Nothing Special   »   [go: up one dir, main page]

JP2012228697A - Shaft member of rolling bearing device for wheel, and method for manufacturing the same - Google Patents

Shaft member of rolling bearing device for wheel, and method for manufacturing the same Download PDF

Info

Publication number
JP2012228697A
JP2012228697A JP2011096977A JP2011096977A JP2012228697A JP 2012228697 A JP2012228697 A JP 2012228697A JP 2011096977 A JP2011096977 A JP 2011096977A JP 2011096977 A JP2011096977 A JP 2011096977A JP 2012228697 A JP2012228697 A JP 2012228697A
Authority
JP
Japan
Prior art keywords
diameter
shaft
flange
rolling bearing
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011096977A
Other languages
Japanese (ja)
Inventor
Yoshiaki Masuda
善紀 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011096977A priority Critical patent/JP2012228697A/en
Publication of JP2012228697A publication Critical patent/JP2012228697A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing a cold forging having a fitting shaft part, a flange part, and a shaft part from a cylindrical material in a cold forging process, and to provide a shaft member of a rolling bearing device for a wheel, produced by the same.SOLUTION: In the method for manufacturing a shaft member 1 of a rolling bearing device for wheels in which a cylindrical fitting shaft part 30 having a recess 35 opened in the axial direction, a flange part 21 having the flange diameter larger than the diameter of the fitting shaft part, and a columnar shaft part 10 are coaxially arranged along the axial direction, a cold forging 66 integrally having the fitting shaft part 30, the flange part 21, and the shaft part 10 is formed by one forward extrusion and one forward extrusion of the cold forging process by using a columnar material 62 having the outside diameter larger than the diameter of the fitting shaft part and smaller than the flange diameter.

Description

本発明は、車輪用転がり軸受装置の軸部材とその製造方法に関する。   The present invention relates to a shaft member of a rolling bearing device for a wheel and a manufacturing method thereof.

車輪用転がり軸受装置に用いられるハブホイールとしての車輪用転がり軸受装置の軸部材、及び当該車輪用転がり軸受装置の軸部材を製造する方法においては、例えば特許文献1に開示されている。
なお、車輪用転がり軸受装置の軸部材は、嵌合軸部とフランジ部と軸部とが軸方向に沿って同軸上に配置されている。また、軸部は、フランジ部に近い側には径が大きな大径軸部が形成され、フランジ部から遠い側には径が小さな小径軸部が形成されている。
特許文献1に開示された、従来の車輪用転がり軸受装置の軸部材の製造方法では、少なくとも大径軸部が形成された素材を用い、小径軸部の外径に一致する内径を有する受側パンチに、素材の大径軸部の先端を突き当て、冷間鍛造の前方押出し加工にて、大径軸部の先端を受側パンチに押し込み、小径軸部を形成している。
A shaft member of a wheel rolling bearing device as a hub wheel used in a wheel rolling bearing device and a method of manufacturing the shaft member of the wheel rolling bearing device are disclosed in Patent Document 1, for example.
In addition, as for the shaft member of the rolling bearing device for wheels, the fitting shaft portion, the flange portion, and the shaft portion are arranged coaxially along the axial direction. The shaft portion is formed with a large-diameter shaft portion having a large diameter on the side close to the flange portion, and a small-diameter shaft portion having a small diameter on the side far from the flange portion.
In the manufacturing method of the shaft member of the conventional rolling bearing device for a wheel disclosed in Patent Document 1, a material having at least a large-diameter shaft portion is used, and the receiving side has an inner diameter that matches the outer diameter of the small-diameter shaft portion. The tip of the large-diameter shaft portion of the material is abutted against the punch, and the tip of the large-diameter shaft portion is pushed into the receiving punch by forward extrusion of cold forging to form a small-diameter shaft portion.

特開2007−152413号公報JP 2007-152413 A

特許文献1に記載された従来技術では、冷間鍛造工程において大径軸部の先端を受側パンチに押し込んで小径軸部を形成する前方押出し加工を含み、フランジ部の外径よりも小さな外径を有する円柱状の素材から、図示されているように4回以上の冷間鍛造の加工工程を経て(前方押出し加工と側方押出し加工を複数回行って)、嵌合軸部、フランジ部、軸部を備えた冷間鍛造品を形成しており、加工効率がよくない。また工程毎の金型が必要であり、加工設備、加工時間、加工費用がかさむ。   The prior art described in Patent Document 1 includes a forward extrusion process in which the tip of the large-diameter shaft portion is pushed into the receiving punch in the cold forging process to form a small-diameter shaft portion, and the outer diameter is smaller than the outer diameter of the flange portion. From a cylindrical material having a diameter, through a cold forging process 4 times or more as shown in the figure (forward extrusion and side extrusion multiple times), fitting shaft part, flange part The cold forging product provided with the shaft portion is formed, and the processing efficiency is not good. In addition, a die for each process is required, which increases processing equipment, processing time, and processing costs.

本発明は、このような点に鑑みて創案されたものであり、冷間鍛造工程にて、円柱状の素材から嵌合軸部、フランジ部、軸部を有する冷間鍛造品を効率よく製造する方法、及び当該製造方法にて製造された車輪用転がり軸受装置の軸部材を提供することを課題とする。   The present invention was devised in view of such points, and efficiently produces a cold forged product having a fitting shaft portion, a flange portion, and a shaft portion from a cylindrical material in a cold forging process. And a shaft member of a rolling bearing device for a wheel manufactured by the manufacturing method.

上記課題を解決するため、本発明に係る車輪用転がり軸受装置の軸部材とその製造方法は次の手段をとる。
まず、本発明の第1の発明は、嵌合軸部とフランジ部と軸部とが軸方向に沿って同軸上に配置されている車輪用転がり軸受装置の軸部材の製造方法である。
前記嵌合軸部は軸方向に開口する凹部を有する円筒形状であり、前記フランジ部は軸方向に直交する円板状であり、前記フランジ部における軸方向に直交する方向の径であるフランジ径は、前記嵌合軸部における軸方向に直交する方向の径である嵌合軸部径よりも大きく、前記軸部は円柱形状であって外周面には内輪軌道面が形成されており、前記フランジ部には、軸方向に直交する方向に複数のボルト孔が形成されており、前記車輪用転がり軸受装置の軸部材は冷間鍛造によって製造されている。
まず、前記嵌合軸部径よりも大きく且つ前記フランジ径よりも小さな外径を有する円柱状の軸状素材を用い、第1の冷間鍛造工程にて前記軸状素材における軸方向の一方の端部の径を前記フランジ径まで拡径するとともに前記軸状素材における他方の端部に前記嵌合軸部の径を有する円柱部を形成するように押出し加工を行う。
そして、第2の冷間鍛造工程にて前記軸状素材における軸方向の他方の端部から前記嵌合軸部の前記凹部と前記軸部とを形成するように前方押出し加工を行い、前記車輪用転がり軸受装置の軸部材を形成する。
In order to solve the above problems, the shaft member of the wheel rolling bearing device according to the present invention and the manufacturing method thereof take the following means.
A first aspect of the present invention is a method for manufacturing a shaft member of a wheel rolling bearing device in which a fitting shaft portion, a flange portion, and a shaft portion are arranged coaxially along the axial direction.
The fitting shaft portion has a cylindrical shape having a recess opening in the axial direction, the flange portion has a disk shape orthogonal to the axial direction, and a flange diameter that is a diameter in a direction orthogonal to the axial direction in the flange portion. Is larger than a fitting shaft portion diameter which is a diameter in a direction perpendicular to the axial direction of the fitting shaft portion, the shaft portion is cylindrical, and an inner ring raceway surface is formed on the outer peripheral surface, A plurality of bolt holes are formed in the flange portion in a direction perpendicular to the axial direction, and the shaft member of the wheel rolling bearing device is manufactured by cold forging.
First, using a columnar shaft-shaped material having an outer diameter larger than the fitting shaft portion diameter and smaller than the flange diameter, one axial direction of the shaft-shaped material in the first cold forging step. Extrusion is performed so that the diameter of the end portion is expanded to the flange diameter and a cylindrical portion having the diameter of the fitting shaft portion is formed at the other end portion of the shaft-shaped material.
Then, in the second cold forging step, forward extrusion is performed so as to form the concave portion and the shaft portion of the fitting shaft portion from the other axial end portion of the shaft-shaped material, and the wheel A shaft member of the rolling bearing device is formed.

この第1の発明によれば、嵌合軸部径よりも大きく且つフランジ径よりも小さな外径を有する円柱状の軸状素材を用いることで、冷間鍛造工程を、1回の押出し加工と、1回の前方押出し加工にすることが可能であり、軸部、フランジ部、嵌合軸部とを一体に有する冷間鍛造品を効率よく形成することができる。   According to the first aspect of the invention, by using a cylindrical shaft-shaped material having an outer diameter that is larger than the fitting shaft portion diameter and smaller than the flange diameter, the cold forging process is performed as a single extrusion process. It is possible to perform a single forward extrusion process, and it is possible to efficiently form a cold forged product that integrally includes a shaft portion, a flange portion, and a fitting shaft portion.

次に、本発明の第2の発明は、上記第1の発明に係る車輪用転がり軸受装置の軸部材の製造方法であって、前記フランジ部における前記軸部の側の面である一方側フランジ面には、前記軸部の周囲から前記ボルト孔の周囲に延びて前記フランジ部における軸方向の厚さを部分的に肉厚状とする浮島状肉厚部が形成されており、前記浮島状肉厚部の径は前記嵌合軸部の径よりも大きく且つ前記フランジ径よりも小さな径である浮島径であり、前記浮島径に対応する外径を有する円柱状の軸状素材を用いて、前記第1の冷間鍛造工程と前記第2の冷間鍛造工程にて前記車輪用転がり軸受装置の軸部材を形成する。   Next, 2nd invention of this invention is a manufacturing method of the shaft member of the rolling bearing apparatus for wheels which concerns on the said 1st invention, Comprising: One side flange which is a surface by the side of the said shaft part in the said flange part The surface is formed with a floating island-shaped thick portion that extends from the periphery of the shaft portion to the periphery of the bolt hole and partially thickens the axial thickness of the flange portion. The diameter of the thick part is a floating island diameter that is larger than the diameter of the fitting shaft part and smaller than the flange diameter, and using a cylindrical shaft-shaped material having an outer diameter corresponding to the floating island diameter The shaft member of the rolling bearing device for a wheel is formed in the first cold forging step and the second cold forging step.

この第2の発明によれば、浮島状肉厚部で剛性をより向上し、浮島径に対応する外径を有する円柱状の軸状素材を用いることで、冷間鍛造工程を、1回の押出し加工と、1回の前方押出し加工にすることが可能であり、軸部、フランジ部、嵌合軸部とを一体に有する冷間鍛造品を効率よく形成することができる。   According to the second invention, the cold forging process is performed once by using the cylindrical shaft-shaped material having an outer diameter corresponding to the floating island diameter, further improving the rigidity at the floating island-shaped thick portion. It is possible to carry out the extrusion process and one forward extrusion process, and it is possible to efficiently form a cold forged product integrally having the shaft portion, the flange portion, and the fitting shaft portion.

次に、本発明の第3の発明は、上記第1の発明または第2の発明に係る車輪用転がり軸受装置の軸部材の製造方法であって、前記第1の冷間鍛造工程における前記押出し加工では、前記フランジ部における外周面の形状と、前記フランジ部における前記一方側フランジ面の形状と、に形成された第1一方側金型と、前記フランジ部における前記嵌合軸部の側の面である他方側フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成された第1他方側金型と、を用いて押出し加工して、前記軸状素材から前記嵌合軸部の外周面と、前記フランジ部の外周面と、前記一方側フランジ面と、前記他方側フランジ面と、が形成された1次冷間鍛造品を形成する。
そして、前記第2の冷間鍛造工程における前記前方押出し加工では、前記フランジ部における外周面の形状と、前記一方側フランジ面の形状と、当該一方側フランジ面の先における前記軸部の形状と、に形成された第2一方側金型と、前記他方側フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第2一方側金型と嵌合する略円筒形状の中間金型と、略円筒形状の前記中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の凹部の形状に形成された第2他方側金型と、を用いて前方押出し加工して、前記1次冷間鍛造品から前記嵌合軸部の凹部と、前記軸部と、が形成された2次冷間鍛造品である前記車輪用転がり軸受装置の軸部材を形成する。
Next, 3rd invention of this invention is a manufacturing method of the shaft member of the rolling bearing apparatus for wheels which concerns on the said 1st invention or 2nd invention, Comprising: The said extrusion in the said 1st cold forging process In processing, the shape of the outer peripheral surface of the flange portion and the shape of the one-side flange surface of the flange portion, the first one-side mold formed on the flange portion, the fitting shaft portion side of the flange portion And extruding using the first other side mold formed in the shape of the other side flange surface which is a surface and the shape of the outer peripheral surface of the fitting shaft portion, and the fitting from the shaft-shaped material A primary cold forged product is formed in which the outer peripheral surface of the shaft portion, the outer peripheral surface of the flange portion, the one side flange surface, and the other side flange surface are formed.
In the forward extrusion process in the second cold forging step, the shape of the outer peripheral surface of the flange portion, the shape of the one side flange surface, and the shape of the shaft portion at the tip of the one side flange surface And an outer diameter corresponding to the outer diameter of the flange portion formed in the shape of the second one-side mold, the shape of the other-side flange surface, and the shape of the outer peripheral surface of the fitting shaft portion. A substantially cylindrical intermediate die that has a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion and is fitted to the second one-side die, and the substantially cylindrical intermediate die The second cold-forged product is forward-extruded using a second mold on the other side formed in the shape of the concave portion of the fitting shaft portion and can be fitted into the hollow portion of the fitting, and the fitting is carried out from the primary cold forging product. The secondary cold forging product in which the concave portion of the shaft portion and the shaft portion are formed. Forming a shaft member of the wheel rolling bearing device.

この第3の発明によれば、浮島径に対応する外径を有する円柱状の軸状素材と、適切な金型を用いることで、冷間鍛造工程を、1回の押出し加工と、1回の前方押出し加工で実現することが可能であり、軸部、フランジ部、嵌合軸部とを一体に有する冷間鍛造品を効率よく形成することができる。   According to the third aspect of the invention, by using a cylindrical shaft-shaped material having an outer diameter corresponding to the floating island diameter and an appropriate die, the cold forging process is performed once by extrusion and once. The cold forging product which has a shaft part, a flange part, and a fitting shaft part integrally can be formed efficiently.

次に、本発明の第4の発明は、上記第3の発明に係る車輪用転がり軸受装置の軸部材の製造方法であって、前記第2の冷間鍛造工程において、前記中間金型と前記第2他方側金型を用いる代わりに、前記中間金型と前記第2他方側金型とが一体的に形成された一体金型を用いて前方押出し加工を行うことで、前記1次冷間鍛造品から前記嵌合軸部の凹部と、前記軸部と、が形成された2次冷間鍛造品を形成する。   Next, 4th invention of this invention is a manufacturing method of the shaft member of the rolling bearing apparatus for wheels which concerns on the said 3rd invention, Comprising: In the said 2nd cold forging process, the said intermediate mold and the said Instead of using the second mold on the other side, a forward extrusion process is performed using an integral mold in which the intermediate mold and the second mold on the other side are integrally formed, whereby the primary cold A secondary cold forged product in which the concave portion of the fitting shaft portion and the shaft portion are formed from the forged product is formed.

この第4の発明によれば、中間金型と第2他方側金型を一体的に形成した一体金型を用いることで、更に効率良く冷間鍛造品を形成することができる。   According to the fourth aspect of the present invention, a cold forged product can be formed more efficiently by using an integral mold in which the intermediate mold and the second other mold are integrally formed.

次に、本発明の第5の発明は、上記第1の発明〜第4の発明のいずれか1つに係る車輪用転がり軸受装置の軸部材の製造方法によって製造された車輪用転がり軸受装置の軸部材であって、前記第1の冷間鍛造工程と前記第2の冷間鍛造工程にて前記車輪用転がり軸受装置の軸部材を形成する際に、前記嵌合軸部径よりも大きく且つ前記フランジ径よりも小さな外径を有する円柱状の軸状素材から製造され、円板状の前記フランジ部を有する。   Next, a fifth invention of the present invention relates to a wheel rolling bearing device manufactured by the method for manufacturing a shaft member of a wheel rolling bearing device according to any one of the first to fourth inventions. A shaft member that is larger than the fitting shaft portion diameter when the shaft member of the rolling bearing device for a wheel is formed in the first cold forging step and the second cold forging step; It is manufactured from a cylindrical shaft-shaped material having an outer diameter smaller than the flange diameter, and has the disk-shaped flange portion.

この第5の発明によれば、前記嵌合軸部径よりも大きく且つ前記フランジ径よりも小さな外径を有する円柱状の軸状素材を用いて冷間鍛造工程を1回の押出し加工と1回の前方押出し加工にて実現し、軸部、フランジ部、嵌合軸部とを一体に有し、効率よく形成された車輪用転がり軸受装置の軸部材を実現することができる。   According to the fifth aspect of the invention, the cold forging process is performed by one extrusion process using a cylindrical shaft-shaped material having an outer diameter larger than the fitting shaft diameter and smaller than the flange diameter. It can be realized by a forward extrusion process, and has a shaft portion, a flange portion, and a fitting shaft portion integrally, and a shaft member of a wheel rolling bearing device that is efficiently formed can be realized.

本発明の車輪用転がり軸受装置の軸部材の製造方法にて製造された車輪用転がり軸受装置の軸部材1が車輪用転がり軸受装置Aとして組み付けられた状態を示す軸方向断面図である。It is an axial direction sectional view showing the state where shaft member 1 of the wheel rolling bearing device manufactured with the manufacturing method of the shaft member of the rolling bearing device for wheels of the present invention was assembled as rolling bearing device A for wheels. 車輪用転がり軸受装置の軸部材1の軸方向断面図である。It is an axial sectional view of the shaft member 1 of the rolling bearing device for wheels. (A)は図2に示す車輪用転がり軸受装置の軸部材1をAA方向から見た図であり、(B)はBB方向から見た図である。(A) is the figure which looked at the shaft member 1 of the rolling bearing device for wheels shown in FIG. 2 from the AA direction, (B) is the figure seen from the BB direction. 軸状素材60から車輪用転がり軸受装置の軸部材を成形するまでの工程(A)〜工程(G)による素材の形状の変化等を示す図である。It is a figure which shows the change of the shape of the raw material by the process (A)-process (G) until it forms the shaft member of the rolling bearing apparatus for wheels from the shaft-shaped raw material 60. 冷間鍛造工程の1回目の押出し加工と2回目の前方押出し加工を説明する図であり、(A)は1回目の押出し加工の金型と素材の断面図を示しており、(B)は2回目の前方押出し加工の金型と素材の断面図を示している。また(C)は1回目の押出し加工前の素材の概略形状を示しており、(D)は1回目の押出し加工後の素材の概略形状を示しており、(E)は2回目の前方押出し加工後の素材の概略形状を示している。It is a figure explaining the 1st extrusion process of a cold forging process, and the 2nd forward extrusion process, (A) has shown sectional drawing of the metal mold | die and raw material of the 1st extrusion process, (B) Sectional drawing of the die and material of the second forward extrusion process is shown. (C) shows the schematic shape of the material before the first extrusion, (D) shows the schematic shape of the material after the first extrusion, and (E) shows the second forward extrusion. The schematic shape of the processed material is shown.

以下に本発明を実施するための形態を図面を用いて説明する。図1は、本発明の車輪用転がり軸受装置の軸部材の製造方法にて製造された車輪用転がり軸受装置の軸部材1が車輪用転がり軸受装置Aとして組み付けられた状態を示す軸方向断面図を示している。また図2は車輪用転がり軸受装置の軸部材1の軸方向断面図を示しており、図3は図2に示す車輪用転がり軸受装置の軸部材1をAA方向から見た図(A)、及びBB方向から見た図(B)を示している。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing. FIG. 1 is an axial sectional view showing a state in which a shaft member 1 of a wheel rolling bearing device manufactured by the method for manufacturing a shaft member of a wheel rolling bearing device of the present invention is assembled as a wheel rolling bearing device A. Is shown. 2 shows an axial sectional view of the shaft member 1 of the wheel rolling bearing device, and FIG. 3 is a view (A) of the shaft member 1 of the wheel rolling bearing device shown in FIG. And the figure (B) seen from the BB direction is shown.

●[車輪用転がり軸受装置Aと車輪用転がり軸受装置の軸部材1の全体構造(図1〜図3)]
次に図1〜図3を用いて、車輪用転がり軸受装置Aと車輪用転がり軸受装置の軸部材1の全体構造について説明する。
図1及び図2に示すように、車輪用転がり軸受装置A(いわゆる車輪用ハブユニット)に採用される車輪用転がり軸受装置の軸部材1(いわゆるハブホイール)は、軸部10と、フランジ部21と、嵌合軸部30と、を軸方向に沿って同軸上に、一体に有している。
なお、車輪用転がり軸受装置Aが車両に取り付けられた場合、軸部10は車両内側に位置しており、嵌合軸部30は車両外側に位置しており、図1においては紙面の左方向が車両内側を示し、紙面の右方向が車両外側を示している。
● [Whole rolling bearing device A and overall structure of shaft member 1 of wheel rolling bearing device (FIGS. 1 to 3)]
Next, the overall structure of the wheel rolling bearing device A and the shaft member 1 of the wheel rolling bearing device will be described with reference to FIGS.
As shown in FIGS. 1 and 2, a shaft member 1 (so-called hub wheel) of a wheel rolling bearing device employed in a wheel rolling bearing device A (so-called wheel hub unit) includes a shaft portion 10 and a flange portion. 21 and the fitting shaft portion 30 are integrally provided coaxially along the axial direction.
When the wheel rolling bearing device A is attached to the vehicle, the shaft portion 10 is located inside the vehicle, the fitting shaft portion 30 is located outside the vehicle, and in FIG. Indicates the inside of the vehicle, and the right direction of the page indicates the outside of the vehicle.

軸部10は略円柱形状であり、軸部10におけるフランジ部21に近い側には径が大きな大径軸部11が形成され、フランジ部21から遠い端部には大径軸部11よりも小さな径の小径軸部12が形成され、大径軸部11と小径軸部12との段差部には軸部10の回転軸に直交する面である内輪突き当て面12aが形成されている。
フランジ部21は、軸部10と嵌合軸部30との間に位置して軸方向(回転軸ZS方向)に直交する円板状であり、フランジ部21の外径は軸部10の外径よりも大きい。
嵌合軸部30は、軸部10の一端側(小径軸部12と反対の側)に、軸部10と同軸上に、連続する略円筒形状に成形されており、車輪(図示省略)の中心孔が嵌め込まれる。
図3に示すように、外径方向に円板状に延出されたフランジ部21には、車輪を締め付けるハブボルト27が圧入によって配置されるボルト孔24が貫設されている。
また図1、図2に示すように嵌合軸部30には、フランジ部21側にブレーキロータ用嵌合部31が形成され、先端側にブレーキロータ用嵌合部31よりも若干小径の車輪用嵌合部32が形成されている。
またフランジ部21における嵌合軸部30の側の面であるロータ支持面22には、図1に示すようにブレーキロータ55の中心孔の周囲の面が当接する。
また嵌合軸部30の内径側には、凹状の鍛造凹部35が形成されている。
The shaft portion 10 has a substantially cylindrical shape, and a large-diameter shaft portion 11 having a large diameter is formed on a side near the flange portion 21 in the shaft portion 10, and an end portion far from the flange portion 21 is larger than the large-diameter shaft portion 11. A small-diameter shaft portion 12 having a small diameter is formed, and an inner ring abutting surface 12 a that is a surface orthogonal to the rotation axis of the shaft portion 10 is formed at a step portion between the large-diameter shaft portion 11 and the small-diameter shaft portion 12.
The flange portion 21 is located between the shaft portion 10 and the fitting shaft portion 30 and has a disk shape perpendicular to the axial direction (rotation axis ZS direction). The outer diameter of the flange portion 21 is the outer diameter of the shaft portion 10. It is larger than the diameter.
The fitting shaft portion 30 is formed on one end side of the shaft portion 10 (on the side opposite to the small-diameter shaft portion 12), is coaxially formed with the shaft portion 10 and is formed into a continuous, substantially cylindrical shape, and has a wheel (not shown). Center hole is fitted.
As shown in FIG. 3, a bolt hole 24 in which a hub bolt 27 for tightening a wheel is disposed by press-fitting is formed in the flange portion 21 extending in a disk shape in the outer diameter direction.
As shown in FIGS. 1 and 2, the fitting shaft portion 30 is formed with a brake rotor fitting portion 31 on the flange portion 21 side, and has a slightly smaller diameter wheel on the tip side than the brake rotor fitting portion 31. A fitting portion 32 is formed.
Further, as shown in FIG. 1, the surface around the center hole of the brake rotor 55 abuts on the rotor support surface 22 that is the surface of the flange portion 21 on the side of the fitting shaft portion 30.
A concave forged concave portion 35 is formed on the inner diameter side of the fitting shaft portion 30.

図1、図2に示すように本実施の形態にて説明する車輪用転がり軸受装置の軸部材1の軸部10の大径軸部11には、フランジ部21との境界部の近傍における外周面の一部に、転がり軸受としての複列のアンギュラ玉軸受における一方の軸受部を構成する第1内輪軌道面18が円周方向に連続するように形成されている。
また、第1内輪軌道面18に隣接してフランジ部21に近い側における外周面の一部には、円周方向に連続する後述のシール面19が形成されている。
また小径軸部12の外周面には、円周方向に連続するように形成された第2内輪軌道面44を外周面に有する内輪42が嵌め込まれる。なお内輪42は、内輪突き当て面12aに突き当たるまで嵌め込まれている。
そして、小径軸部12における内輪42からの突出部(図1中の軸端部15)は径方向外側にかしめられて、かしめ部17が形成され、かしめ部17と内輪突き当て面12aにて内輪42が固定されている。
また図1に示すように、小径軸部12の軸端部15をかしめたかしめ部17と内輪突き当て面12aにて内輪42を固定した際に内輪42を固定可能な強度を有するように、内輪突き当て面12aの面積が設定されている。
As shown in FIGS. 1 and 2, the large-diameter shaft portion 11 of the shaft portion 10 of the shaft member 1 of the rolling bearing device for a wheel described in the present embodiment has an outer periphery in the vicinity of the boundary portion with the flange portion 21. A first inner ring raceway surface 18 constituting one bearing portion of a double row angular ball bearing as a rolling bearing is formed on a part of the surface so as to be continuous in the circumferential direction.
Further, a seal surface 19 described later that is continuous in the circumferential direction is formed on a part of the outer peripheral surface adjacent to the first inner ring raceway surface 18 and close to the flange portion 21.
Further, an inner ring 42 having a second inner ring raceway surface 44 formed so as to be continuous in the circumferential direction is fitted on the outer circumferential surface of the small-diameter shaft portion 12. The inner ring 42 is fitted until it hits the inner ring abutting surface 12a.
And the protrusion part from the inner ring | wheel 42 in the small diameter shaft part 12 (shaft end part 15 in FIG. 1) is caulked radially outward to form a caulking part 17, and the caulking part 17 and the inner ring abutting surface 12a The inner ring 42 is fixed.
Further, as shown in FIG. 1, when the inner ring 42 is fixed with the caulking portion 17 and the inner ring abutting surface 12a by caulking the shaft end 15 of the small diameter shaft portion 12, the inner ring 42 has a strength capable of fixing. The area of the inner ring abutting surface 12a is set.

また図1に示すように、車輪用転がり軸受装置の軸部材1の軸部10の外周面には、環状空間を保って外輪45が配置されている。
外輪45の内周面には、車輪用転がり軸受装置の軸部材1に形成されている第1内輪軌道面18に対向する第1外輪軌道面46と、内輪42に形成されている第2内輪軌道面44に対向する第2外輪軌道面47と、が形成されている。なお、各内輪軌道面、各外輪軌道面は、それぞれの面において円周方向に連続するように形成されている。
そして第1内輪軌道面18と第1外輪軌道面46との間には、複数の第1転動体50が保持器52によって保持されて転動可能に配置され、第2内輪軌道面44と第2外輪軌道面47との間には、複数の第2転動体51が保持器53によって保持されて転動可能に配置されている。
なお、複数の第1転動体50、及び複数の第2転動体51には、小径軸部12の端部をかしめてかしめ部17を形成した際のかしめ力に基づいて、軸方向の予圧が付与されてアンギュラ玉軸受を構成している。
Moreover, as shown in FIG. 1, the outer ring | wheel 45 is arrange | positioned maintaining the annular space in the outer peripheral surface of the axial part 10 of the shaft member 1 of the rolling bearing apparatus for wheels.
On the inner peripheral surface of the outer ring 45, a first outer ring raceway surface 46 facing the first inner ring raceway surface 18 formed on the shaft member 1 of the wheel rolling bearing device, and a second inner ring formed on the inner ring 42. A second outer ring raceway surface 47 facing the raceway surface 44 is formed. Each inner ring raceway surface and each outer ring raceway surface are formed to be continuous in the circumferential direction on each surface.
Between the first inner ring raceway surface 18 and the first outer ring raceway surface 46, a plurality of first rolling elements 50 are held by a cage 52 and arranged so as to be able to roll. Between the two outer ring raceway surfaces 47, a plurality of second rolling elements 51 are held by a cage 53 and are arranged to be able to roll.
The plurality of first rolling elements 50 and the plurality of second rolling elements 51 are subjected to axial preload based on the caulking force when the caulking portion 17 is formed by caulking the end of the small diameter shaft portion 12. An angular ball bearing is provided.

また図1に示すように、外輪45の外周面には、車体側フランジ48が一体に形成されており、当該車体側フランジは、車両の懸架装置(図示省略)に支持されたナックル、キャリア等の車体側部材の取付面にボルト等によって締結される。
また外輪45における第1外輪軌道面46に隣接する開口部の内周面には、シール部材56が圧入されて組み付けられ、当該シール部材56のリップ58の先端が、シール面19に摺接(接触)して外輪45と車輪用転がり軸受装置の軸部材1との隙間をシールしている。
また図3(B)及び図2に示すように、フランジ部21における軸部10の側の面には、重量の増加を抑えながらもボルト孔24の周囲の剛性を向上させるために、浮島状に部分的に肉厚とした浮島状肉厚部29が形成されている。
As shown in FIG. 1, a vehicle body side flange 48 is integrally formed on the outer peripheral surface of the outer ring 45, and the vehicle body side flange is a knuckle, a carrier, etc. supported by a vehicle suspension device (not shown). Fastened to the mounting surface of the vehicle body side member with a bolt or the like.
A seal member 56 is press-fitted and assembled to the inner peripheral surface of the opening adjacent to the first outer ring raceway surface 46 in the outer ring 45, and the tip of the lip 58 of the seal member 56 is in sliding contact with the seal surface 19 ( The gap between the outer ring 45 and the shaft member 1 of the wheel rolling bearing device is sealed.
Further, as shown in FIGS. 3B and 2, the surface of the flange portion 21 on the side of the shaft portion 10 has a floating island shape in order to improve the rigidity around the bolt hole 24 while suppressing an increase in weight. A floating island-shaped thick portion 29 having a partial thickness is formed.

●[車輪用転がり軸受装置の軸部材1の製造方法(図4)]
次に図4を用いて、車輪用転がり軸受装置の軸部材1の製造方法について説明する。
図4(A)〜(G)は軸状素材60から各工程を経て車輪用転がり軸受装置の軸部材1を成形する様子を示しており、各工程後の素材の断面形状を示している。
本実施の形態にて説明する車輪用転がり軸受装置の軸部材1は、第1の焼鈍・被膜工程、第1の冷間鍛造工程、第2の焼鈍・被膜工程、第2の冷間鍛造工程、旋削工程、熱処理工程、研磨工程、を経て製造される。
まず、第1の焼鈍・被膜工程に先立って、S45C、S50C、S55C等の炭素量0.5%前後の略円柱形状の構造用炭素鋼を所定長さに切断して軸状素材60を形成する(図4(A)参照)。
なお、略円柱形状の軸状素材60の外径(φH)は、車輪用転がり軸受装置の軸部材1の浮島状肉厚部29の外径とほぼ同じものを用いる。
● [Manufacturing method of shaft member 1 of rolling bearing device for wheel (FIG. 4)]
Next, the manufacturing method of the shaft member 1 of the rolling bearing device for wheels is demonstrated using FIG.
4 (A) to 4 (G) show how the shaft member 1 of the rolling bearing device for a wheel is formed from the shaft-shaped material 60 through each process, and shows the cross-sectional shape of the material after each process.
The shaft member 1 of the rolling bearing device for a wheel described in the present embodiment includes a first annealing / coating process, a first cold forging process, a second annealing / coating process, and a second cold forging process. It is manufactured through a turning process, a heat treatment process, and a polishing process.
First, prior to the first annealing / coating process, a substantially cylindrical structural carbon steel having a carbon content of about 0.5% such as S45C, S50C, S55C, etc. is cut to a predetermined length to form a shaft-shaped material 60. (See FIG. 4A).
The outer diameter (φH) of the substantially cylindrical shaft-shaped material 60 is substantially the same as the outer diameter of the floating island-shaped thick portion 29 of the shaft member 1 of the wheel rolling bearing device.

[第1の焼鈍・被膜工程(図4(B)、図4(C))]
第1の焼鈍・被膜工程では、少なくとも以下の焼鈍処理と被膜処理を行う。
焼鈍処理では、軸状素材60を変態点温度以上の温度(好ましくは、変態点温度よりも20℃〜70℃程度高い温度)で加熱する。
これによって、軸状素材60中の炭素成分を球状化させて球状化焼鈍することで焼鈍済軸状素材61を形成する(図4(B)参照)。この焼鈍済軸状素材61は、これ自体の材料の延性が向上する。
[First annealing / coating process (FIGS. 4B, 4C)]
In the first annealing / coating step, at least the following annealing treatment and coating treatment are performed.
In the annealing treatment, the shaft-shaped material 60 is heated at a temperature equal to or higher than the transformation point temperature (preferably, a temperature higher by about 20 ° C. to 70 ° C. than the transformation point temperature).
Thereby, the carbon component in the shaft-shaped material 60 is spheroidized and spheroidized and annealed to form the annealed shaft-shaped material 61 (see FIG. 4B). This annealed shaft material 61 improves the ductility of the material itself.

被膜処理では、焼鈍済軸状素材61の表面に潤滑剤を被膜処理して潤滑剤被膜36を有する被膜処理済軸状素材62を形成する(図4(C)参照)。
例えば、焼鈍済軸状素材61の表面に潤滑剤としてのリン酸塩を塗布して潤滑剤被膜(リン酸塩被膜)36を有する被膜処理済軸状素材62を形成する。
被膜処理済軸状素材62は、その表面の潤滑剤被膜36によって、冷間鍛造の成形型と素材(材料)との間に生じる摩擦力を低減する。
なお、上記の焼鈍処理の後、且つ上記の被膜処理の前に、ショットブラスト処理を行い、焼鈍済軸状素材61の表面を削るとともに表面が粗くなるように微細な凹凸を形成すると、被膜処理にてより安定して被膜を形成することができるので、より好ましい。
In the coating process, the surface of the annealed shaft material 61 is coated with a lubricant to form a coated shaft material 62 having the lubricant film 36 (see FIG. 4C).
For example, a coated shaft material 62 having a lubricant film (phosphate film) 36 is formed by applying phosphate as a lubricant to the surface of the annealed shaft material 61.
The coated shaft material 62 reduces the frictional force generated between the cold forging mold and the material (material) by the lubricant film 36 on the surface thereof.
In addition, after the above annealing treatment and before the above coating treatment, a shot blast treatment is performed, and when the surface of the annealed shaft material 61 is shaved and fine irregularities are formed so that the surface becomes rough, the coating treatment It is more preferable because a film can be formed more stably.

[第1の冷間鍛造工程(図4(D))]
第1の冷間鍛造工程では、被膜処理済軸状素材62における軸方向の一方の端部の径がフランジ部21の径(φG)となる側方押出し加工と、軸方向の他方の端部の径が嵌合軸部30の径(φE)となる後方押出し加工と、を同時に行う押出し加工(複合押出し加工)を行い、1次冷間鍛造品65を形成する(図4(D)参照)。
このように、浮島状肉厚部29の外径である浮島径(φH)からフランジ部21の径(φG)に拡径することで拡径量を比較的小さく抑えることで、フランジ部の割れ、ひび等の発生を適切に防止することができる。
なお、第1の冷間鍛造工程にて用いる金型の形状等については後述する。
[First cold forging step (FIG. 4D)]
In the first cold forging step, side extrusion in which the diameter of one end in the axial direction of the coated shaft-shaped raw material 62 becomes the diameter (φG) of the flange portion 21, and the other end in the axial direction The first cold forged product 65 is formed by performing an extruding process (composite extruding process) that simultaneously performs a backward extrusion process in which the diameter of the fitting shaft part 30 becomes the diameter (φE) (see FIG. 4D). ).
As described above, by expanding the floating island diameter (φH), which is the outer diameter of the floating island-shaped thick portion 29, to the diameter (φG) of the flange portion 21, the amount of expansion is suppressed to a relatively small value, thereby cracking the flange portion. The occurrence of cracks and the like can be prevented appropriately.
The shape of the mold used in the first cold forging step will be described later.

[第2の焼鈍・被膜工程]
第2の焼鈍・被膜工程では、1次冷間鍛造品65から嵌合軸部30の鍛造凹部35と軸部10とを前方押出し加工するために、改めてもう一度、第1の焼鈍・被膜処理と同様に、少なくとも焼鈍処理と被膜処理を行い、焼鈍・被膜処理済の1次冷間鍛造品65を形成する。
これにより、第1の冷間鍛造後の素材に残留する応力を除去するとともに、再度、1次冷間鍛造品65の延性の向上と摩擦係数の低下を図り、フランジ部の割れ、ひび等の発生を適切に防止することができる。
なお、第2の焼鈍・被膜工程は省略しても良い。
[Second annealing / coating process]
In the second annealing / coating process, in order to extrude the forged concave portion 35 and the shaft portion 10 of the fitting shaft portion 30 from the primary cold forged product 65, the first annealing / coating treatment is performed once again. Similarly, at least annealing treatment and coating treatment are performed to form a primary cold forged product 65 that has been annealed and coated.
As a result, the stress remaining in the material after the first cold forging is removed, and the ductility of the primary cold forged product 65 is improved and the friction coefficient is reduced again. Occurrence can be prevented appropriately.
The second annealing / coating process may be omitted.

[第2の冷間鍛造工程(図4(E))]
第2の冷間鍛造工程では、1次冷間鍛造品65の他方の端部の嵌合軸部30の中心部端面に鍛造凹部35を形成しながら、一方の端部に大径軸部11と小径軸部12を形成するように前方押出し加工を行い、嵌合軸部30、フランジ部21、大径軸部11、小径軸部12が形成された2次冷間鍛造品66を形成する(図4(E)参照)。
また、前方押出し加工とは、金型(いわゆるダイ)の内部に素材を配置し、別の金型(いわゆるパンチ)を押し込み、当該金型を押し込む方向に素材を流動させる加工を指す。
また、後方押出し加工とは、金型(いわゆるダイ)の内部に素材を配置し、別の金型(いわゆるパンチ)を押し込み、当該金型を押し込む方向の反対方向に素材を流動させる加工を指す。
そして側方押出し加工とは、金型(いわゆるダイ)の内部に素材を配置し、別の金型(いわゆるパンチ)を押し込み、当該金型を押し込む方向と交差する方向(主に直交する方向)に素材を流動させる加工を指す。
[Second Cold Forging Process (FIG. 4E)]
In the second cold forging step, the large-diameter shaft portion 11 is formed at one end while forming the forged recess 35 at the center end surface of the fitting shaft portion 30 at the other end of the primary cold forged product 65. Then, a forward cold-extrusion process is performed so as to form the small-diameter shaft portion 12, and a secondary cold forging product 66 in which the fitting shaft portion 30, the flange portion 21, the large-diameter shaft portion 11, and the small-diameter shaft portion 12 are formed is formed. (See FIG. 4E).
Further, the forward extrusion process refers to a process in which a material is placed inside a mold (so-called die), another mold (so-called punch) is pushed in, and the material is made to flow in the direction in which the mold is pushed.
The backward extrusion process is a process in which a material is placed inside a mold (so-called die), another mold (so-called punch) is pushed in, and the material is made to flow in a direction opposite to the direction in which the mold is pushed. .
Side extrusion is a direction in which a material is placed inside a die (so-called die), another die (so-called punch) is pushed in, and the direction in which the die is pushed in (mainly orthogonal) Refers to the process of making the material flow.

[旋削工程(図4(F))]
旋削工程では、2次冷間鍛造品66の一部、例えば、フランジ部21の一側面のロータ支持面22(後述する他方側フランジ面21Aに相当)と、嵌合軸部30の端面33とを旋削し、フランジ部21にボルト孔24を孔開け加工して旋削済鍛造品67を形成する(図4(F)参照)。
この旋削工程において、2次冷間鍛造品66の少なくとも嵌合軸部30の車輪用嵌合部32(図2参照)の潤滑剤被膜36は旋削することなく残す。
また本実施の形態では、図2に示すように、潤滑剤被膜36は、フランジ部21のロータ支持面22の反対側の面(後述する一方側フランジ面21Bに相当)と、第1内輪軌道面18の肩部に隣接して形成されたシール面19と、鍛造凹部35の表面と、軸部10の小径軸部12の先端の軸端部15の端面において、旋削されることなく残される。
従来では、少なくとも図2における車輪用嵌合部32の潤滑剤被膜36を旋削しており、従来において潤滑剤被膜36を残している個所に加えて、本願では少なくとも車輪用嵌合部32の潤滑剤被膜36を余分に残す。
そして、潤滑剤被膜36を残した分だけ旋削加工範囲が小さくなり、旋削加工が容易に、且つ短時間となる。
[Turning process (Fig. 4 (F))]
In the turning process, a part of the secondary cold forged product 66, for example, the rotor support surface 22 on one side of the flange portion 21 (corresponding to the other side flange surface 21A described later), and the end surface 33 of the fitting shaft portion 30 And the bolt hole 24 is drilled in the flange portion 21 to form a turned forged product 67 (see FIG. 4F).
In this turning process, at least the lubricant coating 36 of the wheel fitting portion 32 (see FIG. 2) of the fitting shaft portion 30 of the secondary cold forged product 66 is left without being turned.
In the present embodiment, as shown in FIG. 2, the lubricant coating 36 is formed on the surface on the opposite side of the rotor support surface 22 of the flange portion 21 (corresponding to a one-side flange surface 21B described later) and the first inner ring raceway. The seal surface 19 formed adjacent to the shoulder portion of the surface 18, the surface of the forged recess 35, and the end surface of the shaft end portion 15 at the tip of the small diameter shaft portion 12 of the shaft portion 10 are left without being turned. .
Conventionally, at least the lubricant coating 36 of the wheel fitting portion 32 in FIG. 2 is turned, and in addition to the portions where the lubricant coating 36 is left in the prior art, at least lubrication of the wheel fitting portion 32 in the present application. Extra agent coating 36 is left.
Then, the turning range is reduced by the amount of the lubricant film 36 left, and the turning process is easy and takes a short time.

[熱処理工程(図4(G))]
次に、熱処理工程(焼入れ焼き戻し工程)において、旋削済鍛造品67の軸部10の第1内輪軌道面18を高周波焼入れした後、焼き戻しして熱処理済鍛造品68を形成する(図4(G)参照)。この場合、シール面19、小径軸部12の外周面、内輪突き当て面12aには、あえて高周波焼入れを行わない。これにより、熱処理工程の時間を短縮化することができる。なお、図2に示すように、第1内輪軌道面18の周囲には焼入れ焼き戻しによる硬化層Sが形成される。
[Heat treatment step (FIG. 4G)]
Next, in the heat treatment step (quenching and tempering step), the first inner ring raceway surface 18 of the shaft portion 10 of the turned forged product 67 is induction-quenched and then tempered to form a heat-treated forged product 68 (FIG. 4). (See (G)). In this case, induction hardening is not performed on the seal surface 19, the outer peripheral surface of the small diameter shaft portion 12, and the inner ring abutting surface 12a. Thereby, the time of a heat treatment process can be shortened. As shown in FIG. 2, a hardened layer S is formed around the first inner ring raceway surface 18 by quenching and tempering.

[研磨工程]
研磨工程では、熱処理済鍛造品68の第1内輪軌道面18を研磨加工して車輪用転がり軸受装置の軸部材1を形成する。
[Polishing process]
In the polishing step, the first inner ring raceway surface 18 of the heat-treated forged product 68 is polished to form the shaft member 1 of the wheel rolling bearing device.

●[冷間鍛造工程の詳細(図5)]
次に図5を用いて、第1の冷間鍛造工程、第2の冷間鍛造工程の詳細について説明する。
本実施の形態の説明では、最終的な浮島状肉厚部29の外径(φH)とほぼ同じ(等しいまたはやや小径の)外径を有する被膜処理済軸状素材62(軸状素材)から、1回の押出し加工と、1回の前方押出し加工を経て、嵌合軸部30とフランジ部21と大径軸部11と小径軸部12を一体に有する冷間鍛造品を形成する。
なお、図5(A)は押出し加工(複合押出し加工であり、第1の冷間鍛造工程)の金型と素材の断面図を示しており、図5(B)は前方押出し加工(第2の冷間鍛造工程)の金型と素材の断面図を示している。また、図5(C)は押出し加工前の素材の概略形状を示しており、図5(D)は押出し加工後の素材の概略形状を示しており、図5(E)は前方押出し加工後の素材の概略形状を示している。
なお、図5(A)、(B)に示す押出し加工及び前方押出し加工を説明する金型と素材の断面図において、中心線より紙面右側は押出し加工(または前方押出し加工)を行う前の状態(素材をセットした状態)を示しており、中心線より紙面左側は押出し加工(または前方押出し加工)が完了した状態を示している。
● [Details of cold forging process (Fig. 5)]
Next, the details of the first cold forging process and the second cold forging process will be described with reference to FIG.
In the description of the present embodiment, the film-treated shaft-shaped material 62 (shaft-shaped material) having an outer diameter that is substantially the same (equal or slightly smaller) as the outer diameter (φH) of the final floating island-shaped thick portion 29 is used. The cold forging product which integrally has the fitting shaft part 30, the flange part 21, the large diameter shaft part 11, and the small diameter shaft part 12 is formed through one extrusion process and one forward extrusion process.
5A shows a cross-sectional view of the die and the material of the extrusion process (complex extrusion process, the first cold forging process), and FIG. 5B shows the forward extrusion process (second extrusion process). The cold forging process) and the cross-sectional view of the material are shown. FIG. 5C shows the schematic shape of the material before extrusion, FIG. 5D shows the schematic shape of the material after extrusion, and FIG. 5E shows the result after forward extrusion. The outline shape of the material is shown.
5A and 5B, in the sectional view of the mold and the material for explaining the extrusion process and the forward extrusion process, the right side of the drawing from the center line is a state before performing the extrusion process (or the forward extrusion process). (The state in which the material is set) is shown, and the left side of the paper from the center line shows a state in which the extrusion processing (or forward extrusion processing) is completed.

次に図5(A)、(C)、(D)を用いて第1の冷間鍛造工程(押出し加工)における金型の形状及び構成と、冷間鍛造の前後の素材の形状について説明する。
図5(A)に示すように、第1の冷間鍛造工程では、第1一方側金型K11、第1他方側金型K12、を用いて被膜処理済軸状素材62を押出し加工(側方押出し加工且つ後方押出し加工である複合押出し加工)する。
第1一方側金型K11は、最終的なフランジ部21の径(φG)を有するフランジ部21の外周面の形状と、フランジ部21における軸部10の側の面である一方側フランジ面21Bの形状(浮島状肉厚部29の形状を含む形状)と、に形成されている。
第1他方側金型K12は、フランジ部21における嵌合軸部30の側の面である他方側フランジ面21Aの形状と、嵌合軸部30の外周面の形状と、に形成されている。
そして第1一方側金型K11における浮島状肉厚部29の位置となる中央部に被膜処理済軸状素材62(図5(C)参照)を配置し、第1他方側金型K12を下降させて第1一方側金型K11に嵌合させて押出し加工をすることで、嵌合軸部30の外周面と、フランジ部21の外周面と、一方側フランジ面21Bと、他方側フランジ面21Aと、が形成された1次冷間鍛造品65(図5(D)参照)を形成することができる。
なお、金型の破損等を防止するために、「第1一方側金型K11と第1他方側金型K12にて囲まれる空間の体積」のほうが、「被膜処理済軸状素材62の体積」よりも大きく設定されている。
なお、図5(A)における一方側フランジ面21Bにおいて浮島状肉厚部29が形成されていない部分において、中心側の肉厚部から徐々に外周側の肉薄部へと厚さを変更する個所の傾斜部の傾斜角度を、20°≦θ≦60°に設定すると、より好ましい形状に形成することができる。
Next, the shape and configuration of the mold in the first cold forging step (extrusion process) and the shape of the material before and after the cold forging will be described with reference to FIGS. 5 (A), (C), and (D). .
As shown in FIG. 5A, in the first cold forging process, the coated shaft material 62 is extruded (side) using the first one-side mold K11 and the first other-side mold K12. (Composite extrusion process which is a side extrusion process and a backward extrusion process).
The first one-side mold K11 has a shape of the outer peripheral surface of the flange portion 21 having a final diameter (φG) of the flange portion 21 and a one-side flange surface 21B that is a surface of the flange portion 21 on the shaft portion 10 side. (The shape including the shape of the floating island-shaped thick portion 29).
The first other-side mold K12 is formed in the shape of the other-side flange surface 21A that is the surface on the side of the fitting shaft portion 30 in the flange portion 21 and the shape of the outer peripheral surface of the fitting shaft portion 30. .
Then, the coated shaft material 62 (see FIG. 5C) is arranged at the center of the first one-side mold K11 where the floating island-shaped thick portion 29 is located, and the first other-side mold K12 is lowered. Then, the outer peripheral surface of the fitting shaft portion 30, the outer peripheral surface of the flange portion 21, the one-side flange surface 21B, and the other-side flange surface are formed by being fitted to the first one-side mold K11 and performing extrusion processing. 21A and a primary cold forged product 65 (see FIG. 5D) formed thereon.
In order to prevent damage to the mold, the “volume of the space surrounded by the first one-side mold K11 and the first other-side mold K12” is “the volume of the coated shaft material 62”. "Is set larger than.
In the portion where the floating island-shaped thick portion 29 is not formed on the one-side flange surface 21B in FIG. 5A, the thickness is gradually changed from the thick portion on the central side to the thin portion on the outer peripheral side. When the inclination angle of the inclined portion is set to 20 ° ≦ θ ≦ 60 °, it can be formed into a more preferable shape.

次に図5(B)、(D)、(E)を用いて第2の冷間鍛造工程(前方押出し加工)における金型の形状及び構成と、冷間鍛造の前後の素材の形状について説明する。
図5(B)に示すように、第2の冷間鍛造工程では、第2一方側金型K21、第2他方側金型K22、中間金型K23、を用いて1次冷間鍛造品65を前方押出し加工する。なお、本実施の形態では補助金型K24も用いているが、補助金型K24は省略してもよい。
第2一方側金型K21は、フランジ部21の外周面の形状と、フランジ部21の一方側フランジ面21Bの形状と、当該一方側フランジ面21Bの先に大径軸部11の形状と小径軸部12の形状とに形成されている。
補助金型K24は、第2一方側金型K21の小径軸部の形状の先に弾性体K24Sにて弾性力等が付与されて支持されており、押出されてきた素材を支持しながら移動可能であり、素材の体積のばらつきに応じて適切な位置に移動するので、バリの発生を防止することができる。
中間金型K23は、フランジ部21の他方側フランジ面21Aの形状と、嵌合軸部30の外周面の形状とに形成されている。また中間金型K23は、フランジ部21の外径を有する円筒形状であり、中央部には嵌合軸部30の外径に対応する内径寸法の空洞部を有し、第2一方側金型K21に嵌合する。
第2他方側金型K22は嵌合軸部30の凹部(鍛造凹部35)に対応する形状に形成されており、第2他方側金型K22は中間金型K23の空洞部に嵌合する。
そして第2一方側金型K21内に1次冷間鍛造品65を配置し、中間金型K23を第2一方側金型K21に嵌合させ、第2他方側金型K22を中間金型K23の空洞部に下降させて前方押出し加工をすることで、1次冷間鍛造品65から、(嵌合軸部30の外周面と)鍛造凹部35と、(フランジ部21の外周面と一方側フランジ面21Bと他方側フランジ面21Aと)大径軸部11と、小径軸部12と、が形成された2次冷間鍛造品66を形成することができる。
なお、第1の冷間鍛造工程と第2の冷間鍛造工程との間にて、第1の冷間鍛造工程の前で行った第1の焼鈍・被膜工程と同様の工程を行っても良い。
Next, the shape and configuration of the mold in the second cold forging step (forward extrusion process) and the shape of the material before and after the cold forging will be described with reference to FIGS. 5 (B), (D), and (E). To do.
As shown in FIG. 5B, in the second cold forging step, a primary cold forged product 65 using a second one-side mold K21, a second other-side mold K22, and an intermediate mold K23. Is extruded forward. Although the auxiliary mold K24 is also used in the present embodiment, the auxiliary mold K24 may be omitted.
The second one-side mold K21 includes a shape of the outer peripheral surface of the flange portion 21, a shape of the one-side flange surface 21B of the flange portion 21, and a shape and a small diameter of the large-diameter shaft portion 11 at the tip of the one-side flange surface 21B. It is formed in the shape of the shaft portion 12.
The auxiliary mold K24 is supported by the elastic body K24S with an elastic force applied to the tip of the small-diameter shaft portion of the second one-side mold K21, and is movable while supporting the extruded material. Since it moves to an appropriate position according to the variation in the volume of the material, it is possible to prevent the occurrence of burrs.
The intermediate mold K <b> 23 is formed in the shape of the other flange surface 21 </ b> A of the flange portion 21 and the shape of the outer peripheral surface of the fitting shaft portion 30. The intermediate mold K23 has a cylindrical shape having the outer diameter of the flange portion 21, and has a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion 30 at the center portion. Mate to K21.
The second other mold K22 is formed in a shape corresponding to the recess (forged recess 35) of the fitting shaft part 30, and the second other mold K22 is fitted into the cavity of the intermediate mold K23.
Then, the primary cold forged product 65 is disposed in the second one-side mold K21, the intermediate mold K23 is fitted into the second one-side mold K21, and the second other-side mold K22 is replaced with the intermediate mold K23. The first cold forging product 65 (for the outer peripheral surface of the fitting shaft portion 30) and the forged concave portion 35 (for the outer peripheral surface and one side of the flange portion 21) The secondary cold forged product 66 in which the large-diameter shaft portion 11 and the small-diameter shaft portion 12 are formed can be formed.
In addition, even if it performs the process similar to the 1st annealing and the coating process performed before the 1st cold forging process between the 1st cold forging process and the 2nd cold forging process. good.

上記の説明では、図5(B)における中間金型K23と第2他方側金型K22とを別体で構成した例を説明したが、中間金型K23と第2他方側金型K22とを一体化した金型である一体金型を形成して、第2の冷間鍛造工程に利用してもよい。この場合、1次冷間鍛造品65から、嵌合軸部30の鍛造凹部35と、軸部10と、が形成された2次冷間鍛造品を更に効率よく形成することができる。   In the above description, the example in which the intermediate mold K23 and the second other mold K22 in FIG. 5B are configured separately has been described. However, the intermediate mold K23 and the second other mold K22 are separated from each other. An integrated mold that is an integrated mold may be formed and used in the second cold forging step. In this case, a secondary cold forged product in which the forged concave portion 35 of the fitting shaft portion 30 and the shaft portion 10 are formed from the primary cold forged product 65 can be formed more efficiently.

本実施の形態にて説明した車輪用転がり軸受装置の軸部材の製造方法では、上記のように、焼鈍処理工程においてS45C、S50C、S55C等の構造用炭素鋼を変態点温度以上の温度で加熱して焼鈍済軸状素材61を形成し、続く被膜処理工程において焼鈍済軸状素材61の表面に、冷間鍛造の成形型との間に生じる摩擦力を低減する潤滑剤被膜36を施して被膜処理済軸状素材62を形成し、鍛造性に優れた素材としている。
更に、最終的な浮島状肉厚部29の外径に対応する外径を有する軸状素材60を用いることで、続く冷間鍛造工程では、1次冷間鍛造工程と2次冷間鍛造工程の、1回の押出し加工(複合押出し加工)と、1回の前方押出し加工によって、嵌合軸部30、フランジ部21、大径軸部11、小径軸部12とを一体に有する冷間鍛造品(2次冷間鍛造品66)を効率よく形成することができる。
また、本実施の形態の説明では、第1の冷間鍛造工程の前に、第1の焼鈍・被膜工程にて少なくとも焼鈍処理と被膜処理を軸状素材に対して行った。しかし、第1の焼鈍・被膜工程は、省略してもよい。また、浮島状肉厚部29は、省略してもよい。
In the method of manufacturing the shaft member of the wheel rolling bearing device described in the present embodiment, as described above, structural carbon steel such as S45C, S50C, and S55C is heated at a temperature equal to or higher than the transformation point temperature in the annealing process. Then, an annealed shaft-shaped material 61 is formed, and a lubricant film 36 is applied to the surface of the annealed shaft-shaped material 61 in the subsequent coating process to reduce the frictional force generated between the cold forging mold. The film-treated shaft-shaped material 62 is formed, and the material is excellent in forgeability.
Furthermore, by using the shaft-shaped raw material 60 having an outer diameter corresponding to the outer diameter of the final floating island-shaped thick portion 29, in the subsequent cold forging process, the primary cold forging process and the secondary cold forging process. The cold forging which integrally has the fitting shaft part 30, the flange part 21, the large diameter shaft part 11, and the small diameter shaft part 12 by one extrusion process (composite extrusion process) and one forward extrusion process. The product (secondary cold forged product 66) can be formed efficiently.
In the description of the present embodiment, at least the annealing treatment and the coating treatment are performed on the shaft-like material in the first annealing / coating step before the first cold forging step. However, the first annealing / coating step may be omitted. Further, the floating island-shaped thick portion 29 may be omitted.

本発明の車輪用転がり軸受装置の軸部材とその製造方法は、本実施の形態で説明した処理、工程等の製造方法、外観、構成、構造等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
また、本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
また、本実施の形態の説明では、ボルト孔24が4個の例で説明したが、ボルト孔24は複数個であり、4個に限定されるものではない。もちろん、ボルト孔24の個数に応じて図2(B)に示す浮島状肉厚部29の形状も変更される。
The shaft member of the wheel rolling bearing device of the present invention and the manufacturing method thereof are not limited to the manufacturing method, process, process, etc., appearance, configuration, structure, etc. described in the present embodiment, and do not change the gist of the present invention. Various changes, additions and deletions can be made within the range.
The numerical values used in the description of the present embodiment are examples, and are not limited to these numerical values.
In the description of the present embodiment, an example in which the number of bolt holes 24 is four has been described. However, the number of bolt holes 24 is plural, and the number is not limited to four. Of course, the shape of the floating island-shaped thick portion 29 shown in FIG. 2B is also changed according to the number of the bolt holes 24.

1 車輪用転がり軸受装置の軸部材
10 軸部
11 大径軸部
12 小径軸部
12a 内輪突き当て面
15 軸端部
17 かしめ部
18 第1内輪軌道面
19 シール面
21 フランジ部
21A 他方側フランジ面
21B 一方側フランジ面
30 嵌合軸部
35 鍛造凹部
36 潤滑剤被膜
42 内輪
44 第2内輪軌道面
45 外輪
46 第1外輪軌道面
47 第2外輪軌道面
60 軸状素材
61 焼鈍済軸状素材
62 被膜処理済軸状素材
65 1次冷間鍛造品
66 2次冷間鍛造品
67 旋削済鍛造品
68 熱処理済鍛造品
A 車輪用転がり軸受装置
K11 第1一方側金型
K12 第1他方側金型
K21 第2一方側金型
K22 第2他方側金型
K23 中間金型
K24 補助金型

DESCRIPTION OF SYMBOLS 1 Shaft member of rolling bearing apparatus for wheels 10 Shaft part 11 Large diameter shaft part 12 Small diameter shaft part 12a Inner ring abutting surface 15 Shaft end part 17 Caulking part 18 1st inner ring raceway surface 19 Seal surface 21 Flange part 21A The other side flange surface 21B One side flange surface 30 Fitting shaft portion 35 Forged recess 36 Lubricant coating 42 Inner ring 44 Second inner ring raceway surface 45 Outer ring 46 First outer ring raceway surface 47 Second outer ring raceway surface 60 Axis material 61 Annealed shaft material 62 Coated shaft material 65 Primary cold forged product 66 Secondary cold forged product 67 Turned forged product 68 Heat treated forged product A Rolling bearing device for wheel K11 First one side die K12 First other side die K21 2nd one side mold K22 2nd other side mold K23 Intermediate mold K24 Auxiliary mold

Claims (5)

嵌合軸部とフランジ部と軸部とが軸方向に沿って同軸上に配置されている車輪用転がり軸受装置の軸部材の製造方法において、
前記嵌合軸部は軸方向に開口する凹部を有する円筒形状であり、
前記フランジ部は軸方向に直交する円板状であり、
前記フランジ部における軸方向に直交する方向の径であるフランジ径は、前記嵌合軸部における軸方向に直交する方向の径である嵌合軸部径よりも大きく、
前記軸部は円柱形状であって外周面には内輪軌道面が形成されており、
前記フランジ部には、軸方向に直交する方向に複数のボルト孔が形成されており、
前記車輪用転がり軸受装置の軸部材は冷間鍛造によって製造されており、
前記嵌合軸部径よりも大きく且つ前記フランジ径よりも小さな外径を有する円柱状の軸状素材を用い、
第1の冷間鍛造工程にて前記軸状素材における軸方向の一方の端部の径を前記フランジ径まで拡径するとともに前記軸状素材における他方の端部に前記嵌合軸部の径を有する円柱部を形成するように押出し加工を行い、
第2の冷間鍛造工程にて前記軸状素材における軸方向の他方の端部から前記嵌合軸部の前記凹部と前記軸部とを形成するように前方押出し加工を行い、前記車輪用転がり軸受装置の軸部材を形成する、
車輪用転がり軸受装置の軸部材の製造方法。
In the manufacturing method of the shaft member of the rolling bearing device for a wheel in which the fitting shaft portion, the flange portion, and the shaft portion are arranged coaxially along the axial direction.
The fitting shaft portion has a cylindrical shape having a recess opening in the axial direction;
The flange portion has a disk shape orthogonal to the axial direction,
A flange diameter that is a diameter in a direction orthogonal to the axial direction in the flange portion is larger than a fitting shaft portion diameter that is a diameter in a direction orthogonal to the axial direction in the fitting shaft portion,
The shaft portion has a cylindrical shape, and an outer ring surface is formed on the outer peripheral surface,
A plurality of bolt holes are formed in the flange portion in a direction orthogonal to the axial direction,
The shaft member of the rolling bearing device for wheels is manufactured by cold forging,
Using a cylindrical shaft-shaped material having an outer diameter larger than the fitting shaft diameter and smaller than the flange diameter,
In the first cold forging step, the diameter of one end portion in the axial direction of the shaft-shaped material is expanded to the flange diameter, and the diameter of the fitting shaft portion is set to the other end portion of the shaft-shaped material. Extrusion to form a cylindrical part having,
In the second cold forging step, forward extrusion is performed so as to form the concave portion and the shaft portion of the fitting shaft portion from the other axial end portion of the shaft-shaped material, and the wheel rolling Forming a shaft member of the bearing device;
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項1に記載の車輪用転がり軸受装置の製造方法であって、
前記フランジ部における前記軸部の側の面である一方側フランジ面には、前記軸部の周囲から前記ボルト孔の周囲に延びて前記フランジ部における軸方向の厚さを部分的に肉厚状とする浮島状肉厚部が形成されており、前記浮島状肉厚部の径は前記嵌合軸部の径よりも大きく且つ前記フランジ径よりも小さな径である浮島径であり、
前記浮島径に対応する外径を有する円柱状の軸状素材を用いて、前記第1の冷間鍛造工程と前記第2の冷間鍛造工程にて前記車輪用転がり軸受装置の軸部材を形成する、
車輪用転がり軸受装置の軸部材の製造方法。
It is a manufacturing method of the rolling bearing device for wheels according to claim 1,
One flange surface that is the surface of the flange portion on the side of the shaft portion extends from the periphery of the shaft portion to the periphery of the bolt hole, and the axial thickness of the flange portion is partially thickened. The floating island-shaped thick portion is formed, and the diameter of the floating island-shaped thick portion is a floating island diameter that is larger than the diameter of the fitting shaft portion and smaller than the flange diameter,
Using a cylindrical shaft-shaped material having an outer diameter corresponding to the floating island diameter, a shaft member of the rolling bearing device for a wheel is formed in the first cold forging step and the second cold forging step. To
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項1または2に記載の車輪用転がり軸受装置の軸部材の製造方法であって、
前記第1の冷間鍛造工程における前記押出し加工では、
前記フランジ部における外周面の形状と、前記フランジ部における前記一方側フランジ面の形状と、に形成された第1一方側金型と、
前記フランジ部における前記嵌合軸部の側の面である他方側フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成された第1他方側金型と、を用いて押出し加工して、
前記軸状素材から前記嵌合軸部の外周面と、前記フランジ部の外周面と、前記一方側フランジ面と、前記他方側フランジ面と、が形成された1次冷間鍛造品を形成し、
前記第2の冷間鍛造工程における前記前方押出し加工では、
前記フランジ部における外周面の形状と、前記一方側フランジ面の形状と、当該一方側フランジ面の先における前記軸部の形状と、に形成された第2一方側金型と、
前記他方側フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第2一方側金型と嵌合する略円筒形状の中間金型と、
略円筒形状の前記中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の凹部の形状に形成された第2他方側金型と、を用いて前方押出し加工して、
前記1次冷間鍛造品から前記嵌合軸部の凹部と、前記軸部と、が形成された2次冷間鍛造品である前記車輪用転がり軸受装置の軸部材を形成する、
車輪用転がり軸受装置の軸部材の製造方法。
It is a manufacturing method of the shaft member of the rolling bearing device for wheels according to claim 1 or 2,
In the extrusion process in the first cold forging step,
A first one-side mold formed on the shape of the outer peripheral surface of the flange portion and the shape of the one-side flange surface of the flange portion;
Using the shape of the other side flange surface which is the surface of the flange portion on the side of the fitting shaft portion, and the shape of the outer peripheral surface of the fitting shaft portion, using the first other side mold Extrusion process
Forming a primary cold forged product in which an outer peripheral surface of the fitting shaft portion, an outer peripheral surface of the flange portion, the one side flange surface, and the other side flange surface are formed from the shaft-shaped material; ,
In the forward extrusion process in the second cold forging step,
A second one-side mold formed on the shape of the outer peripheral surface of the flange portion, the shape of the one-side flange surface, and the shape of the shaft portion at the tip of the one-side flange surface;
It is formed in the shape of the other side flange surface and the shape of the outer peripheral surface of the fitting shaft portion, has an outer diameter corresponding to the outer diameter of the flange portion, and corresponds to the outer diameter of the fitting shaft portion. A substantially cylindrical intermediate mold having a hollow portion of an inner diameter dimension and fitted to the second one-side mold;
A second cylindrical mold that can be fitted into the hollow portion of the intermediate mold having a substantially cylindrical shape and that is formed in the shape of the concave portion of the fitting shaft portion, is subjected to forward extrusion processing,
Forming a shaft member of the rolling bearing device for a wheel which is a secondary cold forged product in which the concave portion of the fitting shaft portion and the shaft portion are formed from the primary cold forged product;
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項3に記載の車輪用転がり軸受装置の軸部材の製造方法であって、
前記第2の冷間鍛造工程において、前記中間金型と前記第2他方側金型を用いる代わりに、前記中間金型と前記第2他方側金型とが一体的に形成された一体金型を用いて前方押出し加工を行うことで、前記1次冷間鍛造品から前記嵌合軸部の凹部と、前記軸部と、が形成された2次冷間鍛造品を形成する、
車輪用転がり軸受装置の軸部材の製造方法。
It is a manufacturing method of the shaft member of the rolling bearing device for wheels according to claim 3,
In the second cold forging step, instead of using the intermediate mold and the second other mold, the intermediate mold and the second other mold are integrally formed. Forming a secondary cold forged product in which the concave portion of the fitting shaft portion and the shaft portion are formed from the primary cold forged product by performing forward extrusion using
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項1〜4のいずれか一項に記載の車輪用転がり軸受装置の軸部材の製造方法によって製造された車輪用転がり軸受装置の軸部材であって、
前記第1の冷間鍛造工程と前記第2の冷間鍛造工程にて前記車輪用転がり軸受装置の軸部材を形成する際に、前記嵌合軸部の径よりも大きく且つ前記フランジ径よりも小さな外径を有する円柱状の軸状素材から製造され、円板状の前記フランジ部を有する、
車輪用転がり軸受装置の軸部材。

It is a shaft member of the rolling bearing device for wheels manufactured by the manufacturing method of the shaft member of the rolling bearing device for wheels according to any one of claims 1 to 4,
When forming the shaft member of the rolling bearing device for a wheel in the first cold forging step and the second cold forging step, the diameter is larger than the diameter of the fitting shaft portion and larger than the flange diameter. It is manufactured from a cylindrical shaft-shaped material having a small outer diameter, and has the disk-shaped flange portion.
A shaft member of a rolling bearing device for wheels.

JP2011096977A 2011-04-25 2011-04-25 Shaft member of rolling bearing device for wheel, and method for manufacturing the same Withdrawn JP2012228697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011096977A JP2012228697A (en) 2011-04-25 2011-04-25 Shaft member of rolling bearing device for wheel, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011096977A JP2012228697A (en) 2011-04-25 2011-04-25 Shaft member of rolling bearing device for wheel, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012228697A true JP2012228697A (en) 2012-11-22

Family

ID=47430709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011096977A Withdrawn JP2012228697A (en) 2011-04-25 2011-04-25 Shaft member of rolling bearing device for wheel, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012228697A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101570766B1 (en) * 2014-04-15 2015-11-23 주식회사 일진글로벌 Wheel Hub and manufacturing method thereof
CN107537961A (en) * 2016-06-29 2018-01-05 韩虎产业株式会社 The manufacture method of long-shaft type wheel shaft with side tooth form

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101570766B1 (en) * 2014-04-15 2015-11-23 주식회사 일진글로벌 Wheel Hub and manufacturing method thereof
CN107537961A (en) * 2016-06-29 2018-01-05 韩虎产业株式会社 The manufacture method of long-shaft type wheel shaft with side tooth form
KR20180002446A (en) * 2016-06-29 2018-01-08 한호산업(주) Manufacturing method of long shaft type pully shaft having side tooth

Similar Documents

Publication Publication Date Title
JP2012183563A (en) Method of manufacturing shaft member for wheel rolling bearing device
JP5121246B2 (en) Wheel bearing device and manufacturing method thereof
US8763255B2 (en) Manufacturing method for wheel rolling bearing device, and wheel rolling bearing device
JP5050446B2 (en) Bearing unit
JP2008275023A (en) Hub unit bearing
US20120227459A1 (en) Method of manufacturing shaft member for wheel rolling bearing device
JP2012228697A (en) Shaft member of rolling bearing device for wheel, and method for manufacturing the same
JP5168852B2 (en) Bearing unit
JP5415999B2 (en) Wheel bearing device
JP2012228696A (en) Shaft member of rolling bearing device for wheel and method for producing the same
JP6256585B2 (en) Manufacturing method of rolling bearing device for wheel
JP2007051750A (en) Wheel bearing device
WO2012121246A1 (en) Manufacturing method for wheel roller bearing device
JP2010188835A (en) Method of manufacturing wheel bearing device
JP2012183561A (en) Shaft member of rolling bearing for wheel and method for manufacturing the same
JP2012183560A (en) Shaft member of rolling bearing for wheel and method for manufacturing the same
WO2012121245A1 (en) Shaft member for rolling bearing device for wheel
JP2012184813A (en) Shaft member of rolling bearing for wheel and method for manufacturing the same
JP5776228B2 (en) Shaft member for rolling bearing device for wheel and manufacturing method thereof
JP5236097B2 (en) Wheel bearing device
WO2012121243A1 (en) Shaft member for wheel rolling bearing device
JP2012192818A (en) Bearing device for wheel
WO2012121242A1 (en) Shaft member for wheel rolling bearing device
JP2008207586A (en) Wheel bearing device and its manufacturing method
JP2010188834A (en) Wheel bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701