength is caused at the peripheral portion of the hardened hardened layer 17 due to recrystallization of the metal structure. That is, although the interface portion between the region subjected to induction hardening to form the quench hardened layer 17 and the region outside this region (region not subjected to heat treatment such as induction hardening) is small, There is a region where the hardness decreases due to recrystallization. Further, the peripheral edge portion of the hardened and hardened layer 17 corresponds to the boundary between the region where the induction hardening is performed and the region outside the region, and the residual due to the difference in thermal deformation between the two regions. Stress is generated. For this reason, the peripheral part of the said hardening hardening layer 17 becomes weak in intensity | strength. On the other hand, the stepped portion 18 is a portion where stress based on the moment applied from the wheel to the outward flange portion 10 tends to concentrate when the rolling bearing unit 1 for supporting a wheel is used. For this reason, as shown in FIG. 7, when the peripheral portion of the hardened hardened layer 17 is present in the stepped portion 18, the outward flange portion is used under severe use conditions such as forcing the wheel to step on the road step. 10, damage such as cracks may occur in the stepped portion 18.
本発明は、上述の様な事情に鑑みて、ハブ本体の外向フランジ部の段差部に亀裂等の損傷が発生しにくい構造及びその製造方法を実現すべく発明したものである。 In view of the circumstances as described above, the present invention has been invented to realize a structure in which a stepped portion of an outward flange portion of a hub body is unlikely to be damaged such as a crack and a manufacturing method thereof.
本発明の車輪支持用転がり軸受ユニット及びその製造方法のうち、請求項1に記載した車輪支持用転がり軸受ユニットは、例えば、前述の図5に示した車輪支持用転がり軸受ユニットと同様に、外輪と、ハブと、複数の転動体と、外向フランジ部と、段差部とを備える。
このうちの外輪は、内周面に複列の外輪軌道を設けている。この外輪は、機械構造用炭素鋼(所謂中炭素鋼乃至は高炭素鋼)製の素材を鍛造により塑性変形させる事により、一体成形している。上記外輪の加工手段に就いては、特に問わない。次述するハブ本体と同様に冷間鍛造でも良いし、温間又は熱間鍛造でも良い。何れにしても、上記外輪の内周面で上記両外輪軌道を形成した部分には、高周波焼き入れ等により、焼き入れ硬化層を設けている。
Of the rolling bearing unit for supporting a wheel and the manufacturing method thereof according to the present invention, the rolling bearing unit for supporting a wheel described in claim 1 is, for example, an outer ring similar to the rolling bearing unit for supporting a wheel shown in FIG. And a hub, a plurality of rolling elements, an outward flange portion, and a step portion.
Of these, the outer ring is provided with double-row outer ring raceways on the inner peripheral surface. The outer ring is integrally formed by plastically deforming a material made of carbon steel for machine structure (so-called medium carbon steel or high carbon steel) by forging. The outer ring machining means is not particularly limited. Cold forging may be used in the same manner as the hub body described below, and warm or hot forging may be used. In any case, a hardened hardened layer is provided by induction hardening or the like in the portion where the outer ring raceways are formed on the inner peripheral surface of the outer ring.
又、上記ハブは、外周面に複列の内輪軌道を設けたもので、ハブ本体と内輪とを結合固定して成る。このうちのハブ本体は、S50C〜S58C程度(一般的にはS53C又はS55C、JIS G 4051)の機械構造用炭素鋼製の素材を冷間鍛造により塑性変形させる事により、一体成形している。これに対して、上記内輪は、SUJ1〜SUJ5(一般的にはSUJ2、JIS G 4805)等の高炭素クロム軸受鋼により一体成形し、全体を焼き入れ(所謂ズブ焼き)している。
又、上記各転動体は、上記両外輪軌道と上記両内輪軌道との間に、両列毎に複数個ずつ設けられている。
又、上記外向フランジ部は、上記ハブに対し車輪を支持固定する為のもので、このハブのうちで上記ハブ本体の端部外周面に設けられている。
更に、上記段差部は、上記外向フランジ部の軸方向両側面のうちで上記外輪の軸方向端面に対向する側面の径方向中間部に、全周に亙り形成されたもので、断面形状が円弧形であって、内径側の厚肉部と外径側の薄肉部とを連続させる。
そして、上記ハブ本体の外周面のうちで、少なくとも上記外向フランジ部寄りの内輪軌道から、この外向フランジ部の内径寄り部分に掛けての部分に、高周波焼き入れにより、焼き入れ硬化層を設けている。
The hub is provided with double-row inner ring raceways on the outer peripheral surface, and is formed by coupling and fixing the hub body and the inner ring. Of these, the hub main body is integrally formed by plastically deforming a material made of carbon steel for machine structure of about S50C to S58C (generally S53C or S55C, JIS G 4051) by cold forging. On the other hand, the inner ring is integrally formed of a high carbon chrome bearing steel such as SUJ1 to SUJ5 (generally SUJ2, JIS G 4805), and the whole is quenched (so-called submerged).
A plurality of rolling elements are provided for each row between the outer ring raceways and the inner ring raceways.
The outward flange portion is for supporting and fixing the wheel to the hub, and is provided on the outer peripheral surface of the end portion of the hub body.
Further, the step portion is formed over the entire circumference in the radial intermediate portion of the side surface facing the axial end surface of the outer ring, of the both side surfaces in the axial direction of the outward flange portion, and has a circular cross-sectional shape. It is an arc shape, and the thick part on the inner diameter side and the thin part on the outer diameter side are made continuous.
Further, a hardened hardening layer is provided by induction hardening at least on an outer ring surface of the hub body from an inner ring raceway near the outward flange portion to a portion near the inner diameter portion of the outward flange portion. Yes.
特に、請求項1に記載した車輪支持用転がり軸受ユニットに於いては、この焼き入れ硬化層と他の部分との境界が、上記段差部に存在しない。
即ち、後述する図3の(A)に示す様に、上記境界を上記段差部よりも内径側(図3の下側)に位置させるか、或いは、同図の(B)に示す様に、上記境界を上記段差部よりも外径側(図3の上側)に位置させる。言い換えれば、この境界を、前述の図7に示した状態に比べて、上記段差部よりも、内径側又は外径側に移動させる。
In particular, in the wheel support rolling bearing unit according to the first aspect, the boundary between the hardened hardening layer and the other portion does not exist in the stepped portion.
That is, as shown in FIG. 3A described later, the boundary is positioned on the inner diameter side (lower side in FIG. 3) than the stepped portion, or as shown in FIG. The boundary is positioned on the outer diameter side (upper side in FIG. 3) than the stepped portion. In other words, the boundary is moved to the inner diameter side or the outer diameter side from the stepped portion as compared with the state shown in FIG.
又、請求項2に記載した車輪支持用転がり軸受ユニットの製造方法の発明は、上述の様な請求項1に記載した車輪支持用転がり軸受ユニットを造る為、炭素鋼製の素材に、常温で順次塑性変形させる冷間鍛造を施す工程を有する。
特に、請求項2に記載した車輪支持用転がり軸受ユニットの製造方法では、上記素材に最初の塑性加工を施す以前に、この素材に軟化焼鈍処理を施す。そして、各工程を経て造ったハブ本体に焼き入れ硬化層を、高周波焼き入れにより形成する。
この焼き入れ硬化層と他の部分との境界を上記段差部からずらせる為には、この焼き入れ硬化層を形成する為の高周波焼き入れの為のコイル(高周波加熱コイル)の出力、形状、寸法を考慮しつつ、その設置位置を規制する。即ち、上記焼き入れ硬化層を形成する際に上記コイルにより、上記段差部を全く加熱しないか、逆に、この段差部全体を加熱する。言い換えれば、この段差部を部分的に加熱しない様にする。
Further, the invention of the manufacturing method of the wheel supporting rolling bearing unit according to claim 2 is the same as that described above in order to manufacture the wheel supporting rolling bearing unit according to claim 1, so that the material made of carbon steel can be used at room temperature. A step of performing cold forging to sequentially plastically deform.
In particular, in the method for manufacturing a wheel-supporting rolling bearing unit according to claim 2, the material is subjected to a softening annealing process before the first plastic working is performed on the material. Then, a hardened and hardened layer is formed by induction hardening on the hub body made through the respective steps.
In order to shift the boundary between this hardened layer and other parts from the stepped portion, the output, shape, and shape of the induction hardening coil (high frequency heating coil) for forming this hardened layer The installation position is restricted in consideration of the dimensions. That is, when forming the quench hardening layer, the step portion is not heated at all by the coil, or conversely, the entire step portion is heated. In other words, the step portion is not partially heated.
上述の様に構成する本発明によれば、低コストで、しかも優れた耐久性を有する車輪支持用転がり軸受ユニットを実現できる。即ち、前述した通り、低コスト化の為にハブ本体を冷間鍛造により造り、更にこのハブ本体の必要個所に高周波焼き入れにより焼き入れ硬化層を形成すると、この焼き入れ硬化層の周縁部の強度が、金属組織の再結晶に基づいて低下する。この場合でも、この周縁部が、外向フランジ部に加わるモーメントに基づいて上記ハブ本体内で発生する応力が集中し易い、この外向フランジ部の段差部から外れているので、この段差部に亀裂等の損傷が発生しにくくできる。 According to the present invention configured as described above, it is possible to realize a wheel support rolling bearing unit that is low in cost and has excellent durability. That is, as described above, the hub body is made by cold forging for cost reduction, and when a hardened hardening layer is formed by induction hardening at a necessary portion of the hub main body, the peripheral portion of the hardened hardening layer is formed. The strength decreases due to recrystallization of the metal structure. Even in this case, since the peripheral edge portion is out of the step portion of the outward flange portion, the stress generated in the hub body is likely to be concentrated based on the moment applied to the outward flange portion. Damage can be less likely to occur.
本発明の車輪支持用転がり軸受ユニット及びその製造方法の特徴を図1を参照しつつ説明すると、ハブ本体7を冷間鍛造で造る場合でも、このハブ本体7の外周面に設けた外向フランジ部10の側面の段差部18に亀裂等の損傷が発生しにくくする為に、焼き入れ硬化層17の周縁部位置を、この段差部18から外れた位置に設定する点にある。その他の部分に就いては、前述の図5に示した構造を含めて、軸方向内側面の内径寄り部分に段差部18を形成した外向フランジ部10と外輪軌道9aとを外周面に設けたハブ本体7を備えた、従来から知られている各種車輪支持用の転がり軸受ユニット1と同様である。 The features of the wheel-supporting rolling bearing unit and the manufacturing method thereof according to the present invention will be described with reference to FIG. 1. Even when the hub body 7 is manufactured by cold forging, the outward flange portion provided on the outer peripheral surface of the hub body 7 In order to make it difficult for damage such as cracks to occur in the stepped portion 18 on the side surface of the tenth surface, the position of the peripheral portion of the hardened hardened layer 17 is set at a position away from the stepped portion 18. With respect to the other portions, including the structure shown in FIG. 5 described above, the outward flange portion 10 and the outer ring raceway 9a in which the step portion 18 is formed near the inner diameter portion of the inner surface in the axial direction are provided on the outer peripheral surface. This is the same as the conventionally known rolling bearing unit 1 for supporting various types of wheels provided with the hub body 7.
又、上記ハブ本体7を冷間鍛造により造る工程に就いても、基本的には、前述の図6に示す様な、特許文献1に記載された方法の如く、従来から知られている方法により造る。温度条件等に就いては、例えば次の様に設定する。先ず、図6の(A)に示した素材13を、A1変態点以上の740〜860℃に加熱した状態で、0.1hr以上保持する。その後、720〜680℃迄、20〜70℃/hrで冷却した後、1〜5hr程度保持してから、620〜680℃迄、10〜100℃/hrで冷却する。更に、500〜560℃迄、10〜150℃/hrで冷却する。この様な条件で軟化焼鈍処理を施す事により、上記素材13を構成する金属組織が、球状化セメンタイト、針状セメンタイト、フェライトが合わさった、塑性変形し易い組織となる。 Further, even in the process of manufacturing the hub body 7 by cold forging, basically a conventionally known method such as the method described in Patent Document 1 as shown in FIG. Build by. For example, the temperature condition is set as follows. First, the raw material 13 shown in FIG. 6A is held for 0.1 hr or more in a state of being heated to 740 to 860 ° C. above the A1 transformation point. Then, after cooling to 720-680 degreeC at 20-70 degreeC / hr, after hold | maintaining about 1-5 hours, it cools at 10-100 degreeC / hr to 620-680 degreeC. Furthermore, it cools at 10-150 degreeC / hr to 500-560 degreeC. By performing the soft annealing process under such conditions, the metal structure constituting the material 13 becomes a structure that is easily plastically deformed, in which spheroidized cementite, acicular cementite, and ferrite are combined.
そこで、この様に塑性変形し易くなった、上記素材13に冷間鍛造加工を施す事により、上記図6の(B)に示した第一中間素材14、(C)に示した第二中間素材15、(D)に示した第三中間素材16を経て、(E)に示したハブ本体7を得る。そして、このハブ本体7の形状を旋削加工により整えてから、このハブ本体7の所定部分に高周波焼き入れ処理により焼き入れ硬化層17(図1参照)を形成した後、研削加工により、上記ハブ本体7の外周面の形状及び寸法を仕上げると共に、この外周面のうちで、内輪軌道9aを含む所定部分を平滑面とする。上記高周波焼き入れ処理の際に、上記焼き入れ硬化層17の周縁部に、前述した様に、微小とは言え、再結晶により硬さが低下する領域(強度低下領域)が出現する。本発明の場合には、この様な強度低下領域を、上記段差部18から外れた部分に位置させている。この為、前述した様に、上記ハブ本体7のうちで、前記外向フランジ部10の耐久性向上を図れる。 Therefore, by subjecting the material 13 that has been easily plastically deformed in this way to cold forging, the first intermediate material 14 shown in FIG. 6B and the second intermediate material shown in FIG. The hub body 7 shown in (E) is obtained through the material 15 and the third intermediate material 16 shown in (D). Then, after the shape of the hub body 7 is adjusted by turning, a hardened hardened layer 17 (see FIG. 1) is formed on a predetermined portion of the hub body 7 by induction hardening, and then the hub is ground by grinding. The shape and dimensions of the outer peripheral surface of the main body 7 are finished, and a predetermined portion including the inner ring raceway 9a in the outer peripheral surface is defined as a smooth surface. During the induction hardening process, as described above, a region where the hardness is reduced by recrystallization (strength reduction region) appears at the peripheral portion of the quenched and hardened layer 17 although it is minute. In the case of the present invention, such a strength-decreasing region is located in a portion that is out of the stepped portion 18. For this reason, as described above, the durability of the outward flange portion 10 in the hub body 7 can be improved.
以下に、本発明の効果を確認する為に本発明者等が行った実験に就いて説明する。実験では、JIS G 4051に規定するS55C(炭素量=0.55重量%)製で外径が60mmのビレットに、前述した軟化焼鈍処理を施した後、このビレットに、前述の図6に示した工程を有する冷間鍛造加工を施し、所定の形状を有するハブ本体7とした。そして、このハブ本体7の外周面のうちで、外向フランジ部10寄りの内輪軌道9aからこの外向フランジ部10の内径寄り部分に掛けての部分に、焼き入れ硬化層17を形成した。この際、高周波加熱コイルの設置位置を規制して、この焼き入れ硬化層17の外周縁位置が互いに異なる、5種類の試料(ハブ本体7)を得た。この焼き入れ硬化層17の外周縁位置に就いて、図2に示す。5種類の外周縁位置は、上記段差部18の径方向中央位置(図2のc位置)を挟んで、外径側(a位置及びb位置)と内径側(d位置及びe位置)とに2個所位置ずつ、合計5個所設定した。径方向に隣り合う位置同士の間の径方向距離(ピッチ)は2.0mmとした。又、段差部18の断面形状(母線形状)の曲率半径に就いて、8.0mmのものと10.0mmのものとの2種類を用意し、合計10種類の試料に就いて、上記段差部18の強度を測定した。 Hereinafter, experiments conducted by the present inventors in order to confirm the effects of the present invention will be described. In the experiment, a billet made of S55C (carbon content = 0.55 wt%) defined in JIS G 4051 and having an outer diameter of 60 mm was subjected to the above-described softening annealing treatment, and then the billet is shown in FIG. The hub main body 7 having a predetermined shape was obtained by performing a cold forging process including the steps described above. Then, a hardened hardened layer 17 was formed on the outer peripheral surface of the hub body 7 on the portion extending from the inner ring raceway 9a near the outward flange portion 10 to the inner diameter portion of the outward flange portion 10. At this time, the installation position of the high-frequency heating coil was regulated, and five types of samples (hub main body 7) were obtained in which the outer peripheral edge positions of the quenched and hardened layer 17 were different from each other. FIG. 2 shows the position of the outer peripheral edge of the quenched and hardened layer 17. There are five types of outer peripheral edge positions on the outer diameter side (a position and b position) and the inner diameter side (d position and e position) across the radial center position (c position in FIG. 2) of the stepped portion 18. A total of 5 locations were set, each at 2 locations. The radial distance (pitch) between positions adjacent in the radial direction was 2.0 mm. In addition, two types of curvature, 8.0 mm and 10.0 mm, are prepared for the radius of curvature of the cross-sectional shape (bus shape) of the step portion 18, and the above step portion is provided for a total of 10 types of samples. An intensity of 18 was measured.
この強度測定は、図4に示す様にして行った。即ち、上記10種類のハブ本体7(試料)を、内輪8、外輪2、転動体4、4等、他の構成部材と組み合わせて転がり軸受ユニット1とした。そして、この転がり軸受ユニット1の外輪2を治具19に保持固定した状態で、上記ハブ本体7の外周面に設けた外向フランジ部10の軸方向内側面に、図4に太矢印で示す様にアキシアル荷重を入力し、この外向フランジ部10(のうちの段差部18)に損傷(亀裂)が発生するに至ったアキシアル荷重の大きさを、当該試料に就いての破壊荷重とした。この破壊荷重の大きさを比較する為に、上記10種類の試料のうちのそれぞれ比較例の破壊荷重の大きさを1とし、他の試料の破壊荷重の大きさは、曲率半径が同じである比較例の破壊荷重の大きさとの比で表した。この様な条件で行った実験の結果を、次の表1に示す。 This intensity measurement was performed as shown in FIG. That is, the ten types of hub main bodies 7 (samples) were combined with other components such as the inner ring 8, the outer ring 2, the rolling elements 4, 4, and the like to form the rolling bearing unit 1. In a state where the outer ring 2 of the rolling bearing unit 1 is held and fixed to the jig 19, the axially inner side surface of the outward flange portion 10 provided on the outer peripheral surface of the hub body 7 is indicated by a thick arrow in FIG. The axial load was input to the outer flange portion 10 (the stepped portion 18), and the magnitude of the axial load that resulted in damage (cracking) was taken as the breaking load for the sample. In order to compare the magnitude of the breaking load, the magnitude of the breaking load of each of the 10 types of samples is set to 1, and the magnitudes of the breaking loads of the other samples have the same radius of curvature. It was expressed as a ratio to the magnitude of the fracture load of the comparative example. The results of experiments conducted under such conditions are shown in Table 1 below.
この表1に結果を示した実験から、本発明の様に、焼き入れ硬化層17の端縁(外周縁)を上記段差部18からずらせる事で、上記外向フランジ部10の耐荷重性が向上する(破壊強度が高くなる)事を確認できた。即ち、上記焼き入れ硬化層17の端縁が上記段差部18に存在する比較例1、2に比べて、同じくずれている実施例1〜8の場合、段差部18の曲率半径の相違に拘らず、20%以上強度が向上する事が確認できた。比較例1、2の場合には、前述した通り、焼き入れ部と非焼き入れ部との境界である、上記焼き入れ硬化層17の端縁部分の強度が、焼き入れの為の熱処理に基づく、残留応力の発生及び再結晶により低下した為、上記耐荷重性の点で、各実施例の場合に比べて劣った。尚、上記焼き入れ硬化層17の端縁の上記段差部18からのずれ方向及びずれ量と、上記耐荷重性との間には、有意な差は見られなかった。 From the experiment whose results are shown in Table 1, the load resistance of the outward flange portion 10 can be improved by shifting the edge (outer peripheral edge) of the hardened hardened layer 17 from the stepped portion 18 as in the present invention. It was confirmed that it improved (breaking strength increased). That is, in the case of Examples 1 to 8 where the edge of the quench hardened layer 17 is similarly deviated compared to Comparative Examples 1 and 2 in which the stepped portion 18 exists, the difference in curvature radius of the stepped portion 18 is concerned. It was confirmed that the strength was improved by 20% or more. In the case of Comparative Examples 1 and 2, as described above, the strength of the edge portion of the quenched and hardened layer 17 that is the boundary between the quenched portion and the non-quenched portion is based on the heat treatment for quenching. Since it decreased due to the generation of residual stress and recrystallization, it was inferior to the case of each example in terms of the load resistance. It should be noted that there was no significant difference between the displacement direction and displacement amount of the edge of the quenched hardened layer 17 from the stepped portion 18 and the load resistance.
本発明は、外周面に内輪軌道及び外向フランジ部を設けたハブ本体を備えた車輪支持用転がり軸受ユニットであれば、前述の図5に示した様な従動輪(FF車の後輪、FR車及びMR車の前輪)用の構造に限らず、駆動輪(FF車の前輪、FR車及びMR車の後輪、4WD車の全輪)用の構造でも実施できる。又、1対の外輪軌道と1対の内輪軌道との間に設ける転動体の種類にしても、上記図5に示す様な玉に限らず、円すいころとする事もできる。又、両列同士の間で転動体の種類を異ならせる事もできる。 If the present invention is a wheel-supporting rolling bearing unit having a hub body provided with an inner ring raceway and an outward flange portion on the outer peripheral surface, the driven wheel (rear wheel of the FF vehicle, FR The present invention is not limited to the structure for the vehicle and the front wheel of the MR vehicle, but can also be implemented for a structure for driving wheels (front wheel of the FF vehicle, rear wheel of the FR vehicle and MR vehicle, all wheels of the 4WD vehicle). Further, the type of rolling element provided between the pair of outer ring raceways and the pair of inner ring raceways is not limited to the balls as shown in FIG. 5 but may be tapered rollers. Moreover, the kind of rolling element can also differ between both rows.
1 転がり軸受ユニット
2 外輪
3 ハブ
4 転動体
5 外輪軌道
6 取付部
7 ハブ本体
8 内輪
9a、9b 内輪軌道
10 外向フランジ部
11 小径段部
12 かしめ部
13 素材
14 第一中間素材
15 第二中間素材
16 第三中間素材
17 焼き入れ硬化層
18 段差部
19 治具
DESCRIPTION OF SYMBOLS 1 Rolling bearing unit 2 Outer ring 3 Hub 4 Rolling body 5 Outer ring raceway 6 Mounting part 7 Hub body 8 Inner ring 9a, 9b Inner ring raceway 10 Outward flange part 11 Small diameter step part 12 Caulking part 13 Material 14 First intermediate material 15 Second intermediate material 16 Third intermediate material 17 Hardened and hardened layer 18 Stepped portion 19 Jig
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008176516A JP2010013039A (en) | 2008-07-07 | 2008-07-07 | Rolling bearing unit for wheel support and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008176516A JP2010013039A (en) | 2008-07-07 | 2008-07-07 | Rolling bearing unit for wheel support and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010013039A true JP2010013039A (en) | 2010-01-21 |
Family
ID=41699564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008176516A Pending JP2010013039A (en) | 2008-07-07 | 2008-07-07 | Rolling bearing unit for wheel support and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010013039A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012043706A1 (en) * | 2010-09-30 | 2012-04-05 | Ntn株式会社 | Drive wheel bearing unit and method for manufacturing same |
EP2622238A4 (en) * | 2010-09-28 | 2016-04-27 | Skf Ab | Flanged bearing ring and method for producing such a flanged bearing ring |
EP2602123B1 (en) * | 2011-12-09 | 2021-05-26 | Aktiebolaget SKF | An integrated hub-bearing assembly for the wheel of a motor vehicle |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004092830A (en) * | 2002-09-02 | 2004-03-25 | Nsk Ltd | Manufacturing method for bearing unit for wheel |
JP2005239100A (en) * | 2004-01-27 | 2005-09-08 | Ntn Corp | Bearing device for wheel |
JP2006064036A (en) * | 2004-08-25 | 2006-03-09 | Nsk Ltd | Bearing device for supporting axle |
JP2006137297A (en) * | 2004-11-12 | 2006-06-01 | Ntn Corp | Bearing device for wheel |
JP2006206047A (en) * | 2006-02-17 | 2006-08-10 | Nsk Ltd | Wheel bearing unit |
JP2006291250A (en) * | 2005-04-06 | 2006-10-26 | Nsk Ltd | Rolling bearing unit for wheel supporting |
JP2007152413A (en) * | 2005-12-08 | 2007-06-21 | Nsk Ltd | Method for manufacturing raceway-ring member constituting rolling-bearing unit for supporting wheel |
JP2007211987A (en) * | 2007-05-01 | 2007-08-23 | Ntn Corp | Wheel bearing device and method for manufacturing same |
WO2007125646A1 (en) * | 2006-04-25 | 2007-11-08 | Ntn Corporation | Bearing device for wheel |
WO2007125651A1 (en) * | 2006-04-25 | 2007-11-08 | Ntn Corporation | Bearing device for wheel |
JP2007333082A (en) * | 2006-06-15 | 2007-12-27 | Ntn Corp | Wheel bearing device |
JP2008019912A (en) * | 2006-07-11 | 2008-01-31 | Ntn Corp | Wheel bearing device |
JP2008051164A (en) * | 2006-08-23 | 2008-03-06 | Ntn Corp | Bearing device for wheel |
WO2008026703A1 (en) * | 2006-08-31 | 2008-03-06 | Nsk Ltd. | Wheel supporting rolling bearing unit |
-
2008
- 2008-07-07 JP JP2008176516A patent/JP2010013039A/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004092830A (en) * | 2002-09-02 | 2004-03-25 | Nsk Ltd | Manufacturing method for bearing unit for wheel |
JP2005239100A (en) * | 2004-01-27 | 2005-09-08 | Ntn Corp | Bearing device for wheel |
JP2006064036A (en) * | 2004-08-25 | 2006-03-09 | Nsk Ltd | Bearing device for supporting axle |
JP2006137297A (en) * | 2004-11-12 | 2006-06-01 | Ntn Corp | Bearing device for wheel |
JP2006291250A (en) * | 2005-04-06 | 2006-10-26 | Nsk Ltd | Rolling bearing unit for wheel supporting |
JP2007152413A (en) * | 2005-12-08 | 2007-06-21 | Nsk Ltd | Method for manufacturing raceway-ring member constituting rolling-bearing unit for supporting wheel |
JP2006206047A (en) * | 2006-02-17 | 2006-08-10 | Nsk Ltd | Wheel bearing unit |
WO2007125646A1 (en) * | 2006-04-25 | 2007-11-08 | Ntn Corporation | Bearing device for wheel |
WO2007125651A1 (en) * | 2006-04-25 | 2007-11-08 | Ntn Corporation | Bearing device for wheel |
JP2007333082A (en) * | 2006-06-15 | 2007-12-27 | Ntn Corp | Wheel bearing device |
JP2008019912A (en) * | 2006-07-11 | 2008-01-31 | Ntn Corp | Wheel bearing device |
JP2008051164A (en) * | 2006-08-23 | 2008-03-06 | Ntn Corp | Bearing device for wheel |
WO2008026703A1 (en) * | 2006-08-31 | 2008-03-06 | Nsk Ltd. | Wheel supporting rolling bearing unit |
JP2007211987A (en) * | 2007-05-01 | 2007-08-23 | Ntn Corp | Wheel bearing device and method for manufacturing same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2622238A4 (en) * | 2010-09-28 | 2016-04-27 | Skf Ab | Flanged bearing ring and method for producing such a flanged bearing ring |
EP2622238B1 (en) | 2010-09-28 | 2018-07-11 | Aktiebolaget SKF | Flanged bearing ring and method for producing such a flanged bearing ring |
WO2012043706A1 (en) * | 2010-09-30 | 2012-04-05 | Ntn株式会社 | Drive wheel bearing unit and method for manufacturing same |
EP2602123B1 (en) * | 2011-12-09 | 2021-05-26 | Aktiebolaget SKF | An integrated hub-bearing assembly for the wheel of a motor vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5121168B2 (en) | Rolling member manufacturing method and rolling bearing manufacturing method | |
JP2006200700A (en) | Rolling bearing device for supporting wheel | |
JP2012183563A (en) | Method of manufacturing shaft member for wheel rolling bearing device | |
JP5050446B2 (en) | Bearing unit | |
JP4893585B2 (en) | Manufacturing method of wheel bearing rolling bearing unit | |
JP2006064036A (en) | Bearing device for supporting axle | |
JP5136146B2 (en) | Manufacturing method of wheel bearing rolling bearing unit | |
JP5223574B2 (en) | Manufacturing method of wheel bearing rolling bearing unit | |
JP2010013039A (en) | Rolling bearing unit for wheel support and method of manufacturing the same | |
JP2005145313A (en) | Rolling bearing unit for supporting vehicle wheel | |
JP5644881B2 (en) | Manufacturing method of wheel bearing rolling bearing device | |
JP2008169941A (en) | Wheel bearing device | |
JP5050587B2 (en) | Rolling bearing device for wheel support | |
JP5195081B2 (en) | Rolling bearing unit for wheel support and manufacturing method thereof | |
JP2008266667A (en) | Rolling bearing device for supporting wheel | |
JP4797896B2 (en) | Rolling bearing unit for wheel support | |
JP2010089522A (en) | Method for manufacturing rolling bearing unit for supporting wheel | |
JP4225061B2 (en) | Rolling bearing unit for wheel support | |
JP2006153188A (en) | Roller bearing system for supporting wheel | |
JP2007107647A (en) | Rolling bearing device for supporting wheel | |
JP2012192818A (en) | Bearing device for wheel | |
JP2012228697A (en) | Shaft member of rolling bearing device for wheel, and method for manufacturing the same | |
JP5552884B2 (en) | Manufacturing method of wheel bearing rolling bearing unit | |
JP2010018229A (en) | Bearing device for supporting wheel | |
JP2013001365A (en) | Wheel supporting hub unit and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20110603 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20121115 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20121218 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20130208 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130910 |