JP2009211571A - Course planning device, course planning method, and computer program - Google Patents
Course planning device, course planning method, and computer program Download PDFInfo
- Publication number
- JP2009211571A JP2009211571A JP2008055681A JP2008055681A JP2009211571A JP 2009211571 A JP2009211571 A JP 2009211571A JP 2008055681 A JP2008055681 A JP 2008055681A JP 2008055681 A JP2008055681 A JP 2008055681A JP 2009211571 A JP2009211571 A JP 2009211571A
- Authority
- JP
- Japan
- Prior art keywords
- trajectory
- node
- force
- new
- planning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 53
- 238000004590 computer program Methods 0.000 title claims description 13
- 230000035515 penetration Effects 0.000 claims abstract description 15
- 238000004088 simulation Methods 0.000 claims abstract description 12
- 238000004364 calculation method Methods 0.000 claims description 17
- 238000012937 correction Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 7
- 238000009499 grossing Methods 0.000 abstract description 6
- 238000005457 optimization Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 20
- 238000005094 computer simulation Methods 0.000 description 17
- 238000004422 calculation algorithm Methods 0.000 description 14
- 238000001514 detection method Methods 0.000 description 8
- 230000036544 posture Effects 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000013016 damping Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005295 random walk Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Manipulator (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
本発明は、2次元又は3次元の作業空間上のある位置(現在位置:Start)からある位置(目標位置:Goal)までの移動経路若しくは軌道(Path)を計画する軌道計画装置及び軌道計画方法、並びにコンピュータ・プログラムに係り、特に、障害物を回避する軌道を発見するとともに、ロボットの移動制御や多関節アームの手先の軌道計画などのため用い易くなるように滑らかな軌道として修正する軌道計画装置及び軌道計画方法、並びにコンピュータ・プログラムに関する。 The present invention relates to a trajectory planning apparatus and a trajectory planning method for planning a movement path or a trajectory (Path) from a certain position (current position: Start) to a certain position (target position: Goal) on a two-dimensional or three-dimensional work space. In particular, the trajectory planning to find a trajectory that avoids obstacles and to correct it as a smooth trajectory so that it can be easily used for robot movement control and trajectory planning of the articulated arm hand, etc. The present invention relates to an apparatus, a trajectory planning method, and a computer program.
例えば、ロボットのような移動体装置や、多関節アームのエンド・エフェクタとなる手先などを自律的に動作制御させる場合、2次元又は3次元の作業空間上のある位置(現在位置:Start)からある位置(目標位置:Goal)までの移動経路若しくは軌道(Path)を計画しなければならない。しかしながら、無限に存在する軌道の中から最適解を求めることは不可能に等しい。 For example, when autonomously controlling a mobile device such as a robot or a hand that is an end effector of an articulated arm from a certain position (current position: Start) on a two-dimensional or three-dimensional work space A moving path or path to a certain position (target position: Goal) must be planned. However, it is impossible to find an optimal solution from infinitely existing trajectories.
これまで、ポテンシャル法(例えば、非特許文献1を参照のこと)、確率的ロードマップ法(例えば、非特許文献1を参照のこと)、Rapidly−exploring Random Tree(RRT)(例えば、非特許文献2を参照のこと)といった多くの軌道計画方法について提案がなされてきた。 Until now, the potential method (for example, see Non-Patent Document 1), the stochastic roadmap method (for example, see Non-Patent Document 1), Rapidly-exploring Random Tree (RRT) (for example, Non-Patent Document 1) Many trajectory planning methods have been proposed (see 2).
ここで、ポテンシャル法とは、探索空間に目的姿勢に操作対象を近づける「引力ポテンシャル」、並びに、障害物から操作対象を遠ざける「斥力ポテンシャル」というポテンシャル場を定義し、操作対象の現在姿勢におけるポテンシャル場の勾配を算出し、ポテンシャルの減少する方向へ微少に移動させる手続きを繰り返すことによって軌道を計画する方法である。 Here, the potential method defines a potential field called “attraction potential” that brings the operation target closer to the target posture in the search space and “repulsive potential” that moves the operation target away from the obstacle, and the potential in the current posture of the operation target This is a method of planning the trajectory by repeating the procedure of calculating the field gradient and moving it slightly in the direction of decreasing potential.
例えば、移動体、障害物、及び目標物の位置及び形状の情報に基づいて生成された移動空間内のマップを用いて、移動体、障害物、及び目標物の相対位置関係に基づく引力ポテンシャル及び斥力ポテンシャルを計算し、これらの和である合成ポテンシャルを生成し、この合成ポテンシャルに基づいてマップ内の経路探索を行なって該経路探索の収束位置がローカルミニマムかどうかを判別し、収束位置がローカルミニマムの場合には該収束位置のポテンシャルを所定値だけ増加させた仮想ポテンシャルを生成するとともに、収束位置が目標位置の場合には経路探索の結果に基づいて移動体の移動経路を生成する経路生成装置について提案がなされている(例えば、特許文献1を参照のこと)。 For example, an attraction potential based on the relative positional relationship between the moving object, the obstacle, and the target object using a map in the moving space generated based on the position and shape information of the moving object, the obstacle, and the target object, and A repulsive potential is calculated, a combined potential is generated, and a route search in the map is performed based on the combined potential to determine whether the convergence position of the route search is a local minimum. In the case of the minimum, a virtual potential is generated by increasing the potential at the convergence position by a predetermined value, and when the convergence position is the target position, a path generation that generates a moving path of the moving object based on the result of the path search is generated. Proposals have been made for devices (see, for example, Patent Document 1).
また、確率的ロードマップ法は、配置空間内から幾つかの姿勢をランダムに選び、近接する姿勢に移動可能であれば枝でつないでいき、ロードマップが連結でなければ、障害物の多い領域にある姿勢からランダム・ウォークを行ない、ロードマップを拡張し、ダイクストラ法を適用してロードマップにおける最短経路を求める方法である。 Also, the probabilistic roadmap method randomly selects several postures from the arrangement space and connects them with branches if they can move to nearby postures. This is a method of performing a random walk from a certain position, extending the road map, and applying the Dijkstra method to find the shortest path in the road map.
例えば、数理計画上の手法であるダイクストラ法によって、ネットワークにおける最小コストの入ノードから出ノードまでの経路を探索する最小コスト経路探索装置について提案がなされている(例えば、特許文献2を参照のこと)。 For example, a minimum cost route search apparatus that searches for a route from an ingress node to an egress node with a minimum cost in a network by the Dijkstra method, which is a mathematical programming method, has been proposed (see, for example, Patent Document 2). ).
また、RRTは、探索空間を好適に網羅する木のデータ構造、並びに当該木を生成する基本となるアルゴリズムである。RRTでは、まず探索空間上に初期位置を設定した後、同探索空間内にランダムなサンプル位置を配置するとともに初期位置から当該サンプル位置に向かう最近傍位置を探索し、初期位置と最近傍位置とを結んで木に追加する。その後、新たに追加された最近傍位置についてサンプル位置の配置とさらに最近傍位置の探索と木への追加を繰り返すことで、探索空間を網羅する木を生成することができる。現在、RRTは、実時間での経路計画や軌道生成などに用いられており(例えば、非特許文献3を参照のこと)、多くの研究事例がある。 The RRT is a data structure of a tree that preferably covers the search space and a basic algorithm for generating the tree. In RRT, an initial position is first set on the search space, and then a random sample position is placed in the search space, and the nearest position from the initial position toward the sample position is searched. And add it to the tree. Thereafter, by repeating the arrangement of the sample positions for the newly added nearest neighbor position, further searching for the nearest neighbor position, and adding to the tree, a tree that covers the search space can be generated. Currently, RRT is used for real-time route planning, trajectory generation, and the like (see, for example, Non-Patent Document 3), and there are many research cases.
ポテンシャル法は、非常に直感的であるが、目的姿勢以外にもポテンシャルが極小となる姿勢が多数表れる可能性があることから、安全な動作経路を効率よく求めることは困難である。確率的ロードマップ法は、多くの障害物に囲まれた狭い空間を通る動作計画が困難、すなわち多数の姿勢をサンプルしなくてはならない、といった欠点を持つ。RRTは、取り扱う問題が多次元の場合に直感的ではないといった欠点を持つものの、低次元の問題においては、直感性を失うことはない。また、RRTのもう1つの特徴として、多次元configuration spaceでの比較的高速な軌道計画(Path Planning)が可能なことで知られている。 Although the potential method is very intuitive, it is difficult to efficiently obtain a safe motion path because many postures with potentials other than the target posture may appear. The probabilistic roadmap method has a drawback that it is difficult to plan an action through a narrow space surrounded by many obstacles, that is, a large number of poses must be sampled. Although RRT has a drawback that the problem to be handled is not intuitive when it is multidimensional, intuition is not lost in a low-dimensional problem. Further, as another feature of RRT, it is known that relatively high-speed trajectory planning (Path Planning) is possible in a multidimensional configuration space.
このように、従来の軌道計画手法はそれぞれ一長一短があることが分かる。また、いずれかの手法により生成した軌道を円滑化したり、障害物を回避したりするための軌道修正を行なう必要がある。軌道を円滑化する手法として、躍度最小や(例えば、非特許文献4を参照のこと)、トルク最小、多項式(Spline)を用いた手法が考案されているが、円滑な軌道を獲得すること、最適な軌道に近づけること、物体間の浸透を回避することを同時に満たすことはできない。言い換えれば、ロボットの移動制御や多関節アームの手先の軌道計画などのための最終的な制御に用いるものとして満足な軌道を得ることはできない。 Thus, it can be seen that each conventional trajectory planning method has advantages and disadvantages. In addition, it is necessary to perform trajectory correction to smooth the trajectory generated by any of the methods or to avoid an obstacle. As methods for smoothing the trajectory, methods using minimum jerk, (for example, see Non-Patent Document 4), minimum torque, and polynomial (Spline) have been devised, but obtaining a smooth trajectory It is not possible to simultaneously satisfy the approach to the optimal trajectory and avoid permeation between objects. In other words, a satisfactory trajectory cannot be obtained for use in final control for robot movement control or trajectory planning of the articulated arm.
本発明の目的は、2次元又は3次元の作業空間上のある位置からある位置までの移動経路若しくは軌道を好適に計画することができる、優れた軌道計画装置及び軌道計画方法、並びにコンピュータ・プログラムを提供することにある。 An object of the present invention is to provide an excellent trajectory planning apparatus, trajectory planning method, and computer program capable of suitably planning a movement path or trajectory from a certain position to a certain position in a two-dimensional or three-dimensional work space. Is to provide.
本発明のさらなる目的は、障害物を回避する軌道を発見するとともに、移動制御や軌道計画に用い易くなるように滑らかな軌道として修正することができる、優れた軌道計画装置及び軌道計画方法、並びにコンピュータ・プログラムを提供することにある。 A further object of the present invention is to provide an excellent trajectory planning apparatus and trajectory planning method capable of finding a trajectory that avoids an obstacle and correcting it as a smooth trajectory so as to be easily used for movement control and trajectory planning, and To provide a computer program.
本発明は、上記課題を参酌してなされたものであり、その第1の側面は、探索空間における物体の軌道を計画する軌道計画装置であって、
物体の現在位置と目標位置の間を繋ぐ複数のノードからなる軌道を獲得する軌道獲得手段と、
前記軌道獲得主段が獲得した軌道を初期条件とし、該軌道を構成する各ノードを質点として扱い、該軌道に課される1以上の要求項目を力で表現して各質点に付加して該軌道を修正する軌道修正手段と、
を具備することを特徴とする軌道計画装置である。
The present invention has been made in consideration of the above problems, and a first aspect thereof is a trajectory planning apparatus for planning a trajectory of an object in a search space,
Trajectory acquisition means for acquiring a trajectory composed of a plurality of nodes connecting between the current position of the object and the target position;
The trajectory acquired by the trajectory acquisition main stage is set as an initial condition, each node constituting the trajectory is treated as a mass point, and one or more required items imposed on the trajectory are expressed by force and added to each mass point. A trajectory correcting means for correcting the trajectory;
A trajectory planning apparatus.
例えば、ロボットのような移動体装置や、多関節アームのエンド・エフェクタとなる手先などを自律的に動作制御させる場合、移動経路や軌道を計画する必要があるが、無限に存在する軌道の中から最適解を求めることは不可能に等しい。従来提案されている軌道計画方法はそれぞれ一長一短がある。また、いずれかの手法により生成した軌道に対して、円滑化したり、障害物を回避したりするための軌道修正を行なう必要がある。 For example, when autonomously controlling a mobile device such as a robot or a hand that is an end effector of an articulated arm, it is necessary to plan a movement path or trajectory. It is impossible to find the optimal solution from Each conventionally proposed trajectory planning method has advantages and disadvantages. In addition, it is necessary to perform a trajectory correction for smoothing or avoiding an obstacle with respect to the trajectory generated by any method.
これに対し、本発明に係る軌道計画装置では、まず軌道獲得手段がRRTなどの既存の軌道計画手法を用いて物体の現在位置と目標位置の間を繋ぐ複数のノードからなる軌道を獲得する。続いて、軌道修正手段が、獲得した軌道を初期条件とし、該軌道を構成する各ノードを質点として扱い、該軌道に課される1以上の要求項目を力で表現して各質点に付加することで、該軌道を修正する。具体的には、RRTで発見した軌道上の各ノードを質点とした多質点系に、軌道の円滑化、最適化、及び物体間の浸透回避という要求をそれぞれ力で表現して各質点に付加し、RRTで発見した軌道上の位置を初期条件とした動力学シミュレーションを実行することで軌道の修正を行ない、すべての要求を満たす軌道の生成を行なう。 On the other hand, in the trajectory planning apparatus according to the present invention, the trajectory acquisition means first acquires a trajectory composed of a plurality of nodes connecting the current position of the object and the target position using an existing trajectory planning method such as RRT. Subsequently, the trajectory correcting means treats the acquired trajectory as an initial condition, treats each node constituting the trajectory as a mass point, and expresses one or more required items imposed on the trajectory by force and adds them to each mass point. The trajectory is corrected. Specifically, a multi-mass point system with each node on the orbit discovered by RRT as a mass point expresses the demands of smoothing and optimizing the trajectory and avoiding penetration between objects by adding power to each mass point. The trajectory is corrected by executing a dynamic simulation using the position on the trajectory found by RRT as an initial condition, and a trajectory that satisfies all requirements is generated.
したがって、本発明によれば、RRTを用いて無限に存在する軌道の1つを発見するとともに、多質点系の動力学シミュレーションを用いることで、障害物の回避や軌道の円滑化といった問題を力の次元で同時に解決することで、最終的な制御で用いることができる(すなわち、移動制御や軌道計画に用い易い)軌道を安価な計算量で算出することができる。 Therefore, according to the present invention, one of the infinitely existing trajectories is found using RRT, and problems such as obstacle avoidance and trajectory smoothing are enhanced by using multi-mass system dynamic simulation. By simultaneously solving in the above dimensions, a trajectory that can be used in final control (that is, easy to use for movement control and trajectory planning) can be calculated with a low computational cost.
ここで、軌道獲得手段は、RRTを用いる場合、複数のノードで複数の経路に分岐して前記探索空間上に展開された探索木に基づいて、前記現在位置と前記目標位置の間の軌道を獲得することができる。また、軌道獲得手段は、探索空間上の初期位置q_initに対してランダムにq_randを配置するとともにq_randの最近傍ノードq_nearからq_randに向かう方向で一定距離にq_newを設定し、q_newを最近傍ノードq_nearに繋いで前記探索木に追加し、さらに、q_newについてq_randのランダム配置とq_randの最近傍ノードq_nearからq_randに向かう方向で一定距離にq_newを設定して探索木に追加する処理を繰り返し実行することで、探索空間を好適に網羅する探索木を生成することができる。 Here, when the RRT is used, the trajectory acquisition unit calculates a trajectory between the current position and the target position based on a search tree that branches into a plurality of paths at a plurality of nodes and is expanded on the search space. Can be earned. Further, the trajectory acquisition means randomly arranges q_rand with respect to the initial position q_init in the search space, sets q_new at a constant distance in the direction from q_rand nearest node q_near to q_rand, and sets q_new to the nearest node q_new In addition, the process of adding q_new to the search tree by setting q_new at a constant distance in the direction from q_rand to q_rand in a random arrangement of q_rand and q_rand from the nearest node q_new to q_new is repeatedly executed. Thus, a search tree that suitably covers the search space can be generated.
また、上述したRRTで発見される軌道は最適解とは限らない。現在位置から目標位置に至るまでの滑らかな軌道を生成するには、円滑な軌道を獲得すること、できる限り望む軌道に近づけること、並びに、物体間の浸透を回避すること、という3つの要求項目が課される。本発明に係る軌道計画装置によれば、軌道修正手段は、円滑な軌道を獲得すること、できる限り望む軌道に近づけること、又は、物体間の浸透を回避すること、という3つを要求項目とし、これらすべての要求項目をそれぞれに対応する力として表現し、力の次元で統合することで、総合的に解決するようにしている。 In addition, the trajectory discovered by the RRT described above is not necessarily the optimal solution. In order to generate a smooth trajectory from the current position to the target position, three requirements are required: obtaining a smooth trajectory, approaching the desired trajectory as much as possible, and avoiding penetration between objects. Is imposed. According to the trajectory planning apparatus according to the present invention, the trajectory correcting means has three requirements: obtaining a smooth trajectory, approaching the desired trajectory as much as possible, or avoiding penetration between objects. All of these required items are expressed as forces corresponding to each, and are integrated in the dimension of force to solve them comprehensively.
具体的には、軌道修正手段は、獲得した軌道上の隣接するノード間をバネ及びダンパにより接続し、円滑な軌道を獲得するという要求項目を満たすよう各バネ及びダンパを用いてノード間に引力を作用させることで、当該要求項目を満たす軌道の生成を行なうことができる。 Specifically, the trajectory correcting means connects adjacent nodes on the acquired trajectory with springs and dampers, and uses each spring and damper to satisfy the required item of acquiring a smooth trajectory. By generating the trajectory, the trajectory that satisfies the required item can be generated.
また、軌道修正手段は、獲得した軌道上の各ノードとできる限り望む軌道上の対応点とをバネ及びダンパにより接続し、できる限り望む軌道に近づけるという要求項目を満たすよう各バネ及びダンパを用いて各ノードに対し仮想引力を作用させることで、当該要求項目を満たす軌道の生成を行なうことができる。 Further, the trajectory correcting means connects each node on the acquired trajectory and a corresponding point on the desired trajectory as much as possible by using a spring and a damper, and uses each spring and damper so as to satisfy the requirement item to be as close as possible to the desired trajectory. By applying a virtual attractive force to each node, a trajectory that satisfies the required item can be generated.
また、軌道修正手段は、制御対象となる物体と探索空間上に存在する障害物との最短距離演算を実行し、算出された最短距離による斥力ポテンシャルに応じた人工斥力を獲得した軌道上の各ノードに作用させることで、物体間の浸透を回避するという要求項目を満足させるようにする。その際、獲得した軌道上の各ノードに対し、より安定に動作させるための粘性抵抗による力を併せて作用させるようにしてもよい。 Further, the trajectory correcting means performs the shortest distance calculation between the object to be controlled and the obstacle existing in the search space, and obtains the artificial repulsive force corresponding to the repulsive potential by the calculated shortest distance. By acting on a node, the requirement item of avoiding penetration between objects is satisfied. At that time, a force due to viscous resistance for operating more stably may be applied to each node on the acquired trajectory.
また、本発明の第2の側面は、探索空間における物体の軌道を計画するための処理をコンピュータ上で実行するようにコンピュータ可読形式で記述されたコンピュータ・プログラムであって、前記コンピュータを、
物体の現在位置と目標位置の間を繋ぐ複数のノードからなる軌道を獲得する軌道獲得手段と、
前記軌道獲得主段が獲得した軌道を初期条件とし、該軌道を構成する各ノードを質点として扱い、該軌道に課される1以上の要求項目を力で表現して各質点に付加して該軌道を修正する軌道修正手段と、
として機能させるためのコンピュータ・プログラムである。
According to a second aspect of the present invention, there is provided a computer program written in a computer-readable format so that a process for planning an object trajectory in a search space is executed on a computer.
Trajectory acquisition means for acquiring a trajectory composed of a plurality of nodes connecting between the current position of the object and the target position;
The trajectory acquired by the trajectory acquisition main stage is set as an initial condition, each node constituting the trajectory is treated as a mass point, and one or more required items imposed on the trajectory are expressed by force and added to each mass point. A trajectory correcting means for correcting the trajectory;
It is a computer program for making it function as.
本発明の第2の側面に係るコンピュータ・プログラムは、コンピュータ上で所定の処理を実現するようにコンピュータ可読形式で記述されたコンピュータ・プログラムを定義したものである。換言すれば、本発明の第2の側面に係るコンピュータ・プログラムをコンピュータにインストールすることによって、コンピュータ上では協働的作用が発揮され、本発明の第1の側面に係る軌道計画装置と同様の作用効果を得ることができる。 The computer program according to the second aspect of the present invention defines a computer program described in a computer-readable format so as to realize predetermined processing on the computer. In other words, by installing the computer program according to the second aspect of the present invention in the computer, a cooperative action is exhibited on the computer, and the same as the trajectory planning apparatus according to the first aspect of the present invention. An effect can be obtained.
本発明によれば、2次元又は3次元の作業空間上のある位置からある位置までの移動経路若しくは軌道を好適に計画することができる、優れた軌道計画装置及び軌道計画方法、並びにコンピュータ・プログラムを提供することができる。 According to the present invention, an excellent trajectory planning apparatus, trajectory planning method, and computer program capable of suitably planning a movement path or trajectory from a certain position to a certain position in a two-dimensional or three-dimensional work space. Can be provided.
また、本発明によれば、障害物を回避する軌道を発見するとともに、移動制御や軌道計画に用い易くなるように滑らかな軌道として修正することができる、優れた軌道計画装置及び軌道計画方法、並びにコンピュータ・プログラムを提供することができる。 In addition, according to the present invention, an excellent trajectory planning apparatus and trajectory planning method capable of finding a trajectory that avoids an obstacle and correcting it as a smooth trajectory so as to be easily used for movement control and trajectory planning, In addition, a computer program can be provided.
本発明に係る軌道計画装置は、RRTを用いて無限に存在する軌道の1つを発見するとともに、多質点系の動力学シミュレーションを用いることで、障害物の回避や軌道の円滑化といった問題を力の次元で同時に解決することで、最終的な制御で用いることができる(すなわち、移動制御や軌道計画に用い易い)軌道を安価な計算量で算出することができる。また、ロボットや多関節アームなどの制御期間中にわたって、本発明に係る軌道計画装置を用いて、適宜軌道を生成し、また常に軌道の修正を行なうことで、軌道計画だけでなく、リアルタイムに動作する障害物回避を実現することができる。 The trajectory planning apparatus according to the present invention uses RRT to discover one of infinitely existing trajectories and uses a multi-mass point system dynamic simulation to solve problems such as obstacle avoidance and trajectory smoothness. By solving simultaneously in the dimension of force, a trajectory that can be used in final control (that is, easy to use for movement control and trajectory planning) can be calculated with a low computational cost. In addition, during the control period of robots and articulated arms, the trajectory planning device according to the present invention is used to generate trajectories as appropriate and always correct the trajectory so that not only trajectory planning but also real-time operation is possible. Obstacle avoidance can be realized.
本発明のさらに他の目的、特徴や利点は、後述する本発明の実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。 Other objects, features, and advantages of the present invention will become apparent from more detailed description based on embodiments of the present invention described later and the accompanying drawings.
以下、図面を参照しながら本発明の実施形態について詳解する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本発明者は、2次元又は3次元の作業空間上のある位置(現在位置:Start)からある位置(目標位置:Goal)までの滑らかな軌道を生成するという目的を達成するには、以下の4項目が要求されていると思料する。
(1)最適解ではなくとも最低限目的(StartからGoalまでの軌道を生成すること)を達成するための軌道を高速に獲得すること。
(2)円滑な軌道を獲得すること。
(3)できる限り望む軌道(最適軌道)に近づけること。
(4)物体間の浸透を回避すること。
In order to achieve the object of generating a smooth trajectory from a certain position (current position: Start) to a certain position (target position: Goal) on the two-dimensional or three-dimensional work space, I think that 4 items are required.
(1) To obtain a trajectory for achieving a minimum objective (generating a trajectory from Start to Goal) at a high speed even if it is not an optimal solution.
(2) To acquire a smooth trajectory.
(3) As close as possible to the desired trajectory (optimal trajectory).
(4) Avoid penetration between objects.
本実施形態では、要求項目(1)に関しては、既存の軌道計画アルゴリズムを用いて解決する。既存の軌道計画アルゴリズムとして、ポテンシャル法や確率的ロードマップ法、Rapidly−exploring Random Tree(RRT)を挙げることができるが、それぞれ手法には一長一短がある(前述)。このうちRRTは、取り扱う問題が多次元の場合には直感的ではないといった欠点を持つものの、低次元の問題においては直感性を失うことはない。また、RRTのもう1つの特徴として、多次元configuration spaceでの比較的高速な軌道計画が可能なことで知られている。 In the present embodiment, the requirement item (1) is solved by using an existing trajectory planning algorithm. Examples of the existing trajectory planning algorithm include a potential method, a probabilistic roadmap method, and a rapid-exploring random tree (RRT), each of which has advantages and disadvantages (described above). Of these, RRT has the disadvantage that it is not intuitive when the problem to be handled is multidimensional, but it does not lose its intuition in a low-dimensional problem. Further, as another feature of RRT, it is known that a relatively high-speed trajectory planning in a multidimensional configuration space is possible.
本実施形態において取り扱う次元が低次元であることから、上記の要求項目のうち(1)である最低限の目的を達成するための軌道を高速に求める手段として、比較的高速な軌道計画が可能なRRTを用いることとする。したがって、他の要求項目(2)〜(4)を解決する上で、3次元空間上で無数に存在する軌道のうち少なくとも1つが得られていることを前提とすることができる。 Since the dimensions handled in this embodiment are low, relatively fast trajectory planning is possible as a means for obtaining a trajectory for achieving the minimum objective (1) among the above requirements. RRT is used. Therefore, in solving the other requirement items (2) to (4), it can be assumed that at least one of innumerable trajectories in the three-dimensional space is obtained.
ここで、RRTのTreeを生成する基本となるアルゴリズムについて、図1A〜図1Gを参照しながら説明しておく。 Here, a basic algorithm for generating an RRT tree will be described with reference to FIGS. 1A to 1G.
まず、探索空間上に初期位置q_initを設定する(図1Aを参照のこと)。 First, an initial position q_init is set on the search space (see FIG. 1A).
次いで、探索空間上にランダムにq_randを配置する(図1Bを参照のこと)。 Next, q_rand is randomly placed on the search space (see FIG. 1B).
次いで、Tree(探索木)におけるq_randに最も近いノード(すなわち最近傍ノード)をq_nearとし、q_nearからq_randに向かう方向で一定距離にq_newを設定する(図1Cを参照のこと)。但し、初期状態のTreeにはq_initのみが存在する(図1Aを参照のこと)。ここで、q_nearとq_newをつないで、q_newをTreeに追加する(図1Dを参照のこと)。 Next, the node closest to q_rand in the tree (search tree) (that is, the nearest node) is set as q_near, and q_new is set to a constant distance in the direction from q_near to q_rand (see FIG. 1C). However, only q_init exists in the tree in the initial state (see FIG. 1A). Here, q_new is connected to q_new by connecting q_new and q_new (see FIG. 1D).
次いで、探索空間上にランダムにq_randを再び配置し(図1Eを参照のこと)、Treeにおけるq_randの最近傍ノードをq_nearとし、前回と同様にq_nearとq_randからq_newを生成して、q_newをTreeに追加する(図1Fを参照のこと)。 Next, q_rand is re-arranged at random in the search space (see FIG. 1E), the nearest node of q_rand in Tree is set to q_near, q_new is generated from q_near and q_rand as before, and q_new is set to Tree. (See FIG. 1F).
そして、上述したような操作を繰り返して実施することで、探索空間を好適に網羅するTreeを生成することができる(図1Gを参照のこと)。 Then, by repeatedly performing the operations as described above, a Tree that suitably covers the search space can be generated (see FIG. 1G).
RRTによれば、比較的高速な軌道計画が可能であり、最適解とは言わなくてもそれなりの軌道を生成することができる。 According to RRT, a relatively high-speed trajectory plan is possible, and an appropriate trajectory can be generated even if it is not an optimal solution.
図2には、障害物である中央の立方体を回避しながら制御対象となる立方体を同図の右上から左下に向かって移動させたときの軌道を示している。また、図3には、制御対象物を非表示にして、RRTにより発見された軌道を示している。 FIG. 2 shows a trajectory when the cube to be controlled is moved from the upper right to the lower left in the figure while avoiding the central cube which is an obstacle. FIG. 3 shows a trajectory discovered by RRT with the control object hidden.
なお、RRTの実行において、障害物の回避の際の物体間浸透の問題に関しては、GJK(Gilbert−Johnson−Keerthidistance algorithm)を想定する。GJKアルゴリズムは、凸形図形間距離を算出するための反復的な方法であり、衝突代表点対(最近傍点対又は最浸透点対)を、干渉検出結果として出力する。GJKアルゴリズムの詳細については、例えば、G.van den Bergen,“Collision Detection in Interactive 3D Environments”(Morgan Kaufmann Publishers,2004)を参照されたい。 In the execution of RRT, GJK (Gilbert-Johnson-Kerthidance algorithm) is assumed for the problem of penetration between objects when avoiding obstacles. The GJK algorithm is an iterative method for calculating the distance between convex figures, and outputs a collision representative point pair (nearest point pair or most penetrating point pair) as an interference detection result. For details of the GJK algorithm, see, for example, G.K. See van den Bergen, “Collision Detection in Interactive 3D Environments” (Morgan Kaufmann Publishers, 2004).
図2並びに図3に見られるように、RRTにより発見された軌道は、明らかに無駄が多い。すなわち、RRTから最適解が求まる訳ではないから、ロボットの移動制御や多関節アームの手先の軌道計画などのために用い易くなるように滑らかな軌道として修正する必要がある。 As can be seen in FIGS. 2 and 3, the trajectory discovered by RRT is clearly wasteful. In other words, since the optimum solution is not obtained from the RRT, it is necessary to correct it as a smooth trajectory so that it can be easily used for the robot movement control, the trajectory planning of the hand of the articulated arm, and the like.
本実施形態では、できる限り最適軌道に近づけることと、物体間の浸透を回避すること、すなわち、残る3つの要求項目(2)〜(4)を満足するために、多質点系の動力学シミュレーションを導入する。すなわち、RRTで発見した軌道上の各ノードを質点とした多質点系に、軌道の円滑化、最適化、及び物体間の浸透回避という要求をそれぞれ力で表現して各質点に付加し、RRTで発見した軌道上の位置を初期条件とした動力学シミュレーションを実行することで、すべての要求を満たす軌道の生成を行なう。つまり、要求項目(2)〜(4)として挙げているすべての要求を、それぞれに対応する力として表現し、力の次元で統合することで、総合的に解決することになる。各要求項目(2)〜(4)に対する力への変換方法について、以下に説明する。 In the present embodiment, a dynamic simulation of a multi-mass system is performed in order to make it as close as possible to the optimal trajectory and to avoid penetration between objects, that is, to satisfy the remaining three requirements (2) to (4). Is introduced. In other words, a multi-mass point system with each node on the trajectory discovered by RRT as a mass point expresses the demands of smoothing or optimizing the trajectory and avoiding penetration between objects, and adding them to each mass point. The trajectory that satisfies all the requirements is generated by executing the dynamic simulation using the position on the trajectory found in step 1 as the initial condition. That is, all the requirements listed as the requirement items (2) to (4) are expressed as forces corresponding to the requirements, and are integrated in the force dimension, so that they can be solved comprehensively. A method for converting the required items (2) to (4) into force will be described below.
図4には、要求項目(2)の円滑な軌道を獲得するための力の拘束表現を示している。図中、両端点がそれぞれ開始位置Startと目標位置Goalのノードであり、これらに接続されている複数のノードはRRTにより算出された、開始位置及び目標位置間の軌道上のノードである。そして、隣接するノード間をバネ及びダンパにより接続し、これらバネ及びダンパを用いて円滑な軌道への引力を表現する。すなわち、当該要求項目を満たすようこれらバネ及びダンパを用いてノード間に引力を作用させることで、無駄のない軌道へと変換される。 FIG. 4 shows a force constraint expression for obtaining a smooth trajectory of the requirement item (2). In the figure, both end points are nodes of a start position Start and a target position Goal, and a plurality of nodes connected to these are nodes on the trajectory between the start position and the target position calculated by RRT. Then, adjacent nodes are connected by a spring and a damper, and the attractive force on the smooth track is expressed using the spring and the damper. In other words, by applying an attractive force between the nodes using these springs and dampers so as to satisfy the required items, the track is converted into a lean track.
ここで、3次元空間上でのn番目のノードNode(n)の位置をxn=[xn,yn,zn]T、n+1番目のノードNode(n+1)の位置をxn+1=[xn+1,yn+1,zn+1]T、ノードNode(n)からノードNode(n+1)へ向かうベクトルをrn,n+1、ノードNode(n)とノードNode(n+1)間のバネの自然長をln,n+1、そのバネ定数をkn,n+1としたとき、ノードNode(n)とノードNode(n+1)の間に働くバネ力Fbn,n+1は、下式(1)のように表される。 Here, the position of the n-th node Node (n) in the three-dimensional space is x n = [x n , y n , z n ] T , and the position of the n + 1-th node Node (n + 1) is x n + 1. = [X n + 1 , y n + 1 , z n + 1 ] T , a vector from the node Node (n) to the node Node (n + 1) is represented by r n, n + 1 , the node Node (n) and the node Node ( n + 1), where the natural length of the spring is l n, n + 1 and the spring constant is k n, n + 1 , the spring force Fb n, acting between the node Node (n) and the node Node (n + 1) n + 1 is expressed as the following formula (1).
すなわち、ノードNode(n)とノードNode(n+1)間に働くバネ力は、正規化されたバネ力の方向とバネ力の積で表される。 That is, the spring force acting between the node Node (n) and the node Node (n + 1) is represented by the product of the normalized spring force direction and the spring force.
また、ダンピング係数をcn,n+1、速度ベクトルをvn,n+1とすると、ノードNode(n)とノードNode(n+1)間に働くダンパによる力Fdn,n+1は同様に、下式(2)のように表される。 If the damping coefficient is c n, n + 1 and the velocity vector is v n, n + 1 , the force Fd n, n + 1 due to the damper acting between the node Node (n) and the node Node (n + 1) is the same. Is expressed as the following formula (2).
すなわち、2つのノード間の位置からダンピング力の方向を定め、相対速度の作用方向成分がダンピング力の大きさと正負の符号を決定する。 That is, the direction of the damping force is determined from the position between the two nodes, and the acting direction component of the relative speed determines the magnitude of the damping force and a positive / negative sign.
ノードNode(n+1)への作用力は、上式(1)から求まるバネ力Fbn,n+1と、上式(2)から求まるダンピング力Fdn,n+1の符号を反転することで得られる。以上をまとめると、ノードNode(n+1)からノードNode(n)に作用するノード間引力Fa,n,n+1は、下式(3)のように表される。 The acting force on the node Node (n + 1) is obtained by inverting the sign of the spring force Fb n, n + 1 obtained from the above equation (1) and the damping force Fdn , n + 1 obtained from the above equation (2). can get. Summarizing the above, the inter-node attractive force F a, n, n + 1 acting on the node Node (n) from the node Node (n + 1) is expressed by the following equation (3).
また、図5には、要求項目(3)のできる限り望む軌道に近づけるための力の拘束表現を示している。図中、両端点がそれぞれ開始位置Startと目標位置Goalのノードであり、点線は開始位置Startから目標位置Goalへ向かう最適と思われる経路である。そして、この点線上の×で表される各点は、当該経路上の各ノードの望ましい位置に相当し、該当するノードとの間をバネ及びダンパにより接続し、これらバネ及びダンパを用いて最適経路への仮想引力を表現する。すなわち、当該要求項目を満たすようこれらバネ及びダンパを用いて各ノードに対して最適経路への仮想引力を作用させることで、できる限り望む軌道へと変換される。なお、同図には、図4に示した、円滑な軌道を獲得するための力の拘束を表したノード間のバネ及びダンパを点線で描いている。 FIG. 5 shows a constraint expression of force for bringing the required item (3) as close as possible to the desired trajectory. In the figure, both end points are nodes of a start position Start and a target position Goal, respectively, and a dotted line is a path that seems to be optimal from the start position Start to the target position Goal. Each point represented by x on the dotted line corresponds to a desired position of each node on the route, and is connected to the corresponding node by a spring and a damper, and optimal using the spring and the damper. Represents a virtual attractive force on the path. That is, the desired trajectory is converted as much as possible by applying a virtual attractive force to the optimum path to each node using these springs and dampers so as to satisfy the required items. In FIG. 4, the springs and dampers between the nodes shown in FIG. 4 representing the constraint of the force for obtaining a smooth trajectory are drawn with dotted lines.
ここで、3次元空間上でのn番目のノードNode(n)の最適経路位置をxopt,n=[xopt,n,yopt,n,zopt,n]T、ノードNode(n)から最適経路位置に向かうベクトルをropt,n、その相対速度ベクトルをvopt,n、バネ定数をkopt,n、ダンピング定数をcopt,n、バネの自然長及び最適経路位置の速度をともに0としたとき、ノードNode(n)に働く最適経路位置への仮想引力Fopt,nは、上式(3)に示したノード間引力と同様に、下式(4)のように表される。 Here, the optimum path position of the n-th node Node (n) in the three-dimensional space is expressed as x opt, n = [x opt, n , y opt, n , z opt, n ] T , node Node (n) R opt, n , the relative velocity vector v opt, n , the spring constant k opt, n , the damping constant c opt, n , the natural length of the spring and the speed of the optimal path position When both are set to 0, the virtual attractive force F opt, n to the optimum route position acting on the node Node (n) is expressed as the following equation (4), similarly to the inter-node attractive force shown in the above equation (3). Is done.
続いて、要求項目(4)の、物体間の浸透を回避するために課される力の拘束表現について説明する。 Next, a constraint expression of force imposed to avoid penetration between objects in the requirement item (4) will be described.
動力学シミュレーションの実行時は、常に干渉検出機能が働いており、制御対象と障害物との最短距離演算が動作している。この最短距離演算で算出される最短距離をρとしたとき、制御対象と障害物との距離ρよる斥力ポテンシャルU0(ρ)は、下式(5)のように表される。 When executing dynamic simulation, the interference detection function is always working, and the shortest distance calculation between the controlled object and the obstacle is in operation. When the shortest distance calculated by the shortest distance calculation is ρ, the repulsive potential U 0 (ρ) depending on the distance ρ between the controlled object and the obstacle is expressed by the following equation (5).
このとき、n番目のノードNode(n)に作用する人工斥力Fr,nは、下式(6)のように表される。 At this time, the artificial repulsive force F r, n acting on the nth node Node (n) is expressed as in the following equation (6).
但し、上式(6)において、ρ0は人工斥力が作用する領域を表す閾値、Pb並びにPaはそれぞれ制御対象と障害物の最短距離を表わす最近傍点である。すなわち、上式(7)で表わされるdは正規化された力の作用方向を示している。ここで得られた斥力を多質点系に作用させる。 However, in the above equation (6), ρ 0 is a threshold that represents a region where the artificial repulsive force acts, is P b and P a is the nearest neighbor representing the shortest distance, respectively controlled object and the obstacle. That is, d represented by the above formula (7) indicates the direction in which the normalized force is applied. The repulsive force obtained here is applied to the multi-mass point system.
また、多質点系 動力学シミュレーションの発散を抑制し、より安定に動作させるために粘性抵抗(空気抵抗のようなもの)による力も併せて導入する。n番目のノードNode(n)の速度をvn、粘性係数をγnとすると、ノードNode(n)に作用する粘性抵抗による力Fdmp,nは、下式(8)のように表わされる。 In addition, in order to suppress the divergence of multi-mass system dynamics simulation and operate more stably, a force due to viscous resistance (like air resistance) is also introduced. Assuming that the speed of the n-th node Node (n) is v n and the viscosity coefficient is γ n , the force F dmp, n due to the viscous resistance acting on the node Node (n) is expressed by the following equation (8). .
図6には、n番目のノードNode(n)すなわち質点nに対し、上述したすべての外力Fa,n,n+1、Fopt,n、Fr,nを作用させた様子を示している。ノードNode(n)に作用する外力Fnは下式(9)の通りとなる。但し、同式の右辺左から順に、粘性力、ノードNode(n−1)からノードNode(n)に作用するノード間引力、ノードNode(n+1)からNode(n)に作用するノード間引力、浸透回避ポテンシャル斥力、最適経路引力を表している。 FIG. 6 shows a state in which all the external forces F a, n, n + 1 , F opt, n and F r, n are applied to the nth node Node (n), that is, the mass point n. Yes. The external force F n acting on the node Node (n) is as shown in the following formula (9). However, in order from the left side of the right side of the equation, the viscous force, the inter-node attractive force acting on the node Node (n) from the node Node (n−1), the inter-node attractive force acting on the Node (n) from the node Node (n + 1), It represents the permeation avoidance potential repulsion and the optimum path attractive force.
これまで説明してきたすべての力の拘束を、多質点系の外力Fとして付加して動力学シミュレーションを実行する。すなわち、下式(10)に示す各ノード(質点)の運動方程式に対して上式(9)に示した外力Fnを代入することで質点の運動方程式を記述する。そして、n個のノードからなる連成運動をn個の連立線形常微分方程式として表現し、RRTで得られた位置を初期条件とした数値積分を行なうことで数値シミュレーションを実行する。数値積分として、例えばRunnge−Kutta法を用いることができる。なお、力の算出は、数値シミュレーションのステップ毎に実行される。 All the force constraints described so far are added as the external force F of the multi-mass system, and the dynamic simulation is executed. That is, the equation of motion of the mass point is described by substituting the external force F n shown in the above equation (9) for the equation of motion of each node (mass point) shown in the following equation (10). Then, a numerical simulation is executed by expressing a coupled motion consisting of n nodes as n simultaneous linear ordinary differential equations and performing numerical integration with the position obtained by RRT as an initial condition. As the numerical integration, for example, the Runge-Kutta method can be used. Note that the force is calculated for each numerical simulation step.
図7並びに図8には、軌道上の各ノードに対し上記力の拘束を付加した場合のシミュレーション例を示している。図7A、図7Bには、RRTが発見した経路を示し、図8A、図8Bには軌道に力の拘束を加えて軌道を修正した結果を示している。これらの図から分かるように、RRTで発見された初期の経路は要求項目(2)〜(4)の要求通りに円滑化されたことが確認できよう。なお、図示の最適経路は、StartとGoalを結ぶ直線として設定している。 7 and 8 show simulation examples in the case where the force constraint is applied to each node on the trajectory. 7A and 7B show paths discovered by the RRT, and FIGS. 8A and 8B show results of correcting the trajectory by applying force constraints to the trajectory. As can be seen from these figures, it can be confirmed that the initial route discovered by the RRT has been smoothed as required by the requirement items (2) to (4). The optimal route shown in the figure is set as a straight line connecting Start and Goal.
図9には、これまで説明してきた軌道計画方法を実現するためのシステム構成を機能ブロック図の形式で示している。図示のシステム10は、RRT実行部11と、干渉検出部12と、外力算出部13と、多質点系の動力学シミュレーション実行部14で構成される。例えば、パーソナル・コンピュータのような一般的な計算機システム上で所定のプログラムを実行するという形態で、図示の機能的構成を実現することが可能である。 FIG. 9 shows a system configuration for realizing the trajectory planning method described so far in the form of a functional block diagram. The illustrated system 10 includes an RRT execution unit 11, an interference detection unit 12, an external force calculation unit 13, and a multi-mass system dynamic simulation execution unit 14. For example, the functional configuration shown in the figure can be realized by executing a predetermined program on a general computer system such as a personal computer.
RRT実行部11は、経路計画指令を受け取ると、3次元の探索空間上の障害物情報と制御対象物の現在位置(Start)及び目標位置(Goal)位置とから、ある経路を生成する。その際、干渉検出及び最短距離演算を担う干渉検出部12を用いることにより、軌道(Path)生成時の浸透を考慮する。すなわち、RRTは干渉の無い軌道生成を行なう。 Upon receiving the route planning command, the RRT execution unit 11 generates a route from the obstacle information on the three-dimensional search space, the current position (Start) and the target position (Goal) position of the controlled object. At that time, by using the interference detection unit 12 that performs the interference detection and the shortest distance calculation, the penetration at the time of generating the orbit (Path) is taken into consideration. That is, RRT performs trajectory generation without interference.
外力算出部13は、RRT実行部11で生成された起動を円滑化するためのノード間引力を算出するノード間引力算出部13Aと、空間上に存在する障害物と制御対象との浸透を回避するための障害物回避斥力算出部13Bと、望んだ経路に近づけるために作用させる最適経路引力を算出するための最適経路引力算出部13Cより構成され、それぞれにおいて算出された引力や斥力などの外力を出力する。 The external force calculation unit 13 avoids infiltration of an inter-node attractive force calculation unit 13A that calculates an inter-node attractive force for facilitating the activation generated by the RRT execution unit 11, and an obstacle present in the space and the control target. An obstacle avoiding repulsive force calculating unit 13B, and an optimal route attractive force calculating unit 13C for calculating an optimal route attractive force to be applied to approach the desired route, and external forces such as attractive force and repulsive force calculated respectively. Is output.
多質点系の動力学シミュレーション実行部14は、外力算出部13で算出された各ノードにおける外力を、各ノードに対する外力拘束として付加する。多質点系の動力学シミュレーション実行部14では、シミュレーション・サイクル毎の動力学演算を担う。 The multi-mass point system dynamic simulation execution unit 14 adds the external force at each node calculated by the external force calculation unit 13 as an external force constraint for each node. The multi-mass point system dynamics simulation execution unit 14 performs dynamics calculation for each simulation cycle.
なお、多質点系の動力学シミュレーション実行時においても、物体間の浸透を検出し、若しくは物体間の最短距離算出のために、干渉検出部12が利用される。多質点系の動力学シミュレーションは、各ノードが設定した状態(例えば、物体の静止)に収束したときに終了し、そのときのノード群が求める円滑な経路となる。 Even when executing a dynamic simulation of a multi-mass point system, the interference detection unit 12 is used for detecting penetration between objects or calculating the shortest distance between objects. The dynamic simulation of the multi-mass point system ends when each node converges to a set state (for example, the stationary state of an object), and becomes a smooth path obtained by the node group at that time.
図10には、図9に示した軌道計画システム10が実行する軌道計画処理の手順をフローチャートの形式で示している。 FIG. 10 shows the procedure of the trajectory planning process executed by the trajectory planning system 10 shown in FIG. 9 in the form of a flowchart.
まず、RRT実行部11が経路計画指令を受け、3次元の探索空間上の障害物情報と制御対象物の現在位置(Start)及び目標位置(Goal)とから、ある経路を生成する(ステップS1)。そして、生成した経路を、後続の外力算出処理に引渡す。 First, the RRT execution unit 11 receives a route planning command, and generates a route from the obstacle information on the three-dimensional search space, the current position (Start) and the target position (Goal) of the controlled object (Step S1). ). And the produced | generated path | route is handed over to the subsequent external force calculation process.
次いで、外力算出処理では、各シミュレーション・サイクルにおいて、経路上の各ノードに付加される外力算出を行なう(ステップS2)。 Next, in the external force calculation process, external force added to each node on the path is calculated in each simulation cycle (step S2).
次いで、多質点系実行部14はシミュレーションを実行する(ステップS3)。 Next, the multi-mass point system execution unit 14 executes a simulation (step S3).
そして、上述した多質点系の動力学シミュレーションは、各ノードが設定したノード静定条件を満たすまで繰り返される(ステップS4)。 The multi-mass point system dynamic simulation described above is repeated until the node static conditions set by each node are satisfied (step S4).
図9に示した軌道計画システム10により物体の軌道計画を行なった場合、図7及び図8に示したような結果を得ることができる。すなわち,高速にRRTにより空間上の移動経路を獲得し、その獲得した経路を円滑化するとともに、望む経路(最適経路)に近づけることが容易になる。 When the trajectory planning of the object is performed by the trajectory planning system 10 shown in FIG. 9, the results as shown in FIG. 7 and FIG. 8 can be obtained. That is, it is easy to acquire a moving route in space by RRT at high speed, smooth the acquired route, and approach the desired route (optimum route).
また、多質点系の動力学シミュレーションにおける演算は、剛体系の動力学シミュレーションに比し、大幅に計算量を抑えることが可能であることから、多質点系の動力学シミュレーションを物体移動制御実行時に常に動作させることで、リアルタイムで障害物回避といった軌道修正を行なうことも可能である。 In addition, the computation in the dynamic simulation of a multi-mass system can greatly reduce the amount of computation compared to the dynamic simulation of a rigid system. By always operating, it is possible to correct the trajectory such as obstacle avoidance in real time.
図11には、多質点系の動力学シミュレーションを物体移動制御実行時に常に動作させて、リアルタイムで障害物回避を行なった結果を示している。図11Aは、RRTを実行して初期条件としての起動を獲得した後、ノードが静定するまで多質点系の動力学シミュレーションを実行した状態を示している。また、図11Bには、ノードが静定した後、空間上の障害物が移動したときの軌道の修正状況を示している。 FIG. 11 shows the result of obstacle avoidance performed in real time by always operating the dynamic simulation of the multi-mass point system when executing the object movement control. FIG. 11A shows a state in which a dynamic simulation of a multi-mass point system is executed until the node is settled after executing the RRT to acquire the start as an initial condition. Further, FIG. 11B shows a correction state of the trajectory when an obstacle in the space moves after the node is settled.
以上、特定の実施形態を参照しながら、本発明について詳解してきた。しかしながら、本発明の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。 The present invention has been described in detail above with reference to specific embodiments. However, it is obvious that those skilled in the art can make modifications and substitutions of the embodiment without departing from the gist of the present invention.
本発明は、ロボットの移動制御や多関節アームのエンド・エフェクタの軌道制御などに適用することができる。 The present invention can be applied to the movement control of a robot and the trajectory control of an end effector of an articulated arm.
要するに、例示という形態で本発明を開示してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本発明の要旨を判断するためには、特許請求の範囲を参酌すべきである。 In short, the present invention has been disclosed in the form of exemplification, and the description of the present specification should not be interpreted in a limited manner. In order to determine the gist of the present invention, the claims should be taken into consideration.
10…軌道計画システム
11…RRT実行部
12…干渉検出部
13…外力算出部
13A…ノード間引力算出部
13B…障害物回避斥力算出部
13C…最適経路引力算出部
14…多質点系実行部
DESCRIPTION OF SYMBOLS 10 ... Trajectory planning system 11 ... RRT execution part 12 ... Interference detection part 13 ... External force calculation part 13A ... Internode attractive force calculation part 13B ... Obstacle avoidance repulsive force calculation part 13C ... Optimal path attractive force calculation part 14 ... Multi-mass point system execution part
Claims (19)
物体の現在位置と目標位置の間を繋ぐ複数のノードからなる軌道を獲得する軌道獲得手段と、
前記軌道獲得主段が獲得した軌道を初期条件とし、該軌道を構成する各ノードを質点として扱い、該軌道に課される1以上の要求項目を力で表現して各質点に付加して該軌道を修正する軌道修正手段と、
を具備することを特徴とする軌道計画装置。 A trajectory planning device for planning a trajectory of an object in a search space,
Trajectory acquisition means for acquiring a trajectory composed of a plurality of nodes connecting between the current position of the object and the target position;
The trajectory acquired by the trajectory acquisition main stage is set as an initial condition, each node constituting the trajectory is treated as a mass point, and one or more required items imposed on the trajectory are expressed by force and added to each mass point. A trajectory correcting means for correcting the trajectory;
A trajectory planning apparatus comprising:
ことを特徴とする請求項1に記載の軌道計画装置。 The trajectory acquisition means acquires a trajectory between the current position and the target position based on a search tree that branches into a plurality of paths at a plurality of nodes and is expanded on the search space.
The trajectory planning apparatus according to claim 1.
ことを特徴とする請求項2に記載の軌道計画装置。 The trajectory acquisition means randomly arranges q_rand with respect to the initial position q_init in the search space, sets q_new at a constant distance in the direction from q_rand's nearest node q_new to q_rand, and sets q_new to the nearest node q_new In addition, for q_new, q_new is randomly arranged and q_new is set to a constant distance in the direction from q_rand nearest node q_new to q_rand and added to the search tree repeatedly. To generate the search tree,
The trajectory planning apparatus according to claim 2.
ことを特徴とする請求項1に記載の軌道計画装置。 The trajectory correcting means adds a force expressing one or more requirement items imposed on the trajectory to a multi-mass point system having each node on the trajectory acquired by the trajectory acquiring means as a power. A trajectory that satisfies the above requirements is generated by performing a physical simulation.
The trajectory planning apparatus according to claim 1.
ことを特徴とする請求項1に記載の軌道計画装置。 The trajectory correcting means uses at least one of obtaining a smooth trajectory, approaching a desired trajectory as much as possible, or avoiding permeation between objects as a required item, and expressing a force expressing the required item. Added to each mass point corresponding to a node on the trajectory,
The trajectory planning apparatus according to claim 1.
ことを特徴とする請求項5に記載の軌道計画装置。 The trajectory correcting means connects adjacent nodes on the trajectory acquired by the trajectory acquiring means with springs and dampers, and uses the springs and dampers to satisfy the required items of acquiring a smooth trajectory between the nodes. By generating an orbit that satisfies the above requirements by applying an attractive force,
The trajectory planning apparatus according to claim 5.
ことを特徴とする請求項5に記載の軌道計画装置。 The trajectory correcting means connects each node on the trajectory acquired by the trajectory acquiring means and a corresponding point on the desired trajectory as much as possible by a spring and a damper, and satisfies each requirement item to make it as close as possible to the desired trajectory. And generating a trajectory that satisfies the required items by applying a virtual attractive force to each node using a damper.
The trajectory planning apparatus according to claim 5.
ことを特徴とする請求項5に記載の軌道計画装置。 The trajectory correcting means performs a shortest distance calculation between the object and an obstacle existing in the search space, and on the trajectory obtained by the trajectory acquiring means, an artificial repulsive force corresponding to the repulsive potential due to the calculated shortest distance. Satisfy the requirement of avoiding penetration between objects by acting on each node of
The trajectory planning apparatus according to claim 5.
ことを特徴とする請求項8に記載の軌道計画装置。 The trajectory correcting means acts on each node on the trajectory acquired by the trajectory acquiring means together with a force due to viscous resistance for operating more stably.
The trajectory planning apparatus according to claim 8.
物体の現在位置と目標位置の間を繋ぐ複数のノードからなる軌道を獲得する軌道獲得ステップと、
前記軌道獲得ステップにより獲得した軌道を初期条件とし、該軌道を構成する各ノードを質点として扱い、該軌道に課される1以上の要求項目を力で表現して各質点に付加して該軌道を修正する軌道修正ステップと、
を具備することを特徴とする軌道計画方法。 A trajectory planning method for planning a trajectory of an object in a search space,
A trajectory acquisition step for acquiring a trajectory composed of a plurality of nodes connecting between the current position of the object and the target position;
The trajectory acquired in the trajectory acquisition step is set as an initial condition, each node constituting the trajectory is treated as a mass point, one or more required items imposed on the trajectory are expressed by force, and the trajectory is added to each mass point. A trajectory correction step for correcting
A trajectory planning method comprising:
ことを特徴とする請求項10に記載の軌道計画方法。 In the trajectory acquisition step, a trajectory between the current position and the target position is acquired based on a search tree branched into a plurality of paths at a plurality of nodes and expanded on the search space.
The trajectory planning method according to claim 10.
ことを特徴とする請求項11に記載の軌道計画方法。 In the trajectory acquisition step, q_rand is randomly arranged with respect to the initial position q_init on the search space, q_new is set to a constant distance in the direction from q_nea nearest node q_near to q_rand, and q_new is set to the nearest node q_new In addition, for q_new, q_new is randomly arranged and q_new is set to a constant distance in the direction from q_rand nearest node q_new to q_rand and added to the search tree repeatedly. To generate the search tree,
The trajectory planning method according to claim 11.
ことを特徴とする請求項10に記載の軌道計画方法。 In the trajectory correction step, a force expressing one or more required items imposed on the trajectory is added to a multi-mass point system having each node on the trajectory obtained in the trajectory acquisition step as A trajectory that satisfies the above requirements is generated by performing a physical simulation.
The trajectory planning method according to claim 10.
ことを特徴とする請求項10に記載の軌道計画方法。 In the trajectory correcting step, the force expressing the required item is set as at least one of obtaining a smooth trajectory, approaching the desired trajectory as much as possible, or avoiding penetration between objects. Added to each mass point corresponding to a node on the trajectory,
The trajectory planning method according to claim 10.
ことを特徴とする請求項14に記載の軌道計画方法。 In the trajectory correction step, adjacent nodes on the trajectory acquired in the trajectory acquisition step are connected by springs and dampers, and between the nodes using each spring and damper so as to satisfy the requirement item of acquiring a smooth trajectory. By generating an orbit that satisfies the above requirements by applying an attractive force,
The trajectory planning method according to claim 14.
ことを特徴とする請求項14に記載の軌道計画方法。 In the trajectory correction step, each node on the trajectory acquired in the trajectory acquisition step is connected to a corresponding point on the desired trajectory as much as possible by a spring and a damper, and each spring is satisfied so as to satisfy the requirement item to be as close as possible to the desired trajectory. And generating a trajectory that satisfies the required items by applying a virtual attractive force to each node using a damper.
The trajectory planning method according to claim 14.
ことを特徴とする請求項14に記載の軌道計画方法。 In the trajectory correction step, a shortest distance calculation is performed between the object and an obstacle existing in the search space, and an artificial repulsive force corresponding to the repulsive potential due to the calculated shortest distance is acquired on the trajectory. Satisfy the requirement of avoiding penetration between objects by acting on each node of
The trajectory planning method according to claim 14.
ことを特徴とする請求項17に記載の軌道計画方法。 In the trajectory correction step, a force due to viscous resistance is applied to each node on the trajectory acquired in the trajectory acquisition step, in order to operate more stably.
The trajectory planning method according to claim 17.
物体の現在位置と目標位置の間を繋ぐ複数のノードからなる軌道を獲得する軌道獲得手段と、
前記軌道獲得主段が獲得した軌道を初期条件とし、該軌道を構成する各ノードを質点として扱い、該軌道に課される1以上の要求項目を力で表現して各質点に付加して該軌道を修正する軌道修正手段と、
として機能させるためのコンピュータ・プログラム。
A computer program written in a computer-readable format to execute on a computer a process for planning a trajectory of an object in a search space, the computer comprising:
Trajectory acquisition means for acquiring a trajectory composed of a plurality of nodes connecting between the current position of the object and the target position;
The trajectory acquired by the trajectory acquisition main stage is set as an initial condition, each node constituting the trajectory is treated as a mass point, and one or more required items imposed on the trajectory are expressed by force and added to each mass point. A trajectory correcting means for correcting the trajectory;
Computer program to function as
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008055681A JP2009211571A (en) | 2008-03-06 | 2008-03-06 | Course planning device, course planning method, and computer program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008055681A JP2009211571A (en) | 2008-03-06 | 2008-03-06 | Course planning device, course planning method, and computer program |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009211571A true JP2009211571A (en) | 2009-09-17 |
Family
ID=41184629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008055681A Pending JP2009211571A (en) | 2008-03-06 | 2008-03-06 | Course planning device, course planning method, and computer program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009211571A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010152684A (en) * | 2008-12-25 | 2010-07-08 | Toshiba Corp | Method and apparatus for generating trajectory of mobile body |
KR20110048330A (en) * | 2009-11-02 | 2011-05-11 | 삼성전자주식회사 | Path planning apparatus of robot and method thereof |
WO2011056633A1 (en) * | 2009-10-27 | 2011-05-12 | Battelle Memorial Institute | Semi-autonomous multi-use robot system and method of operation |
JP2011118609A (en) * | 2009-12-02 | 2011-06-16 | Toyota Motor Corp | Route preparation device |
JP2011161624A (en) * | 2010-01-12 | 2011-08-25 | Honda Motor Co Ltd | Trajectory planning method, trajectory planning system and robot |
CN102169344A (en) * | 2010-12-30 | 2011-08-31 | 南开大学 | Multi-robot cooperative exploring and mapping method with communication distances limited under unknown environments |
JP2012164061A (en) * | 2011-02-04 | 2012-08-30 | Honda Motor Co Ltd | Track planning method, track control method, track planning system, and track planning and control system |
US8825207B2 (en) | 2011-04-28 | 2014-09-02 | Honda Motor Co., Ltd. | Trajectory planning method, trajectory planning system and trajectory planning and control system |
CN106406338A (en) * | 2016-04-14 | 2017-02-15 | 中山大学 | Omnidirectional mobile robot autonomous navigation apparatus and method based on laser range finder |
CN106695802A (en) * | 2017-03-19 | 2017-05-24 | 北京工业大学 | Improved RRT<*> obstacle avoidance motion planning method based on multi-degree-of-freedom mechanical arm |
CN106774314A (en) * | 2016-12-11 | 2017-05-31 | 北京联合大学 | A kind of home-services robot paths planning method based on run trace |
US9995589B2 (en) | 2016-02-24 | 2018-06-12 | Honda Motor Co., Ltd. | Path plan generating apparatus for mobile body |
CN109176503A (en) * | 2018-07-27 | 2019-01-11 | 东南大学 | A kind of intelligent path detection robot and path detection method based on bionical antenna |
CN109298386A (en) * | 2018-10-17 | 2019-02-01 | 中国航天系统科学与工程研究院 | A kind of three-dimensional zone of ignorance quick detecting method based on multiple agent collaboration |
CN109571466A (en) * | 2018-11-22 | 2019-04-05 | 浙江大学 | A kind of seven freedom redundant mechanical arm dynamic obstacle avoidance paths planning method based on quick random search tree |
CN109910011A (en) * | 2019-03-29 | 2019-06-21 | 齐鲁工业大学 | A kind of mechanical arm barrier-avoiding method and mechanical arm based on multisensor |
CN110032187A (en) * | 2019-04-09 | 2019-07-19 | 清华大学 | Unmanned motor static-obstacle obstacle-avoiding route planning calculation method |
EP3581342A1 (en) | 2018-06-11 | 2019-12-18 | OMRON Corporation | Path planning apparatus, path planning method, and path planning program |
WO2021033594A1 (en) * | 2019-08-22 | 2021-02-25 | ソニー株式会社 | Information processing device, information processing method, and program |
JP2021077276A (en) * | 2019-11-13 | 2021-05-20 | ファナック株式会社 | Movement path generation device |
CN113084811A (en) * | 2021-04-12 | 2021-07-09 | 贵州大学 | Mechanical arm path planning method |
CN113352319A (en) * | 2021-05-08 | 2021-09-07 | 上海工程技术大学 | Redundant mechanical arm obstacle avoidance trajectory planning method based on improved fast expansion random tree |
CN113515123A (en) * | 2021-06-25 | 2021-10-19 | 北京精密机电控制设备研究所 | Robot real-time path planning method based on improved RRT algorithm |
US11493928B2 (en) | 2018-11-16 | 2022-11-08 | Toyota Jidosha Kabushiki Kaisha | Trajectory generation apparatus |
WO2023155923A1 (en) * | 2022-02-21 | 2023-08-24 | 中兴通讯股份有限公司 | Path planning method and apparatus and readable storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000020117A (en) * | 1998-06-29 | 2000-01-21 | Yaskawa Electric Corp | Method and device for planning operation route of robot |
JP2007531110A (en) * | 2004-03-26 | 2007-11-01 | レイセオン・カンパニー | System and method for adaptive path planning |
JP2008023630A (en) * | 2006-07-19 | 2008-02-07 | Toyota Motor Corp | Arm-guiding moving body and method for guiding arm |
-
2008
- 2008-03-06 JP JP2008055681A patent/JP2009211571A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000020117A (en) * | 1998-06-29 | 2000-01-21 | Yaskawa Electric Corp | Method and device for planning operation route of robot |
JP2007531110A (en) * | 2004-03-26 | 2007-11-01 | レイセオン・カンパニー | System and method for adaptive path planning |
JP2008023630A (en) * | 2006-07-19 | 2008-02-07 | Toyota Motor Corp | Arm-guiding moving body and method for guiding arm |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010152684A (en) * | 2008-12-25 | 2010-07-08 | Toshiba Corp | Method and apparatus for generating trajectory of mobile body |
WO2011056633A1 (en) * | 2009-10-27 | 2011-05-12 | Battelle Memorial Institute | Semi-autonomous multi-use robot system and method of operation |
US10011012B2 (en) | 2009-10-27 | 2018-07-03 | Battelle Memorial Institute | Semi-autonomous multi-use robot system and method of operation |
US9643316B2 (en) | 2009-10-27 | 2017-05-09 | Battelle Memorial Institute | Semi-autonomous multi-use robot system and method of operation |
KR101667031B1 (en) * | 2009-11-02 | 2016-10-17 | 삼성전자 주식회사 | Path planning apparatus of robot and method thereof |
KR20110048330A (en) * | 2009-11-02 | 2011-05-11 | 삼성전자주식회사 | Path planning apparatus of robot and method thereof |
JP2011118609A (en) * | 2009-12-02 | 2011-06-16 | Toyota Motor Corp | Route preparation device |
JP2011161624A (en) * | 2010-01-12 | 2011-08-25 | Honda Motor Co Ltd | Trajectory planning method, trajectory planning system and robot |
US8774968B2 (en) | 2010-01-12 | 2014-07-08 | Honda Motor Co., Ltd. | Trajectory planning method, trajectory planning system and robot |
CN102169344A (en) * | 2010-12-30 | 2011-08-31 | 南开大学 | Multi-robot cooperative exploring and mapping method with communication distances limited under unknown environments |
US8924013B2 (en) | 2011-02-04 | 2014-12-30 | Honda Motor Co., Ltd. | Method and system for path planning and controlling |
JP2012164061A (en) * | 2011-02-04 | 2012-08-30 | Honda Motor Co Ltd | Track planning method, track control method, track planning system, and track planning and control system |
US8825207B2 (en) | 2011-04-28 | 2014-09-02 | Honda Motor Co., Ltd. | Trajectory planning method, trajectory planning system and trajectory planning and control system |
US9995589B2 (en) | 2016-02-24 | 2018-06-12 | Honda Motor Co., Ltd. | Path plan generating apparatus for mobile body |
CN106406338A (en) * | 2016-04-14 | 2017-02-15 | 中山大学 | Omnidirectional mobile robot autonomous navigation apparatus and method based on laser range finder |
CN106406338B (en) * | 2016-04-14 | 2023-08-18 | 中山大学 | Autonomous navigation device and method of omnidirectional mobile robot based on laser range finder |
CN106774314A (en) * | 2016-12-11 | 2017-05-31 | 北京联合大学 | A kind of home-services robot paths planning method based on run trace |
CN106695802A (en) * | 2017-03-19 | 2017-05-24 | 北京工业大学 | Improved RRT<*> obstacle avoidance motion planning method based on multi-degree-of-freedom mechanical arm |
EP3581342A1 (en) | 2018-06-11 | 2019-12-18 | OMRON Corporation | Path planning apparatus, path planning method, and path planning program |
US11207780B2 (en) | 2018-06-11 | 2021-12-28 | Omron Corporation | Path planning apparatus, path planning method, and path planning program |
CN109176503A (en) * | 2018-07-27 | 2019-01-11 | 东南大学 | A kind of intelligent path detection robot and path detection method based on bionical antenna |
CN109298386A (en) * | 2018-10-17 | 2019-02-01 | 中国航天系统科学与工程研究院 | A kind of three-dimensional zone of ignorance quick detecting method based on multiple agent collaboration |
CN109298386B (en) * | 2018-10-17 | 2020-10-23 | 中国航天系统科学与工程研究院 | Three-dimensional unknown area rapid detection method based on multi-agent cooperation |
US11493928B2 (en) | 2018-11-16 | 2022-11-08 | Toyota Jidosha Kabushiki Kaisha | Trajectory generation apparatus |
CN109571466A (en) * | 2018-11-22 | 2019-04-05 | 浙江大学 | A kind of seven freedom redundant mechanical arm dynamic obstacle avoidance paths planning method based on quick random search tree |
CN109910011A (en) * | 2019-03-29 | 2019-06-21 | 齐鲁工业大学 | A kind of mechanical arm barrier-avoiding method and mechanical arm based on multisensor |
CN110032187B (en) * | 2019-04-09 | 2020-08-28 | 清华大学 | Unmanned motorcycle static obstacle avoidance path planning calculation method |
CN110032187A (en) * | 2019-04-09 | 2019-07-19 | 清华大学 | Unmanned motor static-obstacle obstacle-avoiding route planning calculation method |
WO2021033594A1 (en) * | 2019-08-22 | 2021-02-25 | ソニー株式会社 | Information processing device, information processing method, and program |
JP2021077276A (en) * | 2019-11-13 | 2021-05-20 | ファナック株式会社 | Movement path generation device |
JP7460356B2 (en) | 2019-11-13 | 2024-04-02 | ファナック株式会社 | Travel route generation device |
CN113084811A (en) * | 2021-04-12 | 2021-07-09 | 贵州大学 | Mechanical arm path planning method |
CN113084811B (en) * | 2021-04-12 | 2022-12-13 | 贵州大学 | Mechanical arm path planning method |
CN113352319A (en) * | 2021-05-08 | 2021-09-07 | 上海工程技术大学 | Redundant mechanical arm obstacle avoidance trajectory planning method based on improved fast expansion random tree |
CN113515123A (en) * | 2021-06-25 | 2021-10-19 | 北京精密机电控制设备研究所 | Robot real-time path planning method based on improved RRT algorithm |
CN113515123B (en) * | 2021-06-25 | 2024-04-12 | 北京精密机电控制设备研究所 | Robot real-time path planning method based on improved RRT algorithm |
WO2023155923A1 (en) * | 2022-02-21 | 2023-08-24 | 中兴通讯股份有限公司 | Path planning method and apparatus and readable storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009211571A (en) | Course planning device, course planning method, and computer program | |
JP4730440B2 (en) | Trajectory planning apparatus, trajectory planning method, and computer program | |
Ferrer et al. | Proactive kinodynamic planning using the extended social force model and human motion prediction in urban environments | |
US8666548B2 (en) | Path planning apparatus of robot and method thereof | |
US8825209B2 (en) | Method and apparatus to plan motion path of robot | |
US9411335B2 (en) | Method and apparatus to plan motion path of robot | |
JP5060619B2 (en) | Motion planning method, motion planning system, and recording medium | |
Shkolnik et al. | Reachability-guided sampling for planning under differential constraints | |
JP5998816B2 (en) | Route search method, route search device, robot control device, robot, and program | |
Xu et al. | Mechanical arm obstacle avoidance path planning based on improved artificial potential field method | |
Chen et al. | Trajectotree: Trajectory optimization meets tree search for planning multi-contact dexterous manipulation | |
CN115666870A (en) | Device and method for planning contact interaction trajectory | |
Leccese et al. | A swarm aggregation algorithm based on local interaction with actuator saturations and integrated obstacle avoidance | |
Waltersson et al. | Planning and control for cable-routing with dual-arm robot | |
JP2012157955A (en) | Device and method for controlling movement, and computer program | |
Stollenga et al. | Task-relevant roadmaps: A framework for humanoid motion planning | |
Gochev et al. | Motion planning for robotic manipulators with independent wrist joints | |
JP4760732B2 (en) | Route creation device | |
Das et al. | A modified real time A* algorithm and its performance analysis for improved path planning of mobile robot | |
Jung et al. | Potential-function-based shape formation in swarm simulation | |
Vahrenkamp et al. | Adaptive motion planning for humanoid robots | |
Blom et al. | Investigation of a bipedal platform for rapid acceleration and braking manoeuvres | |
Byl et al. | Algorithmic optimization of inverse kinematics tables for high degree-of-freedom limbs | |
Nasir | Adaptive rapidly-exploring-random-tree-star (RRT*)-smart: algorithm characteristics and behavior analysis in complex environments | |
Kumagai et al. | Bipedal locomotion planning for a humanoid robot supported by arm contacts based on geometrical feasibility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120619 |