Nothing Special   »   [go: up one dir, main page]

JP2010063683A - 移動体、及びその制御方法 - Google Patents

移動体、及びその制御方法 Download PDF

Info

Publication number
JP2010063683A
JP2010063683A JP2008233592A JP2008233592A JP2010063683A JP 2010063683 A JP2010063683 A JP 2010063683A JP 2008233592 A JP2008233592 A JP 2008233592A JP 2008233592 A JP2008233592 A JP 2008233592A JP 2010063683 A JP2010063683 A JP 2010063683A
Authority
JP
Japan
Prior art keywords
value
input
moving
passenger
boarding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008233592A
Other languages
English (en)
Other versions
JP5044515B2 (ja
Inventor
Tetsuya Taira
哲也 平
Kiyoshi Matsumoto
松本  潔
Akihito Nakai
亮仁 中井
Yoshiyuki Omura
吉幸 大村
Nobuyasu Tomokuni
伸保 友國
Kohei Okabe
康平 岡部
Ott Christian
クリスティアン オット
智之 ▲高▼畑
Tomoyuki Takahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Toyota Motor Corp
Original Assignee
University of Tokyo NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Toyota Motor Corp filed Critical University of Tokyo NUC
Priority to JP2008233592A priority Critical patent/JP5044515B2/ja
Priority to PCT/JP2009/003076 priority patent/WO2010029669A1/ja
Priority to EP09812818.4A priority patent/EP2332815B1/en
Priority to US13/063,310 priority patent/US8504248B2/en
Priority to CN200980135755XA priority patent/CN102149596B/zh
Publication of JP2010063683A publication Critical patent/JP2010063683A/ja
Application granted granted Critical
Publication of JP5044515B2 publication Critical patent/JP5044515B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Motorcycle And Bicycle Frame (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】高い操作性を有する移動体、及びその制御方法を提供する。
【解決手段】本発明の一態様にかかる移動体1は、搭乗者が搭乗する搭乗席8と、搭乗席8を支持する車台13と、車台13を移動させる車輪6と、搭乗席8の搭乗面に加わる力に応じた計測値を出力する力センサ9と、力センサ9からの計測値に基づいて、ヨー軸周りのモーメントに応じた入力値を算出するセンサ処理部53と、入力値の絶対値に応じた移動速度で、入力値の符号に応じて前方又は後方に移動するように車輪6を駆動するための指令値を出力する制御計算部51と、を備え、搭乗者が前傾姿勢になって前進を入力する時と後傾姿勢になって後退を入力する時とで計測値の絶対値が同じ場合に、前進入力時の場合の計測値の絶対値が後退入力時の入力値の絶対値よりも大きくなっているものである。
【選択図】図1

Description

本発明は、移動体、及びその制御方法に関する。
近年、搭乗者を搭乗させた状態で移動する移動体が開発されている(特許文献1、2)。例えば、特許文献1〜3では、搭乗者が搭乗する搭乗面(座面)に力センサ(圧力センサ)を設けている。そして、力センサからの出力によって、車輪を駆動している。すなわち、力センサが操作手段となって、入力が行われている。
特許文献1の移動体では、進みたい方向に体重をかけることで移動している。例えば、前方に進みたい場合、搭乗者が上体を前方に傾ける。すなわち、搭乗者が前傾姿勢になる。そして、前傾姿勢になると搭乗席に加わる力が変化する。そして、この力及びモーメントを力センサで検出する。力センサの検出結果によって、球状タイヤを駆動している。特許文献1の図14には、搭乗者が搭乗席に座った状態で、倒立振子制御を行っている。特許文献2には、車椅子型の移動体が開示されている。この移動体には、椅子とフットレストが設けられている。
また、特許文献3には、利用者の動作を能動的に検知して、それに応じて自律的に動作する移動体が開示されている。例えば、複数の圧力センサによって、利用者の重心を計算している。この重心位置に応じて、車椅子形状の移動体が動作している(図2)。
さらに、特許文献4では、2足歩行型の移動体を動作させるためのインタフェイス装置が開示されている。このインタフェイス装置は、椅子型形状を有している。そして、椅子の背面と座面に複数の力センサを設けている。4つの力センサによって、搭乗者の骨盤旋回を検知して、歩行意思を推定している。そして、力センサによって推定された歩行意志に応じて両脚を駆動している。また、このインタフェイス装置には、足置き台が設けられている。
特開2006−282160号公報 特開平10−23613号公報 特開平11−198075号公報 特開平7−136957号公報
特許文献1〜3では、実際に移動体に搭乗している搭乗者の姿勢によって、移動している。これにより、実際に移動している環境に応じた操作が可能になる。例えば、搭乗者は、以下のように操作を行うことができる。前進したい場合、搭乗者が前方に上体を移動させる。すなわち、搭乗者が前傾姿勢になる。すると、重心位置が前方になって、力センサに加わる力が変化する。これにより、センサが前進入力を検知する。反対に、後方に移動したい場合は、搭乗者が後傾姿勢になる。すると、重心位置が後方になり、後傾入力が検知される。また、左右に移動する場合は、搭乗者が左右方向に重心を移動する。これにより、左右の旋回入力が検知される。このように、旋回入力、前進入力、後退入力に応じて移動することができる。
しかしながら、上記の移動体では、搭乗者の意図通りに移動することができない場合がある。例えば、搭乗席に搭乗者が座った場合、搭乗者の大腿によって搭乗者の姿勢変化が拘束されてしまう。したがって、搭乗者が前傾姿勢となって、高速の前進入力を入力することが困難であるという問題点がある。さらに、搭乗者が荷物を持った場合、力センサの入力が変化してしまう。また、搭乗者の座り位置が変化した場合も力センサの入力が変化してしまう。傾斜面を移動する場合も、力センサの入力にずれが生じてしまう。したがって、意図通りに移動することができなくなってしまう。本件出願の発明者らは、移動体を実際に移動させる時に、移動体を搭乗者の意図通りに移動させることができなくなる状況があることを発見した。本発明によれば搭乗者の意図通り移動させることができ、操作性を向上することができる。
本発明は、高い操作性を有する移動体、及びその制御方法を提供することを目的とする。
本発明の第1の態様に係る移動体は、搭乗者が搭乗する搭乗席と、前記搭乗席を支持する本体部と、前記本体部を移動させる移動機構と、前記搭乗席の搭乗面に加わる力に応じた計測値を出力するセンサと、前記センサからの計測値に基づいて、ヨー軸周りのモーメントに応じた入力値を算出するセンサ処理部と、前記入力値の絶対値に応じた移動速度で、前記入力値の符号に応じて前方又は後方に移動するように前記移動機構を駆動するための指令値を出力する制御計算部と、を備え、前記搭乗者が前傾姿勢になって前進を入力する時と後傾姿勢になって後退を入力する時とで前記計測値の絶対値が同じ場合に、前進入力時の場合の前記計測値の絶対値が後退入力時の前記入力値の絶対値よりも大きくなっているものである。これにより、搭乗者の大腿部の拘束がある場合でも、搭乗者の意図通りに移動させることができる。よって、操作性を向上することができる。
本発明の第2の態様に係る移動体は、上記の移動体であって、前記計測値から前記入力値を算出するときのゲインを前記前進入力時と前記後退入力時とで変えていることを特徴とするものである。これにより、簡便な処理で、意図通りに移動させることができる。よって、操作性を向上することができる。
本発明の第3の態様に係る移動体は、上記の移動体であって、前記計測値に対してオフセット値を与えた後、前記入力値を算出することを特徴とするものである。これにより、簡便な処理で、意図通りに移動させることができる。よって、操作性を向上することができる。
本発明の第4の態様に係る移動体は、上記の移動体であって、前記搭乗者が搭乗しているか否かを判別する判別手段をさらに備え、前記搭乗者が搭乗していると判別された場合は、搭乗モードで制御し、前記搭乗者が搭乗していないと判別された場合は、非搭乗モードで制御し、前記搭乗モードでは、前記前進入力時の場合と前記後退入力時とで前記計測値の絶対値が等しい場合に、前記前進入力時の前記入力値の絶対値が前記後退入力時の前記入力値の絶対値よりも大きくなり、前記非搭乗モードでは、前記前進入力時の場合と前記後退入力時とで前記計測値の絶対値が等しい場合に、前記後退入力時の前記入力値の絶対値と、前記前進入力時の前記入力値の絶対値が等しくなっているものである。これにより、搭乗者の有無に応じて適切な制御を行うことできるため、操作性を向上することができる。
本発明の第5の態様に係る移動体は、搭乗者が搭乗する搭乗部と、前記搭乗部を支持する本体部と、前記本体部を移動させる移動機構と、前記搭乗部の搭乗面に加わる力に応じた計測値を出力するセンサと、前記センサからの計測値に基づいて、モーメントに応じた入力値を算出するセンサ処理部であって、前記計測値に対するオフセット値を設定して、前記入力値を算出するセンサ処理部と、前記入力値に応じた移動速度及び移動方向に移動するように、前記移動機構を駆動するための指令値を出力する制御計算部と、を備えたものである。これにより、簡便な制御で、搭乗者の意図通りに移動するような制御が可能となる。よって、操作性を向上することができる。
本発明の第6の態様に係る移動体は、上記の移動体であって、搭乗者が搭乗する搭乗部と、前記搭乗部の搭載重量の変化したタイミングで、前記オフセット値の設定を行うことを特徴とするものである。これにより、簡便な処理で、オフセット値を調整することができる。よって、操作性を向上することができる。
本発明の第7の態様に係る移動体は、搭乗者が搭乗する搭乗部と、前記センサの計測値に基づいて前記搭載重量が算出されているものである。これにより、簡便な処理で、オフセット値を調整することができる。よって、操作性を向上することができる。
本発明の第8の態様に係る移動体は、上記の移動体であって、前記オフセットを設定するタイミングを入力するスイッチがさらに設けられていることを特徴とするものである。これにより、簡便な処理で、オフセット値を調整することができる。よって、操作性を向上することができる。
本発明の第9の態様に係る移動体は、上記の移動体であって、前記搭乗部と前記搭乗者との搭乗位置を検出する搭乗位置検出部、を備え、前記搭乗位置検出部で検出された搭乗位置に応じて、前記計測値に対するオフセット値を設定しているものである。これにより、簡便な処理で、オフセット値を調整することができる。よって、操作性を向上することができる。
本発明の第10の態様に係る移動体は、上記の移動体であって、前記搭乗位置検出部にはアレイ状に配列され、搭乗者が接触しているか否かを判別する接触センサが含まれ、前記アレイ状に配列された接触センサで検出された接触位置の分布情報に基づいて、前記オフセット値を決定しているものである。これにより、簡便な処理で、オフセット値を調整することができる。よって、操作性を向上することができる。
本発明の第11の態様に係る移動体は、搭乗者が搭乗する搭乗部と、前記搭乗部を支持する本体部と、前記本体部を移動させる移動機構と、前記搭乗部の搭乗面に加わる力に応じた計測値を出力するセンサと、を備えた移動体であって、前記センサからの計測値に基づいて、モーメントに応じた入力値を算出するセンサ処理部と、前記入力値に応じた移動速度及び移動方向に移動するように、前記移動機構を駆動するための指令値を出力する制御計算部と、前記センサからの計測値がしきい値を越えていた場合に、前記搭乗面に加わる力が強くなるように駆動する駆動機構と、を備えたものである。これにより、移動体が不安定な状態となるのを避けることができる。よって、操作性を向上することができる。
本発明の第12の態様に係る移動体は、上記の移動体であって、前記駆動機構が前記本体部をピッチ軸周り、及びロール軸周りに回転させることを特徴とするものである。これにより、簡便な処理で、操作性を向上することができる。
本発明の第13の態様に係る移動体は、上記の移動体であって、前記本体部に取り付けられたフットレストをさらに備え、前記駆動機構がフットレストを前記搭乗部に対して移動させることによって、前記搭乗面に加わる力を強くしていることを特徴とするものである。これにより、簡便な処理で、操作性を向上することができる。
本発明の第14の態様に係る移動体は、搭乗者が搭乗する搭乗部と、前記搭乗部を支持する本体部と、前記本体部を移動させる移動機構と、前記本体部の姿勢角を検出する姿勢検出部と、前記搭乗部の搭乗面に加わる力に応じた計測値を出力するセンサと、前記センサからの計測値に基づいて、モーメントに応じた入力値を算出するセンサ処理部であって、姿勢検出部で検出された姿勢角に応じて前記入力値と前記計測値の関係を変化させるセンサ処理部と、前記入力値に応じた移動速度及び移動方向に移動するように、前記移動機構を駆動するための指令値を出力する制御計算部と、を備えたものである。これにより、床面によらず、搭乗者の意図通りに移動することができる。よって、操作性を向上することができる。
本発明の第15の態様に係る移動体の制御方法は、搭乗者が搭乗する搭乗席と、前記搭乗席を支持する本体部と、前記本体部を移動させる移動機構と、前記搭乗席の搭乗面に加わる力に応じた計測値を出力するセンサと、前記センサからの計測値に基づいて、ヨー軸周りのモーメントに応じた入力値を算出するセンサ処理部と、を備えた移動体の制御方法であって、前記搭乗者が前傾姿勢になって前進を入力する時と後傾姿勢になって後退を入力する時とで前記計測値の絶対値が同じ場合に、前進入力時の場合の前記計測値の絶対値が後退入力時の前記入力値の絶対値よりも大きくなるように算出するステップと、前記入力値の絶対値に応じた移動速度で、前記入力値の符号に応じて前方又は後方に移動するように前記移動機構を駆動するための指令値を出力するステップと、を備えたものである。これにより、搭乗者の大腿部の拘束がある場合でも、搭乗者の意図通りに移動させることができる。よって、操作性を向上することができる。
本発明の第16の態様に係る移動体の制御方法は、上記の制御方法であって、前記計測値から前記入力値を算出するときのゲインを前記前進入力時と前記後退入力時とで変えていることを特徴とするものである。これにより、簡便な処理で、意図通りに移動させることができる。よって、操作性を向上することができる。
本発明の第17の態様に係る移動体の制御方法は、上記の制御方法であって、前記計測値に対してオフセット値を与えた後、前記入力値を算出することを特徴とするものである。これにより、簡便な処理で、意図通りに移動させることができる。よって、操作性を向上することができる。
本発明の第18の態様に係る移動体の制御方法は、上記の制御方法であって、前記搭乗者が搭乗しているか否かを判別するステップをさらに備え、前記搭乗者が搭乗していると判別された場合は、搭乗モードで制御し、前記搭乗者が搭乗していないと判別された場合は、非搭乗モードで制御し、前記搭乗モードでは、前記前進入力時の場合と前記後退入力時とで前記計測値の絶対値が等しい場合に、前記前進入力時の前記入力値の絶対値が前記後退入力時の前記入力値の絶対値よりも大きくなり、前記非搭乗モードでは、前記前進入力時の場合と前記後退入力時とで前記計測値の絶対値が等しい場合に、前記後退入力時の前記入力値の絶対値と、前記前進入力時の前記入力値の絶対値が等しくなっているものである。これにより、搭乗者の有無に応じて適切な制御を行うことできるため、操作性を向上することができる。
本発明の第19の態様に係る移動体の制御方法は、搭乗者が搭乗する搭乗部と、前記搭乗部を支持する本体部と、前記本体部を移動させる移動機構と、前記搭乗部の搭乗面に加わる力に応じた計測値を出力するセンサと、前記センサからの計測値に基づいて、モーメントに応じた入力値を算出するセンサ処理部と、を備えた移動体の制御方法であって、前記計測値に対するオフセット値を設定して、前記入力値を算出するステップと、前記入力値に応じた移動速度及び移動方向に移動するように、前記移動機構を駆動するための指令値を出力するステップと、を備えたものである。これにより、簡便な制御で、搭乗者の意図通りに移動するような制御が可能となる。よって、操作性を向上することができる。
本発明の第20の態様に係る移動体の制御方法は、上記の制御方法であって、前記搭乗部の搭載重量の変化したタイミングで、前記オフセット値の再設定を行うことを特徴とするものである。これにより、簡便な処理で、オフセット値を調整することができる。よって、操作性を向上することができる。
本発明の第21の態様に係る移動体の制御方法は、上記の制御方法であって、前記センサの計測値に基づいて前記搭載重量が算出されているものである。これにより、簡便な処理で、オフセット値を調整することができる。よって、操作性を向上することができる。
本発明の第22の態様に係る移動体の制御方法は、上記の制御方法であって、前記搭乗者がスイッチを操作することで、前記オフセットの再設定を行なうことを特徴とするものである。これにより、簡便な処理で、オフセット値を調整することができる。よって、操作性を向上することができる。
本発明の第23の態様に係る移動体の制御方法は、上記の制御方法であって、前記搭乗部と前記搭乗者との搭乗位置を検出するステップを、さらに備え、前記搭乗位置に応じて、前記計測値に対するオフセット値の再設定を行っていることを特徴とするものである。これにより、簡便な処理で、オフセット値を調整することができる。よって、操作性を向上することができる。
本発明の第24の態様に係る移動体の制御方法は、上記の制御方法であって、アレイ状に配列された接触センサによって、搭乗者が搭乗しているか否かを判別し、前記アレイ状に配列された接触センサで検出された接触位置の分布情報に基づいて、前記オフセット値を決定しているものである。これにより、簡便な処理で、オフセット値を調整することができる。よって、操作性を向上することができる。
本発明の第25の態様に係る移動体の制御方法は、搭乗者が搭乗する搭乗部と、前記搭乗部を支持する本体部と、前記本体部を移動させる移動機構と、前記搭乗部の搭乗面に加わる力に応じた計測値を出力するセンサと、前記センサからの計測値に基づいて、モーメントに応じた入力値を算出するセンサ処理部と、を備えたで移動体の制御方法あって、前記センサからの計測値がしきい値を越えていた場合に、前記搭乗面に加わる力が強くなるように駆動機構を駆動するステップと、前記入力値に応じた移動速度及び移動方向に移動するように、前記移動機構を駆動するための指令値を出力するステップと、を備えたものである。これにより、移動体が不安定な状態となるのを避けることができる。よって、操作性を向上することができる。
本発明の第26の態様に係る移動体の制御方法は、上記の制御方法であって、前記駆動機構が前記本体部をピッチ軸周り、及びロール軸周りに回転させることを特徴とするものである。これにより、簡便な処理で、操作性を向上することができる。
本発明の第27の態様に係る移動体の制御方法は、上記の制御方法であって、前記本体部に取り付けられたフットレストをさらに備え、前記駆動機構がフットレストを前記搭乗部に対して移動させることによって、前記搭乗面に加わる力を強くしていることを特徴とするものである。これにより、簡便な処理で、操作性を向上することができる。
本発明の第28の態様に係る移動体の制御方法は、搭乗者が搭乗する搭乗部と、前記搭乗席を支持する本体部と、前記本体部を移動させる移動機構と、前記搭乗部の搭乗面に加わる力に応じた計測値を出力するセンサと、前記センサからの計測値に基づいて、モーメントに応じた入力値を算出するセンサ処理部と、を備えた移動体の制御方法であって、前記本体部の姿勢を検出するステップと、前記本体部の姿勢に応じて前記入力値と前記計測値の関係を変化させるステップと、前記入力値に応じた移動速度及び移動方向に移動するように、前記移動機構を駆動するための指令値を出力するステップと、を備えたものである。これにより、床面によらず、搭乗者の意図通りに移動することができる。よって、操作性を向上することができる。
本発明によれば、高い操作性を有する移動体、及びその制御方法を提供することができる。
<全体構成>
本発明に係る移動体1の全体構成とその基本的な制御方法について図を参照して説明する。まず、移動体1の全体構成について図1、図2を用いて説明する。図1は、移動体1の構成を模式的に示す正面図であり、図2は、移動体1の構成を模式的に示す側面図である。なお、図1、及び図2には、XYZの直交座標系が示されている。Y軸が移動体1の左右方向を示し、X軸が移動体1の前後方向を示し、Z軸が鉛直方向を示している。従って、X軸がロール軸に対応し、Y軸がピッチ軸、Z軸がヨー軸となる。図1、2において、+X方向が移動体1の前方向であるとして説明する。なお、図1、2に示す移動体1の基本的な全体構成は、以下に説明する実施の形態1乃至7において共通である。
図1に示すように移動体1は、搭乗部3、及び車台13を有している。車台13は、移動体1の本体部であり、搭乗部3を支持している。車台13は、姿勢検出部4、車輪6、フットレスト10、筐体11、制御計算部51、バッテリ52等を備えている。車輪6は、前輪601と後輪602から構成されている。ここでは、1つの前輪601と2つの後輪602からなる3輪型の移動体1を説明する。
搭乗部3は、搭乗席8、及び力センサ9を有している。そして、搭乗席8の上面が座面8aとなる。すなわち、座面8aの上に、搭乗者が乗った状態で移動体1が移動する。座面8aは平面でもよいし、臀部の形に合わせた形状となっていてもよい。さらに、搭乗席8に背もたれを設けてもよい。乗り心地を向上するために、搭乗席8にクッション性を持たせてもよい。移動体1が水平面上にある場合、座面8aが水平になっている。力センサ9は、搭乗者の体重移動を検知する。すなわち、力センサ9は、搭乗席8の座面8aに加わる力を検出する。そして、力センサ9は、座面8aに加わる力に応じた計測信号を出力する。力センサ9は、搭乗席8の下側に配置される。すなわち、車台13と搭乗席8の間に、力センサ9が配設されている。
力センサ9としては、例えば、6軸力センサを用いることができる。この場合、図3に示すように、3軸方向の並進力(SFx、SFy、SFz)と各軸周りのモーメント(SMx、SMy、SMz)を計測する。これらの並進力とモーメントは、力センサ9の中心を原点に取った値である。移動体1のセンサ処理部に出力する計測信号をモーメント(Mx、My、Mz)とし、それらのモーメントの制御座標原点を図2に示す(a、b、c)とすると、Mx、My、Mzは、それぞれ以下のように表すことができる。
Mx=SMx+c・SFy−b・SFz
My=SMy+a・SFz−c・SFx
Mz=SMz+b・SFx−a・SFy
なお、図3は、各軸を説明するための図である。力センサ9として、モーメント(Mx、My、Mz)を計測できるものであればよい。各軸周りのモーメント(SMx、SMy、SMz)を計測できる3軸力センサを制御座標原点に配置して、Mx,My、Mzを直接計測してもよい。また、1軸の力センサを3つ設けてもよい。さらには、歪みゲージや、ポテンショを用いたアナログジョイスティックなどでもよい。すなわち、直接的又は間接的に3軸周りのモーメントを計測できるものであればよい。そして、力センサ9は、3つのモーメント(Mx、My、Mz)を計測信号として出力する。
さらに、搭乗席8には、搭乗位置を検出するための搭乗位置検出部14が含まれている。搭乗位置検出部14は、複数の接触センサなどを有している。例えば、複数の接触センサは、搭乗席8の座面8aにおいて、アレイ状に配列されている。接触センサは、その上面に何かが接触している状態で、接触信号を出力する。そして、搭乗位置検出部14は、複数の接触センサからの接触信号に基づいて、搭乗者の搭乗位置を検出する。具体的には、座面8aにおける基準位置に搭乗者が搭乗している場合を原点として、実際に搭乗者が搭乗した搭乗位置のずれ量が検出される。搭乗位置のずれ量は、X方向、及びY方向のそれぞれに対して検出される。接触信号が出力されている接触センサの分布の違いから、搭乗位置を検出することができる。
移動体1の本体部分となる車台13には、車輪6、フットレスト10、筐体11、制御計算部51、及びバッテリ52等が設けられている。筐体11は、箱形状を有しており、前方下側が突出している。そして、この突出した部分の上にフットレスト10が配設されている。フットレスト10は、搭乗席8の前方側に設けられている。従って、搭乗者が搭乗席8に搭乗した状態では、搭乗者の両足がフットレスト10上に乗せられている。
フットレスト10には、搭乗者が搭乗しているか否かを判別するための判別部12が含まれている。判別部12は、例えば、複数の接触センサなどを有している。複数の接触センサは、例えば、フットレスト10の上面に、アレイ状に配列されている。そして、各接触センサは、その上面が何かに接触している状態で、接触信号を出力する。この接触信号に基づいて、搭乗者の足裏が接触しているか否かを判別している。接触している接触センサの集合が、足裏形状に似ている場合は、搭乗者が搭乗していると判別する。すなわち、接触している領域が、足裏の形状に似ているか否かで、搭乗者が搭乗しているか否かを判別する。さらに、搭乗者が乗っているか、搭乗者以外の物体が乗っているかを判別することができる。力センサ9ではなく、フットレスト10に設けられた判別部12で搭乗者の有無を判別することで、確実に判別することができるようになる。すなわち、搭乗席8に物体を載置した場合でも、搭乗者が搭乗していると誤って認識するのを防ぐことができる。
筐体11には、駆動モータ603、制御計算部51、及びバッテリ52が内蔵されている。バッテリ52は、駆動モータ603、制御計算部51、判別部12、搭乗位置検出部14、及び力センサ9などの各電気機器に電源を供給する。姿勢検出部4は、例えば、ジャイロセンサまたは加速度センサなどを有しており、移動体1の姿勢を検出する。すなわち、車台13が傾斜すると、姿勢検出部4は、その傾斜角度や傾斜角速度を検出する。姿勢検出部4は、ロール軸周りにおける姿勢の傾斜角度、及びピッチ軸周りにおける姿勢の傾斜角度を検出する。そして、姿勢検出部4は、姿勢検出信号を制御計算部51に出力する。
筐体11には、車輪6が回転可能に取り付けられている。ここでは、円盤上の車輪6が3つ設けられている。車輪6の一部は、筐体11の下面よりも下側に突出している。従って、車輪6が床面と接触している。2つの後輪602は、筐体11の後部に設けられている。後輪602は、駆動輪であり、駆動モータ603によって回転する。すなわち、駆動モータ603が駆動することによって、後輪602がその車軸周りに回転する。後輪602は、左右両側に設けられている。なお、後輪602には、その回転速度を読み取るためのエンコーダが内蔵されている。左の後輪602の車軸と、右の後輪602の車軸は、同一直線上に配置されている。
また、車輪6には前輪601が含まれている。そして、1つの前輪601が筐体11の前部中央に設けられている。従って、Y方向において、2つの後輪602の間に、前輪601が配設されている。X方向において、前輪601の車軸と後輪602の車軸との間に、搭乗席8が設けられている。前輪601は、従動輪(補助輪)であり、移動体1の移動に応じて回転する。すなわち、後輪602の回転によって移動する方向、及び速度に応じて、前輪601が回転する。このように、後輪602の前に補助輪である前輪601を設けることで、転倒を防ぐことができる。前輪601は、フットレスト10の下方に設けられている。
制御計算部51はCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、通信用のインタフェイスなどを有する演算処理装置である。また、制御計算部51は、着脱可能なHDD、光ディスク、光磁気ディスク等を有し、各種プログラムや制御パラメータなどを記憶し、そのプログラムやデータを必要に応じてメモリ(不図示)等に供給する。もちろん、制御計算部51は、物理的に一つの構成に限られるものではない。制御計算部51には、力センサ9からの出力に応じて駆動モータ603の動作を制御するための処理を行う。
次に、移動体1を移動させるための制御系について、図4を用いて説明する。図4は、移動体1を移動させるための制御系の構成を示すブロック図である。まず、力センサ9によって、座面8aにかかる力を検出する。ここでは、上記の通り、力センサ9は、計測信号であるモーメントMx、My、Mzをセンサ処理部53に出力する。センサ処理部53は、力センサ9からの計測信号に対して処理を行う。すなわち、力センサ9から出力される計測信号に対応する計測データに対して、演算処理を行う。これにより、制御計算部51に入力される入力モーメント値(Mx’、My’、Mz’)が算出される。なお、センサ処理部53は、力センサ9に内蔵されていてもよく、制御計算部51に内蔵されていてもよい。
このように、力センサ9で計測されたモーメント(Mx、My、Mz)が各軸周りの入力モーメント値(Mx’、My’、Mz’)に変換される。そして、入力モーメント値が各後輪602を動作させるために入力される入力値となる。このように、センサ処理部53は、各軸毎に入力値を算出する。入力モーメント値の大きさは、モーメントの大きさに応じて決まる。入力モーメント値の符号は、計測されたモーメントの符号によって決まる。すなわち、モーメントが正の場合、入力モーメント値も正となり、モーメントが負の場合、入力モーメント値も負となる。例えば、モーメントMxが正の場合、入力モーメント値Mx’も正となる。従って、この入力モーメント値が搭乗者の意図する操作に対応する入力値となる。
制御計算部51は、入力モーメント値に基づいて、制御計算を行う。これにより、駆動モータ603を駆動するための指令値が算出される。もちろん、入力モーメント値が大きいほど、指令値が大きくなる。この指令値は、駆動モータ603に出力される。なお、本実施形態では、左右の後輪602が駆動輪であるため、2つの駆動モータ603が図示されている。そして、一方の駆動モータ603が右の後輪602を回転させ、他方の駆動モータ603が左の後輪602を回転させる。駆動モータ603は、指令値に基づいて後輪602を回転させる。すなわち、駆動モータ603は、駆動輪である後輪602を回転させるためのトルクを与える。もちろん、駆動モータ603は、減速機などを介して、後輪602に回転トルクを与えてもよい。例えば、制御計算部51から、指令値として指令トルクが入力された場合、その指令トルクで、駆動モータ603が回転する。これにより、後輪602が回転して、移動体1が所望の方向に、所望の速度で移動する。もちろん、指令値は、トルクに限らず、回転速度、回転数であってもよい。
さらに、駆動モータ603にはそれぞれ、エンコーダ603aが内蔵されている。このエンコーダ603aは、駆動モータ603の回転速度等を検出する。そして、検出された回転速度は、制御計算部51に入力される。制御計算部51は、現在の回転速度と、目標となる回転速度とに基づいてフィードバック制御を行う。例えば、目標回転速度と現在回転速度との差分に、適当なフィードバックゲインを乗じて、指令値を算出する。もちろん、左右の駆動モータ603に出力される指令値は、異なる値であってもよい。すなわち、前方、又は後方に直進する場合は、左右の後輪602の回転速度が同じになるように制御し、左右に旋回する場合は、左右の後輪602が、同じ方向で異なる回転速度になるよう制御する。また、その場旋回する場合は、左右の後輪602が反対方向に回転するように制御する。
例えば、搭乗者が前傾姿勢になると、搭乗席8にピッチ軸周りの力が加わる。すると、力センサ9が+Myのモーメントを検出する(図3参照)。この+Myのモーメントによって、センサ処理部53は、移動体1を並進させるための入力モーメント値My’を算出する。同様に、センサ処理部53は、Mxに基づいて入力モーメント値Mx’を算出し、Mzに基づいて、入力モーメント値Mz’を算出する。すなわち、センサ処理部53は、計測値を入力モーメント値に変換する。これらは、それぞれの独立に算出される。すなわち、Mx’は、Mxのみによって決まり、My’は、Myのみによって決まり、Mz’は、Mzのみのよって決まる。このように、Mx’、My’、Mz’はそれぞれ独立している。
制御計算部51が、入力モーメント値とエンコーダの読み値に基づいて、指令値を算出する。これにより、左右の後輪602が所望の回転速度で回転する。同様に、右方向に曲がる場合は、搭乗者が右側に体重移動する。これにより、搭乗席にロール軸周りの力が加わり、力センサ9が+Mxのモーメントを検出する。この+Mxのモーメントによって、センサ処理部53は、移動体1を右方向に旋回させるための入力モーメント値Mx’を算出する。すなわち、移動体1が移動する方向に対応する舵角が求められる。そして、入力モーメント値に応じて、制御計算部51が指令値を算出する。この指令値に応じて、左右の後輪602が異なる回転速度で回転する。すなわち、左側の後輪602が右側の後輪602よりも速い回転速度で回転する。
このように、My’に基づいて、前後方向の並進移動に対する成分が求められる。すなわち、左右の後輪602を同じ方向に同じ回転速度で駆動するための駆動トルクなどが決定する。従って、My’、すなわち、Myが大きいほど、移動体1の移動速度が速くなる。Mx’に基づいて、移動方向、すなわち、舵角に対する成分が求められる。すなわち、左右の後輪602の回転トルク差が決定される。従って、Mx’、すなわち、Mxが大きいほど、左右の後輪602の回転速度の違いが大きくなる。
Mz’に基づいて、その場旋回に対する成分が求められる。すなわち、左右の後輪602を反対方向に回転させて、その場旋回するための成分が求められる。従って、Mz’、すなわち、Mzが大きいほど、左右の後輪602における反対方向の回転速度が大きくなる。例えば、Mz’が正の場合、上側から見て、左周りにその場旋回する駆動トルクなどが算出される。すなわち、右側の後輪602が前方に回転し、左側の後輪602が同じ回転速度で後方に回転することとなる。
そして、それぞれの入力モーメント値Mx’、My’、Mz’に基づいて算出された3つの成分を合成して、2つの後輪602を駆動するための指令値を算出する。これにより、左右の後輪602に対する指令値がそれぞれ算出される。駆動トルクや回転速度などが指令値として算出される。すなわち、入力モーメント値Mx’、My’、Mz’に対応する成分毎に算出された値を合成することで左右の後輪602に対する指令値が算出される。このように、計測されたモーメントMx、My、Mzに基づいて算出された入力モーメント値Mx’、My’、Mz’によって、移動体1が移動する。すなわち、搭乗者の体重移動によるモーメントMx、My、Mzによって、移動体1の移動方向、及び移動速度が決定する。
このように、搭乗者の動作によって、移動体1を移動させるための入力が行われる。すなわち、搭乗者の姿勢変化によって、各軸周りのモーメントが検出される。そして、これらのモーメントの計測値に基づいて、移動体1が移動する。これにより、搭乗者が、移動体1を簡便に操作することができる。すなわち、ジョイスティックやハンドルなどの操作が不要となり、体重移動のみでの操作が可能となる。例えば、右斜め前方に移動したい場合は、体重を右前方にかける。また、左斜め後方に移動したい場合は、体重を左後方にかける。これにより、搭乗者の重心位置が変化して、その変化量に応じた入力が行われる。すなわち、搭乗者の重心移動に応じたモーメントを検出することで、直感的に操作することができる。制御計算部51は、入力モーメント値の絶対値に応じた移動速度で、入力モーメント値の符号に応じて前方又は後方に移動するように指令値を出力する。
例えば、図5に示すように、力センサ9が設けられた搭乗席8に搭乗者71が搭乗しているとする。なお、図5は、搭乗席8に搭乗者71が搭乗している状態を示す図であり、左側に側面図が、右側に搭乗面8aの平面図が示されている。この場合、座面8aには、搭乗者71の臀部72と大腿部73が接触している。この時の、前後方向の入力について、以下に説明する。ここでは、図6に示すように、前進方向の入力を正値とし、後進方向の入力を負値としている。すなわち、My’が正のとき、移動体1が前方に移動し、My’が負のとき、移動体1が後方に移動する。したがって、My’が0のとき、移動体1は、その場のまま、前後進しないことになる。すなわち、搭乗者71がピッチ軸周りにおいて中立姿勢になっている場合、移動体1が前進、又は後退しない。入力モーメント値My’の絶対値に応じて、移動体1の速度が決定する。例えば、My’に比例して移動速度が変化する。換言すると、My’の絶対値の増加するにしたがって、移動速度の絶対値が単調増加する。加えて、My’が+a(aは任意の正値)の場合と−aの場合とで、移動体1の速度が反対向きで等しくなる。このように、搭乗者の上体の中立姿勢からの倒れ角に応じて、移動体1の速度が決定する。したがって、搭乗者が上体を傾けるほど、移動体1が高速で移動する。
センサ処理部53には、判別部12からの判別信号が入力されている。判別部12には、接触センサ58と判別情報処理部59が設けられている。接触センサ58は、上記のように、フットレスト10の上面において、アレイ状に配列されている。そして、各接触センサ58は、上に何かが接触しているときに接触信号を出力する。判別情報処理部59は、この接触信号に基づいて処理を行い、搭乗者が搭乗しているかを判別する。すなわち、接触信号を出力している接触センサの分布に応じて、足裏がフットレスト10に接触しているか否かを判別する。接触信号を出力している接触センサの分布が足裏形状に近い場合は、搭乗者が搭乗していると判別し、それ以外の時は人以外の物が接触していると判別する。
さらに、センサ処理部53には、搭乗位置検出部14から搭乗位置を示す位置信号が入力されている。すなわち、搭乗位置検出部14からは、位置信号が出力されている。搭乗位置検出部14は、接触センサ56と分布情報処理部57を有している。接触センサ58は、複数設けられている。複数の接触センサ56がアレイ状に配列されている。そして、各接触センサ56は、上に何かが接触しているときに接触信号を出力する。分布情報処理部57は、この接触信号の分布情報に基づいて処理を行い、搭乗位置を算出する。位置信号がセンサ処理部53に入力される。センサ処理部53は、位置信号に応じた処理を行っている。
センサ処理部53は、判別信号、及び位置信号に応じて、処理を変更している。なお、これらの処理については、後述する。すなわち、以下に示す実施の形態1乃至7において、これらの処理が異なっている。以下に、図1乃至4に示す移動体の制御に関する実施の形態を説明する。すなわち、以下に示す実施の形態1乃至7は、図1乃至4の示す構成の移動体1に関する実施の形態である。
なお、センサ処理部53、分布情報処理部57、及び判別情報処理部59など各処理部は、制御計算部51と同様に、CPUやRAMなどから構成されている。そして、所定のプログラムにしたがって、演算処理を行う。もちろん、各処理部や制御計算部51は、物理的に同じ構成であってもよい。すなわち、1つの演算処理回路において、処理や演算を行ってもよい。
<実施の形態1>
上記のように、搭乗者の姿勢に応じて、移動速度が決定されている。したがって、前方に高速で移動したい場合、搭乗者が姿勢を大きく前傾させる必要がある。しかしながら、図5に示すように、大腿部73が座面8aと接触しているため、座面8aの形状によって大腿部73が拘束を受けてしまう。このため、モーメントMyを大きくすることが困難になる。すなわち、モーメントMyが正の場合、負の場合に比べて、その絶対値を大きくすることが困難になってしまう。そこで、本実施の形態では、センサ処理部53において、以下に示す処理を行っている。
本実施の形態では、MyからMy’を算出する時の係数を、Myの符号に応じて、変化させている。すなわち、Myが正の場合の係数は、Myが負の場合の係数よりも大きくなっている。これにより、Myが正値の場合における、My’の値を大きくすることができる。例えば、MyをMy’に変換する変換式において、Myに乗じる係数を正値と負値で変える。すると、Myの絶対値が同じ場合でも、Myの符号に応じて、My’の絶対値が変化する。これにより、搭乗者71の姿勢の前方向への倒れ角が小さい場合でも、入力モーメント値が大きくなる。前進速度を大きくすることができる。よって、搭乗者71が大きく前傾する必要がなくなるため、操作性を向上することができる。また、大きく前傾する必要がないため、搭乗者が前方を確認しづらい姿勢とならない。よって、高速で前進する場合でも、安全性を向上することができる。
例えば、図7に示すように、搭乗者が前傾角度α(アルファは正の角度)だけ姿勢を倒した場合、後傾角度β(β>α)だけ姿勢を倒した時と同じ速さになる。なお、図7は、搭乗者の姿勢と入力モーメント値を説明するための側面図である。搭乗者71の前傾角度αが小さい場合でも、入力モーメント値My’を大きくすることができる。これにより、前進速度を速くすることができ、搭乗者71の意図に応じた制御を行うことができる。本実施の形態では、中立姿勢の場合、すなわち搭乗者が鉛直方向に沿って搭乗している場合、前進入力が行われないことになる。また、制御計算部51に入力される入力モーメント値My’に対して処理を行うことで、容易に処理を行うことができる。すなわち、指令値を求めるための複雑な制御計算を前進と後進で区別することなく、行うことができる。よって、容易に制御することができる。また、実施の形態1にかかる移動体1では、姿勢検出部4、判別部12、搭乗位置検出部14を使用しないため、これらを設けなくてもよい。
<実施の形態2>
本実施の形態でも、実施の形態1と同様に前進入力における入力モーメント値My’を大きくするための処理をセンサ処理部53が行っている。本実施の形態では、モーメントMyから入力モーメント値My’を算出する時の、原点位置を後方にずらしている。すなわち、力センサ9で計測されるモーメントMyのヨー軸が力センサ9の中央になっているのに対して、入力モーメント値My’を算出するときのヨー軸の位置が、力センサ9の中央よりも後方になっている。このように、入力モーメント値My’に対するヨー軸の位置にオフセット値を与えている。本実施の形態では、図6や図7のヨー軸位置よりも、ヨー軸位置が後方にずれる。これにより、モーメントMyの絶対値が正負で同じ値を取る場合、正値に対する入力モーメント値My’の絶対値が、負値に対応する入力モーメント値My’の絶対値よりも大きくなる。よって、モーメントMyが正値の場合において、入力モーメント値My’を大きくすることができる。
前後進の速度を同じ速度にしようとしても、大腿部73が座面8aによって拘束されているため、前傾姿勢が取りづらい。このため、後退時の速度と同じ速度で前進する意図があったとしても、図8に示すように、前傾角度αが後傾角度βよりも小さくなってしまう。すなわち、搭乗者が後傾角度と同じ角度で傾斜しているつもりでも、大腿部73の動作が座面8aで拘束されているため、前傾角度αが小さくなってしまう。このように、原点位置にオフセットがない場合、前進速度が意図する速度よりも遅くなってしまう。すなわち、本来ならば、後傾角度βと前傾角度αが同じでないと、入力モーメント値My’の絶対値が同じ値にならない。そこで、本実施の形態では、図9に示すように、原点位置、即ち、ヨー軸位置にオフセットを与えている。すなわち、オフセットを与えることで、前傾角度αを仮想的に作り出している。仮想的な前傾角度αは、実際の前傾角度よりも大きくなっている。よって、前進速度を意図通りに速くすることができる。
例えば、原点位置を−2すると、モーメントMyが正値の場合の出力が+2され、負値の場合の出力が−2される。このように、ヨー軸の位置を後方にずらすことで、入力モーメント値が大きくなって算出される。このような処理を行うため、力センサ9からの出力電圧に対してオフセット電圧を与えている。前傾時に正の電圧、後傾時に負の電圧が力センサ9から出力されるとすると、正の電圧が大きくなるように、基準電位を負電位とする。具体例として、力センサ9が−5V〜5Vの電圧を出力する場合について考える。すなわち、−5V〜+5VでモーメントMyを表す場合について考える。前傾時に正電圧、後傾時に負電圧を出力する場合、センサ処理部53において基準電位を−2Vとする。この場合、オフセット電圧が−2Vとなる。すると、力センサ9からの出力電圧が−2V〜5Vの時が前進入力となり、実際の入力モーメント値My’は、0〜7Vの範囲のモーメントMyから算出されることとなる。よって、前進入力の場合に、力センサ9から出力されるモーメントMyに比べて、入力モーメント値を大きくすることができる。
このように、力センサ9から出力されるモーメントの計測値に対してオフセット値を与えた後、入力モーメント値を算出している。これにより、実施の形態1と同様に、前進入力を容易に行うことができる。もちろん、力センサ9自体にオフセット電圧を与えてもよい。搭乗者71の姿勢の前方向への倒れ角が小さい場合でも、前進速度を大きくすることができる。よって、搭乗者71が大きく前傾する必要がなくなるため、操作性を向上することができる。また、大きく前傾する必要がないため、搭乗者が前方を確認しづらい姿勢とならない。よって、高速で前進する場合でも、安全性を向上することができる。
なお、本実施の形態では、中立姿勢の場合、すなわち搭乗者が鉛直方向に沿って搭乗している場合でも、前進入力が行われることになる。また、実施の形態2にかかる移動体1では、姿勢検出部4、判別部12、搭乗位置検出部14を使用しないため、これらを設けなくてもよい。また、本実施の形態と実施の形態1とを組み合わせてもよい。
このように、実施の形態1、2では、モーメントMyが正値のときと、負値のときとで、モーメントMyと入力モーメント値My’との関係を変えている。搭乗者71が前傾姿勢になって前進を入力する時と後傾姿勢になって後退を入力する時とでモーメントMyの絶対値が同じ場合に、前進入力時の場合の入力モーメント値My’の絶対値が後退入力時の入力モーメント値My’の絶対値よりも大きくなる。よって、前進入力を容易に行うことができる。すなわち、搭乗者が大きく前傾姿勢にならなくても、前方向の移動速度を大きくすることができる。よって、搭乗者の意図通りに移動が可能となる。
<実施の形態3>
本実施の形態では、実施の形態1、又は実施の形態2の制御を利用している。本実施形態では、状況に応じて、実施の形態1に示した係数を変えて制御している。すなわち、モーメントMyから入力モーメント値My’を算出するときに、モーメントMyに乗じる係数が、状況に応じて変化している。具体的には、搭乗者が搭乗しているか否かに応じて、係数を変えている。あるいは、、搭乗者が搭乗しているか否かに応じて、オフセット値を0にしている。
本実施の形態では、判別部12において、搭乗者が搭乗しているか否かを判別している。例えば、図10に示すように、フットレスト10に接触センサ58を設ける。接触センサ58は、フットレスト10の表面にアレイ状に配列されている。したがって、接触信号を出力する接触センサ58の分布によって、接触している対象の形状が認識される。接触している対象の形状が、一般的な足裏形状に近く、足裏が2つある場合、搭乗者71が搭乗していると判断する。反対に、接触している対象の形状が一般的な足裏形状と大きく異なっている場合、搭乗者が搭乗していないと判断する。このように、フットレスト10に接触センサ58を設けることで、搭乗者の有無を容易かつ確実に判別することができる。
搭乗者が搭乗している場合、搭乗者の大腿部73の動作が座面8aで拘束される。したがって、実施の形態1又は2で示したように、前進入力に対する入力モーメント値を大きくする。反対に、搭乗者が搭乗していない場合、実施の形態1、2で示した制御を行わない。すなわち、モーメントMyの絶対値が同じ場合で、入力モーメント値My’の絶対値を同じ値にする。このようにすることで、使用者の意図通りに移動することができる。すなわち、搭乗者71が搭乗せずに移動体1を操作する場合でも、意図通りの速度で移動することができる。
例えば、搭乗者が床面に立ち、座面8a上に手を当てる。あるいは、座面8aに搬送したい物を載せて、その上に手を当てる。そして、移動体1を移動させたい方向に手で力を加えると、移動体1がその方向に移動する。このような場合、搭乗者が搭乗席8に搭乗していないため、大腿部73による拘束を受けない。よって、搭乗者は自由に力を与えることができる。すなわち、どの方向にも、同じように力を与えることできるため、前進入力も後退入力も、ほとんど差がない。前進時でも後退時でもオフセットを0にする、あるいは、係数を同じにする。これにより、搭乗者の意図通りの速度で移動することができる。また、搭乗席8に搭乗者71が搭乗している場合は、後退入力に比べて前進入力を大きくする。これにより、搭乗者の意図通りの移動が可能になる。
次に、本実施の形態にかかる移動体1の制御方法について、図11を用いて説明する。図11は、本実施の形態の制御方法を示すフローチャートである。移動体1を起動したら、接触センサの反応を見る(ステップS101)。すなわち、アレイ状に配列された接触センサ58で接触しているか否かを判別する。そして、搭乗者が搭乗しているか否かを判別情報処理部59が判別する。ここでは、足裏が2つある場合に、搭乗者が搭乗していると判別している。これにより、搭乗モードとなる。搭乗モードとなった場合、係数調整やオフセット位置を適用する(ステップS102)。これにより、係数調整やオフセットを考慮した指令値が算出される。そして、この指令値に基づいて、移動体を動作させる(ステップS103)。それ以外の場合、非搭乗モードとなる。非搭乗モードの場合、係数調整やオフセット設定を適用せずに、移動体1を動作させる(ステップS103)。すなわち、正負で係数を等しくする。あるいは、オフセット値を0とする。これにより、搭乗者の有無に関わらず、搭乗者が意図する移動が可能になる。よって、搭乗者71の意図通りに移動することができ、操作性を向上することができる。なお、実施の形態1、2の制御方法では、ステップS101がなくなり、ステップS102とステップS103を繰り返し実行する。
また、搭乗者71が搭乗しているか否かを判別する判別部12の構成については、特に限定されるものではない。例えば、接触センサ58を搭乗席8に設けたものでよい。すなわち、座面8aに、複数の接触センサ58をアレイ状に配列する。そして、接触信号を出力している接触センサ58の分布が臀部と大腿部とを合わせた形状に近くなっているか否かで、搭乗者の有無を判別することができる。さらには、接触センサ58に限らず、カメラなどを用いて、判別してもよい。例えば、カメラなどで、搭乗者の顔認識を行うことで、搭乗者の有無を判別することができる。また、力センサ9によって搭乗席に搭載されている搭載対象の重量を測定してもよい。そして、搭載対象の重量が標準的な人間の体重である場合、搭乗者が搭乗していると判別する。
もちろん、2つ以上を組み合わせて、搭乗者の有無を判別してもよい。例えば、力センサ9によって測定された搭載対象の重量と、接触センサ58による足裏形状の認識とを組み合わせることができる。そして、両方ともで、搭乗者が搭乗している条件を満たした場合のみ、搭乗者が搭乗していると判別する。すなわち、一方でも搭乗者が搭乗している条件を満たさない場合は、搭乗者無しと判断する。これにより、搭乗者の有無を確実に判別することができ、搭乗モードと非搭乗モードの切換えを的確に行うことができる。さらに、座面8aに接触センサ58を搭載して、臀部の形を計測する手法や、カメラが搭載されており、人間の顔、体などを検出する手法など、人間が明らかに搭乗している状況を判別できる手法を用いてもよい。このように各種センサによって、搭乗者の有無を判別することで、搭乗者が意識することなく、最適な制御を行うことができる。もちろん、搭乗者が搭乗したことを示すスイッチを設けて、搭乗者などがスイッチを操作することで判別することもできる。なお、本実施の形態では、搭乗位置検出部14、姿勢検出部4を用いていないため、移動体1に搭乗位置検出部14、及び姿勢検出部4を設けなくてもよい。
<実施の形態4>
本実施の形態では、実施の形態2と同様に、力センサ9からの出力に対して、オフセットを与えている。すなわち、力センサ9から出力される計測信号について、オフセット電圧を設定している。さらに、本実施の形態では、モーメントMyだけでなく、モーメントMxについても、オフセット値を設定している。そして、状況に応じて、オフセット値を最適化している。
ここで、搭乗者71が荷物を把持した場合について考える。例えば、荷物を持っていない状態から、荷物を持った状態になった場合について、図12及び図13を用いて説明する。図12は、荷物を持っていない搭乗者71が搭乗している状態を示す図であり、図13は、荷物76を持った搭乗者71が搭乗している状態を示す図である。荷物を持っていない状態で、搭乗者71が搭乗席8に座ると、座面8aの中心に搭乗者71の重心位置75があるとする。この状態で、荷物76を把持すると、座面8aの中心から重心位置75がずれる。例えば、荷物76を左手で持つと、重心位置75が左側に変位する。このように荷物76を持った方向に、重心位置が変化する。したがって、直進したい場合、搭乗者が斜めに姿勢を左右方向に傾ける必要が生じる。このように、重心位置75が変位すると、意図する操作をしにくくなる。すなわち、原点から重心位置75の方向が鉛直方向から傾くため、搭乗者71が中立姿勢を保っている場合でも、荷物76に応じたモーメントMx、Myが検出されてしまう。
荷物76によって生じるモーメントMx、Myをキャンセルするために、力センサ9の出力に対してオフセットを設定している。これにより、荷物76の重量によらず、搭乗者の意図通りに移動することができる。具体的には、搭乗席8に搭載重量を力センサ9で測定する。そして、搭載重量が変化したときに、オフセットを再設定する。これにより、荷物76の有無によらず、搭乗者71の意図通りに移動することができる。すなわち、荷物を持った場合において、前方に直進したい場合、搭乗者71が前傾姿勢となる。同様に、荷物を持たない場合において、前方に直進したい場合、搭乗者71前傾姿勢となる。搭乗者が同じ操作をすると、移動体1が同じ動作をする。よって、意図通りに移動することができ、操作性を向上することができる。
次に、本実施の形態にかかる移動体1の制御方法について、図14を用いて説明する。図14は、本実施の形態にかかる移動体1の制御方法を示すフローチャートである。移動体1を起動したら、力センサ9によって搭乗席8の搭載重量を測定する(ステップS201)。そして、前回の重量と今回の重量とを比較する(ステップS202)。前回の重量と今回の重量の差が、しきい値よりも大きい場合、オフセットを再設定する(ステップS203)。ここでは、再設定されたオフセットを用いて指令値が算出される。そして、搭載重量を測定するステップS201に戻る。また、前回の重量と今回の重量の差が、しきい値よりも小さい場合、オフセットを変更せずに指令値を算出した後、搭載重量を測定するステップS201に戻る。また、ステップS202で比較した後に、前回の重量を今回の重量で置き換える。これにより、オフセットの再設定を容易に行うことができる。
オフセットは、重量変化が生じた際の、モーメントMx、Myに応じた値となる。オフセットの再設定を行う場合、力センサ9で計測されたモーメントMx、Myに対応する出力電圧をオフセット電圧とする。重量変化が生じた時に計測されたモーメントに対応する出力電圧が基準となる。すなわち、重量変化が生じたタイミングで出力された出力電圧がオフセット電圧になる。オフセット電圧の更新後は、重量変化が生じた際のモーメントに応じた出力電圧と、その後に計測されたモーメントに応じた出力電圧との差分に基づいて、入力モーメント値が算出される。例えば、重量変化が生じた時に、モーメントMxに対応する電圧が1Vとなり、モーメントMyに対応する電圧が2Vとなったとする。これらをオフセット電圧に設定する。この場合、これ以降に計測されたモーメントMxに対応する出力電圧から1V引く。同様に、モーメントMyに対応する出力電圧から2V引く。そして、オフセット電圧を引いた後に入力モーメント値が算出される。換言すると、オフセット設定時のモーメントと姿勢変化で生じたモーメントとの差分が、入力モーメント値に変換される。差分に基づいて、指令値を算出する。荷物76を持った場合も持たない場合も、同じ運転方法で、同じように制御することができる。
このようにすることで、搭乗者71が座り直したタイミングでオフセットの設定が行われる。すなわち、搭乗者71が座り直すと、座面8aから臀部が離れる。すると座面8aに加わる力が一旦、弱くなるため、重量変化が検知される。すなわち、変化重量がしきい値を越える。そして、このタイミングでオフセットの設定が行われる。このようにすることで、荷物76を持ったことを意識することなく、操作することができず。よって、操作性を向上することができる。このように、搭乗部3の搭載重量の変化したタイミングで、オフセット値の設定を行っている。ここでは、搭乗重量が変化したタイミングにおける力センサ9の計測結果を基準となるオフセット値としている。また、力センサ9からの計測値に基づいて搭載重量が算出されている。
なお、上記の説明では、重量変化に応じて、オフセットの設定を行ったが、オフセットの設定を行うタイミングはこれに限られるものではない。例えば、移動体1にオフセット設定用のスイッチを設けて、このスイッチの切換えによって、オフセットの設定を行ってもよい。例えば、図13に示すように搭乗部3の近傍にスイッチ77を設ける。搭乗者が切り替えスイッチをONしたタイミングでオフセット設定を行う。このようにしても、同様の効果を得ることができる。さらに、荷物を離さずに左右持ち替えた場合でも、オフセット値の再設定が行われる。
搭乗者の動作をカメラで監視して、搭乗者が荷物を持ったか否かを判別してもよい。なお、本実施の形態では、判別部12、搭乗位置検出部14、姿勢検出部4を用いていないため、移動体1に判別部12、搭乗位置検出部14、及び姿勢検出部4を設けなくてもよい。もちろん、力センサ9以外のセンサで搭載重量を検出してもよい。力センサ9で搭載重量を検出することで、他のセンサを用いる必要がなくなる。
<実施の形態5>
本実施の形態では、図4に示した搭乗位置検出部14からの分布情報に応じてオフセットを与えている。すなわち、搭乗者が座っている位置に応じて、オフセットを与えている。なお、モーメントMx、Myに対するオフセットの与え方は、実施の形態2、4等と同様であるため説明を省略する。すなわち、力センサ9からの出力に対して基準となる電位を調整している。
まず、オフセットを与えるために設けられた接触センサ56の構成について図15、及び図16を用いて説明する。図15は、座面8aに設けられた接触センサ56の構成を示す上面図である。図16は、座面8aにおける搭乗位置のずれを示す上面図である。図15に示すように、座面8a上には、複数の接触センサ56がアレイ状に配列されている。接触センサ56は、臀部72や大腿部73の形状を検知できる程度の分解能を持っているものとする。すなわち、臀部や大腿部の形状を区別できるような間隔で、接触センサ56を配列する。そして、接触信号を出力する接触センサ56の分布から搭乗位置を検出する。すなわち、正常な搭乗位置からのずれ量を検出する。このように、複数の接触センサ56を用いることで、接触位置に対する分布情報が得られる。そして、この分布情報から搭乗位置を推定する。
例えば、図16(a)に示すように、搭乗者が正常な搭乗位置よりも、左斜め前方に座ってしまった場合、分布情報が変化する。よって、搭乗位置が変化したと判断され、モーメントMx、Myのそれぞれに対してオフセットを与える。また、図16(b)に示すように搭乗者が正常な搭乗位置よりも、後方に座ってしまった場合、モーメントMyに対してオフセットを与える。さらに、図16(c)に示すように、搭乗者が正常な搭乗位置よりも、右側に座ってしまった場合、モーメントMxのそれぞれに対してオフセットを与える。このようにモーメントの計測値に対してオフセットを与えることで、正常な搭乗位置を同じ運転方法で、移動することができる。
例えば、搭乗位置に大きな変化が生じる毎に、オフセットを更新している。すなわち、搭乗位置のずれ量がしきい値よりも大きくなったタイミングで、オフセットを再設定する。これにより、搭乗者が座り直して、搭乗位置が変化した場合でも、同様に操作することができる。例えば、中立姿勢になったときに、移動体1が移動しなくなる。さらに、まっすく前方に移動した場合、搭乗者が前傾姿勢になればよい。このように、意図通りに移動することができ、操作性を向上することができる。
なお、本実施の形態にかかる移動体1の制御方法について、図17を用いて説明する。
図17は、本実施の形態にかかる移動体1の制御方法を示すフローチャートである。移動体1を起動したら、搭乗位置検出部14によって搭乗位置を測定する(ステップS301)。そして、前回の搭乗位置と今回の搭乗位置とを比較する(ステップS302)。前回の搭乗位置と今回の搭乗位置との差が、しきい値よりも大きい場合、オフセットを再設定する(ステップS303)。そして、搭乗位置を測定するステップS301に戻る。また、前回の搭載位置と今回の搭載位置の差が、しきい値よりも小さい場合、搭載位置を測定するステップS301に戻る。また、ステップS302で比較した後に、前回の搭載位置を今回の搭載位置で置き換える。これにより、オフセットの再設定を容易に行うことができる。オフセット値は、分布情報や搭乗位置に基づいて決定することができる。ここでは、オフセットが更新される間、同じオフセット値で処理が行われている。そして、同じオフセット値から得られる入力モーメント値に基づいて、指令値を算出しているこの指令値を、駆動モータ603に出力している。例えば、分布情報や搭載位置に対するオフセット値の関係式やテーブルを予め設定しておく。これにより、簡便にオフセット値を算出することができる。
また、車輪6に全方向車輪を用いる場合、モーメントMzに対してオフセットを設定してもよい。すなわち、搭乗者が真正面ではなく、ヨー軸周りの方向にずれて搭乗した場合、モーメントMzに対するオフセットを設定する。これにより、操作性を向上することができる。なお、本実施の形態では、判別部12、及び姿勢検出部4を用いていないため、移動体1に判別部12、及び姿勢検出部4を設けなくてもよい。
なお、実施の形態4、5では、搭載重量の変化や、搭乗位置の変化に応じて、オフセットを設定するタイミングを決定しているが、オフセットを設定するタイミングはこれに限られるものではない。これら以外のセンサからの出力に基づいて、オフセットを設定することができる。また、実施の形態4、5を組み合わせてオフセットの設定を行ってもよい。
<実施の形態6>
図1乃至図4で示した移動体1では、搭乗者71が移動速度を速くしようとした場合、搭乗者の姿勢が大きく傾くこととなる。例えば、前方に高速で移動しようとすると、大きく前傾する必要が生じる。すると、搭乗者71の姿勢によっては、搭乗者71を含む移動体1の重心位置がロボットの静安定領域から出てしまうことがある。
本実施の形態では、図1、2に示したように、3輪型の移動体1を採用している。そのため、静安定領域78は、図18に示すように三角形となる。図18は、移動体1の静安定領域を示す上面図である。三角形の3頂点にそれぞれ車輪6が配置されている。搭乗者がスピードアップしようとすると、静安定領域78から重心位置が外れてしまう。例えば、前傾姿勢の角度が大きくなると重心位置75b〜75dが静安定領域78からはみ出す。すなわち、重心位置75b〜75dは、静安定領域78の外側になっている。
このような場合、移動体1が非常に不安定な状態となる。例えば、移動体1が転倒したり、車輪6が浮いてしまう。さらに、駆動輪である後輪602が浮いてしまった場合、意図通りに移動することができなくなる。そこで、本実施の形態では、力センサ9からの計測信号に応じて、重心位置が静安定領域78の外側に出ないように、制御している。具体的には、移動体1が備えるロール軸機構、及びピッチ軸機構をアクティブに駆動することで、重心位置が静安定領域78からはみ出すのを防いでいる。
まず、本実施の形態に設けられたロール軸機構、及びピッチ軸機構の構成について、図19を用いて説明する。図19は、姿勢を変化させるための機構の構成を示す図であり、車台13の内部構成を示している。すなわち、図19に示す構成によって、移動体1の姿勢が変化している。図19に示すように、車台13には、姿勢を制御するためのフレーム部2が設けられている。フレーム部2は、筐体11内に配設される。フレーム部2は、第1の平行リンク機構201と第2の平行リンク機構202とが、交差部分で相互の回転を拘束しないように、平面視T字状に連結されている。
第1の平行リンク機構201は、前後方向に配置されている。この第1の平行リンク機構201は、四本の横リンク201a、前後の縦リンク201bを備えている。
横リンク201aは、全て等しい長さとされている。横リンク201aの両端には、図示を省略したが、縦リンク201bとの連結軸を嵌め込む嵌合穴が形成されている。二本の横リンク201aは上下に配置されており、当該二本の横リンク201aを一組として、縦リンク201bを挟み込むように、当該縦リンク201bの左右両側に配置されている。
縦リンク201bの左右両側部からは、図示を省略したが、それぞれ上下方向に等しい間隔を開けて相対峙する配置で、横リンク201aとの連結軸が左右方向に突出している。この連結軸は、横リンク201aと縦リンク201bとの回転軸として、横リンク201aの嵌合穴に軸受け等を介して嵌め込まれている。
本実施形態の前側の縦リンク201bはL字形状に形成されている。縦リンク201bの垂直片の上下端部に、横リンク201aが連結軸を介して回転可能に連結されている。縦リンク201bの水平片の先端に、車輪6として自在式のキャスターが設けられている。移動体1の移動方向が変化すると、その変化に応じてキャスターの方向が回転する。後側の縦リンク201bは、下側の横リンク201aより下方に突出する突出部を備えている。この突出部の前後両側部からは、図示を省略したが、それぞれ相対峙する配置で第2の平行リンク機構202との連結軸が前後方向に突出している。さらに後側の縦リンク201bの前後両側部における上下の横リンク201aの間の部分からも、図示を省略したが、それぞれ相対峙する配置で第2の平行リンク機構202との連結軸が前後方向に突出している。
第2の平行リンク機構202は、左右方向に配置されている。この第2の平行リンク機構202は、四本の横リンク202a、左右の縦リンク202bを備えている。
横リンク202aは、全て等しい長さとされている。横リンク202aの両端には、図示を省略したが、縦リンク202bとの連結軸を嵌め込む嵌合穴が形成されている。さらに横リンク202aの長手方向の略中央位置には、図示を省略したが、第1の平行リンク機構201との連結軸を嵌め込む嵌合穴が形成されている。二本の横リンク202aは上下に配置されており、当該二本の横リンク202aを一組として、縦リンク202b及び第1の平行リンク機構201の後側の縦リンク201bを挟み込むように、当該縦リンク202b及び第1の平行リンク機構201の後側の縦リンク201bの前後両側に配置されている。第1の平行リンク機構201の後側の縦リンク201bから突出する連結軸は、第1の平行リンク機構201と第2の平行リンク機構202との回転軸として、横リンク202aの略中央位置の嵌合穴に軸受け等を介して嵌め込まれている。
縦リンク202bの前後両側部からは、図示を省略したが、それぞれ上下方向に等しい間隔を開けて相対峙する配置で、横リンク202aとの連結軸が前後方向に突出している。この連結軸は、横リンク202aと縦リンク202bとの回転軸として、横リンク202aの端部の嵌合穴に軸受け等を介して嵌め込まれている。
その結果、第1の平行リンク機構201は、第2の平行リンク機構202に拘束されることなく、前後方向に回転可能な構成となる。一方、第2の平行リンク機構202は、第1の平行リンク機構201に拘束されることなく、左右方向に回転可能な構成となる。
搭乗部3は、姿勢検出部4の上に設けられ、フレーム部2の回転に連動する。具体的にいうと、搭乗部3は、第1の平行リンク機構201の上下の横リンク201aに支持軸301を介して連結されている。この支持軸301の上部及び下部の左右両側部からは、図示を省略したが、第1の平行リンク機構201の上下の横リンク201aとの連結軸が左右方向に突出している。第1の平行リンク機構201の横リンク201aにおける長手方向の略中央位置には、図示を省略したが、支持軸301から突出する連結軸を嵌め込む嵌合穴が形成されている。支持軸301は、縦リンク201bを挟み込むように、当該縦リンク201bの左右に配置された横リンク201aの間に挿入されている。支持軸301から突出する連結軸は、第1の平行リンク機構201の嵌合穴に軸受け等を介して嵌め込まれている。その結果、第1の平行リンク機構201が前後方向に回転すると、支持軸301と縦リンク201bとは平行状態を維持した状態で連動する。
駆動部5が駆動することで、フレーム部2が動作する。これにより、移動体1の姿勢が変化する。車台13が傾くことで、搭乗部3の角度が変化する。なお、駆動部5には、ヨー軸周りに回転するヨー軸機構501と、ピッチ軸周りに回転するピッチ軸機構502と、ロール軸周りに回転するロール軸機構503が設けられている。ヨー軸機構501は、例えば、支持軸301と姿勢検出部4の間に設けられている。すなわち、ヨー軸機構501が3つの機構の中で、最も搭乗部3側に設けられている。なお、ヨー軸機構501は、搭乗部3をヨー軸周りに旋回させる旋回関節であり、ピッチ軸機構502及びロール軸機構503は搭乗部3を軸周りに回転させる回転関節である。駆動部5が駆動することで、移動体1の姿勢が変化する。なお、ヨー軸機構501を駆動しない場合、ヨー軸機構501を設けなくてもよい。
次に、ヨー軸機構501、ピッチ軸機構502及びロール軸機構503を駆動するための制御について、図20を用いて説明する。図20は、本実施の形態にかかる移動体1の制御系の構成を示すブロック図である。本実施の形態では、各機構の駆動に、力センサ9の検出結果が用いられている。すなわち、制御計算部51は、力センサ9の検出結果に基づいて、目標角度を算出している。
本実施の形態では、力センサ9が受ける力に応じて、ピッチ軸機構502、ロール軸機構503を駆動している。例えば、力センサ9がピッチ軸周りのモーメントMyとロール軸周りのモーメントMxを検出したとする。すると制御計算部51は、この力センサ9での計測されたモーメントMx、Myに応じて、重心位置を推定する。そして、重心位置がはみ出しそうな場合に、ピッチ軸機構502、ロール軸機構503の目標角度を算出する。これにより、座面8aがピッチ軸周り、及びロール軸周りに回転する。
具体的には、モーメントMx、Myに応じて、重心位置が静安定領域からはみ出そうとしているか否かを判定する。はみ出そうとしている場合、モーメントMx、Myが大きくなる方向に、ピッチ軸機構502、ロール軸機構503を駆動する。すなわち、入力モーメント値Mx’、My’が大きくなるように、移動体1の姿勢を変化させる。これにより、搭乗者が大きく姿勢を傾斜させなくても、移動速度を速くすることができる。よって、重心位置が静安定領域からはみ出すのを防ぐことができる。例えば、搭乗者が右斜め前方に傾斜した場合、移動体1はピッチ軸機構502、ロール軸機構503を駆動して、座面8aの右斜め前方部分が上になり左斜め後方部分が下になるように座面8aを傾ける。これにより、モーメントMx、Myが大きくなり、移動速度は速くなる。よって、移動体1の転倒や車輪6の浮上を防ぐことができ、安定して移動することができる。
図21を用いて、本実施の形態にかかる移動体1の制御方法について説明する。図21は、本実施の形態にかかる移動体1の制御方法を示すフローチャートである。まず、力センサ9でモーメントMx、Myを検出し、重心位置を測定する(ステップS401)。そして、重心位置がしきい値を越えているか否かを判定する(ステップS402)。重心位置がしきい値を越えていない場合(ステップS402のNO)、重心位置が静安定領域から出そうでないと判定する。このため、重心位置を測定するステップ(ステップS401)に戻る。
一方、重心位置がしきい値を越えている場合(ステップS401のYES)、重心位置が静安定領域78から出そうであると判定する。すると、制御計算部51がテーブルを参照して、関節角度を決定する(ステップS403)。すなわち、ピッチ軸機構502、及びロール軸機構503の回転角度を算出する。なお、このテーブルは、移動体1の重量及びそのバランスなどに応じて、予め設定されている。すなわち、モーメントMx、Myと、関節角度との関係を示す例えばテーブルを予め設定しておく。これにより、モーメントMx、Myが決まると、それに応じた関節角度が決まる。ピッチ軸機構502、ロール軸機構503の目標関節角度が算出される。または、制御式により、ピッチ軸機構502、ロール軸機構503の目標関節角度が算出されてもよい。
そして、制御計算部51がピッチ軸機構502、及びロール軸機構503に指令値を出力して、ピッチ軸機構502、及びロール軸機構503を駆動する(ステップS404)。これにより、モーメントMx、Myが大きくなり、移動速度が速くなる。よって、搭乗者がさらに姿勢を傾けることなく、所望の速度まで加速することができる。この結果、転倒するリスクの低減と、スピードアップの両方を同時に行うことができる。
なお、上記の説明では、モーメントMx、Myの値を用いて、重心位置が静安定領域から出そうか判定したが、モーメントMx、Myの変化量(時間微分)に応じて、判定してもよい。もちろん、モーメントの値と、モーメントの変化量の両方に応じて、判定してもよい。
なお、上記の説明では、座面8aを傾斜させて移動体1の姿勢を制御したが、本実施形態はこれに限られるものではない。すなわち、モーメントを大きくするための構成は、ピッチ軸機構502、及びロール軸機構503に限られるものではない。例えば、フットレスト10を駆動することによって、モーメントを大きくしてもよい。すなわち、フットレスト10にモータや減速器を設けて、前後、又は上下に駆動できるようにする。そして、上下又は前後に移動可能なフットレスト10を力センサ9からの出力に応じて、駆動する。これにより、座面8aを傾斜させた場合と、同様の効果を得ることができる。
例えば、図22に示すようにフットレスト10を前後に駆動するフットレスト駆動部17を設ける。フットレスト駆動部17は、モータや減速器などからなる。フットレスト駆動部17は、フットレスト10の上部、すなわち足が載置される面を前後に移動させる。フットレスト10の位置を変化させることによって、両脚の膝の角度が変わる。搭乗者の姿勢が変化して、力センサ9が受ける力が変化する。このとき、力センサ9が受ける力を大きくする方向に、フットレスト10を移動させる。この結果、転倒するリスクの低減と、スピードアップの両方を同時に行うことができる。なお、本実施の形態では、判別部12、搭乗位置検出部14、姿勢検出部4を用いていないため、移動体1に判別部12、搭乗位置検出部14、及び姿勢検出部4を設けなくてもよい。
<実施の形態7>
本実施の形態では、図4に示した姿勢検出部4での検出結果に応じて、係数調整、又はオフセットを変えている。すなわち、姿勢検出部4からの出力に基づいて、実施の形態1で示した係数、又は実施の形態2、4で示したオフセットを変更している。
図23に示すように、移動体1が平坦面から傾斜面を移動する場合、力センサ9の入力が変化してしまう。この場合、搭乗者が同じ姿勢をしていたとしても、移動速度が変わってしまう。例えば、下り坂を移動する場合、搭乗面が前傾する。すると、図23に示すように、搭乗者71が搭乗面に対して後傾姿勢になってしまうため、力センサ9で後退入力が検知される。従って、下り坂を下ることができなくなってしまう。また、上り坂を移動する場合、搭乗面が後傾する。すると、搭乗者が搭乗面に対して、前傾してしまう。よって、必要以上に前傾入力が検知され、意図通りに坂道を上ることができなくなってしまう。さらに、左右片側に段差がある場合、旋回入力が検知され、移動体が左右に移動してしまう。
そこで、本実施の形態では、姿勢検出部4からの出力に応じて、係数又はオフセットを最適化している。例えば、姿勢検出部4で検出された姿勢角と、係数の関係を示すテーブルを予め設定しておく。あるいは、姿勢検出部4で検出された姿勢角と、オフセットの関係を示すテーブルを予め設定しておく。例えば、図24に示すように、入力モーメント値を算出するときの基準位置を後に下げる。ヨー軸が後方になるように、モーメントMyに対してオフセットを与える。入力モーメント値を大きくするようにオフセットを与える。移動体1の姿勢変化に起因する入力モーメント値Mx’、My’の変化が軽減される。よって、傾斜面を移動している場合でも、平坦面と同じ操作で同様に移動することができる。これにより、操作性を向上することができる。
もちろん、オフセットの設定を変える構成に限られるものではなく、姿勢変化に応じて、係数を調整してもよい。すなわち、姿勢検出部4で検出された車台13の姿勢角に応じて入力モーメント値とモーメントの関係を変化させればよい。
次に、本実施の形態にかかる移動体1に制御方法について、図25を用いて説明する。図25は、本実施の形態にかかる移動体1の制御方法を示すフローチャートである。まず、移動体1を駆動すると、姿勢検出部4によって姿勢を確認する(ステップS501)。すなわち、各軸周りの姿勢角を測定する。そして、測定された移動体1の傾斜角度に応じて、オフセットを設定する(ステップS502)。オフセットは、姿勢角とオフセット値の関係を示すテーブルや、姿勢角からオフセットを算出するための関係式によって、決定される。もちろん、オフセットの設定に限らず、係数調整を行ってもよい。
そして、力センサに基づいて移動体制御を行う(ステップS503)。このとき、姿勢角に応じてオフセットが変化している。オフセットが最適化されているため、入力モーメント値の原点位置が変化する。これにより、搭乗者が通常通りの操作で、移動体1が傾斜面を移動する。搭乗者の意図通りに移動体1を移動させることができ、操作性を向上することができる。実施の形態1にかかる移動体1では、判別部12、搭乗位置検出部14を使用しないため、これらを設けなくてもよい。
また、本発明は、車輪型の移動体1に限らず、歩行型の移動体においても適用可能である。あるいは、全方向車輪などを用いた移動体1であってもよい。すなわち、車台13などの本体部を床面に対して移動させる移動機構が設けられているものであればよい。さらに、各実施の形態を適宜組み合わせて使用してもよい。
本発明にかかる移動体の全体構成を模式的に示す正面図である。 本発明にかかる移動体の全体を模式的に示す側面図である。 各軸周りの動作を説明するための図である。 移動体を移動させるための制御系を示すブロック図である。 搭乗席に搭乗者が搭乗している状態を示す図である。 搭乗者の姿勢と入力方向を示す図である。 実施の形態1における、搭乗者の姿勢と入力モーメント値を説明するための側面図である。 実施の形態2における、搭乗者の姿勢と入力モーメント値を説明するための側面図である。 実施の形態2における、搭乗者の姿勢と入力モーメント値を説明するための側面図である。 実施の形態3における移動体に用いられたフットレストの構成を模式的に示す側面図である。 本実施の形態3にかかる移動体の制御方法を示すフローチャートである。 搭乗者が荷物を持たない状態での、重心位置を示す図である。 搭乗者が荷物を持った状態での、重心位置を示す図である。 本実施の形態4にかかる移動体の制御方法を示すフローチャートである。 座面に設けられた接触センサの構成を示す上面図である。 座面における搭乗位置のずれを示す上面図である。 本実施の形態5にかかる移動体の制御方法を示すフローチャートである。 移動体の静安定領域を示す上面図である。 移動体の内部構成を模式的に示す斜視図である。 本実施の形態6にかかる移動体の制御系の構成を示すブロック図である。 本実施の形態6にかかる移動体の制御方法を示すフローチャートである。 本実施の形態6にかかる移動体に用いられるフットレストの構成を示す側面図である。 傾斜面を移動している移動体の様子を示す側面図である。 傾斜面を移動している移動体に対して、オフセットを与えた時の様子を説明するための図である。 本実施の形態7にかかる移動体の制御方法を示すフローチャートである。
符号の説明
1 移動体
2 フレーム部
3 搭乗部
6 車輪
601 前輪
602 後輪
603 駆動モータ
603a エンコーダ
8 搭乗席
8a 座面
9 力センサ
10 フットレスト
11 筐体
12 判別部
13 車台
14 搭乗位置検出部
17 フットレスト駆動部
51 制御計算部
52 バッテリ
53 センサ処理部
71 搭乗者
72 臀部
73 大腿部
75 重心位置
76 荷物
77 スイッチ
78 静安定領域
201 第1の平行リンク機構
201a 横リンク
201b 縦リンク
202 第2の平行リンク機構
202a 横リンク
202b 縦リンク
301 支持軸

Claims (28)

  1. 搭乗者が搭乗する搭乗席と、
    前記搭乗席を支持する本体部と、
    前記本体部を移動させる移動機構と、
    前記搭乗席の搭乗面に加わる力に応じた計測値を出力するセンサと、
    前記センサからの計測値に基づいて、ヨー軸周りのモーメントに応じた入力値を算出するセンサ処理部と、
    前記入力値の絶対値に応じた移動速度で、前記入力値の符号に応じて前方又は後方に移動するように前記移動機構を駆動するための指令値を出力する制御計算部と、を備え、
    前記搭乗者が前傾姿勢になって前進を入力する時と後傾姿勢になって後退を入力する時とで前記計測値の絶対値が同じ場合に、前進入力時の場合の前記計測値の絶対値が後退入力時の前記入力値の絶対値よりも大きくなっている移動体。
  2. 前記計測値から前記入力値を算出するときのゲインを前記前進入力時と前記後退入力時とで変えていることを特徴とする請求項1に記載の移動体。
  3. 前記計測値に対してオフセット値を与えた後、前記入力値を算出することを特徴とする請求項1、又は2に記載の移動体。
  4. 前記搭乗者が搭乗しているか否かを判別する判別手段をさらに備え、
    前記搭乗者が搭乗していると判別された場合は、搭乗モードで制御し、
    前記搭乗者が搭乗していないと判別された場合は、非搭乗モードで制御し、
    前記搭乗モードでは、前記前進入力時の場合と前記後退入力時とで前記計測値の絶対値が等しい場合に、前記前進入力時の前記入力値の絶対値が前記後退入力時の前記入力値の絶対値よりも大きくなり、
    前記非搭乗モードでは、前記前進入力時の場合と前記後退入力時とで前記計測値の絶対値が等しい場合に、前記後退入力時の前記入力値の絶対値と、前記前進入力時の前記入力値の絶対値が等しくなっている請求項1、2又は3に記載の移動体。
  5. 搭乗者が搭乗する搭乗部と、
    前記搭乗部を支持する本体部と、
    前記本体部を移動させる移動機構と、
    前記搭乗部の搭乗面に加わる力に応じた計測値を出力するセンサと、
    前記センサからの計測値に基づいて、モーメントに応じた入力値を算出するセンサ処理部であって、前記計測値に対するオフセット値を設定して、前記入力値を算出するセンサ処理部と、
    前記入力値に応じた移動速度及び移動方向に移動するように、前記移動機構を駆動するための指令値を出力する制御計算部と、を備えた移動体。
  6. 前記搭乗部の搭載重量が変化したタイミングで、前記オフセット値の設定を行うことを特徴とする請求項5に記載の移動体。
  7. 前記センサの計測値に基づいて前記搭載重量が算出されている請求項6に記載の移動体。
  8. 前記オフセットを設定するタイミングを入力するスイッチがさらに設けられていることを特徴とする請求項5乃至7のいずれか1項に記載の移動体。
  9. 前記搭乗部と前記搭乗者との搭乗位置を検出する搭乗位置検出部、を備え、
    前記搭乗位置検出部で検出された搭乗位置に応じて、前記計測値に対するオフセット値を設定している請求項5に記載の移動体。
  10. 前記搭乗位置検出部にはアレイ状に配列され、搭乗者が接触しているか否かを判別する接触センサが含まれ、
    前記アレイ状に配列された接触センサで検出された接触位置の分布情報に基づいて、前記オフセット値を決定している請求項9に記載の移動体。
  11. 搭乗者が搭乗する搭乗部と、
    前記搭乗部を支持する本体部と、
    前記本体部を移動させる移動機構と、
    前記搭乗部の搭乗面に加わる力に応じた計測値を出力するセンサと、を備えた移動体であって、
    前記センサからの計測値に基づいて、モーメントに応じた入力値を算出するセンサ処理部と、
    前記入力値に応じた移動速度及び移動方向に移動するように、前記移動機構を駆動するための指令値を出力する制御計算部と、
    前記センサからの計測値がしきい値を越えていた場合に、前記搭乗面に加わる力が強くなるように駆動する駆動機構と、を備えた移動体。
  12. 前記駆動機構が前記本体部をピッチ軸周り、及びロール軸周りに回転させることを特徴とする請求項11に記載の移動体。
  13. 前記本体部に取り付けられたフットレストをさらに備え、
    前記駆動機構がフットレストを前記搭乗部に対して移動させることによって、前記搭乗面に加わる力を強くしていることを特徴とする請求項11、又は12に記載の移動体。
  14. 搭乗者が搭乗する搭乗部と、
    前記搭乗部を支持する本体部と、
    前記本体部を移動させる移動機構と、
    前記本体部の姿勢角を検出する姿勢検出部と、
    前記搭乗部の搭乗面に加わる力に応じた計測値を出力するセンサと、
    前記センサからの計測値に基づいて、モーメントに応じた入力値を算出するセンサ処理部であって、前記姿勢検出部で検出された姿勢角に応じて前記入力値と前記計測値の関係を変化させるセンサ処理部と、
    前記入力値に応じた移動速度及び移動方向に移動するように、前記移動機構を駆動するための指令値を出力する制御計算部と、を備えた移動体。
  15. 搭乗者が搭乗する搭乗席と、
    前記搭乗席を支持する本体部と、
    前記本体部を移動させる移動機構と、
    前記搭乗席の搭乗面に加わる力に応じた計測値を出力するセンサと、
    前記センサからの計測値に基づいて、ヨー軸周りのモーメントに応じた入力値を算出するセンサ処理部と、を備えた移動体の制御方法であって、
    前記搭乗者が前傾姿勢になって前進を入力する時と後傾姿勢になって後退を入力する時とで前記計測値の絶対値が同じ場合に、前進入力時の場合の前記計測値の絶対値が後退入力時の前記入力値の絶対値よりも大きくなるように算出するステップと、
    前記入力値の絶対値に応じた移動速度で、前記入力値の符号に応じて前方又は後方に移動するように前記移動機構を駆動するための指令値を出力するステップと、を備えた移動体の制御方法。
  16. 前記計測値から前記入力値を算出するときのゲインを前記前進入力時と前記後退入力時とで変えていることを特徴とする請求項15に記載の移動体の制御方法。
  17. 前記計測値に対してオフセット値を与えた後、前記入力値を算出することを特徴とする請求項15、又は16に記載の移動体の制御方法。
  18. 前記搭乗者が搭乗しているか否かを判別するステップをさらに備え、
    前記搭乗者が搭乗していると判別された場合は、搭乗モードで制御し、
    前記搭乗者が搭乗していないと判別された場合は、非搭乗モードで制御し、
    前記搭乗モードでは、前記前進入力時の場合と前記後退入力時とで前記計測値の絶対値が等しい場合に、前記前進入力時の前記入力値の絶対値が前記後退入力時の前記入力値の絶対値よりも大きくなり、
    前記非搭乗モードでは、前記前進入力時の場合と前記後退入力時とで前記計測値の絶対値が等しい場合に、前記後退入力時の前記入力値の絶対値と、前記前進入力時の前記入力値の絶対値が等しくなっている請求項15、16又は17に記載の移動体の制御方法。
  19. 搭乗者が搭乗する搭乗部と、
    前記搭乗部を支持する本体部と、
    前記本体部を移動させる移動機構と、
    前記搭乗部の搭乗面に加わる力に応じた計測値を出力するセンサと、
    前記センサからの計測値に基づいて、モーメントに応じた入力値を算出するセンサ処理部と、を備えた移動体の制御方法であって、
    前記計測値に対するオフセット値を設定して、前記入力値を算出するステップと、
    前記入力値に応じた移動速度及び移動方向に移動するように、前記移動機構を駆動するための指令値を出力するステップと、を備えた移動体の制御方法。
  20. 前記搭乗部の搭載重量の変化したタイミングで、前記オフセット値の再設定を行うことを特徴とする請求項19に記載の移動体の制御方法。
  21. 前記センサの計測値に基づいて前記搭載重量が算出されている請求項20に記載の移動体の制御方法。
  22. 前記搭乗者がスイッチを操作することで、前記オフセットの再設定を行なうことを特徴とする請求項19乃至21のいずれか1項に記載の移動体の制御方法。
  23. 前記搭乗部と前記搭乗者との搭乗位置を検出するステップを、さらに備え、
    前記搭乗位置に応じて、前記計測値に対するオフセット値の再設定を行っていることを特徴とする請求項19に記載の移動体の制御方法。
  24. アレイ状に配列された接触センサによって、搭乗者が搭乗しているか否かを判別し、
    前記アレイ状に配列された接触センサで検出された接触位置の分布情報に基づいて、前記オフセット値を決定している請求項23に記載の移動体の制御方法。
  25. 搭乗者が搭乗する搭乗部と、
    前記搭乗部を支持する本体部と、
    前記本体部を移動させる移動機構と、
    前記搭乗部の搭乗面に加わる力に応じた計測値を出力するセンサと、
    前記センサからの計測値に基づいて、モーメントに応じた入力値を算出するセンサ処理部と、を備えたで移動体の制御方法あって、
    前記センサからの計測値がしきい値を越えていた場合に、前記搭乗面に加わる力が強くなるように駆動機構を駆動するステップと、
    前記入力値に応じた移動速度及び移動方向に移動するように、前記移動機構を駆動するための指令値を出力するステップと、を備えた移動体の制御方法。
  26. 前記駆動機構が前記本体部をピッチ軸周り、及びロール軸周りに回転させることを特徴とする請求項25に記載の移動体の制御方法。
  27. 前記本体部に取り付けられたフットレストをさらに備え、
    前記駆動機構がフットレストを前記搭乗部に対して移動させることによって、前記搭乗面に加わる力を強くしていることを特徴とする請求項25、又は26に記載の移動体の制御方法。
  28. 搭乗者が搭乗する搭乗部と、
    前記搭乗席を支持する本体部と、
    前記本体部を移動させる移動機構と、
    前記搭乗部の搭乗面に加わる力に応じた計測値を出力するセンサと、
    前記センサからの計測値に基づいて、モーメントに応じた入力値を算出するセンサ処理部と、を備えた移動体の制御方法であって、
    前記本体部の姿勢を検出するステップと、
    前記本体部の姿勢に応じて前記入力値と前記計測値の関係を変化させるステップと、
    前記入力値に応じた移動速度及び移動方向に移動するように、前記移動機構を駆動するための指令値を出力するステップと、を備えた移動体の制御方法。
JP2008233592A 2008-09-11 2008-09-11 移動体、及びその制御方法 Active JP5044515B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008233592A JP5044515B2 (ja) 2008-09-11 2008-09-11 移動体、及びその制御方法
PCT/JP2009/003076 WO2010029669A1 (ja) 2008-09-11 2009-07-02 移動体、及びその制御方法
EP09812818.4A EP2332815B1 (en) 2008-09-11 2009-07-02 Moving body and control method thereof
US13/063,310 US8504248B2 (en) 2008-09-11 2009-07-02 Vehicle and its control method
CN200980135755XA CN102149596B (zh) 2008-09-11 2009-07-02 移动体及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233592A JP5044515B2 (ja) 2008-09-11 2008-09-11 移動体、及びその制御方法

Publications (2)

Publication Number Publication Date
JP2010063683A true JP2010063683A (ja) 2010-03-25
JP5044515B2 JP5044515B2 (ja) 2012-10-10

Family

ID=42189812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233592A Active JP5044515B2 (ja) 2008-09-11 2008-09-11 移動体、及びその制御方法

Country Status (1)

Country Link
JP (1) JP5044515B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093371A (ja) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 移乗支援装置
KR101734573B1 (ko) * 2011-08-31 2017-05-11 현대자동차주식회사 상체 움직임을 이용하는 탑승장치의 조향제어장치
CN114084263A (zh) * 2021-11-19 2022-02-25 广州城市理工学院 一种双平衡系统平衡车及其平衡控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136957A (ja) * 1993-11-10 1995-05-30 Fujitsu Ltd インタフェイス装置
JPH1023613A (ja) * 1996-07-04 1998-01-23 Yamaha Motor Co Ltd 電動式移動体
JPH11198075A (ja) * 1998-01-08 1999-07-27 Mitsubishi Electric Corp 行動支援装置
JP2006282160A (ja) * 2005-03-07 2006-10-19 Univ Of Tokyo 全方向移動ロボット及び該ロボットの全方向移動駆動機構

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136957A (ja) * 1993-11-10 1995-05-30 Fujitsu Ltd インタフェイス装置
JPH1023613A (ja) * 1996-07-04 1998-01-23 Yamaha Motor Co Ltd 電動式移動体
JPH11198075A (ja) * 1998-01-08 1999-07-27 Mitsubishi Electric Corp 行動支援装置
JP2006282160A (ja) * 2005-03-07 2006-10-19 Univ Of Tokyo 全方向移動ロボット及び該ロボットの全方向移動駆動機構

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734573B1 (ko) * 2011-08-31 2017-05-11 현대자동차주식회사 상체 움직임을 이용하는 탑승장치의 조향제어장치
JP2016093371A (ja) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 移乗支援装置
CN114084263A (zh) * 2021-11-19 2022-02-25 广州城市理工学院 一种双平衡系统平衡车及其平衡控制方法
CN114084263B (zh) * 2021-11-19 2023-06-09 广州城市理工学院 一种双平衡系统平衡车及其平衡控制方法

Also Published As

Publication number Publication date
JP5044515B2 (ja) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2010029669A1 (ja) 移動体、及びその制御方法
JP4867823B2 (ja) 倒立車輪型移動体、及びその制御方法
EP2093100B1 (en) Travel gear and its controlling method
JP6081271B2 (ja) 倒立振子型車両
JP2010125969A (ja) 移動体
JP2008068801A (ja) 車両
JP6111119B2 (ja) 倒立振子型車両
JP2010167808A (ja) 移動体
JP2007336785A (ja) 走行装置及びその制御方法
JP5123123B2 (ja) 移動体、及びその制御方法
JP4825856B2 (ja) 移動体、及びその制御方法
JP5044515B2 (ja) 移動体、及びその制御方法
JP2012235839A (ja) 立位乗車移動体の運転操作補助装置、立位乗車移動体の運転操作補助方法、及び、立位乗車移動体の運転操作補助用プログラム
JP5270307B2 (ja) 移動体
JP5328272B2 (ja) 移動体、及びその制御方法
JP5167077B2 (ja) 移動体、及びその制御方法
JP5927032B2 (ja) 倒立振子型車両
JP5261091B2 (ja) 移動体、及びその制御方法
JP5119098B2 (ja) 移動体、及びその制御方法
KR102468606B1 (ko) 탑승형 서비스 로봇 및 그 제어방법
JP2010068680A (ja) 移動体
JP2011105051A (ja) 移動体
JP5146376B2 (ja) 移動体、及びその制御方法
JP2012090914A (ja) 可動式椅子
JP2011062330A (ja) 電動車椅子およびその制御方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R151 Written notification of patent or utility model registration

Ref document number: 5044515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250