CN106406338B - Autonomous navigation device and method of omnidirectional mobile robot based on laser range finder - Google Patents
Autonomous navigation device and method of omnidirectional mobile robot based on laser range finder Download PDFInfo
- Publication number
- CN106406338B CN106406338B CN201610236869.5A CN201610236869A CN106406338B CN 106406338 B CN106406338 B CN 106406338B CN 201610236869 A CN201610236869 A CN 201610236869A CN 106406338 B CN106406338 B CN 106406338B
- Authority
- CN
- China
- Prior art keywords
- mobile robot
- point
- node
- algorithm
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 230000008569 process Effects 0.000 claims abstract description 19
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 230000001133 acceleration Effects 0.000 claims abstract description 6
- 230000033001 locomotion Effects 0.000 claims description 33
- 238000013519 translation Methods 0.000 claims description 19
- 238000012937 correction Methods 0.000 claims description 11
- 230000007613 environmental effect Effects 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 11
- 238000013507 mapping Methods 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 6
- 238000011524 similarity measure Methods 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 238000010845 search algorithm Methods 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims 1
- 238000000844 transformation Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域technical field
本发明涉及移动机器人的自主导航的技术领域,更具体地,涉及一种基于激光测距仪的全向移动机器人的自主导航装置及其方法。The present invention relates to the technical field of autonomous navigation of mobile robots, and more particularly, relates to an autonomous navigation device and method of an omnidirectional mobile robot based on a laser range finder.
背景技术Background technique
智能移动机器人能在未知或部分未知的环境中自主运动,具备环境感知、行为规划、动态决策、执行决策等功能。机器人在自主运动过程中通常需要解决三个问题,即机器人的定位问题、机器人的任务规划问题以及机器人的行为规划问题。移动机器人在未知环境中由于缺乏先验地图信息,需要通过车载激光测距仪、单目、双目摄像机等传感器获取周围的环境信息,以构建环境地图并估计机器人当前的位置,即同步定位与建图(Simultaneous Localization and Mapping,SLAM)。基于所构建的地图信息,根据目标任务规划机器人的可行路径;机器人在沿着所规划的路径行进的过程中需要准确的定位信息,并根据实时位置信息和环境信息实现动态的行为决策,完成目标任务。Intelligent mobile robots can move autonomously in unknown or partially unknown environments, and have functions such as environmental perception, behavior planning, dynamic decision-making, and executive decision-making. Robots usually need to solve three problems in the process of autonomous movement, namely, the positioning problem of the robot, the task planning problem of the robot and the behavior planning problem of the robot. Due to the lack of prior map information in the unknown environment, mobile robots need to obtain surrounding environmental information through sensors such as vehicle-mounted laser rangefinders, monocular, and binocular cameras to construct an environmental map and estimate the current position of the robot, that is, synchronous positioning and Mapping (Simultaneous Localization and Mapping, SLAM). Based on the constructed map information, the feasible path of the robot is planned according to the target task; the robot needs accurate positioning information in the process of traveling along the planned path, and realizes dynamic behavior decision-making based on real-time location information and environmental information to complete the goal Task.
SLAM分为定位和建图两个方面,是移动机器人在未知环境中实现自主导航的核心技术。传统的航位推测法利用车载里程计等信息对机器人进行定位,但里程计存在累积误差,其定位准确率随着机器人的移动而降低。当环境地图已知时,可以将观测到的环境信息与已知的地图信息进行对比,从而实时修正机器人的位姿估计,降低定位的累计误差。而SLAM考虑的是环境信息未知的情况,一方面机器人的位姿估计需要先验地图信息,另一方面,地图的建立需要准确的机器人位姿信息,定位和建图相辅相承、互相影响,准确的定位提供准确的地图,准确的地图提供准确的定位。目前,SLAM以基于卡尔曼滤波和基于粒子滤波的SLAM方法为主,但随着机器人的移动以及地图的扩大,卡尔曼滤波器需要维持庞大的状态变量矩阵,而粒子滤波器的粒子数目也需要增加,因此基于卡尔曼滤波和粒子滤波的SLAM算法的计算复杂度随着机器人的移动而增加。同时,当机器人的运动学模型和观测模型均为非线性时,尤其当无法获得准确的观测模型时,将影响基于卡尔曼滤波和粒子滤波SLAM算法的准确性。本发明考虑基于迭代最近点算法(ICP)的SLAM算法,由于激光测距仪得到的点云数目有限,使用点匹配迭代计算方法的计算开销是固定的,相比基于卡尔曼滤波和粒子滤波的SLAM算法,ICPSLAM算法的计算复杂度降低,具有较好的实时性。SLAM is divided into two aspects of positioning and mapping, and is the core technology for mobile robots to realize autonomous navigation in unknown environments. The traditional dead reckoning method uses information such as the on-board odometer to locate the robot, but the odometer has accumulated errors, and its positioning accuracy decreases with the movement of the robot. When the environment map is known, the observed environment information can be compared with the known map information, so as to correct the pose estimation of the robot in real time and reduce the cumulative error of positioning. SLAM considers the situation where the environmental information is unknown. On the one hand, the pose estimation of the robot requires prior map information. On the other hand, the establishment of the map requires accurate robot pose information. Positioning and map building complement and influence each other. , accurate positioning provides accurate maps, and accurate maps provide accurate positioning. At present, SLAM is mainly based on Kalman filter and particle filter-based SLAM methods, but with the movement of the robot and the expansion of the map, the Kalman filter needs to maintain a huge state variable matrix, and the particle number of the particle filter also needs to be Therefore, the computational complexity of the SLAM algorithm based on Kalman filter and particle filter increases with the movement of the robot. At the same time, when both the kinematics model and the observation model of the robot are nonlinear, especially when the accurate observation model cannot be obtained, the accuracy of the SLAM algorithm based on Kalman filter and particle filter will be affected. The present invention considers the SLAM algorithm based on the iterative closest point algorithm (ICP). Due to the limited number of point clouds obtained by the laser range finder, the calculation overhead of using the point matching iterative calculation method is fixed. Compared with the SLAM algorithm based on Kalman filter and particle filter SLAM algorithm, ICPSLAM algorithm has reduced computational complexity and better real-time performance.
全局路径规划算法主要包括模糊规划算法、蚁群优化算法、粒子群算法、A*算法等方法,这些方法通常需要在一个确定的空间内对障碍物进行确切的建模和描述。此外,在环境趋于复杂或动态变化时,如何使机器人的路径全局最优或次优,如何避免所规划路径的震荡和死锁,这些仍是有待解决的问题。快速扩展随机树(RRT)算法是基于采样的单查询运动规划方法,通过状态空间的随机采样点,把搜索导向空白区域,从而找到一条从起始点到目标点的可行路径,适合复杂环境和变化场景的路径规划。Global path planning algorithms mainly include methods such as fuzzy planning algorithm, ant colony optimization algorithm, particle swarm optimization algorithm, A* algorithm, etc. These methods usually require exact modeling and description of obstacles in a certain space. In addition, when the environment tends to be complex or dynamically changing, how to make the robot's path globally optimal or suboptimal, and how to avoid oscillation and deadlock of the planned path are still problems to be solved. The Rapidly Extended Random Tree (RRT) algorithm is a sampling-based single-query motion planning method. Through random sampling points in the state space, the search is directed to a blank area, so as to find a feasible path from the starting point to the target point, which is suitable for complex environments and changes. Scenario path planning.
目前避障算法常见的有可视图法、人工势场法、向量场直方图法。本发明考虑使用基于障碍区域的避障算法,当移动机器人的期望速度落在建立的障碍区域时,对期望速度进行修正,在保证朝目标点前进的同时通过最小的修正量避开障碍物。At present, common obstacle avoidance algorithms include visual map method, artificial potential field method, and vector field histogram method. The present invention considers using the obstacle avoidance algorithm based on the obstacle area. When the expected speed of the mobile robot falls in the established obstacle area, the expected speed is corrected, and the obstacle is avoided through the minimum correction amount while ensuring the progress towards the target point.
发明内容Contents of the invention
本发明为克服上述现有技术所述的至少一种缺陷,提供一种基于激光测距仪的全向移动机器人的自主导航装置及其方法,利用激光测距仪对移动机器人进行定位,同时建立环境的二维平面地图,并根据目标任务进行自主导航,能在行进过程中自主避障的方法。In order to overcome at least one of the above-mentioned defects in the prior art, the present invention provides an autonomous navigation device and method for an omni-directional mobile robot based on a laser range finder. The laser range finder is used to locate the mobile robot, and at the same time establish A two-dimensional planar map of the environment, and autonomous navigation according to the target task, and a method that can autonomously avoid obstacles during the travel process.
为解决上述技术问题,本发明采用的技术方案是:一种基于激光测距仪的全向移动机器人的自主导航装置,其中,包括测量移动机器人轮子的移动距离的编码器、测量移动机器人的旋转角速度和加速度的惯性测量单元,编码器和惯性测量单元分别连接控制器,还包括激光测距仪,激光测距仪连接上位机,上位机连接控制器,控制器连接执行单元。In order to solve the above-mentioned technical problems, the technical solution adopted in the present invention is: an autonomous navigation device for an omnidirectional mobile robot based on a laser rangefinder, which includes an encoder for measuring the moving distance of the wheels of the mobile robot, and an encoder for measuring the rotation of the mobile robot. The inertial measurement unit for angular velocity and acceleration, the encoder and the inertial measurement unit are respectively connected to the controller, and a laser range finder is also included. The laser range finder is connected to the host computer, the host computer is connected to the controller, and the controller is connected to the execution unit.
本发明以三轮全向移动机器人为机器人运动平台,利用车载编码器和惯性测量单元获取移动机器人的位置信息和姿态信息(简称位姿信息),同时由车载激光测距仪获取移动机器人各方向距离最近的障碍物的点云信息。使用迭代最近点算法(ICP)将机器人当前的观测数据与之前的观测数据进行匹配,以修正移动机器人的位姿估计,同时建立环境的平面地图。在已知环境地图的情况下,设定目标任务点,使用快速搜索随机树算法(RRT)规划可行路径,对移动机器人进行导航控制。在自主导航的过程中,机器人根据实时激光数据检测障碍物,进行局部路径规划,实现自主避障。The present invention uses a three-wheeled omnidirectional mobile robot as a robot motion platform, uses a vehicle-mounted encoder and an inertial measurement unit to obtain position information and attitude information (referred to as position and posture information) of the mobile robot, and simultaneously uses a vehicle-mounted laser range finder to obtain all directions of the mobile robot. Point cloud information of the nearest obstacle. The iterative closest point algorithm (ICP) is used to match the robot's current observation data with the previous observation data to correct the pose estimation of the mobile robot and simultaneously build a planar map of the environment. When the environment map is known, set the target task point, use the rapid search random tree algorithm (RRT) to plan the feasible path, and control the navigation of the mobile robot. In the process of autonomous navigation, the robot detects obstacles based on real-time laser data, performs local path planning, and realizes autonomous obstacle avoidance.
本发明中,车载编码器测量移动机器人轮子的移动距离,惯性测量单元测量移动机器人的旋转角速度和加速度,车载嵌入式控制器获取编码器和惯性测量单元的测量值,结合移动机器人的运动学模型计算其位姿信息,发送给上位机系统;上位机系统同时获取激光测距仪的激光点云信息,经过算法计算得到移动机器人的运动速度的期望值(包括平移速度和旋转速度),并将运动速度期望值发送给车载嵌入式控制器;嵌入式控制器通过移动机器人运动学模型反解出车轮的运动速度,再应用PID算法对车轮的转速进行闭环控制。In the present invention, the vehicle-mounted encoder measures the moving distance of the wheels of the mobile robot, the inertial measurement unit measures the rotational angular velocity and acceleration of the mobile robot, and the vehicle-mounted embedded controller acquires the measured values of the encoder and the inertial measurement unit, combined with the kinematics model of the mobile robot Calculate its position and orientation information and send it to the host computer system; the host computer system simultaneously obtains the laser point cloud information of the laser rangefinder, calculates the expected value of the mobile robot's motion speed (including translation speed and rotation speed) through algorithm calculation, and sends the motion The speed expectation value is sent to the embedded controller on the vehicle; the embedded controller inversely solves the movement speed of the wheel through the kinematics model of the mobile robot, and then applies the PID algorithm to perform closed-loop control on the speed of the wheel.
进一步的,移动机器人底盘设有三个全向轮。优选的,所述的三个全向轮按等边三角形分布。Further, the chassis of the mobile robot is provided with three omnidirectional wheels. Preferably, the three omnidirectional wheels are distributed in an equilateral triangle.
利用所述的基于激光测距仪的全向移动机器人的自主导航装置的控制方法,其中,包括以下步骤:Utilize the control method of the autonomous navigation device of the omnidirectional mobile robot based on the described laser range finder, wherein, comprise the following steps:
S1.同步定位与地图构建;S1. Simultaneous positioning and map construction;
S2.路径规划;S2. Path planning;
S3.位置跟踪与自主避障。S3. Position tracking and autonomous obstacle avoidance.
本装置包括同步定位与建图,路径规划与自主避障三个主要技术模块。同步定位与建图采用ICP-SLAM算法,首先利用移动机器人的里程计和惯性传感器,并结合机器人的运动学模型预估移动机器人的位姿信息,之后使用ICP算法对激光点云信息和地图信息进行对比,对位姿进行修正,并更新地图信息。全局路径规划模块是在地图和初始位置已知的情况下,设定目标位置,使用RRT算法,在保证机器人不与墙壁等障碍物碰撞的前提下,寻找优化的可行路径。自主避障模块使用ICP算法得到准确的定位信息,并根据规划的全局路径计算期望的运动速度,同时利用激光点云信息判断前进方向上的障碍物,通过局部路径规划对期望的机器人运动速度进行动态矫正以实现机器人在行进中的自主避障。This device includes three main technical modules: synchronous positioning and mapping, path planning and autonomous obstacle avoidance. Synchronous positioning and mapping adopt the ICP-SLAM algorithm. First, the odometer and inertial sensor of the mobile robot are used, combined with the kinematics model of the robot to estimate the pose information of the mobile robot, and then the ICP algorithm is used to analyze the laser point cloud information and map information. Make a comparison, correct the pose, and update the map information. The global path planning module is to set the target position when the map and the initial position are known, and use the RRT algorithm to find an optimized feasible path under the premise of ensuring that the robot does not collide with obstacles such as walls. The autonomous obstacle avoidance module uses the ICP algorithm to obtain accurate positioning information, and calculates the expected movement speed according to the planned global path. At the same time, it uses the laser point cloud information to judge obstacles in the forward direction, and calculates the expected robot movement speed through local path planning. Dynamic correction to realize the robot's autonomous obstacle avoidance during travel.
本发明针对移动机器人在未知室内环境中基于激光测距仪的自主导航问题提出了较为完整的解决方案,具体包括了同时定位与建图、路径规划、位置跟踪以及避障算法。首先,通过编码器和惯性测量单元获取移动机器人的位姿信息,利用激光测距仪获取环境信息,使用ICP-SLAM算法进行同步定位与建图。然后根据目标任务使用RRT算法规划全局路径,并根据移动机器人的实时位置和环境信息设计避障策略,作局部路径规划。The present invention proposes a relatively complete solution to the problem of autonomous navigation of a mobile robot based on a laser range finder in an unknown indoor environment, specifically including simultaneous positioning and mapping, path planning, position tracking and obstacle avoidance algorithms. First, the position and orientation information of the mobile robot is obtained through the encoder and the inertial measurement unit, the environmental information is obtained by the laser rangefinder, and the ICP-SLAM algorithm is used for synchronous positioning and mapping. Then use the RRT algorithm to plan the global path according to the target task, and design the obstacle avoidance strategy according to the real-time position and environmental information of the mobile robot, and make local path planning.
与现有技术相比,有益效果是:本发明设计了将当前获取的激光点云信息与已构建地图进行匹配的全局ICP算法,以及将当前与上一时刻的激光点云信息进行匹配的局部CP算法,并综合全局ICP算法与局部ICP算法对移动机器人的位姿信息进行修正,提高了位姿估计的准确性,同时降低了匹配失败的情况。Compared with the prior art, the beneficial effect is that the present invention designs a global ICP algorithm that matches the currently acquired laser point cloud information with the constructed map, and a local ICP algorithm that matches the current and previous laser point cloud information. CP algorithm, and integrated global ICP algorithm and local ICP algorithm to correct the pose information of the mobile robot, which improves the accuracy of pose estimation and reduces the failure of matching.
设计了包括内环和外环两个部分的位置跟踪算法,其中,内环使用编码器和惯性测量单元预估移动机器人的位姿信息;在外环部分,利用内环预估的位姿信息,并结合激光点云与已知地图,对机器人的位姿信息进行进一步修正。基于内环和外环的位置跟踪策略,在确保定位准确的同时,提高了系统的实时性,避免由于计算耗时造成的控制延迟。A position tracking algorithm including two parts, the inner loop and the outer loop, is designed. The inner loop uses the encoder and the inertial measurement unit to estimate the pose information of the mobile robot; in the outer loop, the estimated pose information of the inner loop is used , and combine the laser point cloud and the known map to further correct the pose information of the robot. The position tracking strategy based on the inner and outer rings ensures accurate positioning while improving the real-time performance of the system and avoiding control delays caused by time-consuming calculations.
针对移动机器人与障碍物之间的距离的四种不同情况,分别设计了相应的避障策略,使得移动机器人在躲避障碍物的同时能够尽量沿着最短的路径前进。According to the four different situations of the distance between the mobile robot and the obstacle, the corresponding obstacle avoidance strategies are designed respectively, so that the mobile robot can move forward along the shortest path as far as possible while avoiding the obstacle.
附图说明Description of drawings
图1为移动机器人系统框图。Figure 1 is a block diagram of the mobile robot system.
图2为三轮全向移动机器人的运动学模型示意图。Figure 2 is a schematic diagram of the kinematics model of the three-wheeled omnidirectional mobile robot.
图3为ICP-SLAM算法流程图。Figure 3 is a flowchart of the ICP-SLAM algorithm.
图4为位置跟踪与自主避障算法流程图。Figure 4 is a flow chart of position tracking and autonomous obstacle avoidance algorithm.
图5为避障算法示意图。Figure 5 is a schematic diagram of the obstacle avoidance algorithm.
具体实施方式Detailed ways
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。The accompanying drawings are for illustrative purposes only, and should not be construed as limitations on this patent; in order to better illustrate this embodiment, certain components in the accompanying drawings will be omitted, enlarged or reduced, and do not represent the size of the actual product; for those skilled in the art It is understandable that some well-known structures and descriptions thereof may be omitted in the drawings. The positional relationship described in the drawings is for illustrative purposes only, and should not be construed as a limitation on this patent.
如图1所示,一种基于激光测距仪的全向移动机器人的自主导航装置,其中,包括测量移动机器人轮子的移动距离的编码器、测量移动机器人的旋转角速度和加速度的惯性测量单元,编码器和惯性测量单元分别连接控制器,还包括激光测距仪,激光测距仪连接上位机,上位机连接控制器,控制器连接执行单元。As shown in Figure 1, an autonomous navigation device for an omnidirectional mobile robot based on a laser rangefinder, including an encoder for measuring the moving distance of the wheels of the mobile robot, an inertial measurement unit for measuring the rotational angular velocity and acceleration of the mobile robot, The encoder and the inertial measurement unit are respectively connected to the controller, and a laser range finder is also included. The laser range finder is connected to the upper computer, the upper computer is connected to the controller, and the controller is connected to the execution unit.
本实施例中,车载编码器测量移动机器人轮子的移动距离,惯性测量单元测量移动机器人的旋转角速度和加速度,车载嵌入式控制器获取编码器和惯性测量单元的测量值,结合移动机器人的运动学模型计算其位姿信息,发送给上位机系统;上位机系统同时获取激光测距仪的激光点云信息,经过算法计算得到移动机器人的运动速度的期望值(包括平移速度和旋转速度),并将运动速度期望值发送给车载嵌入式控制器;嵌入式控制器通过移动机器人运动学模型反解出车轮的运动速度,再应用PID算法对车轮的转速进行闭环控制。In this embodiment, the vehicle-mounted encoder measures the moving distance of the wheels of the mobile robot, and the inertial measurement unit measures the rotational angular velocity and acceleration of the mobile robot. The model calculates its pose information and sends it to the host computer system; the host computer system obtains the laser point cloud information of the laser rangefinder at the same time, calculates the expected value of the mobile robot's motion speed (including translation speed and rotation speed) through algorithm calculation, and sends The expected value of the movement speed is sent to the on-board embedded controller; the embedded controller inversely solves the movement speed of the wheel through the kinematics model of the mobile robot, and then applies the PID algorithm to perform closed-loop control on the speed of the wheel.
如图2所示,移动机器人底盘由三个全向轮按等边三角形分布构成,通过控制三个全向轮的转速可以实现全向移动机器人在平面上360°全方位的平移以及旋转。全向移动机器人的运动分为旋转和平移两部分。令三个车轮的速度分别为(v1,v2,v3),移动机器人体坐标系沿x轴和y轴的移动速度为(vx,vy)。在只有平移没有旋转的情况下,全向移动机器人的运动学方程为:As shown in Figure 2, the chassis of the mobile robot is composed of three omnidirectional wheels distributed in an equilateral triangle. By controlling the speed of the three omnidirectional wheels, the omnidirectional mobile robot can achieve 360° translation and rotation on the plane. The motion of an omnidirectional mobile robot is divided into two parts: rotation and translation. Let the speeds of the three wheels be (v 1 , v 2 , v 3 ), and the moving speeds of the mobile robot body coordinate system along the x-axis and y-axis be (v x , v y ). In the case of only translation without rotation, the kinematic equation of the omnidirectional mobile robot is:
当只存在旋转,没有平移的时候,旋转角速度为w,则有:When there is only rotation and no translation, the angular velocity of rotation is w, then:
v1=v2=v3=L*w. (2)v 1 =v 2 =v 3 =L*w. (2)
当同时存在旋转和平移时,各全向轮的速度为平移和旋转运动的速度叠加。若已知各全向轮的移动速度,可推导移动机器人的平移速度和旋转速度。由于平移和旋转运动的强耦合性,在控制过程中需尽量让机器人不同时进行平移和旋转运动,以提高移动机器人位姿估计的准确性。When there is rotation and translation at the same time, the speed of each omnidirectional wheel is the superposition of the speed of translation and rotation. If the moving speed of each omni-directional wheel is known, the translation speed and rotation speed of the mobile robot can be deduced. Due to the strong coupling of translation and rotation, it is necessary to make the robot not perform translation and rotation at the same time during the control process, so as to improve the accuracy of the pose estimation of the mobile robot.
同步定位与地图构建模块如图3所示,根据机载里程计和惯性传感器获取移动机器人的移动信息,结合运动学模型预估移动机器人的位姿信息。在当前已有的地图中获取预估位置周围的点云信息,作为虚拟的模型点集,同时使用激光测距仪获取的当前环境真实的点云信息作为数据点集,两者进行ICP算法匹配,得到位姿信息全局矫正值。另一方面使用上一次获取的激光点云信息和当前获取的点云信息作ICP匹配得到位姿信息的局部矫正值。根据匹配的误差值对两组矫正值做加权得到最后的矫正位姿信息。同时更新地图信息,加入当前的激光观测值。The synchronous positioning and map building module is shown in Figure 3. According to the onboard odometer and inertial sensor, the movement information of the mobile robot is obtained, and the pose information of the mobile robot is estimated in combination with the kinematics model. Obtain the point cloud information around the estimated position in the current existing map as a virtual model point set, and use the real point cloud information of the current environment obtained by the laser rangefinder as a data point set, and perform ICP algorithm matching between the two , to get the global correction value of the pose information. On the other hand, the local correction value of the pose information is obtained by using the laser point cloud information acquired last time and the currently acquired point cloud information for ICP matching. According to the matching error value, the two sets of correction values are weighted to obtain the final corrected pose information. At the same time, update the map information and add the current laser observation value.
迭代最近点算法是同步定位与地图构建模块的核心算法,其通过迭代循环寻找数据点集跟模型点集的最近点,构成匹配对,并求解数据点集相对于与模型点集的旋转矩阵Rk和平移向量Tk,使得每次迭代中相似性度量SLTF最小。ICP及其各种改进归类可归为以下几个步骤:1.选择数据点集P和模型点集M的子集。2.寻找匹配点集对。3给每个匹配对赋予权重。4.剔除某些匹配对。5寻找几何变换最小化相似性度量SLTF。具体步骤如下:The iterative closest point algorithm is the core algorithm of the synchronous positioning and map building module. It finds the closest point between the data point set and the model point set through an iterative cycle to form a matching pair, and solves the rotation matrix R of the data point set relative to the model point set k and the translation vector T k such that the similarity measure S LTF is minimized in each iteration. The classification of ICP and its various improvements can be classified into the following steps: 1. Select a subset of data point set P and model point set M. 2. Find matching point-set pairs. 3 Assign weights to each matching pair. 4. Eliminate certain matching pairs. 5 Find the geometric transformation that minimizes the similarity measure S LTF . Specific steps are as follows:
1:初始化旋转矩阵R0和平移向量T0,随机选取或者通过其它条件获得。1: Initialize the rotation matrix R 0 and the translation vector T 0 , which are randomly selected or obtained through other conditions.
2:对数据点集P的每个点都在模型点集中找到最近的一个点构成匹配对,同时去掉错误的匹配对,构成匹配点集对:2: For each point of the data point set P, find the nearest point in the model point set to form a matching pair, and remove the wrong matching pair at the same time to form a matching point set pair:
N={(i,j)|xi∈P,yj∈M,yj=argmin(||(Rk-1xi+Tk-1-yj)||2)}. (3)N={(i,j)|x i ∈P,y j ∈M,y j =argmin(||(R k - 1 x i +T k - 1 -y j )|| 2 )}. (3 )
匹配距离平方之和为The sum of squared matching distances is
3:寻找最优的几何变换(即旋转矩阵Rk和平移向量Tk)使得变换后的数据点集P’和模型点集M距离平方之和(即相似性度量)最小:3: Find the optimal geometric transformation (that is, the rotation matrix R k and the translation vector T k ) to minimize the sum of squared distances between the transformed data point set P' and the model point set M (ie, the similarity measure):
4:若达到满足停止条件或者迭代次数达到上限值匹配结束,否则返回步骤2。ICP算法的停止条件有两种:(1)标准差e=SLTS/|Np|足够小;(2)前后两次的标准差变化|e-e'|/e足够小。4: If the stop condition is satisfied or the number of iterations reaches the upper limit, the matching ends, otherwise, return to step 2. There are two stopping conditions of the ICP algorithm: (1) the standard deviation e=S LTS /|N p | is small enough; (2) the change of the standard deviation |e-e'|/e between two times before and after is small enough.
在步骤2中,寻找最近点的方法常用的有基于k-d树和基于Delaunary三角划分的最近点搜索算法。实验研究结果表明,k-d树适合高维点集的点搜索,而基于Delaunay三角化算法更适合于低维点集,故本发明考虑使用基于Delaunary三角划分的最近点搜索算法。该算法将散点集合划分成不均匀的三角形网格,且网格满足两个基本准则,其一是空圆特性,即在Delaunay三角形网中任一个三角形网格的外接圆范围内不会有其它点存在。其二是最大化最小角特性,即在散点集可能形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大。在ICP算法中,首先将模型点集M进行Delaunary三角划分,然后采用三角划分搜索策略找到数据点集P在模型点集中的最近点作为对应点,构成匹配对。In step 2, the methods for finding the nearest point are commonly used based on the k-d tree and the nearest point search algorithm based on Delaunary triangulation. Experimental research results show that the k-d tree is suitable for point search of high-dimensional point sets, and the algorithm based on Delaunay triangulation is more suitable for low-dimensional point sets, so the present invention considers using the nearest point search algorithm based on Delaunay triangulation. The algorithm divides the set of scattered points into uneven triangular grids, and the grids meet two basic criteria. One is the empty circle feature, that is, there will be no Other points exist. The second is to maximize the minimum angle property, that is, in the possible triangulations formed by the scatter set, the minimum angle of the triangle formed by the Delaunay triangulation is the largest. In the ICP algorithm, firstly, the model point set M is delaunary triangulated, and then the triangulation search strategy is used to find the closest point of the data point set P in the model point set as the corresponding point to form a matching pair.
理想情况下,数据点集P和模型点集M能够完全匹配,若数据点集中一点xp在模型点集M中找到对应点ypm,则模型点集中ypm在数据点集中找到的对应点也应该是xp。可依此作为匹配对的评判准则。令数据点集中Px1在模型点集中的对应点为My1,模型点集中My1的在数据点集的对应点为Px2,Px2的对应点为My2。当满足下列关系是,我们认为对应点的寻找是正确的,否则剔除该对应关系。Ideally, the data point set P and the model point set M can be completely matched. If a point x p in the data point set finds the corresponding point y pm in the model point set M, then the corresponding point in the model point set y pm found in the data point set It should also be x p . This can be used as a criterion for judging matching pairs. Let the corresponding point of P x1 in the data point set in the model point set be M y1 , the corresponding point of M y1 in the model point set in the data point set be P x2 , and the corresponding point of P x2 be M y2 . When the following relationship is satisfied, we believe that the search for the corresponding point is correct, otherwise the corresponding relationship is eliminated.
其中ε某个跟标准差相关的常数。where ε is a constant related to the standard deviation.
步骤3中的寻找最佳的几何变换常用方法有SVD奇异值分解,四元组,正交矩阵,双四元组方法等,本方案采用的是SVD分解的方法。Common methods for finding the best geometric transformation in step 3 include SVD singular value decomposition, quaternion, orthogonal matrix, double quaternion method, etc. This scheme adopts the method of SVD decomposition.
在同步定位与建图过程中,将预估的移动机器人的位姿信息作为ICP算法的初始估计,估计值与真值只有微小误差,可大大减小ICP算法的迭代次数,提高收敛速度。同时使用已有的地图上预估的移动机器人位置周围的点云信息作为模型点集,进一步减少模型点集的大小,提高ICP算法计算速度。In the process of synchronous positioning and mapping, the estimated pose information of the mobile robot is used as the initial estimate of the ICP algorithm. There is only a small error between the estimated value and the true value, which can greatly reduce the number of iterations of the ICP algorithm and improve the convergence speed. At the same time, the point cloud information around the estimated mobile robot position on the existing map is used as the model point set to further reduce the size of the model point set and improve the calculation speed of the ICP algorithm.
在已知环境地图和初始位置Ps的情况下,设定目标位置Pe,使用快速扩展随机树(RRT)算法进行全局路径规划。RRT算法是以状态空间中的一个初始点作为根节点,通过随机采样扩展的方式,逐渐增加叶节点,最终生成一棵随机扩展树。当随机树的叶节点中包含了目标点或目标区域中的点时,从初始点到目标点之间的一条以随机树的叶节点组成的路径就是规划路径。规划路径以一系列的离散节点形式给出,相邻节点间不存在障碍物,可根据规划的路径直接到达目标位置点。考虑到在实际环境中,由于移动机器人运动惯性以及未知障碍物的存在,移动机器人不能严格按照规划的路径运动。在以节点形式给出的规划路径中,移动机器人可将一个个节点作为子运动目标,根据实际的情况进行局部路径规划,减少由于偏离轨迹或未知障碍物等原因而需要重新规划全局路径的情况,提高了导航过程的鲁棒性。When the environment map and the initial position P s are known, the target position P e is set, and the global path planning is carried out by using the rapid expansion random tree (RRT) algorithm. The RRT algorithm uses an initial point in the state space as the root node, gradually increases the leaf nodes through random sampling and expansion, and finally generates a random expansion tree. When the leaf nodes of the random tree contain the target point or points in the target area, a path composed of leaf nodes of the random tree from the initial point to the target point is the planned path. The planned path is given in the form of a series of discrete nodes, there are no obstacles between adjacent nodes, and the target location point can be directly reached according to the planned path. Considering that in the actual environment, due to the inertia of the mobile robot and the existence of unknown obstacles, the mobile robot cannot strictly follow the planned path. In the planned path given in the form of nodes, the mobile robot can use each node as a sub-movement target, and perform local path planning according to the actual situation, reducing the need to re-plan the global path due to deviation from the trajectory or unknown obstacles. , which improves the robustness of the navigation process.
考虑到移动机器人的体积大小,使用RRT算法寻找路径前先对环境地图进行膨胀处理,膨胀的区域称为碰撞区域S,从而将移动机器人的体积转移到障碍物中。在RRT算法过程中,将移动机器人看为质点处理,当代表移动机器人的质点位于碰撞区域时,在实际环境中,移动机器人已经与障碍物发生碰撞。Considering the size of the mobile robot, the environment map is expanded before using the RRT algorithm to find the path. The expanded area is called the collision area S, so that the volume of the mobile robot is transferred to the obstacle. In the process of RRT algorithm, the mobile robot is treated as a particle. When the particle representing the mobile robot is located in the collision area, in the actual environment, the mobile robot has collided with the obstacle.
RRT算法假设搜索树为T,当前节点数目为N,其节点为tij(tj),j为当前节点编号,i为其父节点编号。以初始位置作为搜索树的根节点t01,地图上两点构成的线段为L(p1,p2)。在地图空白区域产生随机点p(即当移动机器人位于随机点时不碰撞障碍物)。在目前已有的随机树中找到跟随机点最近的可直接相通的节点pk,即节点和随机点之间没有障碍物遮挡且不存在碰撞区域。The RRT algorithm assumes that the search tree is T, the number of current nodes is N, its nodes are ti j (t j ), j is the number of the current node, and i is the number of its parent node. Taking the initial position as the root node t 01 of the search tree, the line segment formed by two points on the map is L(p 1 ,p 2 ). Generate a random point p in the blank area of the map (that is, the mobile robot does not collide with obstacles when it is at a random point). Find the nearest directly connected node p k following the random point in the existing random tree, that is, there is no obstacle blocking and no collision area between the node and the random point.
将该节点作为父节点,沿父节点和随机点的连线方向扩展搜索树,产生新的子节点tk(N+1),且子节点和父节点的距离为步长s。Take this node as the parent node, expand the search tree along the direction of the connection between the parent node and the random point, and generate a new child node t k(N+1) , and the distance between the child node and the parent node is the step size s.
tk(N+1)={t|t∈L(tk,p),||t-tk||=s}. (9)t k(N+1) ={t|t∈L(t k ,p),||tt k ||=s}. (9)
不断产生随机点扩展随机树,直到随机树的子节点到达目标点,从该节点及其父节点回溯即为找到的路径path=(p1,p2,...,pn),n为路径的节点数目。Continuously generate random points to expand the random tree until the child node of the random tree reaches the target point, and backtracking from the node and its parent node is the found path path=(p 1 ,p 2 ,...,p n ), n is The number of nodes in the path.
通过RRT算法得到以一系列节点构成的路径,但往往不是最优路径,不相邻的节点存在直接到达的可能,可对其进一步优化。优化步骤如下:The path composed of a series of nodes is obtained through the RRT algorithm, but it is often not the optimal path. There is a possibility of direct arrival of non-adjacent nodes, which can be further optimized. The optimization steps are as follows:
从初始节点开始,判断节点i和节点i+2是否相通,即移动机器人可否直接从节点i直线运动到节点i+2;若可以则去掉节点i+1,下一步判断节点i和节点i+3;若不能直接相通,下一步判断节点i+1和节点i+3。以此类推。类似的也可同时从目标点位置开始判断。Starting from the initial node, judge whether node i and node i+2 are connected, that is, whether the mobile robot can directly move from node i to node i+2 in a straight line; if possible, remove node i+1, and then judge node i and node i+ 3; If they cannot be connected directly, the next step is to judge node i+1 and node i+3. and so on. Similarly, it can also be judged from the position of the target point at the same time.
位置跟踪与自主避障,该模块包括位置跟踪和避障两部分。位置跟踪得到准确的位姿信息作为避障算法的输入,避障算法依据规划路径和当前的位姿信息计算期望的移动速度,并结合激光传感器信息对期望速度进行修正,最后将修正的运动速度向移动机器人发送。如图4所示。Position tracking and autonomous obstacle avoidance, this module includes two parts: position tracking and obstacle avoidance. Position tracking obtains accurate pose information as the input of the obstacle avoidance algorithm. The obstacle avoidance algorithm calculates the expected moving speed based on the planned path and the current pose information, and corrects the expected speed by combining the laser sensor information. Finally, the corrected moving speed Send to the mobile robot. As shown in Figure 4.
跟踪定位过程与定位建图过程类似,使用里程计和惯性传感器预估移动机器人的位姿,使用ICP算法对位姿信息进行修正。由于激光信息的获取频率最高只有10HZ,ICP算法在最差的情况计算频率为3HZ。为了保证对机器人的实时控制,设计了内环和外环两部分的跟踪算法。内环部分将航位推测法预估的位姿信息作为避障算法部分的输入,控制频率为15Hz,外环使用ICP算法对位姿进行修正,将修正的位姿信息作为避障算法部分的输入,最低控制频率为3HZ。如图3所示,在t时刻得到了移动机器人的预估位姿,包括世界坐标下x轴和y轴的位置以及移动机器人的偏航角Xt=(xt,yt,αt),同时将获取的激光信息与已知地图的信息进行ICP算法匹配,此时将预估位姿Xt作为避障算法的输入。在t+1,t+2,…,t+k-1时刻,将当前时刻预估的位姿信息Xt+1,Xt+2,...,Xt+k-1作为避障算法的输入。在t+k时刻预估得到的移动机器人的位姿为Xt+k,此时t时刻开始进行运算的ICP算法完成匹配,得到t时刻的修正位姿考虑激光测距仪的采样频率,我们设定t时刻和t+k时刻的时间间隔需大于0.1s。由此移动机器人的修正位姿为:The tracking and positioning process is similar to the positioning and mapping process. The odometer and inertial sensor are used to estimate the pose of the mobile robot, and the ICP algorithm is used to correct the pose information. Since the acquisition frequency of the laser information is only 10HZ at the highest, the calculation frequency of the ICP algorithm is 3HZ in the worst case. In order to ensure the real-time control of the robot, two tracking algorithms, the inner loop and the outer loop, are designed. The inner loop uses the pose information estimated by the dead reckoning method as the input of the obstacle avoidance algorithm, and the control frequency is 15Hz. The outer loop uses the ICP algorithm to correct the pose, and uses the corrected pose information as the input of the obstacle avoidance algorithm. Input, the minimum control frequency is 3HZ. As shown in Figure 3, the estimated pose of the mobile robot is obtained at time t, including the positions of the x-axis and y-axis in the world coordinates and the yaw angle of the mobile robot X t =(x t ,y t ,α t ) , at the same time, the acquired laser information is matched with the known map information by the ICP algorithm, and the estimated pose X t is used as the input of the obstacle avoidance algorithm. At t+1, t+2,..., t+k-1, use the estimated pose information X t+1 , X t+2 ,..., X t+k-1 at the current moment as obstacle avoidance input to the algorithm. The estimated pose of the mobile robot at time t+k is X t+k . At this time, the ICP algorithm that starts computing at time t completes the matching and obtains the corrected pose at time t. Considering the sampling frequency of the laser rangefinder, we set the time interval between time t and time t+k to be greater than 0.1s. Therefore, the corrected pose of the mobile robot is:
我们将修正的位姿作为避障算法的输入,同时获取t+k时刻的激光信息,按照上述步骤再次进行ICP算法的匹配以修正机器人的位姿信息。The pose we will correct As the input of the obstacle avoidance algorithm, the laser information at time t+k is obtained at the same time, and the ICP algorithm is matched again according to the above steps to correct the pose information of the robot.
如图4所示,在获取了移动机器人的位姿信息后,避障算法依据实时环境信息作局部路径规划。首先确定当前的运动目标,由于规划路径以节点的形式给出,每一个节点即为一个子运动目标,当到达当前目标节点附近或判断移动机器人位置可越过当前目标节点沿直线运动到下一节点时,则作目标节点切换,也即将下一个路径节点作为目标节点。之后根据当前位置和目标节点位置计算移动机器人的期望运动方向,利用避障算法对运动方向进行修正,并将计算的平移与旋转速度发送给移动机器人控制其运动。As shown in Figure 4, after obtaining the pose information of the mobile robot, the obstacle avoidance algorithm makes local path planning based on the real-time environment information. First determine the current moving target. Since the planned path is given in the form of nodes, each node is a sub-moving target. When it reaches the vicinity of the current target node or judges the position of the mobile robot, it can move to the next node along a straight line across the current target node. When , switch the target node, that is, the next path node will be the target node. Then calculate the expected direction of motion of the mobile robot based on the current position and the position of the target node, use the obstacle avoidance algorithm to correct the direction of motion, and send the calculated translation and rotation speeds to the mobile robot to control its motion.
RRT算法规划了一条可行路径,但在实际控制过程中,由于移动机器人的运动学特性以及环境中存在未知障碍物等原因,移动机器人并不会完全按照预期的路径运动,需要根据当前的实时位姿信息、移动速度以及环境信息进行局部路径规划,以避开障碍物同时向目标靠近。The RRT algorithm plans a feasible path, but in the actual control process, due to the kinematics characteristics of the mobile robot and unknown obstacles in the environment, the mobile robot will not move completely according to the expected path, and needs to be based on the current real-time position. Attitude information, moving speed and environmental information are used for local path planning to avoid obstacles and approach the target at the same time.
局部路径规划算法如图5所示。安全距离设定为d。令当前位置为S,目标位置为E,理想的运动方向为VSE。利用上述信息预测下一个控制周期内的预测位置P。将避障过程分为以下四种情况:The local path planning algorithm is shown in Figure 5. The safe distance is set to d. Let the current position be S, the target position be E, and the ideal moving direction be V SE . The predicted position P in the next control cycle is predicted by using the above information. The obstacle avoidance process is divided into the following four situations:
(1)图5(a)所示,障碍物中与当前位置S距离最近的点为O1,如果两者距离SO1小于d,则表明移动机器人即将发生碰撞,此时不考虑目标点的位置,移动机器人向远离点O1的方向运动。(1) As shown in Figure 5(a), the point closest to the current position S among the obstacles is O1. If the distance between the two is less than d, it indicates that the mobile robot is about to collide. At this time, the position of the target point is not considered. The mobile robot moves away from the point O1.
(2)若SO1大于d,则找到距离预测位置P最近的障碍物点O,以点O为圆心,d为半径建立障碍区域VO,即图5(b)中的阴影部分。若期望的运动方向VSE没有落在该区域内,则表明机器人将不会跟该点碰撞,可以保持期望速度不变。(2) If SO1 is greater than d, then find the obstacle point O closest to the predicted position P, and establish the obstacle area VO with point O as the center and radius d as the shaded part in Figure 5(b). If the desired motion direction V SE does not fall within this area, it means that the robot will not collide with this point, and the desired speed can be kept unchanged.
(3)如图5(c)所示,若VSE落在障碍区域VO区间内,在有限时间内,移动机器人将发生碰撞,此时需要对速度方向进行修正。此时若点P位于障碍区域之外,寻找点S与圆VO的切点T,则最终的运动方向将为切线方向:(3) As shown in Figure 5(c), if V SE falls within the obstacle zone VO, the mobile robot will collide within a limited time, and the velocity direction needs to be corrected at this time. At this time, if the point P is outside the obstacle area, find the tangent point T between the point S and the circle VO, then the final movement direction will be the tangent direction:
(4)如图5(d)所示,若点P位于障碍区域VO之内,此时速度VSE的修正量为方向,修正后的速度为:(4) As shown in Figure 5(d), if the point P is located within the obstacle area VO, the correction amount of the velocity V SE at this time is direction, the corrected velocity is:
由于使用的激光测距仪的测量范围为240°,当机器人最终前进方向与当前方向相差较大时,令其做旋转运动,以使移动机器人能够充分测量到前进方向的环境信息,避免因检测不到障碍物而发生碰撞。在其余的情况下,控制移动机器人仅做平移运动,避免因同时发生旋转和平移运动而导致定位误差增加。Since the measurement range of the laser rangefinder used is 240°, when the final direction of the robot is far from the current direction, it should be rotated so that the mobile robot can fully measure the environmental information in the direction of progress and avoid the Collision occurs without reaching an obstacle. In the remaining cases, the mobile robot is controlled to do translational motion only, avoiding the increase of positioning error due to simultaneous rotation and translational motion.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Apparently, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. All modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610236869.5A CN106406338B (en) | 2016-04-14 | 2016-04-14 | Autonomous navigation device and method of omnidirectional mobile robot based on laser range finder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610236869.5A CN106406338B (en) | 2016-04-14 | 2016-04-14 | Autonomous navigation device and method of omnidirectional mobile robot based on laser range finder |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106406338A CN106406338A (en) | 2017-02-15 |
CN106406338B true CN106406338B (en) | 2023-08-18 |
Family
ID=58005371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610236869.5A Active CN106406338B (en) | 2016-04-14 | 2016-04-14 | Autonomous navigation device and method of omnidirectional mobile robot based on laser range finder |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106406338B (en) |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108571960A (en) * | 2017-03-09 | 2018-09-25 | 深圳市朗驰欣创科技股份有限公司 | A kind of localization method and positioning device |
CN106695802A (en) * | 2017-03-19 | 2017-05-24 | 北京工业大学 | Improved RRT<*> obstacle avoidance motion planning method based on multi-degree-of-freedom mechanical arm |
CN107031741B (en) * | 2017-04-24 | 2019-06-04 | 北京京东尚科信息技术有限公司 | The bearing calibration of car body pose and device |
CN107194332A (en) * | 2017-05-09 | 2017-09-22 | 重庆大学 | A kind of Mental rotation mechanism implementation model for being translated and being rotated based on space-time |
CN107248171B (en) * | 2017-05-17 | 2020-07-28 | 同济大学 | A Triangulation-Based Monocular Visual Odometry Scale Restoration Method |
CN108931976A (en) * | 2017-05-25 | 2018-12-04 | 西北农林科技大学 | A kind of Multi-source Information Fusion agricultural robot dynamic barrier detection system |
CN107167141B (en) * | 2017-06-15 | 2020-08-14 | 同济大学 | Robot autonomous navigation system based on double laser radars |
CN107092264A (en) * | 2017-06-21 | 2017-08-25 | 北京理工大学 | Towards the service robot autonomous navigation and automatic recharging method of bank's hall environment |
CN107300919B (en) * | 2017-06-22 | 2021-06-15 | 中国科学院深圳先进技术研究院 | A robot and its travel control method |
CN107578427B (en) * | 2017-07-31 | 2021-05-18 | 深圳市易成自动驾驶技术有限公司 | Method and device for detecting dynamic obstacle and computer readable storage medium |
CN107544498A (en) * | 2017-09-08 | 2018-01-05 | 珠海格力电器股份有限公司 | Mobile path planning method and device for mobile terminal |
CN109506641A (en) * | 2017-09-14 | 2019-03-22 | 深圳乐动机器人有限公司 | The pose loss detection and relocation system and robot of mobile robot |
CN109669350B (en) * | 2017-10-13 | 2021-07-20 | 电子科技大学中山学院 | Quantitative estimation method for wheel slip of three-wheeled omnidirectional mobile robot |
CN107861507A (en) * | 2017-10-13 | 2018-03-30 | 上海斐讯数据通信技术有限公司 | A kind of AGV control methods and system based on inertial navigation correction and SLAM indoor positionings |
WO2019093096A1 (en) * | 2017-11-10 | 2019-05-16 | パナソニックIpマネジメント株式会社 | Mobile robot and method for controlling mobile robot |
CN108007451B (en) * | 2017-11-10 | 2020-08-11 | 未来机器人(深圳)有限公司 | Method and device for detecting position and posture of cargo carrying device, computer equipment and storage medium |
CN107988956A (en) * | 2017-11-21 | 2018-05-04 | 浙江工业大学 | A kind of track alteration device and method based on angular transducer and absolute encoder |
CN107943038A (en) * | 2017-11-28 | 2018-04-20 | 广东工业大学 | A kind of mobile robot embedded laser SLAM method and system |
CN107894773A (en) * | 2017-12-15 | 2018-04-10 | 广东工业大学 | A kind of air navigation aid of mobile robot, system and relevant apparatus |
CN109960249A (en) * | 2017-12-25 | 2019-07-02 | 沈阳新松机器人自动化股份有限公司 | A kind of autonomous mobile robot applied to public arena |
CN108334080B (en) * | 2018-01-18 | 2021-01-05 | 大连理工大学 | Automatic virtual wall generation method for robot navigation |
CN108375976A (en) * | 2018-01-22 | 2018-08-07 | 中国民用航空飞行学院 | A kind of service robot navigation methods and systems |
CN108444469A (en) * | 2018-02-11 | 2018-08-24 | 南京晓庄学院 | A kind of mobile robot of independent navigation |
CN108458717B (en) * | 2018-05-07 | 2020-04-07 | 西安电子科技大学 | Iterative unmanned aerial vehicle path planning method for rapidly expanding random tree IRRT |
CN108717302B (en) * | 2018-05-14 | 2021-06-25 | 平安科技(深圳)有限公司 | Method and device for robot to follow person, storage medium and robot |
CN108805987B (en) * | 2018-05-21 | 2021-03-12 | 中国科学院自动化研究所 | Hybrid tracking method and device based on deep learning |
CN108829137A (en) * | 2018-05-23 | 2018-11-16 | 中国科学院深圳先进技术研究院 | A kind of barrier-avoiding method and device of robot target tracking |
CN108776474B (en) * | 2018-05-24 | 2022-03-15 | 中山赛伯坦智能科技有限公司 | Robot embedded computing terminal integrating high-precision navigation and positioning and deep learning |
CN108868268B (en) * | 2018-06-05 | 2020-08-18 | 西安交通大学 | Unmanned vehicle pose estimation method based on point-to-surface distance and cross-correlation entropy registration |
WO2020000127A1 (en) * | 2018-06-25 | 2020-01-02 | 深圳市大疆创新科技有限公司 | Navigation path tracking control method, device, mobile robot and system |
CN109086843B (en) * | 2018-07-23 | 2021-10-29 | 汕头大学 | A mobile robot navigation method based on two-dimensional code |
JPWO2020039656A1 (en) * | 2018-08-23 | 2020-08-27 | 日本精工株式会社 | Self-propelled device, traveling control method of self-propelled device, and traveling control program |
CN111098850A (en) * | 2018-10-25 | 2020-05-05 | 北京初速度科技有限公司 | Automatic parking auxiliary system and automatic parking method |
CN109358316B (en) * | 2018-11-05 | 2022-04-22 | 南开大学 | Line laser global positioning method based on structural unit coding and multi-hypothesis tracking |
CN109189079B (en) * | 2018-11-05 | 2021-07-23 | 南京理工大学 | Navigation control method of mobile robot based on GPS positioning |
CN109434830A (en) * | 2018-11-07 | 2019-03-08 | 宁波赛朗科技有限公司 | A kind of industrial robot platform of multi-modal monitoring |
CN109657698B (en) * | 2018-11-20 | 2021-09-03 | 同济大学 | Magnetic suspension track obstacle detection method based on point cloud |
CN109621260B (en) * | 2018-11-27 | 2021-03-30 | 北京建筑大学 | A control system for a fire extinguisher |
US10901425B2 (en) | 2018-11-30 | 2021-01-26 | Honda Motor Co., Ltd. | Systems and methods for navigational planning |
CN109599945A (en) * | 2018-11-30 | 2019-04-09 | 武汉大学 | A kind of autonomous crusing robot cruising inspection system of wisdom power plant and method |
CN109856643B (en) * | 2018-12-15 | 2022-10-04 | 国网福建省电力有限公司检修分公司 | Movable type non-inductive panoramic sensing method based on 3D laser |
CN109827574B (en) * | 2018-12-28 | 2021-03-09 | 中国兵器工业计算机应用技术研究所 | Indoor and outdoor switching navigation system for unmanned aerial vehicle |
CN109870157B (en) * | 2019-02-20 | 2021-11-02 | 苏州风图智能科技有限公司 | Method and device for determining pose of vehicle body and mapping method |
CN109885052B (en) * | 2019-02-26 | 2022-03-25 | 华南理工大学 | Error model prediction control method based on omnidirectional mobile robot kinematics modeling |
CN110032182B (en) * | 2019-03-11 | 2022-02-11 | 中山大学 | Visual graph method and stable sparse random fast tree robot planning algorithm are fused |
CN110207714B (en) * | 2019-06-28 | 2021-01-19 | 广州小鹏自动驾驶科技有限公司 | Method for determining vehicle pose, vehicle-mounted system and vehicle |
CN110345936B (en) * | 2019-07-09 | 2021-02-09 | 上海有个机器人有限公司 | Track data processing method and processing system of motion device |
WO2021056283A1 (en) * | 2019-09-25 | 2021-04-01 | Beijing Didi Infinity Technology And Development Co., Ltd. | Systems and methods for adjusting a vehicle pose |
JP7441047B2 (en) * | 2020-01-10 | 2024-02-29 | 三菱重工業株式会社 | Route generation device, control device, inspection system, route generation method and program |
EP3882649B1 (en) * | 2020-03-20 | 2023-10-25 | ABB Schweiz AG | Position estimation for vehicles based on virtual sensor response |
CN111338360B (en) * | 2020-05-18 | 2020-10-02 | 北京三快在线科技有限公司 | A method and device for planning the driving state of a vehicle |
CN112183133B (en) * | 2020-08-28 | 2022-05-31 | 同济大学 | An autonomous charging method for mobile robots based on ArUco code guidance |
CN112033395B (en) * | 2020-09-08 | 2022-05-10 | 广东博智林机器人有限公司 | Mobile platform positioning method and device, electronic equipment and storage medium |
CN112286180A (en) * | 2020-09-16 | 2021-01-29 | 四川嘉能佳网创新能源科技有限责任公司 | Power inspection analysis system and method based on inspection robot |
CN112428274B (en) * | 2020-11-17 | 2023-03-21 | 张耀伦 | Space motion planning method of multi-degree-of-freedom robot |
CN114789439B (en) * | 2021-01-26 | 2024-03-19 | 深圳市普渡科技有限公司 | Slope positioning correction method, device, robot and readable storage medium |
CN112947433B (en) * | 2021-02-03 | 2023-05-02 | 中国农业大学 | Orchard mobile robot and autonomous navigation method thereof |
CN113324558A (en) * | 2021-05-17 | 2021-08-31 | 亿嘉和科技股份有限公司 | Grid map traversal algorithm based on RRT |
CN113192054B (en) * | 2021-05-20 | 2023-04-28 | 清华大学天津高端装备研究院 | Method and system for detecting and positioning complicated parts based on 2-3D vision fusion |
CN113534816B (en) * | 2021-08-16 | 2024-04-05 | 安徽元古纪智能科技有限公司 | Mobile robot navigation tracking method |
CN113848912B (en) * | 2021-09-28 | 2024-11-05 | 北京理工大学重庆创新中心 | Indoor map building method and device based on autonomous exploration |
CN114018246B (en) * | 2021-11-15 | 2024-02-06 | 北京克莱明科技有限公司 | Positioning navigation method and positioning navigation device |
CN114460939B (en) * | 2022-01-22 | 2024-09-20 | 贺晓转 | Autonomous navigation improvement method for intelligent walking robot in complex environment |
CN114690769B (en) * | 2022-03-07 | 2024-05-10 | 美的集团(上海)有限公司 | Path planning method, electronic device, storage medium and computer program product |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009211571A (en) * | 2008-03-06 | 2009-09-17 | Sony Corp | Course planning device, course planning method, and computer program |
CN102564416A (en) * | 2011-12-30 | 2012-07-11 | 浙江国自机器人技术有限公司 | System and method for reconstructing and positioning three-dimensional environment for mirror cleaning robot |
CN103914068A (en) * | 2013-01-07 | 2014-07-09 | 中国人民解放军第二炮兵工程大学 | Service robot autonomous navigation method based on raster maps |
CN103935365A (en) * | 2014-05-14 | 2014-07-23 | 袁培江 | Intelligent anti-collision system of novel automated guided vehicle for material handling |
CN104914865A (en) * | 2015-05-29 | 2015-09-16 | 国网山东省电力公司电力科学研究院 | Transformer station inspection tour robot positioning navigation system and method |
CN105223956A (en) * | 2015-11-09 | 2016-01-06 | 中山大学 | A kind of dynamic obstacle avoidance method of omni-directional mobile robots |
CN105258702A (en) * | 2015-10-06 | 2016-01-20 | 深圳力子机器人有限公司 | Global positioning method based on SLAM navigation mobile robot |
-
2016
- 2016-04-14 CN CN201610236869.5A patent/CN106406338B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009211571A (en) * | 2008-03-06 | 2009-09-17 | Sony Corp | Course planning device, course planning method, and computer program |
CN102564416A (en) * | 2011-12-30 | 2012-07-11 | 浙江国自机器人技术有限公司 | System and method for reconstructing and positioning three-dimensional environment for mirror cleaning robot |
CN103914068A (en) * | 2013-01-07 | 2014-07-09 | 中国人民解放军第二炮兵工程大学 | Service robot autonomous navigation method based on raster maps |
CN103935365A (en) * | 2014-05-14 | 2014-07-23 | 袁培江 | Intelligent anti-collision system of novel automated guided vehicle for material handling |
CN104914865A (en) * | 2015-05-29 | 2015-09-16 | 国网山东省电力公司电力科学研究院 | Transformer station inspection tour robot positioning navigation system and method |
CN105258702A (en) * | 2015-10-06 | 2016-01-20 | 深圳力子机器人有限公司 | Global positioning method based on SLAM navigation mobile robot |
CN105223956A (en) * | 2015-11-09 | 2016-01-06 | 中山大学 | A kind of dynamic obstacle avoidance method of omni-directional mobile robots |
Non-Patent Citations (1)
Title |
---|
基于速度修正项的机械臂避障路径规划;陈钢等;《控制与决策》;第第30卷 卷(第第1期期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN106406338A (en) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106406338B (en) | Autonomous navigation device and method of omnidirectional mobile robot based on laser range finder | |
CN110262495B (en) | Control system and method for autonomous navigation and precise positioning of mobile robots | |
Li et al. | An algorithm for safe navigation of mobile robots by a sensor network in dynamic cluttered industrial environments | |
Gomez-Balderas et al. | Tracking a ground moving target with a quadrotor using switching control: nonlinear modeling and control | |
CN104764457B (en) | A kind of urban environment patterning process for unmanned vehicle | |
CN109947136B (en) | A Collaborative Active Perception Method for Fast Target Search of UAV Groups | |
Weng et al. | Pole-based real-time localization for autonomous driving in congested urban scenarios | |
WO2017177533A1 (en) | Method and system for controlling laser radar based micro unmanned aerial vehicle | |
CN109976347B (en) | Visual servo path planning method based on rapid expansion random tree and potential field method | |
CN114355981A (en) | Method and system for self-exploring and map building of quad-rotor unmanned aerial vehicle | |
CN103926930A (en) | Multi-robot cooperation map building method based on Hilbert curve detection | |
CN115016455B (en) | Robot cluster positioning movement method and system | |
Farmani et al. | Tracking multiple mobile targets using cooperative unmanned aerial vehicles | |
Sun et al. | Autonomous state estimation and mapping in unknown environments with onboard stereo camera for micro aerial vehicles | |
Wu et al. | Vision-based target detection and tracking system for a quadcopter | |
Chai et al. | Obstacle avoidance for a hexapod robot in unknown environment | |
Gao et al. | Localization of mobile robot based on multi-sensor fusion | |
Manzoor et al. | A coordinated navigation strategy for multi-robots to capture a target moving with unknown speed | |
Xin et al. | Coordinated motion planning of multiple robots in multi-point dynamic aggregation task | |
Yu et al. | Indoor localization based on fusion of apriltag and adaptive monte carlo | |
CN114326810A (en) | An obstacle avoidance method for unmanned aerial vehicles in complex dynamic environments | |
CN111176324B (en) | Method for avoiding dynamic obstacle by multi-unmanned aerial vehicle distributed collaborative formation | |
Huang et al. | A real-time fast incremental SLAM method for indoor navigation | |
Agarwal et al. | Monocular vision based navigation and localisation in indoor environments | |
Zhao et al. | 3D indoor map building with monte carlo localization in 2D map |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |