Nothing Special   »   [go: up one dir, main page]

JP2009273093A - Fm receiver - Google Patents

Fm receiver Download PDF

Info

Publication number
JP2009273093A
JP2009273093A JP2008124389A JP2008124389A JP2009273093A JP 2009273093 A JP2009273093 A JP 2009273093A JP 2008124389 A JP2008124389 A JP 2008124389A JP 2008124389 A JP2008124389 A JP 2008124389A JP 2009273093 A JP2009273093 A JP 2009273093A
Authority
JP
Japan
Prior art keywords
signal
electric field
field strength
adjacent
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008124389A
Other languages
Japanese (ja)
Inventor
Jun Suzuki
順 鈴木
Keiji Kobayashi
啓二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008124389A priority Critical patent/JP2009273093A/en
Publication of JP2009273093A publication Critical patent/JP2009273093A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superheterodyne Receivers (AREA)
  • Noise Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect adjacent interference in an FM receiver quickly and accurately. <P>SOLUTION: A reception electric field strength signal S<SB>M-DC1</SB>corresponding to a broad-band reception signal which may include a signal of a target station and an adjacent interference signal, and a narrow-band reception electric field strength signal S<SB>M-DC2</SB>which includes a signal of the target station and does not include an adjacent interference signal, are generated based on two BPF outputs having respective central frequencies corresponding to the target reception station and having pass bands having different widths. S<SB>M-DC1</SB>and S<SB>M-DC2</SB>are input to a differential amplifier 142, and an output of the differential amplifier 142 is compared with a reference voltage V<SB>ref</SB>in a comparator 144, to determine a relative relationship between a voltage V<SB>W</SB>of S<SB>M-DC1</SB>and a voltage V<SB>N</SB>of S<SB>M-DC2</SB>. When V<SB>N</SB>-V<SB>W</SB><V<SB>ref</SB>, the comparator 144 outputs an L level. In this case, a control circuit 140 determines that adjacent interference occurs, and sets a bandwidth of an IFBPF 70 to a narrow band. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、周波数変調(Frequency Modulation:FM)された信号を受信するFM受信機に関し、特に、FM放送等の受信時における隣接妨害除去に関する。   The present invention relates to an FM receiver that receives a frequency-modulated (FM) signal, and more particularly to adjacent interference removal at the time of reception of FM broadcasting or the like.

FM信号は、音声信号等に基づいて搬送波の周波数を変化させるため、その伝送には例えばAM信号に比べて広い周波数帯域を必要とする。そのため、FM受信機において、目的とする伝送信号を受信する場合に、その周波数に近い周波数で伝送される他の信号からの妨害(隣接妨害)を受けやすく、これが、検波される音声信号の品質に悪影響を及ぼすことがある。この隣接妨害は、受信目的の信号を抽出するバンドパスフィルタ(Band Pass Filter:BPF)の帯域を狭くすることで軽減を図れる。一方、帯域の制限は、受信目的とするFM信号が高変調の場合に、検波出力の音声信号の歪みを生じるおそれがある。そこで、隣接妨害の発生の有無を検知して、BPFの帯域幅を切り換えることが行われている。   Since the FM signal changes the frequency of the carrier wave based on an audio signal or the like, its transmission requires a wider frequency band than, for example, an AM signal. Therefore, when receiving an intended transmission signal in an FM receiver, the FM receiver is susceptible to interference (adjacent interference) from other signals transmitted at a frequency close to that frequency, which is the quality of the detected audio signal. May be adversely affected. This adjacent interference can be reduced by narrowing the band of a band pass filter (BPF) that extracts a signal intended for reception. On the other hand, the band limitation may cause distortion of the audio signal of the detection output when the FM signal to be received is highly modulated. In view of this, the BPF bandwidth is switched by detecting the presence or absence of adjacent interference.

また、RDS(Radio Data System)やVICS(Vehicle Information and Communication System)などのFMデータ放送の受信では、隣接妨害を受けると、FM検波出力信号が歪み、データをデコードする際にビットエラーレート(BER)が劣化する。この点、データ放送では現在受信中の放送局以外の放送局でも代替可能なデータ放送を行っている場合があり、他局への代替を行うことで受信状態の改善を図ることができる。例えば、RDSでは同一内容のデータ放送を行う放送局が設けられる。そして、それらデータ放送の内容が同一の放送局のうち、受信状態が良好なものを自動的に選択するAFサーチが行われる。このAFサーチでは、隣接妨害の発生の有無を検知して受信状態の判断に利用する。   Also, in receiving FM data broadcasts such as RDS (Radio Data System) and VICS (Vehicle Information and Communication System), if adjacent interference is received, the FM detection output signal is distorted, and the bit error rate (BER) is used when decoding the data. ) Deteriorates. In this regard, in data broadcasting, there may be a case where data broadcasting that can be replaced by a broadcasting station other than the currently receiving broadcasting station is performed, and the reception state can be improved by substituting for another station. For example, in RDS, a broadcasting station that performs data broadcasting of the same content is provided. Then, an AF search for automatically selecting a broadcast station having the same reception content and having a good reception state is performed. In this AF search, the presence / absence of adjacent interference is detected and used to determine the reception state.

図8は、従来のFMラジオ受信機の構成を示すブロック図である。多くのFMラジオ受信機は、AMラジオの受信機能を併設されている。図8に示すFMラジオ受信機も、FM受信処理部2に並列に設けられたAM受信処理部4を有している。   FIG. 8 is a block diagram showing a configuration of a conventional FM radio receiver. Many FM radio receivers have an AM radio reception function. The FM radio receiver shown in FIG. 8 also has an AM reception processing unit 4 provided in parallel with the FM reception processing unit 2.

アンテナ10にて受信されたRF(Radio Frequency)信号は、第1混合回路12にて第1の局部発振信号と混合され、目的受信信号が所定の中間周波数(Intermediate Frequency:IF)fIF1の第1中間信号SIF1へ周波数変換される。このSIF1は、BPF14、アンプ16及びBPF18を経て、FM受信処理部2及びAM受信処理部4に入力される。BPF14,18はFM信号が通過可能なように広帯域に設定される。例えば、その帯域幅は180kHz程度に設定される。FM受信処理部2とAM受信処理部4とは、ユーザの選択に応じて択一的に動作し、検波出力信号SOUTを出力する。 An RF (Radio Frequency) signal received by the antenna 10 is mixed with the first local oscillation signal by the first mixing circuit 12, and the target received signal has a predetermined intermediate frequency (IF) f IF1 . 1 The frequency is converted to the intermediate signal SIF1 . The S IF1 is input to the FM reception processing unit 2 and the AM reception processing unit 4 through the BPF 14, the amplifier 16, and the BPF 18. The BPFs 14 and 18 are set in a wide band so that FM signals can pass through. For example, the bandwidth is set to about 180 kHz. The FM reception processing unit 2 and the AM reception processing unit 4 operate alternatively according to the user's selection, and output the detection output signal SOUT .

FM受信処理部2では、SIF1はFM受信用の第2混合回路20にて第2の局部発振信号と混合され、所定の中間周波数fIF2を有する第2中間信号SIF2へ周波数変換される。SIF2はfIF2を中心周波数とするBPFであるIFBPF22を通過後、FM検波回路24にてFM検波され、抽出された検波出力信号SOUTがスピーカ等からなる出力回路へ出力される。 In the FM reception processing unit 2, S IF1 is mixed with the second local oscillation signal in the second mixing circuit 20 for FM reception, and frequency-converted to a second intermediate signal S IF2 having a predetermined intermediate frequency f IF2. . S IF2 passes through IFBPF 22, which is a BPF having f IF2 as the center frequency, and is FM detected by FM detection circuit 24, and the extracted detection output signal S OUT is output to an output circuit including a speaker or the like.

また、SIF1はFM受信処理部2にて、シグナルメータ(Sメータ回路26)に入力される。Sメータ回路26は、SIF1から隣接妨害やノイズ等に起因する変動成分を抽出し、SメータAC成分信号SM−ACを生成すると共に、SIF1を平滑化し直流化して受信電界強度を示すSメータDC成分信号SM−DCを生成する。 The S IF1 is input to the signal meter (S meter circuit 26) by the FM reception processing unit 2. The S meter circuit 26 extracts fluctuation components caused by adjacent interference, noise, and the like from the S IF1 , generates an S meter AC component signal SM-AC , and smoothes and converts the S IF1 into a direct current to indicate the received electric field strength. An S meter DC component signal S M-DC is generated.

一方、AM受信処理部4では、SIF1はAM受信用の第2混合回路30にて第2の局部発振信号と混合され、所定の中間周波数fIF−AMを有する第2中間信号SIF−AMへ周波数変換される。SIF−AMはfIF−AMを中心周波数とするBPF32を通過後、AM検波回路34にてAM検波される。BPF32は、基本的に目的受信局からのAM信号を通過できればよい。AM信号の帯域は例えば10kHz程度であるので、BPF32の帯域幅もこれに応じた狭帯域に設定される。 On the other hand, in the AM reception processing unit 4, the S IF1 is mixed with the second local oscillation signal in the AM reception second mixing circuit 30, and the second intermediate signal S IF- having a predetermined intermediate frequency f IF-AM is obtained. Frequency converted to AM . The S IF-AM is detected by the AM detection circuit 34 after passing through the BPF 32 having the center frequency of f IF-AM . The BPF 32 is basically required to be able to pass the AM signal from the target receiving station. Since the band of the AM signal is about 10 kHz, for example, the bandwidth of the BPF 32 is also set to a narrow band corresponding to this.

さて、FM受信処理部2のIFBPF22は、帯域幅制御部28によって帯域幅Wを制御できるように構成される。図9は、帯域幅制御部28の構成を示すブロック図である。帯域幅制御部28は、制御回路36、ハイパスフィルタ(High Pass Filter:HPF)38、キャパシタCHF、ローパスフィルタ(Low Pass Filter:LPF)40、及びスイッチ回路42を含んで構成される。 Now, IFBPF22 the FM reception processing section 2 is configured to be able to control the bandwidth W F by the bandwidth control unit 28. FIG. 9 is a block diagram illustrating a configuration of the bandwidth control unit 28. The bandwidth controller 28 includes a control circuit 36, a high pass filter (HPF) 38, a capacitor C HF , a low pass filter (Low Pass Filter: LPF) 40, and a switch circuit 42.

スイッチ回路42は、SOUT及びSM−ACを入力信号とし、SM−DCに応じていずれか一方を選択的にHPF38への出力信号とする。具体的には、スイッチ回路42は、受信電界強度が所定閾値以下である弱電界の場合にSM−ACを出力信号とし、一方、中電界以上の場合にSOUTを出力信号とする。 The switch circuit 42 uses S OUT and S M-AC as input signals, and selectively selects one of them as an output signal to the HPF 38 in accordance with S M-DC . Specifically, the switch circuit 42 outputs SM-AC as an output signal when the received electric field strength is a weak electric field that is equal to or less than a predetermined threshold, and outputs S OUT as an output signal when the received electric field strength is equal to or higher than the medium electric field.

HPF38は例えば、100kHz程度のカットオフ周波数を有し、入力信号のうち音声帯域を超える周波数成分を通過する。HPF38を通過した高域信号成分は、その出力端に接続されたキャパシタCHFにより平滑化され、CHFの端子電圧VHFがHPF38の出力レベルとして制御回路36に入力される。 The HPF 38 has a cut-off frequency of about 100 kHz, for example, and passes a frequency component exceeding the audio band in the input signal. The high-frequency signal component that has passed through the HPF 38 is smoothed by the capacitor C HF connected to the output terminal thereof, and the terminal voltage V HF of the C HF is input to the control circuit 36 as the output level of the HPF 38.

隣接妨害時にはSOUTやSM−ACに含まれる高域成分が増加する。これに対応して、制御回路36は、VHFが所定の閾値以下の弱高域成分状態では、WをSOUTが高変調であっても音声歪みが生じにくい広帯域幅である基準帯域幅wに設定する一方、VHFが当該閾値を超える強高域成分状態では、Wを隣接妨害除去の効果が好適に得られる狭帯域幅w(<w)に設定する。これにより、隣接妨害の影響の除去・軽減が図られる。なお、従来、Wの制御に、LPF40を通過するSOUTの音声帯域成分に基づいて検知される変調度を考慮することも行われていた。 At the time of adjacent disturbance, high frequency components included in S OUT and S M-AC increase. In response to this, the control circuit 36, in the weak high-pass component state of V HF is less than a predetermined threshold value, the reference bandwidth W F S OUT is hardly wide bandwidth occurs audio distortion even at high modulation while setting the w W, in the strong high-pass component state V HF exceeds the threshold value is set to W F narrow effect of adjacent-channel interference removal can be suitably obtained bandwidth w N (<w W). As a result, the influence of adjacent interference can be removed and reduced. Incidentally, conventionally, the control of the W F, was also carried out taking into consideration the degree of modulation which is detected based on the voice band components of S OUT passing through the LPF 40.

また、隣接妨害を検出する他の仕組みとして、シグナルクオリティセンサ(SQセンサ)やIFカウンターを用いるものもあった。   As another mechanism for detecting adjacent interference, there is a mechanism using a signal quality sensor (SQ sensor) or an IF counter.

SQセンサは、隣接妨害時に増加するSOUTやSM−ACの高域成分をHPFで抽出し、これを検波回路で検波、平滑化して直流電圧に変換し、コンパレータでその直流電圧を所定の閾値と比較して、閾値を超えた場合に隣接妨害が生じていると判定する。 The SQ sensor extracts high-frequency components of S OUT and S M-AC that increase at the time of adjacent interference with HPF, detects and smooths this with a detection circuit, converts it to a DC voltage, and converts the DC voltage to a predetermined value with a comparator. Compared with the threshold value, it is determined that the adjacent disturbance occurs when the threshold value is exceeded.

IFカウンターは、例えば、中間信号SIF2の周波数fIF2をカウントする。IFカウンターのカウント値は、隣接妨害が無い状態では、原理的に目的受信局の周波数スペクトルの平均周波数である中間周波数fIF2になるが、隣接妨害を受けている状態では、SIF2に隣接妨害局の信号成分が含まれるため、周波数スペクトルが隣接妨害局側へシフトし、その平均周波数に対応して得られるカウント値NもfIF2からずれた値となる。このカウント値Nを例えば、マイコン等で構成される受信機の制御部にて監視し、そのずれに基づいて、隣接妨害の発生が検出される。
特開2004−312077号公報 特願2007−31832号
For example, the IF counter counts the frequency f IF2 of the intermediate signal SIF2 . The count value of the IF counter, in no adjacent-channel interference state, becomes an intermediate frequency f IF2 is theoretically the average frequency of the frequency spectrum of the target receiving station, in a state undergoing adjacent interference, adjacent interference to S IF2 Since the signal component of the station is included, the frequency spectrum shifts toward the adjacent interfering station, and the count value N obtained corresponding to the average frequency is also a value deviated from f IF2 . The count value N is monitored by, for example, a control unit of a receiver constituted by a microcomputer or the like, and the occurrence of adjacent interference is detected based on the deviation.
JP 2004-312077 A Japanese Patent Application No. 2007-31832

図8を用いて説明した従来のSOUTやSM−ACに基づいて隣接妨害を検出する構成は、隣接妨害が存在せず希望局のみが受信されている状態でも、SOUTやSM−ACに含まれる高域のノイズ成分によりHPF38の出力レベルVHFが閾値を超えることがある。そのため、従来の構成は、真に隣接妨害が発生している場合と、ノイズによる場合とを精度良く弁別できるとは限らないという問題があった。すなわち、VHFが閾値を超える事象の中にノイズによるものが含まれ、隣接妨害として誤検出され、不要にIFBPF22の帯域が狭められ音声歪みを生じ得る。例えば、ノイズとしてマルチパスノイズがある。このように、従来の構成では、隣接妨害除去と音声歪みの抑制とを好適に実現することができないという問題があった。 The configuration for detecting adjacent interference based on the conventional S OUT and S M-AC described with reference to FIG. 8 is such that even when there is no adjacent interference and only the desired station is received, S OUT and S M- The output level V HF of the HPF 38 may exceed the threshold value due to high frequency noise components included in the AC . For this reason, the conventional configuration has a problem that it is not always possible to accurately discriminate between the case where the adjacent interference occurs and the case where it is caused by noise. That is, an event in which V HF exceeds the threshold includes noise, which is erroneously detected as adjacent interference, and the bandwidth of IFBPF 22 is unnecessarily narrowed, resulting in voice distortion. For example, there is multipath noise as noise. As described above, in the conventional configuration, there is a problem that it is not possible to suitably realize the removal of adjacent interference and suppression of audio distortion.

SQセンサは、図8の構成と同様にSOUTやSM−ACに基づいて隣接妨害に起因する変動成分(AC成分)を検出するものであるが、マルチパスの発生時にもAC成分が発生する。すなわち、SQセンサは、マルチパスにも反応し、隣接妨害とマルチパスとの切り分けが困難であり、隣接妨害を精度良く検知することが難しい。また、SQセンサは平滑化処理に伴う時定数を有する。具体的には、SQセンサは50kHz以上のAC成分を平滑化し抽出するので、2mS程度の時定数を要する。そのため、AFサーチ時の音声放送プログラムの受信中断状態が人に音切れとして感知されないようAFサーチを高速化することが難しいという問題もあった。さらに、AC成分は変調度によっても変動し、この影響でSQセンサによる隣接妨害の検出精度が低下し得るという問題もあった。また、隣接妨害を強力に受けた場合、隣接妨害信号によるキャプチャーが生じ、SOUTやSM−ACに隣接妨害に応じたAC成分が出てこなくなり得る。そのため、隣接妨害を強力に受けた場合、SQセンサは隣接妨害が無い状態と同じ振る舞いをすることになり、隣接妨害のセンサとして役に立たなくなるおそれがある。 The SQ sensor detects fluctuation components (AC components) caused by adjacent interference based on S OUT and S M-AC as in the configuration of FIG. 8, but AC components are also generated when multipath occurs. To do. That is, the SQ sensor also responds to multipath, and it is difficult to distinguish between adjacent interference and multipath, and it is difficult to accurately detect adjacent interference. The SQ sensor has a time constant associated with the smoothing process. Specifically, since the SQ sensor smoothes and extracts an AC component of 50 kHz or more, a time constant of about 2 mS is required. For this reason, there has been a problem that it is difficult to speed up the AF search so that the reception interruption state of the audio broadcast program at the time of AF search is not perceived by the person as being out of sound. Furthermore, the AC component also varies depending on the modulation degree, and there is a problem that the influence of the adjacent interference detection by the SQ sensor may be lowered due to this influence. Further, when adjacent interference is strongly received, capture due to the adjacent interference signal occurs, and an AC component corresponding to the adjacent interference may not appear in SOUT or SM-AC . For this reason, when the adjacent interference is strongly received, the SQ sensor behaves in the same manner as when there is no adjacent interference, and may not be useful as an adjacent interference sensor.

IFカウンターによる隣接妨害の検知は、カウント時間が短くなるほどカウント値Nにより得られる周波数の精度が低くなるため、AFサーチの高速化が難しい。また、中間信号の周波数は例えば、温度変化に応じた発振器の発振周波数の変動や変調による変動等の影響を受け得る。これを許容するように判定条件を設定すると、隣接妨害の検出感度が低下するという相反する問題を生じる。   In the detection of adjacent interference by the IF counter, it is difficult to increase the speed of the AF search because the accuracy of the frequency obtained from the count value N becomes lower as the count time becomes shorter. Further, the frequency of the intermediate signal can be affected by, for example, fluctuations in the oscillation frequency of the oscillator according to temperature changes, fluctuations due to modulation, and the like. If the determination condition is set so as to allow this, there arises a conflicting problem that the detection sensitivity of the adjacent interference is lowered.

本発明は上記問題点を解決するためになされたものであり、隣接妨害を短時間で精度良く検出し、隣接妨害の除去及び音声歪みやAFサーチ時の音切れの抑制が好適に実現されるFM受信機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and adjacent interference is accurately detected in a short time, and it is suitably realized to eliminate adjacent interference and to suppress sound distortion and sound interruption during AF search. An object is to provide an FM receiver.

本発明に係るFM受信機は、受信信号に対して、目的受信局からの目的FM信号の搬送波周波数を所定の中間周波数にシフトさせる周波数変換を行い、中間信号を生成する中間信号生成回路と、前記中間信号のうち前記中間周波数を含む隣接妨害検知帯域内に含まれる信号成分に基づいて、前記目的受信局又はその隣接局による受信電界強度に応じた隣接妨害包含強度を求める隣接妨害包含強度検出部と、前記中間信号のうち前記中間周波数を含み前記隣接妨害検知帯域より狭い目的局検知帯域内に含まれる信号成分に基づいて、前記目的受信局による受信電界強度に応じた目的局強度を求める目的局強度検出部と、前記隣接妨害包含強度及び前記目的局強度に基づいて、前記隣接局による隣接妨害の有無を判定する隣接妨害判定部と、を有する。   An FM receiver according to the present invention performs, on a received signal, frequency conversion for shifting a carrier frequency of a target FM signal from a target receiving station to a predetermined intermediate frequency, and generates an intermediate signal; Adjacent disturbance inclusion intensity detection for obtaining an adjacent disturbance inclusion intensity according to the received electric field intensity by the target receiving station or its adjacent station based on a signal component included in an adjacent disturbance detection band including the intermediate frequency in the intermediate signal. And a target station strength corresponding to a received electric field strength by the target receiving station based on a signal component included in the target station detection band including the intermediate frequency and narrower than the adjacent interference detection band among the intermediate signals. A target station strength detection unit; and an adjacent interference determination unit that determines the presence or absence of adjacent interference by the adjacent station based on the adjacent interference inclusion strength and the target station strength. That.

本発明によれば、隣接妨害の判定を、FM検波出力信号SOUT及びSメータAC成分信号SM−ACに基づいてではなく、異なる帯域幅に対応して得られる複数の受信電界強度信号に基づいて行う。受信電界強度信号は平滑化し直流化して生成されるため基本的に高域ノイズの影響を受けない。よって、本発明によれば、隣接妨害が発生しているか否かを精度良く判定することができる。また、SQセンサやIFカウンターを用いた方法に比べて隣接妨害の有無の判定の高速化が容易である。また、その判定結果に基づいて、バンドパスフィルタを隣接妨害除去のため狭帯域に設定するか、音声歪み抑制のため広帯域に設定するかの選択を好適に行うことが可能となる。 According to the present invention, the determination of the adjacent interference is not based on the FM detection output signal S OUT and the S meter AC component signal S M-AC but on a plurality of received electric field strength signals obtained corresponding to different bandwidths. Based on. Since the received electric field strength signal is generated by being smoothed and converted to a direct current, it is basically not affected by high frequency noise. Therefore, according to the present invention, it is possible to accurately determine whether adjacent interference has occurred. In addition, it is easy to speed up the determination of the presence or absence of adjacent interference as compared with the method using the SQ sensor or IF counter. Further, based on the determination result, it is possible to suitably select whether the bandpass filter is set to a narrow band for removing adjacent interference or set to a wide band for suppressing voice distortion.

以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

[第1の実施形態]
図1は、本発明の第1の実施形態であるFM受信機の概略の構成を示すブロック図である。本FM受信機50は、その主要部を集積回路(IC)として構成され、例えば、自動車の車載オーディオ機器に用いられる。FM受信機50は、FM受信処理部51aに並列に設けられたAM受信処理部51bを備え、FM受信機50の一部の構成をFM受信と共用しつつAM受信を可能としている。
[First Embodiment]
FIG. 1 is a block diagram showing a schematic configuration of an FM receiver according to the first embodiment of the present invention. The main part of the FM receiver 50 is configured as an integrated circuit (IC), and is used, for example, in an in-vehicle audio device of an automobile. The FM receiver 50 includes an AM reception processing unit 51b provided in parallel with the FM reception processing unit 51a, and enables AM reception while sharing a part of the configuration of the FM receiver 50 with FM reception.

FM受信機50は、FM受信機能とAM受信機能とで共用される部分として、アンテナ52、RFアンプ54、第1局部発振回路56、第1混合回路58、BPF60,64、アンプ62を有している。FM受信処理部51aは、第2局部発振回路66、第2混合回路68、IFBPF70、アンプ72、FM検波回路74、Sメータ回路76、AFC(Automatic Frequency Control)回路80、及び帯域幅制御部82を含んで構成される。AM受信処理部51bは、第2局部発振回路84、第2混合回路86、BPF88、アンプ90、AM検波回路92、及びSメータ回路94を含んで構成される。   The FM receiver 50 includes an antenna 52, an RF amplifier 54, a first local oscillation circuit 56, a first mixing circuit 58, BPFs 60 and 64, and an amplifier 62 as parts shared by the FM reception function and the AM reception function. ing. The FM reception processing unit 51a includes a second local oscillation circuit 66, a second mixing circuit 68, an IFBPF 70, an amplifier 72, an FM detection circuit 74, an S meter circuit 76, an AFC (Automatic Frequency Control) circuit 80, and a bandwidth control unit 82. It is comprised including. The AM reception processing unit 51b includes a second local oscillation circuit 84, a second mixing circuit 86, a BPF 88, an amplifier 90, an AM detection circuit 92, and an S meter circuit 94.

アンテナ52で受信されたRF信号SRFはRFアンプ54で増幅された後、第1混合回路58に入力される。第1混合回路58は、入力されたRF信号SRFを、第1局部発振回路56から入力される第1局部発振信号SLO1と混合して、第1中間信号SIF1を生成する。SLO1の周波数fLO1は、SRFに含まれる目的受信局の信号が第1混合回路58によるSIF1への周波数変換にて所定の第1中間周波数fIF1に変換されるように調整される。なお、FM受信とAM受信とではSRFの周波数帯域が相違する。これに対応して、第1局部発振回路56は、例えば、その内部の分周回路の分周比を切り換え、FM受信とAM受信とで異なる周波数のSLO1を生成する。第1中間周波数fIF1は、例えば、10.7MHzに設定される。 The RF signal S RF received by the antenna 52 is amplified by the RF amplifier 54 and then input to the first mixing circuit 58. The first mixing circuit 58 mixes the input RF signal S RF with the first local oscillation signal S LO1 input from the first local oscillation circuit 56 to generate a first intermediate signal S IF1 . Frequency f LO1 of the S LO1 is adjusted so that the signal of interest received station included in S RF is converted to a first intermediate frequency f IF1 predetermined by the frequency conversion to S IF1 by the first mixing circuit 58 . Note that the frequency band of SRF differs between FM reception and AM reception. In response to this, the first local oscillation circuit 56 switches, for example, the frequency division ratio of its internal frequency dividing circuit, and generates S LO1 having different frequencies for FM reception and AM reception. The first intermediate frequency f IF1 is set to, for example, 10.7 MHz.

IF1は、BPF60、アンプ62及びBPF64を経て、FM受信処理部51aとAM受信処理部51bとにそれぞれ入力される。BPF60,64は、FM受信とAM受信とで共用され、その通過帯域はfIF1を中心とし、AM信号より広帯域であるFM信号に応じた幅に設定される。目的受信局の信号の変調度が高い場合におけるBPF60,64での歪みが少なくなるように、それらBPFの帯域幅は広く設定することが好ましい。例えば、BPF60,64の−3dB帯域幅は180kHzに設定することができる。 The S IF1 is input to the FM reception processing unit 51a and the AM reception processing unit 51b via the BPF 60, the amplifier 62, and the BPF 64, respectively. BPF60,64 is shared by the FM receiver and the AM reception, the pass band centered at f IF1, is set to a width corresponding to the FM signal is a broadband than AM signal. It is preferable to set the bandwidths of the BPFs wide so that distortion in the BPFs 60 and 64 when the modulation degree of the signal of the target receiving station is high is reduced. For example, the −3 dB bandwidth of the BPFs 60 and 64 can be set to 180 kHz.

第1中間信号SIF1はFM受信処理部51aでは第2混合回路68とSメータ回路76とに入力される。第2混合回路68は、BPF64から入力されたSIF1を第2局部発振回路66から入力される第2局部発振信号SLO2と混合して、第2中間周波数fIF2の第2中間信号SIF2を生成する。SLO2の周波数fLO2は、(fIF1−fIF2)に設定され、SIF1に含まれる周波数fIF1の目的受信信号は第2混合回路68において周波数fIF2に変換される。第2中間周波数fIF2は、例えば、450kHzに設定される。 The first intermediate signal SIF1 is input to the second mixing circuit 68 and the S meter circuit 76 in the FM reception processing unit 51a. The second mixing circuit 68 mixes the S IF1 input from the BPF 64 with the second local oscillation signal S LO2 input from the second local oscillation circuit 66, and the second intermediate signal S IF2 having the second intermediate frequency f IF2 . Is generated. The frequency f LO2 of S LO2 is set to (f IF1 −f IF2 ), and the target reception signal of the frequency f IF1 included in S IF1 is converted into the frequency f IF2 in the second mixing circuit 68. The second intermediate frequency f IF2 is set to 450 kHz, for example.

IF2は、IFBPF70及びアンプ72を経て、FM検波回路74に入力される。 The S IF2 is input to the FM detection circuit 74 via the IFBPF 70 and the amplifier 72.

IFBPF70は、基本的にfIF2を中心周波数とし、かつ通過帯域幅Wを可変設定できるバンドパスフィルタである。IFBPF70の通過帯域幅Wは、帯域幅制御部82により制御される。例えば、Wは、受信FM信号が高変調であっても音声歪みが生じにくい広帯域幅である基準帯域幅wと、隣接妨害除去の効果が好適に得られる狭帯域幅w(<w)とに切り換えられる。例えば、wは、200kHz程度に設定され、wは50kHz程度に設定することができる。 IFBPF70 is basically a center frequency f IF2, and a band-pass filter the pass bandwidth W F can be variably set. Bandwidth W F passing IFBPF70 is controlled by the bandwidth control unit 82. For example, W F is the reference bandwidth w W received FM signal is hardly wide bandwidth occurs audio distortion even at high modulation, narrow bandwidth effect of adjacent-channel interference removal can be suitably obtained w N (<w W ). For example, w W is set to about 200kHz, w N can be set to about 50 kHz.

FM検波回路74は例えば、クオドラチュア検波回路で構成される。FM検波回路74は、アンプ72から入力されたSIF2をFM検波して、音声帯域の検波出力信号SOUTを抽出し、スピーカ等からなる出力回路へ出力する。 The FM detection circuit 74 is composed of, for example, a quadrature detection circuit. The FM detection circuit 74 performs FM detection on the S IF2 input from the amplifier 72, extracts a detection output signal S OUT in the voice band, and outputs it to an output circuit composed of a speaker or the like.

Sメータ回路76は、BPF64から入力されたSIF1に基づいて、受信電界強度信号SM−DC1を生成する。 The S meter circuit 76 generates a received electric field strength signal S M-DC1 based on S IF1 input from the BPF 64.

AFC回路80は、現在受信している周波数の近傍にて、大きな信号が存在する周波数を検知し、その周波数のずれに応じた電圧信号Vsを生成する。この電圧信号Vsは、一般には目標受信局の自動追尾等に用いられるが、検知される大きな信号が隣接妨害波であるか否かの判断にも利用できる。   The AFC circuit 80 detects a frequency where a large signal is present in the vicinity of the currently received frequency, and generates a voltage signal Vs corresponding to the frequency shift. This voltage signal Vs is generally used for automatic tracking of the target receiving station or the like, but can also be used to determine whether or not the detected large signal is an adjacent interference wave.

帯域幅制御部82については後に詳述する。   The bandwidth controller 82 will be described in detail later.

第1中間信号SIF1はAM受信処理部51bの第2混合回路86にも入力される。第2混合回路86は、BPF64から入力されたSIF1を第2局部発振回路84から入力される第2局部発振信号SLO−AMと混合して、第2中間周波数fIF−AMの第2中間信号SIF−AMを生成する。SLO−AMの周波数fLO−AMは、(fIF1−fIF−AM)に設定され、SIF1に含まれる周波数fIF1の目的受信信号は第2混合回路86において周波数fIF−AMに変換される。第2中間周波数fIF−AMは、例えば、fIF2と共通の450kHzに設定され、この場合、fLO−AMとfLO2とは同じ値になるので、第2局部発振回路84とFM受信処理部51aの第2局部発振回路66とは単一の回路で構成することができる。また、第2混合回路86及びFM受信処理部51aの第2混合回路68も共用化が可能である。すなわちFMの第2混合回路と、AMの第2混合回路は共用化が可能である。 The first intermediate signal SIF1 is also input to the second mixing circuit 86 of the AM reception processing unit 51b. The second mixing circuit 86 mixes the S IF1 input from the BPF 64 with the second local oscillation signal S LO-AM input from the second local oscillation circuit 84 to generate a second intermediate frequency f IF-AM second. An intermediate signal S IF-AM is generated. Frequency f LO-AM of S LO-AM is set to (f IF1 -f IF-AM) , Purpose received signal in the frequency f IF1 included in the S IF1 is frequency f IF-AM in the second mixing circuit 86 Converted. The second intermediate frequency f IF-AM is set to, for example, 450 kHz common to f IF2, and in this case, f LO-AM and f LO2 have the same value, so the second local oscillation circuit 84 and the FM reception process The second local oscillation circuit 66 of the unit 51a can be configured by a single circuit. Also, the second mixing circuit 86 and the second mixing circuit 68 of the FM reception processing unit 51a can be shared. That is, the FM second mixing circuit and the AM second mixing circuit can be shared.

IF−AMは、BPF88及びアンプ90を経て、AM検波回路92に入力される。 The S IF-AM is input to the AM detection circuit 92 via the BPF 88 and the amplifier 90.

BPF88の通過帯域は、fIF−AMを中心とし、AM信号の帯域幅に応じた幅に設定される。すなわち、BPF88の通過帯域幅はBPF64に比べると狭い幅に設定される。例えば、BPF88の通過帯域幅はおよそ7kHzに設定される。 The pass band of the BPF 88 is set to a width corresponding to the bandwidth of the AM signal with f IF-AM as the center. That is, the pass band width of the BPF 88 is set to be narrower than that of the BPF 64. For example, the pass band width of the BPF 88 is set to about 7 kHz.

AM検波回路92は、アンプ90から入力されたSIF−AMをAM検波して、音声帯域の検波出力信号SOUTを抽出し、スピーカ等からなる出力回路へ出力する。 AM detection circuit 92, the S IF-AM input from the amplifier 90 and AM detection, and extracts the detection output signal S OUT of the audio band, and outputs to an output circuit comprising a speaker or the like.

Sメータ回路94は、BPF88にて狭帯域に制限されたSIF−AMに基づいて、受信電界強度信号SM−DC2を生成する。 The S meter circuit 94 generates a reception electric field strength signal S M-DC2 based on S IF-AM limited to a narrow band by the BPF 88.

なお、アンプ90やAM検波回路92はAM受信時には動作させるが、FM受信時には停止させる。一方、Sメータ回路94はFM受信時も動作させ、その出力をIFBPF70の制御に使用する。FM受信時には、帯域幅制御部82が、受信電波状態に応じてIFBPF70の帯域幅を制御し、IFBPF70にて好適に帯域幅制限された出力がアンプ72を介してFM検波回路74に入力される。   The amplifier 90 and the AM detection circuit 92 are operated when receiving AM, but are stopped when receiving FM. On the other hand, the S meter circuit 94 is also operated during FM reception, and its output is used to control the IFBPF 70. At the time of FM reception, the bandwidth control unit 82 controls the bandwidth of the IFBPF 70 according to the received radio wave state, and an output that is preferably bandwidth limited by the IFBPF 70 is input to the FM detection circuit 74 via the amplifier 72. .

次にSメータ回路76,94について説明する。図2は、Sメータ回路76の概略の構成を示す回路図である。ここでは、SメータDC成分信号SM−DC1だけでなく、従来技術で述べたSメータAC成分信号SM−ACも生成可能な構成を示しているが、本実施形態では当該SM−ACの生成に係る部分は必ずしもなくてもよいし、あってもよい。Sメータ回路76は、例えば、直列に接続された6段のリミッタアンプ100-1〜100-6、それらの出力を並列に入力される加算器102、加算器102の出力電流IOUTに基づいてSM−DC1及びSM−ACの生成に用いる電流を取り出すカレントミラー回路104、カレントミラー回路104の出力電流に基づいてそれぞれSM−DC1及びSM−ACを生成する平滑化回路106,108を含んで構成される。 Next, the S meter circuits 76 and 94 will be described. FIG. 2 is a circuit diagram showing a schematic configuration of the S meter circuit 76. Here, S not only meter DC component signal S M-DC1, S meter AC component signal S M-AC described in the prior art also shows a possible product configurations, the S M-AC in this embodiment There is not necessarily a portion related to the generation of. S meter circuit 76, for example, six stages of limiter amplifiers 100-1 to 100-6 connected in series, an adder 102 which is input to their outputs in parallel, based on the output current I OUT of the adder 102 S M-DC1 and S M-AC current mirror circuit 104 draws current used for generating the smoothing circuit respectively generates a S M-DC1 and S M-AC on the basis of the output current of the current mirror circuit 104 106 It is comprised including.

IF1は初段のリミッタアンプ100-1に入力され、各リミッタアンプ100で順次増幅されると共に、各リミッタアンプ100-k(kは1≦k≦6なる整数)の出力信号SAkとして加算器102に入力される。加算器102は、各SAkと基準電圧Vaとの電圧差δVAk(≡SAk−Va)を求め、δVAk>0なるδVAkについて、当該電圧差に応じた電流δIAkを生成し、それらの合成電流をIOUTとして出力する。 S IF1 is input to the limiter amplifier 100-1 at the first stage, is sequentially amplified by each limiter amplifier 100, and is added as an output signal S Ak of each limiter amplifier 100-k (k is an integer satisfying 1 ≦ k ≦ 6). 102 is input. The adder 102 obtains a voltage difference δV Ak (≡S Ak −Va) between each S Ak and the reference voltage Va, generates a current δI Ak corresponding to the voltage difference for δV Ak where δV Ak > 0, their combined current output as I OUT.

OUTはカレントミラー回路104の入力側経路のトランジスタTr1を介して、Tr2を有する出力側経路及びTr3を有する出力側経路にそれぞれ折り返される。Tr2を有する出力側経路に接続される平滑化回路106は、Tr2のコレクタと接地電位GNDとの間に互いに並列に接続された抵抗R及びキャパシタCからなる。平滑化回路106は、Tr2から出力されるIOUTを抵抗値R及び容量値Cに応じて定まる時定数で平滑化し、SM−DC1を生成する。例えば、RやCを設けてLPF特性を持たせることで、SM−DC1として、加算器102の出力に重畳するAC成分信号(変調信号やマルチパス、隣接妨害に応じて発生する変動成分)が平滑化され、実質的に直流とみなせる信号が得られる。 I OUT is folded back to the output side path having T r2 and the output side path having T r3 via the transistor T r1 in the input side path of the current mirror circuit 104, respectively. The smoothing circuit 106 connected to the output side path having T r2 includes a resistor R 1 and a capacitor C 1 connected in parallel with each other between the collector of T r2 and the ground potential GND. The smoothing circuit 106 smoothes I OUT output from T r2 with a time constant determined according to the resistance value R 1 and the capacitance value C 1 to generate S M-DC1 . For example, by providing R 1 and C 1 to provide LPF characteristics, an AC component signal superimposed on the output of the adder 102 (modulation signal, multipath, fluctuation caused by adjacent interference) as SM-DC1 Component) is smoothed to obtain a signal which can be regarded as substantially a direct current.

一方、Tr3を有する出力側経路に接続される平滑化回路108は、平滑化回路106と同様に、Tr3のコレクタと接地電位GNDとの間に互いに並列に接続された抵抗R及びキャパシタCからなる。平滑化回路108は、Tr3から出力されるIOUTを抵抗値R及び容量値Cに応じて定まる時定数で平滑化し、SM−ACを生成する。例えば、R,Cの時定数を小さく設定することで、平滑化回路108の時定数は、SIF1の振幅変動に追随できる程度の値となる。その結果、SM−ACとして、隣接妨害やノイズによってSIF1に生じる振幅変動に応じた交流信号が得られ、上述したように従来はこれを隣接妨害検出に用いていた。これに対して、本発明では、SM−ACではなくSM−DC1及びSメータ回路94にて生成されるSM−DC2を用いて隣接妨害の有無が判定される。なお、従来のSM−ACを用いた方式と、本方式を組み合わせて使用してもよい。 On the other hand, the smoothing circuit 108 connected to the output side path having T r3 is similar to the smoothing circuit 106 in that the resistor R 2 and the capacitor connected in parallel with each other between the collector of T r3 and the ground potential GND. consisting of C 2. The smoothing circuit 108 smoothes I OUT output from T r3 with a time constant determined according to the resistance value R 2 and the capacitance value C 2 , and generates S M-AC . For example, by setting the time constant of R 2, C 2, the time constant of the smoothing circuit 108 is a value enough to follow the amplitude variation of the S IF1. As a result, an AC signal corresponding to the amplitude fluctuation generated in SIF1 due to adjacent interference or noise is obtained as SM -AC, and as described above, this is conventionally used for detecting adjacent interference. In contrast, in the present invention, the presence or absence of adjacent interference is determined by using the S M-DC2 generated by S M-AC rather than S M-DC1 and S meter circuit 94. In addition, you may use combining the method using the conventional SM-AC and this method.

Sメータ回路94は、上述したSメータ回路76と基本的な構成は同じである。図3は、Sメータ回路76の出力信号SM−DC1及びSメータ回路94の出力信号SM−DC2の受信電界強度に応じた変化を示す模式的なグラフである。同図において、横軸がアンテナ52での受信電界強度E、縦軸が信号SM−DC1,SM−DC2の電圧V,Vである。後述するように、本発明は、SM−DC1,SM−DC2それぞれの特性曲線120a,120bの傾斜区間122にて隣接妨害の有無を判定することができ、その際、両特性曲線120a,120bが基本的に当該区間122にて基本的に同じ傾斜であることを利用する。この条件は、例えば、Sメータ回路76,94の基本的な構成を共通にすることで実現可能である。すなわち、Sメータ回路76,94の基本的な構成を共通にすることで図3に示すように、SM−DC1の特性曲線120a及びSM−DC2の特性曲線120bの受信電界強度Eに対する変化の仕方を共通にすることができる。 The S meter circuit 94 has the same basic configuration as the S meter circuit 76 described above. FIG. 3 is a schematic graph showing changes according to the received electric field strength of the output signal S M-DC1 of the S meter circuit 76 and the output signal S M-DC2 of the S meter circuit 94. In the figure, the horizontal axis represents the received electric field intensity E at the antenna 52, and the vertical axis represents the voltages V W and V N of the signals S M-DC1 and S M-DC2 . As will be described later, in the present invention, it is possible to determine the presence or absence of adjacent interference in the slope sections 122 of the characteristic curves 120a and 120b of the S M-DC1 and S M-DC2 respectively. The fact that 120b has basically the same slope in the section 122 is utilized. This condition can be realized, for example, by making the basic configuration of the S meter circuits 76 and 94 common. That is, by making the basic configuration of the S meter circuits 76 and 94 common, as shown in FIG. 3, the change of the characteristic curve 120a of S M-DC1 and the characteristic curve 120b of S M-DC2 with respect to the received electric field strength E Can be made common.

図4は、BPF60,64のフィルタ特性130w、BPF88のフィルタ特性130n、目的受信局の受信信号の帯域132、及び隣接妨害信号の帯域134の周波数軸上での位置関係を示す模式図である。図4において横軸が周波数fであり、フィルタ特性130w,130nはそれぞれの通過域の中心周波数fIF1,fIF−AMを一致させて図示している。目的受信局(帯域132)は、広帯域のBPF60,64及び狭帯域のBPF88のいずれも好適に通過する。一方、隣接局の信号(帯域134)は、広帯域のBPF60,64を通過し得るが、基本的に狭帯域のBPF88を通過しない。 FIG. 4 is a schematic diagram showing the positional relationship on the frequency axis of the filter characteristics 130w of the BPFs 60 and 64, the filter characteristic 130n of the BPF 88, the band 132 of the reception signal of the target receiving station, and the band 134 of the adjacent interfering signal. In FIG. 4, the horizontal axis is the frequency f, and the filter characteristics 130w and 130n are shown by matching the center frequencies f IF1 and f IF-AM of the respective passbands. The target receiving station (band 132) preferably passes through both the wide band BPFs 60 and 64 and the narrow band BPF 88. On the other hand, the signal (band 134) of the adjacent station can pass through the wide band BPFs 60 and 64, but basically does not pass through the narrow band BPF 88.

すなわち、BPF60,64のフィルタ特性130wは隣接局を検知できる帯域(隣接妨害検知帯域)を有するように設定され、BPF60,64を通過したSIF1に基づいてSメータ回路76が生成する受信電界強度SM−DC1は、目的受信局だけでなく隣接局を含めた強度(隣接妨害包含強度)を表す。一方、BPF88のフィルタ特性130nは、目的受信局のみを検知できる帯域(目的局検知帯域)を有するように設定され、BPF88を通過したSIF−AMに基づいてSメータ回路94が生成する受信電界強度SM−DC2は、基本的に目的受信局のみに基づく強度(目的局強度)を表す。 That is, the filter characteristic 130w of BPF60,64 is set to have a band that can detect neighbor (adjacent interference detection zone), the received field strength is S meter circuit 76 generates, based on the S IF1 having passed through the BPF60,64 S M-DC1 represents the strength (adjacent disturbance inclusion strength) including not only the target receiving station but also adjacent stations. On the other hand, the filter characteristic 130n of the BPF 88 is set to have a band (target station detection band) in which only the target receiving station can be detected, and the received electric field generated by the S meter circuit 94 based on the S IF-AM that has passed through the BPF 88. The strength S M-DC2 basically represents the strength based on only the target receiving station (target station strength).

ここで図3には、特性曲線120a,120bは互いに上下にずれる様子が示されている。この特性曲線120a,120b相互間の上下のずれは、Sメータ回路76,94の構成が全く同じであっても、上述のようにそれぞれへの入力信号の帯域幅の相違等に起因して生じ得る。また、この特性曲線120a,120b相互間の上下のずれ、すなわちSM−DC1とSM−DC2との間のオフセット電圧は例えば、図2のカレントミラー回路104のTr2を有する出力側経路に流れる電流について、電流バイアス回路等を用いてSメータ回路76とSメータ回路94とで所定の差を設けることで設定、調節することができる。例えば、FM受信機50にDAC(Digital-to-Analog Converter)及びレジスタ機能を持たせ、外部からレジスタを制御することにより、特性曲線120a,120bのオフセット電圧をそれぞれ調節できる構成とすることが可能であり、特性曲線120a,120bそれぞれのオフセット電圧の調節により、それら特性曲線120a,120b相互間のオフセット電圧の差異を所望の値に設定することができる。また、AM受信時とFM受信時とでSメータ回路94の出力電圧SM−DC2のオフセット電圧を異なる値に設定することもできる。 Here, FIG. 3 shows a state in which the characteristic curves 120a and 120b are shifted from each other up and down. The vertical deviation between the characteristic curves 120a and 120b is caused by the difference in the bandwidth of the input signal to each of the S meter circuits 76 and 94 as described above, even if the S meter circuits 76 and 94 have the same configuration. obtain. Further, the vertical deviation between the characteristic curves 120a and 120b, that is, the offset voltage between S M-DC1 and S M-DC2 is, for example, in the output side path having T r2 of the current mirror circuit 104 in FIG. The flowing current can be set and adjusted by providing a predetermined difference between the S meter circuit 76 and the S meter circuit 94 using a current bias circuit or the like. For example, the FM receiver 50 can have a DAC (Digital-to-Analog Converter) and a register function, and can control the offset voltage of the characteristic curves 120a and 120b by controlling the register from the outside. By adjusting the offset voltages of the characteristic curves 120a and 120b, the difference in offset voltage between the characteristic curves 120a and 120b can be set to a desired value. In addition, the offset voltage of the output voltage S M-DC2 of the S meter circuit 94 can be set to a different value when AM is received and when FM is received.

特性曲線120a,120b相互間のオフセット電圧ΔVSMを、
ΔVSM≡V(e)−V(e)
と定義する。ここで、V(e),V(e)はそれぞれ受信電界強度E=eでのSM−DC1,SM−DC2の値である。
The offset voltage ΔV SM between the characteristic curves 120a and 120b is
ΔV SM ≡V N (e) −V W (e)
It is defined as Here, V N (e) and V W (e) are values of S M-DC1 and S M-DC2 when the received electric field strength E = e, respectively.

上述のように特性曲線120a,120bが全受信電界強度で平行になる場合には、ΔVSMはeに依存せず一定となる。現実には、特性曲線120a,120bを全受信電界強度で平行にすることが難しい場合もあり得る。その場合には、傾斜区間122にてほぼ平行となるように設定し、ΔVSMは当該区間122内での平均値等で代表させることができる。 As described above, when the characteristic curves 120a and 120b are parallel with respect to the total received electric field strength, ΔV SM is constant without depending on e. In reality, it may be difficult to make the characteristic curves 120a and 120b parallel to all received electric field strengths. In that case, it is set to be substantially parallel in the inclined section 122, and ΔV SM can be represented by an average value or the like in the section 122.

本実施形態では、ΔVSMは所定の基準値に設定され、区間122にて差ΔVSMに保たれるV(e)とV(e)との強度関係を基準相互関係として、実際にSメータ回路76,94から得られるVとVとの関係を当該基準相互関係と比較し、隣接妨害が発生しているか否かを判定する。具体的には、測定値V(例えば、図3の点Pに対応)に対して基準相互関係をなす値VW−REF(例えば、図3の点PW−REFに対応)よりも、測定値V(例えば、図3の点Pに対応)がどれだけ大きいかを、VとVとの差(V−V)をΔVSM(≡V−VW−REF)と対比して判定する。そして、VがVW−REFより所定の閾値以上高い状態を、隣接妨害が発生していると判定する。 In the present embodiment, ΔV SM is set to a predetermined reference value, and the intensity relationship between V N (e) and V W (e) maintained at the difference ΔV SM in the section 122 is actually used as a reference mutual relationship. The relationship between V N and V W obtained from the S meter circuits 76 and 94 is compared with the reference mutual relationship to determine whether or not adjacent interference has occurred. Specifically, the measured value V N (e.g., point P N corresponds to the FIG. 3) value constituting a reference correlation against V W-REF (e.g., corresponding to a point P W-REF in FIG. 3) than , The magnitude of the measured value V W (for example, corresponding to the point P W in FIG. 3), and the difference between V N and V W (V N −V W ) is expressed as ΔV SM (≡V N −V W− Judged against REF ). A state where V W is higher than V W-REF by a predetermined threshold or more is determined to be that adjacent interference has occurred.

さて、上述のように目的受信局及び隣接局からの受信信号はBPF60,64を通過してFM受信処理部51aに入力される。FM受信処理部51aに設けられるIFBPF70では、その通過帯域幅Wが基準帯域幅wに設定されている状態にて、隣接局の信号の一部分がIFBPF70のフィルタ特性の減衰域側にはみ出し得る。そのため、目的受信局と隣接局とが、アンテナ52やSメータ回路76の入力で同じ信号強度であったとしても、FM検波回路74への入力レベルは、隣接局の方が目的受信局より低くなり得る。この場合には、隣接局の受信電界強度が、IFBPF70での減衰量の絶対値EとキャプチャレシオEとを加えた強度以上、目的受信局より強い場合に隣接妨害が起こる。一方、隣接局の受信電界強度が目的受信局より強くても、その超過量がIFBPF70での減衰量の絶対値EからキャプチャレシオEを引いた強度以下であれば、隣接妨害は生じない。図5は、この場合の隣接妨害の判定を説明するための、SM−DC1及びSM−DC2の特性曲線を示す模式的なグラフであり、図3と同様に表現されている。図5では例えば、ΔVSMを、受信電界強度が(E+E)増加したときのSM−DC1(つまりV)の増加量に設定する。この設定によれば、測定値V(例えば、図5の点Pに対応)と測定値V(例えば、図5の点Pに対応)との差(V−V)が0、すなわちV=Vのときに、IFBPF70の出力での隣接局の信号強度が目的受信局よりキャプチャレシオ分、強くなる。よって、VとVとの大小関係に基づいて隣接妨害の有無を判定することが可能となり、その判定を例えば、ハード的にコンパレータで行うことができ、判定回路の構成の簡素化が可能となる。 As described above, the reception signals from the target reception station and adjacent stations pass through the BPFs 60 and 64 and are input to the FM reception processing unit 51a. In IFBPF70 provided FM reception processing section 51a, in a state in which the pass bandwidth W F is set to the reference bandwidth w w, a portion of the signals of the adjacent stations may protrude to the attenuation band side filter characteristic of IFBPF70 . Therefore, even if the target receiving station and the adjacent station have the same signal intensity at the input of the antenna 52 and the S meter circuit 76, the input level to the FM detection circuit 74 is lower in the adjacent station than in the target receiving station. Can be. In this case, the received field strength of the neighboring stations, the attenuation of the absolute value E A and the capture ratio E C and added strength or more in IFBPF70, occurs adjacent interference when stronger than the target receiving station. On the other hand, even stronger than the target reception station received signal strength of the neighboring stations, the excess amount is equal to or less than the strength obtained by subtracting the capture ratio E C from the absolute value E A of attenuation at IFBPF70, no adjacent interference . FIG. 5 is a schematic graph showing characteristic curves of S M-DC1 and S M-DC2 for explaining determination of adjacent interference in this case, and is expressed in the same manner as FIG. In FIG. 5, for example, ΔV SM is set to an increase amount of S M-DC1 (that is, V W ) when the received electric field strength increases (E A + E C ). According to this setting, the difference (V N −V W ) between the measured value V N (for example, corresponding to the point P N in FIG. 5) and the measured value V W (for example, corresponding to the point P W in FIG. 5) is obtained. When 0, that is, V N = V W , the signal strength of the adjacent station at the output of IFBPF 70 becomes stronger than the target receiving station by the capture ratio. Therefore, it is possible to determine the presence or absence of adjacent interference based on the magnitude relationship between V N and V W, and the determination can be performed by a hardware comparator, for example, and the configuration of the determination circuit can be simplified. It becomes.

図6は、帯域幅制御部82及びその周辺回路の概略の構成を示すブロック図である。帯域幅制御部82は、制御回路140、差動アンプ142、コンパレータ144、LPF146、及びスイッチ回路148を含んで構成される。   FIG. 6 is a block diagram showing a schematic configuration of the bandwidth controller 82 and its peripheral circuits. The bandwidth controller 82 includes a control circuit 140, a differential amplifier 142, a comparator 144, an LPF 146, and a switch circuit 148.

Sメータ回路76,94の出力信号SM−DC1,SM−DC2は、帯域幅制御部82において差動アンプ142に入力される。差動アンプ142は、SM−DC1,SM−DC2それぞれの電圧値V,Vの差(V−V)に所定ゲインを乗じた電圧VN−Wを出力する。コンパレータ144は、差動アンプ142から入力されるVN−Wを、基準電圧Vrefと比較する。コンパレータ144は出力信号VCOMPとして比較結果に応じた論理レベルを、隣接妨害の有無の判定結果として制御回路140へ出力する。制御回路140は、コンパレータ144による判定結果が隣接妨害有りであれば、IFBPF70の通過帯域幅Wを狭帯域幅wに設定し、隣接妨害無しであれば、Wを基準帯域幅wに設定する。 Output signals S M-DC1 and S M-DC2 of the S meter circuits 76 and 94 are input to the differential amplifier 142 in the bandwidth controller 82. The differential amplifier 142 outputs a voltage V N−W obtained by multiplying the difference (V N −V W ) between the voltage values V W and V N of the S M−DC1 and S M−DC2 by a predetermined gain. The comparator 144 compares V N−W input from the differential amplifier 142 with the reference voltage V ref . The comparator 144 outputs a logic level corresponding to the comparison result as the output signal V COMP to the control circuit 140 as a determination result of the presence / absence of adjacent interference. Control circuit 140, if there determination is adjacent interference by the comparator 144 sets the passband width W F of IFBPF70 the narrow bandwidth w N, if no adjacent interference, W F a reference bandwidth w W Set to.

例えば、ΔVSMを、受信電界強度がE増加したときのVの増加量に設定する。この設定によれば、差動アンプ142の出力電圧の極性が、IFBPF70の出力での目的受信局と隣接局との信号強度の大小を表す。VrefをキャプチャレシオEに応じて設定することで、コンパレータ144から隣接妨害の有無の判定結果を論理レベル出力として得ることができる。例えば、コンパレータ144の出力VCOMPは、VN−W≧VrefのときH(High)レベルとなり、VN−W<VrefのときL(Low)レベルとなる。このとき、Hレベルが隣接妨害無しの判定に相当し、Lレベルが隣接妨害有りの判定に相当する。ちなみに、Vrefを高く設定することで、IFBPF70の帯域幅Wが狭帯域幅wに設定されやすくなり、IFBPF70で生じ得る音声歪みの抑制よりも隣接妨害除去を優先することができ、逆に、Vrefを低く設定することで、隣接妨害除去よりも音声歪み抑制を優先することができる。 For example, the [Delta] V SM, received field strength is set to increase in V W when the increased E A. According to this setting, the polarity of the output voltage of the differential amplifier 142 represents the magnitude of the signal strength between the target receiving station and the adjacent station at the output of the IFBPF 70. By setting V ref according to the capture ratio E C , it is possible to obtain the determination result of the presence / absence of adjacent interference from the comparator 144 as a logic level output. For example, the output V COMP of the comparator 144 becomes H (High) level when V N−W ≧ V ref , and becomes L (Low) level when V N−W <V ref . At this time, the H level corresponds to the determination that there is no adjacent interference, and the L level corresponds to the determination that there is adjacent interference. Incidentally, by setting a higher V ref, the bandwidth W F of IFBPF70 it tends to be set to the narrow bandwidth w N, it is possible to prioritize the adjacent interference removing than the suppression of audio distortion that can occur IFBPF70, reverse In addition, by setting V ref low, priority can be given to suppression of audio distortion over adjacent interference removal.

上述の構成は、Sメータ回路76,94の特性曲線120a,120bが図3,図5に示すように、基本的に傾斜区間122にて基本的に同じ傾斜であることを利用するものであった。しかし、本発明のSM−DC1,SM−DC2の比較による隣接妨害の判定は、傾斜区間122でのSM−DC1,SM−DC2の特性曲線の傾きが同じでない場合であっても適用可能である。 The above configuration utilizes the fact that the characteristic curves 120a and 120b of the S meter circuits 76 and 94 basically have the same inclination in the inclination section 122 as shown in FIGS. It was. However, the determination of adjacent interference by comparing S M-DC1 and S M-DC2 of the present invention is possible even when the slopes of the characteristic curves of S M-DC1 and S M-DC2 in the slope section 122 are not the same. Applicable.

この場合、SM−DC1,SM−DC2の特性曲線相互間のオフセット電圧ΔVSMは、受信電界強度Eの関数となる。すなわち、受信電界強度E=eでのオフセット電圧ΔVSMは、
ΔVSM(e)≡V(e)−V(e)
と表される。受信電界強度の基準点としてE=eを設定し、
ΔVSM0≡ΔVSM(e)
と定義すれば、任意の受信電界強度でのΔVSM(e)は、ΔVSM0に対する比を表すα(e)を用いて、
ΔVSM(e)≡α(e)ΔVSM0
と表すことができる。α(e)はSM−DC1,SM−DC2の特性曲線に対応して求められる。この比α(e)を用いて、E=eでの状態を基準とした相対的な比較として、V,Vを比較し隣接妨害を判定することができる。ちなみに、ΔVSMが受信電界強度Eの関数となる場合にこの相対的な比較が可能であることは、α(e)を考慮することで、ΔVSMが受信電界強度Eの関数となる場合を、図3,図5を用いて説明したΔVSMが傾斜区間122にてEに依らず一定となる場合に変換可能であることからも理解できる。
In this case, the offset voltage ΔV SM between the characteristic curves of S M-DC1 and S M-DC2 is a function of the received electric field strength E. That is, the offset voltage ΔV SM at the received electric field strength E = e is
ΔV SM (e) ≡V N (e) −V W (e)
It is expressed. E = e 0 is set as a reference point for the received electric field strength,
ΔV SM0 ≡ΔV SM (e 0 )
If ΔV SM (e) at an arbitrary received electric field strength is defined as α (e) representing a ratio to ΔV SM0 ,
ΔV SM (e) ≡α (e) ΔV SM0
It can be expressed as. α (e) is obtained corresponding to the characteristic curves of S M-DC1 and S M-DC2 . By using this ratio α (e), adjacent interference can be determined by comparing V W and V N as a relative comparison based on the state at E = e 0 . Incidentally, when ΔV SM is a function of the received electric field strength E, this relative comparison is possible when αV SM is a function of the received electric field strength E by considering α (e). This can also be understood from the fact that ΔV SM described with reference to FIGS. 3 and 5 can be converted when it becomes constant regardless of E in the inclined section 122.

また、傾斜区間122でのSM−DC1,SM−DC2の特性曲線の傾きが同じでない場合の隣接妨害の有無判定は他の方法によっても可能である。例えば、SM−DC1,SM−DC2の特性曲線に基づいて、Sメータ回路94が出力するSM−DC2の電圧値Vに対応する受信電界強度EでのSM−DC1の出力の推定値VW−REFが得られる。一方、Sメータ回路76からは、SM−DC1の測定値Vが得られる。これらの差(V−VW−REF)を所定の閾値と比較して、当該差が閾値以上であれば隣接妨害有り、閾値未満であれば隣接妨害無しと判定判定してもよい。 Also, the presence / absence determination of adjacent interference when the slopes of the characteristic curves of S M-DC1 and S M-DC2 in the slope section 122 are not the same can be determined by other methods. For example, based on the characteristic curves of S M-DC1 and S M-DC2 , the output of S M-DC1 at the received electric field strength E corresponding to the voltage value V N of S M-DC2 output from the S meter circuit 94 An estimated value V W-REF is obtained. On the other hand, the measured value V W of S M-DC1 is obtained from the S meter circuit 76. These differences (V W −V W−REF ) may be compared with a predetermined threshold, and if the difference is equal to or greater than the threshold, it may be determined that there is adjacent interference, and if it is less than the threshold, there is no adjacent interference.

なお、帯域幅制御部82は、さらにFM検波回路74の出力信号SOUTやAFC回路80の出力信号VsをWの制御に利用する構成としてもよい。 Incidentally, the bandwidth control unit 82 may further be configured to utilize the output signal Vs of the output signal S OUT and AFC circuit 80 of the FM detection circuit 74 to control the W F.

まず、FM検波回路74の出力信号SOUTをWの制御に利用する構成を説明する。弱電界状態のSOUTは、隣接妨害とは関係が薄い高域のノイズ成分を含みやすく、その結果、音声品質(S/N比)を低下させる可能性がある。そこで、弱高域成分状態であり隣接妨害の観点からは狭帯域wとする必要性が低い場合であっても、低変調度かつ弱電界状態の場合には、IFBPF70の通過帯域を狭帯域wとして、SOUTに現れる高域ノイズを低減し音声品質の向上を図る構成とすることができる。なお、この場合、低変調度であるので、狭帯域wに設定しても音声歪みは生じにくい。なお、スイッチ148にはヒステリシスを持たせることにより、変調信号の変化に対して頻繁に切り替わらないようにすることができる。ヒステリシス量は、LPF146の出力の時定数にも関係するが、電界強度の時間的な変動を考慮したものとする。 First, a configuration utilizing an output signal S OUT of the FM detection circuit 74 to control the W F. S OUT in a weak electric field state tends to include a high-frequency noise component that is not related to adjacent interference, and as a result, there is a possibility that voice quality (S / N ratio) may be reduced. Therefore, even if it is a weak high-frequency component state and the need for the narrow band w N is low from the standpoint of adjacent interference, if the degree of modulation is low and the weak electric field state, the IFBPF 70 has a narrow pass band. As w N , it is possible to reduce the high-frequency noise appearing in S OUT and improve the voice quality. In this case, since a low degree of modulation, audio distortion also set to narrowband w N is less likely to occur. It should be noted that the switch 148 can have a hysteresis so that it does not switch frequently with respect to changes in the modulation signal. The amount of hysteresis is related to the time constant of the output of the LPF 146, but it is assumed that the temporal variation of the electric field strength is taken into consideration.

具体的には、FM検波出力信号SOUTをLPF146に入力し、制御回路140は、LPF146の出力レベルVLFが所定の閾値dLF以下であれば低変調度であると判断する。また、LPF146から制御回路140への入力は、スイッチ回路148がSM−DC1に基づいて弱電界状態にてオンすることにより可能となるので、制御回路140はLPF146からの入力があることを以て、弱電界状態であると判断することができる。制御回路140は、LPF146の出力VLFに基づいて、低変調度かつ弱電界状態の場合を検知し、Wをwに設定する。 Specifically, the FM detection output signal S OUT is input to the LPF 146, and the control circuit 140 determines that the modulation level is low when the output level V LF of the LPF 146 is equal to or lower than a predetermined threshold value d LF . Further, the input from the LPF 146 to the control circuit 140 becomes possible when the switch circuit 148 is turned on in a weak electric field state based on S M-DC1 , so that the control circuit 140 has the input from the LPF 146, It can be determined that the electric field is weak. Control circuit 140, based on the output V LF of LPF146, detects the case of low modulation and a weak electric field state, sets the W F to w N.

次に、さらにAFC回路80の出力信号Vsを利用する構成を説明する。例えば、目的受信局の受信電界強度が小さく、一方、隣接妨害局の受信電界強度が大きいような場合には、Vsは、目的受信局だけが受信されている場合や、隣接妨害波が目的受信信号よりも強度が小さい場合などに比べて異常に大きくなり得る。このような点から、Vsに基づいて通常の周波数ずれか隣接妨害による周波数ずれかを判別することができる場合がある。制御回路140は、例えば、VCOMP及びVsの少なくとも一方に基づいて隣接妨害を検知した場合には狭帯域幅wに設定したり、VCOMP及びVsの両方とも隣接妨害を示唆する場合にだけ狭帯域幅wに設定するように構成できる。 Next, a configuration using the output signal Vs of the AFC circuit 80 will be described. For example, when the reception field strength of the target receiving station is small while the reception field strength of the adjacent interfering station is large, Vs is used when only the target receiving station is receiving or when the adjacent interfering wave is the target reception. Compared with the case where the intensity is smaller than the signal, it can be abnormally large. From this point, it may be possible to determine whether the frequency shift is a normal frequency shift or a frequency shift due to adjacent interference based on Vs. Control circuit 140, for example, set to the narrow bandwidth w N if it detects an adjacent interference based on at least one of V COMP and Vs, when suggesting adjacent interference both V COMP and Vs only It can be configured to set the narrow bandwidth w N.

なお、上述の構成では、ΔVSMを、受信電界強度が(E+E)増加したときのSM−DC1(つまりV)の増加量に設定する場合を説明した。しかし、ΔVSMを他の値に設定しても、Vrefを調整することで、コンパレータ144にて上述の構成と同様の隣接妨害有無に応じた出力VCOMPを得ることができる。 In the above-described configuration, the case where ΔV SM is set to an increase amount of S M-DC1 (that is, V W ) when the received electric field intensity increases (E A + E C ) has been described. However, even if ΔV SM is set to another value, by adjusting V ref , the comparator 144 can obtain an output V COMP corresponding to the presence or absence of adjacent interference similar to the above-described configuration.

ちなみに、FM受信機50における周波数同調動作やFM受信とAM受信との切り換え動作等の制御は、例えば、システムバスを介して接続されたマイコンから行われる。従来は、FM受信時には、SOUTにAM検波出力信号が現れないようにするために、AM信号処理部の動作を停止させる。これに対して、本実施形態のFM受信機50では、FM受信時において、AM信号処理部51bの第2混合回路86、Sメータ回路94は動作させてSM−DC2は生成しつつ、例えば、AM検波回路92は停止させてSOUTを出力させない等の制御が行われる。 Incidentally, control such as frequency tuning operation and switching operation between FM reception and AM reception in the FM receiver 50 is performed by, for example, a microcomputer connected via a system bus. Conventionally, during FM reception, in order not appear AM detection output signal S OUT, stops the operation of the AM signal processing unit. On the other hand, in the FM receiver 50 of the present embodiment, at the time of FM reception, the second mixing circuit 86 and the S meter circuit 94 of the AM signal processing unit 51b are operated to generate S M-DC2 , for example, The AM detection circuit 92 is controlled to stop and not output SOUT .

また本実施形態では、狭帯域の受信電界強度信号SM−DC2を生成するため信号を抽出するために、AM信号処理部51bが従来より有している狭帯域のBPF88を利用した。しかし、狭帯域のBPFには別のものを用いてもよい。例えば、AM信号処理部51bが設けられていない場合には、AM受信とは関係なくBPF88,Sメータ回路94を設けてSM−DC2を生成する。その際、SM−DC2の生成に用いる中間信号の周波数は、SM−DC1の生成に用いる中間信号SIF1の周波数fIF1とは同じであってもよいし、上記実施形態のように異なる周波数としてもよい。 In the present embodiment, the narrow band BPF 88 that the AM signal processing unit 51b has conventionally used is used to extract a signal in order to generate the narrow band received field strength signal S M-DC2 . However, another narrow band BPF may be used. For example, when the AM signal processing unit 51b is not provided, the BPF 88 and the S meter circuit 94 are provided regardless of the AM reception to generate the S M-DC2 . At this time, the frequency of the intermediate signal used for generating S M-DC2 may be the same as the frequency f IF1 of the intermediate signal S IF1 used for generating S M-DC1 , or different as in the above embodiment. It is good also as a frequency.

上記実施形態では、SM−DC1,SM−DC2の比較をコンパレータ144を用いたアナログ処理で行う例を示したが、比較のための構成はこれに限定されない。例えば、上述のマイコンまで含めたシステムで構成することも可能である。その場合、例えば、マイコンのADC(Analog-to-Digital Converter)やFM受信機50が形成されたIC(チューナーIC)に内蔵されたADCにてSM−DC1及びSM−DC2をデジタル値として検出し、当該デジタル値を用いた演算によって上述のアナログ処理と同様の処理を行う。このデジタル処理は、上述のアナログ処理よりも隣接妨害の検出精度の向上が可能である。例えば、ローコストチューナー向けには、アナログ的又はハード的な手法を用い、ミドルクラス以上のチューナー向けにはADCやマイコンを含めたデジタル的な手法を用いることにより、コストと精度のトレードオフをうまく設定させることができる。 In the above-described embodiment, the example in which the comparison between S M-DC1 and S M-DC2 is performed by analog processing using the comparator 144 is shown, but the configuration for comparison is not limited to this. For example, a system including the above-described microcomputer can be used. In that case, for example, S M-DC1 and S M-DC2 are converted into digital values by an ADC built in an ADC (Analog-to-Digital Converter) of the microcomputer or an IC (tuner IC) in which the FM receiver 50 is formed. Detection is performed, and processing similar to the above-described analog processing is performed by calculation using the digital value. This digital processing can improve the detection accuracy of adjacent interference than the analog processing described above. For example, using analog or hardware methods for low-cost tuners, and using digital methods including ADCs and microcomputers for middle-class and higher tuners, the trade-off between cost and accuracy can be set well. Can be made.

上記実施形態では、広狭2種類の信号SIF1,SIF−AMを用いて2種類の受信電界強度信号SM−DC1,SM−DC2を生成し、それらの比較により隣接妨害の有無を判定する。ここで、受信信号から帯域幅が異なる3種類以上の信号を抽出し、それらの受信電界強度信号を比較することにより、隣接妨害の有無だけでなく、目的受信局に対してどれだけ離れた周波数に隣接妨害局が存在するかを検知する構成とすることもできる。 In the above embodiment, two types of received field strength signals S M-DC1 and S M-DC2 are generated using two types of wide and narrow signals S IF1 and S IF-AM, and the presence or absence of adjacent interference is determined by comparing them. To do. Here, by extracting three or more types of signals having different bandwidths from the received signal and comparing the received electric field strength signals, not only the presence / absence of adjacent interference, but also the frequency far from the target receiving station. It can also be configured to detect whether there is an adjacent jamming station.

[第2の実施形態]
本発明の第2の実施形態であるFM受信機は、図1に示すFM受信機50の構成に加えて、さらに、SM−DC1の生成に用いる中間信号SIF1に基づいて変調度MIF1を求める変調度検出回路と、当該変調度MIF1に応じてコンパレータ144の閾値電圧Vrefを制御する閾値制御回路とを備える。
[Second Embodiment]
The FM receiver according to the second embodiment of the present invention has a modulation degree M IF1 based on an intermediate signal S IF1 used for generating S M-DC1 in addition to the configuration of the FM receiver 50 shown in FIG. And a threshold control circuit for controlling the threshold voltage V ref of the comparator 144 in accordance with the modulation degree M IF1 .

上記第1の実施形態では、ΔVSMは一定としたが、SM−DC1とSM−DC2との上下差は、受信信号の変調度に応じて変化することも考えられる。具体的には、目的受信局のFM信号の抽出に用いられるBPF88の通過帯域幅はBPF60,64に比べると狭いため、当該FM信号の帯域の一部しか通過しないように設定され得る。そのため、目的局の信号の変調度が高いほど、BPF88を通過できない成分が多くなってSM−DC2が低くなりVN−Wが低下し得る。一方、逆に変調度が低いほど、SM−DC2が高くなりVN−Wが上昇し得る。そこで、本実施形態では、上述のように、BPF88に入力される前の信号SIF1での変調度MIFを求め、当該変調度MIF1に応じてコンパレータ144の閾値電圧Vrefを制御する。コンパレータ144での処理は、ADCとマイコン、DACを使用することでデジタル的に実現することもできる。この場合、閾値電圧Vrefはマイコンのソフトにて設定することができる。 In the first embodiment, ΔV SM is constant, but the vertical difference between S M-DC1 and S M-DC2 may change according to the modulation degree of the received signal. Specifically, since the pass band width of the BPF 88 used for extracting the FM signal of the target receiving station is narrower than that of the BPFs 60 and 64, it can be set so that only a part of the band of the FM signal passes. For this reason, the higher the degree of modulation of the signal of the target station, the more components that cannot pass through the BPF 88, so that SM -DC2 becomes lower and VN -W can be lowered. On the other hand, the lower the modulation degree, the higher the SM-DC2 and the higher VN -W . Therefore, in the present embodiment, as described above, the modulation degree M IF of the signal S IF1 before being input to the BPF 88 is obtained, and the threshold voltage V ref of the comparator 144 is controlled according to the modulation degree M IF1 . The processing in the comparator 144 can also be realized digitally by using an ADC, a microcomputer, and a DAC. In this case, the threshold voltage V ref can be set by microcomputer software.

変調度検出回路は、LPF等を用いたアナログ信号処理回路で構成することもできるし、DSP(Digital Signal Processor)等のデジタル信号処理回路で構成することもできる。閾値制御回路は、変調度検出回路の出力を受けて、MIFの低下時のVN−Wの増加に対応して、Vrefを増加させる。この構成により、SM−DC1,SM−DC2に基づく上述の隣接妨害の検出において、目的受信局の変調度の違いの影響を排除し、検出精度の向上を図ることができる。 The modulation degree detection circuit can be configured by an analog signal processing circuit using an LPF or the like, or can be configured by a digital signal processing circuit such as a DSP (Digital Signal Processor). The threshold control circuit receives the output of the modulation degree detection circuit and increases V ref in response to an increase in V N-W when M IF decreases. With this configuration, in the detection of the above-described adjacent interference based on S M-DC1 and S M-DC2 , it is possible to eliminate the influence of the difference in modulation degree of the target receiving station and improve detection accuracy.

[第3の実施形態]
図7は、本発明の第3の実施形態であるFM受信機200の概略の構成を示すブロック図である。本実施形態において、上記第1の実施形態のFM受信機50と同様の構成要素には同一の符号を付して以下の説明の簡略化を図る。図7には、FM受信機200の動作を制御するマイコン202及びシステムバス204が示されている。マイコン202は、システムバス204を介して例えば、第1局部発振回路56などのFM受信機200の制御対象に対応して設けられたレジスタ(図示せず)の格納値を書き換えることにより、当該各部の動作を制御することができる。IFBPF70の通過帯域幅Wの広狭の切り換え制御もこのようなレジスタに格納された内容を書き換えることにより行うことができる。なお、IFBPF70はアナログフィルタ、デジタルフィルタのいずれでもよい。帯域幅Wを変化させることで、Sメータ回路94にて受信電界強度が検出される信号の帯域幅を変えることができる。Sメータ回路76の出力と、Wを狭く設定した場合のSメーター回路94の出力とを比較することによって、上述の実施形態と同様、隣接妨害の検出ができる。また、IFBPF70の帯域幅Wの広狭を切り替えて順次取得される、Wを広く設定した場合のSメータ回路94の出力とWを狭く設定した場合のSメータ回路94の出力とを比較することによっても、隣接妨害の検出ができる。この場合、Wを広く設定した場合のSメータ回路94の出力が、Sメータ回路76の出力の代わりに用いられる。
[Third Embodiment]
FIG. 7 is a block diagram showing a schematic configuration of an FM receiver 200 according to the third embodiment of the present invention. In the present embodiment, the same components as those of the FM receiver 50 of the first embodiment are denoted by the same reference numerals, and the following description is simplified. FIG. 7 shows a microcomputer 202 and a system bus 204 that control the operation of the FM receiver 200. The microcomputer 202 rewrites the stored value of a register (not shown) provided corresponding to the control target of the FM receiver 200 such as the first local oscillation circuit 56 via the system bus 204, for example. Can be controlled. Switching control of the wide and narrow the pass bandwidth W F of IFBPF70 can also be carried out by rewriting the contents stored in these registers. The IFBPF 70 may be either an analog filter or a digital filter. By changing the bandwidth W F, it is possible to vary the bandwidth of the signal received electric field strength is detected by the S meter circuit 94. The output of the S meter circuit 76 by comparing the output of the S meter circuit 94 in the case of setting narrow W F, similar to the embodiment described above, can be detected adjacent interference. Moreover, compared with the output of the S meter circuit 94 in the case of sequentially acquired by switching the wide and narrow bandwidth W F of IFBPF70, and sets a narrow output and W F of S meter circuit 94 in the case of setting a wide W F By doing so, adjacent interference can be detected. In this case, the output of the S meter circuit 94 in the case of setting large the W F is used in place of the output of the S meter circuit 76.

例えば、上述のレジスタは図6の制御回路140に備えられ、制御回路140は当該レジスタの格納値に対応する所定の電圧の制御電圧信号を生成しIFBPF70へ出力する回路を備える。当該レジスタの設定は、例えば、コンパレータ144等のセンサ回路の出力信号によって行われる他、図7のマイコン202がシステムバス204を介して行うことができる。   For example, the above-described register is provided in the control circuit 140 of FIG. 6, and the control circuit 140 includes a circuit that generates a control voltage signal having a predetermined voltage corresponding to the stored value of the register and outputs the control voltage signal to the IFBPF 70. For example, the setting of the register is performed by an output signal of a sensor circuit such as the comparator 144, and the microcomputer 202 of FIG. 7 can be performed via the system bus 204.

また、図7のFM受信機200では、SM−DC2を生成するSメータ回路94が、IFBPF70を通過したSIF2を入力されるように構成される。すなわち、SM−DC2はIFBPF70から出力されアンプ72で増幅されたSIF2に基づいて生成される。なお、SM−DC1は上記FM受信機50と同様、Sメータ回路76がSIF1に基づいて生成する。 In the FM receiver 200 of FIG. 7, the S meter circuit 94 that generates the S M-DC2 is configured to receive the S IF2 that has passed through the IFBPF 70. That, S M-DC2 is generated based on the S IF2 that has been amplified by the amplifier 72 is output from IFBPF70. Note that S M-DC1 is generated by the S meter circuit 76 based on SIF1 in the same manner as the FM receiver 50 described above.

図7に示すFM受信機200は、受信電界強度信号SM−DC2の生成するための狭帯域の信号を抽出するために、IFBPF70を利用する。隣接妨害の有無判定処理を行う場合には、マイコン202が図6の制御回路140内に設けられるレジスタの値を操作することで、IFBPF70の通過帯域幅Wを狭帯域wに設定する。その状態にてSメータ回路94から出力されるSM−DC2と、それと同時に得られるSメータ回路76からのSM−DC1とに基づいて、例えば、図6の差動アンプ142及びコンパレータ144により、隣接妨害の有無の判定結果を示す信号VCOMPが生成され、制御回路140に入力される。制御回路140は、VCOMPに基づいて、レジスタの値を書き換え、隣接妨害の判定結果に応じた通過帯域幅WにIFBPF70を設定する。 The FM receiver 200 shown in FIG. 7 uses the IFBPF 70 in order to extract a narrowband signal for generating the received electric field strength signal S M-DC2 . When performing the process for determining the presence or absence of adjacent interference, by operating the value of the register by the microcomputer 202 is provided in the control circuit 140 of FIG. 6, to set the passband width W F of IFBPF70 narrowband w N. Based on the SM-DC2 output from the S meter circuit 94 in that state and the SM -DC1 from the S meter circuit 76 obtained at the same time, the differential amplifier 142 and the comparator 144 in FIG. A signal V COMP indicating the determination result of the presence or absence of adjacent interference is generated and input to the control circuit 140. Control circuit 140, based on V COMP, rewrites the value of the register, and sets the IFBPF70 passband width W F corresponding to the adjacent interference judgment result.

この構成では、IFBPF70が基準帯域幅wに設定されている状態で、隣接妨害判定動作を行うと、一時的にIFBPF70が狭帯域幅wに切り替わる。この判定動作を高変調のFM信号の受信時に行うと、SOUTに歪みが生じ異音として聞こえ得る。そこで、マイコン202は、判定動作に連動してミュート動作を行う。ちなみに、判定動作は例えば、1mS程度の短時間で完了し得るので、ミュートの聴感上の影響は軽微である。 In this configuration, in a state where IFBPF70 is set to the reference bandwidth w W, Doing adjacent interference judgment operation, temporarily IFBPF70 is switched to the narrow bandwidth w N. Doing this determining operation at the time of receiving the high modulation FM signal may be heard as noises caused distortion in S OUT. Therefore, the microcomputer 202 performs a mute operation in conjunction with the determination operation. Incidentally, since the determination operation can be completed in a short time of about 1 mS, for example, the influence on the audibility of mute is slight.

FM受信機200は、RDSデコーダ(図示せず)を備え、RDSデータを受信可能に構成することができる。RDSデコーダは、57kHzの副搬送波を変調して伝送されるRDSデータを復調する。   The FM receiver 200 includes an RDS decoder (not shown), and can be configured to receive RDS data. The RDS decoder demodulates the RDS data transmitted by modulating the 57 kHz subcarrier.

RDSは、受信状態が悪化した場合に、代替候補局を探索するAFサーチを行い、自動的に代替局へ切り換えることができる。その制御では、受信状態が悪化した場合に、音声出力をミュート状態にして、受信周波数をRDSデータから得られた代替候補局の周波数に設定し、基準電界強度以上の代替候補局の有無を判定する。代替候補局有りと判定された場合には、番組識別(PI:Program Identification)コード判定を行い、良好な受信状態で、かつPIコードが同一であれば、当該代替候補局を代替局と定め、その受信状態を維持し、AFサーチを停止して代替局への切り替えを行う。一方、良好な代替局が見つからなければ元の受信局に戻る。この場合、RDSデコーダへの受信信号はミュートしない。   When the reception state deteriorates, the RDS can perform an AF search for searching for an alternative candidate station and can automatically switch to the alternative station. In that control, when the reception condition deteriorates, the audio output is muted, the reception frequency is set to the frequency of the alternative candidate station obtained from the RDS data, and the presence / absence of the alternative candidate station with the reference electric field strength or higher is determined. To do. If it is determined that there is an alternative candidate station, a program identification (PI) code determination is performed. If the PI code is the same in a good reception state, the alternative candidate station is determined as an alternative station, The reception state is maintained, AF search is stopped, and switching to an alternative station is performed. On the other hand, if a good alternative station is not found, the original receiving station is restored. In this case, the received signal to the RDS decoder is not muted.

例えば、マイコン202は、AFサーチにて,現在受信中のチャンネルから他のチャンネルに遷移したときに、上述のSM−DC1,SM−DC2の比較に基づく隣接妨害判定を行う。この判定結果は、代替局選定の際の受信状態の良否の判断に利用することができる。また、RDSデコーダへの受信信号の入力は、隣接妨害判定結果に応じて制御されるスイッチ等によりミュート可能に構成される。隣接妨害が発生していると判定された場合には、RDSデコーダへの入力をミュートし、隣接妨害が生じている受信信号に基づいてRDSデコーダが遷移先のチャンネルを代替候補局として誤検出することを防止する。 For example, the microcomputer 202 performs the adjacent interference determination based on the comparison of the above-described S M-DC1 and S M-DC2 when the channel is changed from the currently receiving channel to another channel in the AF search. This determination result can be used to determine whether or not the reception state is good when selecting an alternative station. The input of the received signal to the RDS decoder is configured to be mutable by a switch or the like controlled according to the adjacent interference determination result. If it is determined that adjacent interference has occurred, the input to the RDS decoder is muted, and the RDS decoder erroneously detects the transition destination channel as an alternative candidate station based on the received signal in which adjacent interference has occurred. To prevent that.

また、隣接妨害が有ると判定された場合には、帯域幅Wを基準帯域幅より狭い値wに設定し、隣接妨害によるRDSデータの欠損を抑制し、RDSデータを復調しやすくする構成とすることもできる。この構成では、隣接妨害が無い場合には、帯域幅Wは基準帯域幅wに設定し、RDSデータを伝送する信号に対する感度を向上させてPIコード検出が速やかに行われるようにすることができる。 Further, when it is determined that adjacent-channel interference is present, it sets the bandwidth W F to the reference bandwidth narrower value w N, suppresses loss of RDS data by the adjacent-channel interference is easily demodulate the RDS data structure It can also be. In this configuration, when there is no adjacent interference is that the bandwidth W F is set to the reference bandwidth w W, to improve the sensitivity to signal for transmitting RDS data so that PI code detection is rapidly performed Can do.

ここで、既に述べたように、AFサーチ時の音声放送プログラムの受信中断状態が人に音切れとして感知されないように、AFサーチは3〜7mSといった短時間で行うことが要求される。しかし、AFサーチでは、他のチャンネルへ移動し、PLLのロック、局検出、隣接妨害検出、マルチパス妨害検出、PIコードの検出などの処理を行わなければならないため、高速なPLLを用いても上述の短時間内にAFサーチを正確に行うことは容易ではない。特に、欧州のRDSでは1チューナでAFサーチを行うため、音切れの抑制には、AFサーチの高速化が必須となる。   Here, as already described, the AF search is required to be performed in a short time such as 3 to 7 mS so that the reception interruption state of the audio broadcast program at the time of the AF search is not detected by the person as a sound interruption. However, in the AF search, it is necessary to move to another channel and perform processing such as PLL lock, station detection, adjacent interference detection, multipath interference detection, and PI code detection. It is not easy to accurately perform AF search within the above-mentioned short time. In particular, in European RDS, since AF search is performed with one tuner, it is essential to increase the speed of AF search in order to suppress sound interruption.

この点、本発明のSM−DC1,SM−DC2による上述の隣接妨害判定は、隣接妨害を短時間で精度良く検出することができ、AFサーチの高速化が容易となる。また、AFサーチにおける局検出も、SM−DC1を用いて行うことができる。すなわち、共通のセンサ出力で隣接妨害検出及び局検出を行うことができるので、マイコン等がセンサ出力の取得に要する時間が短縮され、この点でもAFサーチの高速化に資する。 In this regard, the above - described adjacent interference determination by the S M-DC1 and S M-DC2 of the present invention can detect adjacent interference with high accuracy in a short time, and facilitates high speed AF search. Also, station detection in AF search can be performed using the SM-DC1 . That is, since adjacent interference detection and station detection can be performed with a common sensor output, the time required for the microcomputer or the like to acquire the sensor output is shortened, which also contributes to speeding up of the AF search.

さらに、従来技術で述べたIFカウンターやSQセンサを併用してAFサーチを行うことにより、精度の向上を図ることも可能である。その際、SM−DC1による局検出、及びSM−DC1,SM−DC2による隣接妨害判定は並行して、また高速に行うことができるので他の局検出手段に先行して行い、この先行する手段で局検出がされた場合にのみ、IFカウントやSQセンサを用いた他の局検出手段を実行することで、AFサーチの精度を上げつつ処理時間の短縮及び処理負荷の軽減を図ることができる。 Further, it is possible to improve accuracy by performing AF search using the IF counter and SQ sensor described in the prior art together. At that time, the station detection by S M-DC1, and adjacent-channel interference determination by the S M-DC1, S M- DC2 are in parallel, also performed prior to other stations detecting means can be performed at high speed, this Only when the station is detected by the preceding means, the other station detecting means using the IF count or the SQ sensor is executed to shorten the processing time and the processing load while improving the accuracy of the AF search. be able to.

本発明の第1の実施形態であるFM受信機の概略の構成を示すブロック図である。It is a block diagram which shows the structure of the outline of the FM receiver which is the 1st Embodiment of this invention. Sメータ回路の概略の構成を示す回路図である。It is a circuit diagram which shows the structure of the outline of S meter circuit. Sメータ回路の出力信号SM−DC1及びSM−DC2の受信電界強度に応じた変化を示す模式的なグラフである。It is a typical graph which shows the change according to the received electric field strength of the output signals S M-DC1 and S M-DC2 of the S meter circuit. M−DC1に対応した広帯域のBPF、SM−DC2に対応した狭帯域のBPFそれぞれのフィルタ特性及び、目的受信局、隣接妨害信号それぞれの帯域に関する周波数軸上での位置関係を示す模式図である。Schematic diagram showing the filter characteristics of the wideband BPF corresponding to S M-DC1 and the narrowband BPF corresponding to S M-DC2 and the positional relationship on the frequency axis with respect to the bands of the target receiving station and adjacent interfering signals. It is. 隣接妨害の判定を説明するための、SM−DC1及びSM−DC2の特性曲線を示す模式的なグラフである。It is a typical graph which shows the characteristic curve of S M-DC1 and S M-DC2 for demonstrating the judgment of adjacent disturbance. 帯域幅制御部及びその周辺回路の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of a bandwidth control part and its peripheral circuit. 本発明の第3の実施形態であるFM受信機の概略の構成を示すブロック図である。It is a block diagram which shows the structure of the outline of the FM receiver which is the 3rd Embodiment of this invention. 従来のFMラジオ受信機の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional FM radio receiver. 従来のFMラジオ受信機の帯域幅制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the bandwidth control part of the conventional FM radio receiver.

符号の説明Explanation of symbols

50,200 FM受信機、51a FM受信処理部、51b AM受信処理部、52 アンテナ、54 RFアンプ、56 第1局部発振回路、58 第1混合回路、60,64,88 BPF、62,72,90 アンプ、66,84 第2局部発振回路、68,86 第2混合回路、70 IFBPF、74 FM検波回路、76,94 Sメータ回路、80 AFC回路、82 帯域幅制御部、92 AM検波回路、100 リミッタアンプ、102 加算器、104 カレントミラー回路、106,108 平滑化回路、140 制御回路、142 差動アンプ、144 コンパレータ、146 LPF、148 スイッチ回路、202 マイコン、204 システムバス。   50,200 FM receiver, 51a FM reception processing unit, 51b AM reception processing unit, 52 antenna, 54 RF amplifier, 56 first local oscillation circuit, 58 first mixing circuit, 60, 64, 88 BPF, 62, 72, 90 amplifier, 66, 84 second local oscillation circuit, 68, 86 second mixing circuit, 70 IFBPF, 74 FM detection circuit, 76, 94 S meter circuit, 80 AFC circuit, 82 bandwidth control unit, 92 AM detection circuit, 100 limiter amplifier, 102 adder, 104 current mirror circuit, 106, 108 smoothing circuit, 140 control circuit, 142 differential amplifier, 144 comparator, 146 LPF, 148 switch circuit, 202 microcomputer, 204 system bus.

Claims (9)

受信信号に対して、目的受信局からの目的FM信号の搬送波周波数を所定の中間周波数にシフトさせる周波数変換を行い、中間信号を生成する中間信号生成回路と、
前記中間信号のうち前記中間周波数を含む隣接妨害検知帯域内に含まれる信号成分に基づいて、前記目的受信局又はその隣接局による受信電界強度に応じた隣接妨害包含強度を求める隣接妨害包含強度検出部と、
前記中間信号のうち前記中間周波数を含み前記隣接妨害検知帯域より狭い目的局検知帯域内に含まれる信号成分に基づいて、前記目的受信局による受信電界強度に応じた目的局強度を求める目的局強度検出部と、
前記隣接妨害包含強度及び前記目的局強度に基づいて、前記隣接局による隣接妨害の有無を判定する隣接妨害判定部と、
を有することを特徴とするFM受信機。
An intermediate signal generating circuit that performs frequency conversion on the received signal to shift the carrier frequency of the target FM signal from the target receiving station to a predetermined intermediate frequency, and generates an intermediate signal;
Adjacent disturbance inclusion intensity detection for obtaining an adjacent disturbance inclusion intensity according to the received electric field intensity by the target receiving station or its adjacent station based on a signal component included in an adjacent disturbance detection band including the intermediate frequency in the intermediate signal. And
Based on the signal component included in the target station detection band that includes the intermediate frequency and is narrower than the adjacent interference detection band among the intermediate signals, the target station strength that determines the target station strength according to the received electric field strength by the target receiver station A detection unit;
Based on the adjacent interference inclusion strength and the target station strength, an adjacent interference determination unit that determines the presence or absence of adjacent interference by the adjacent station,
An FM receiver comprising:
請求項1に記載のFM受信機において、
通過帯域幅を可変設定でき、前記中間信号に変換された前記目的FM信号を通過する可変帯域バンドバスフィルタと、
前記可変帯域バンドパスフィルタの出力信号をFM検波して、前記目的受信局に対応する検波出力を生成する検波部と、
前記隣接妨害判定部による前記隣接妨害の有無の判定結果に応じて前記通過帯域幅を制御し、前記検波出力における前記隣接妨害の抑制を図る帯域幅制御部と、
を有することを特徴とするFM受信機。
The FM receiver according to claim 1,
A variable band-pass filter capable of variably setting a pass bandwidth and passing the target FM signal converted into the intermediate signal;
A detector for FM-detecting the output signal of the variable band-pass filter to generate a detection output corresponding to the target receiving station;
A bandwidth control unit that controls the pass bandwidth according to the determination result of the presence or absence of the adjacent interference by the adjacent interference determination unit, and suppresses the adjacent interference in the detection output;
An FM receiver comprising:
請求項1又は請求項2に記載のFM受信機において、
前記隣接妨害包含強度検出部は、
前記中間信号に応じた被計測信号から前記隣接妨害検知帯域に応じた信号成分を抽出する第1のバンドパスフィルタと、
前記第1のバンドパスフィルタの出力信号に基づく被計測信号を平滑化して前記隣接妨害包含強度に応じた第1の電界強度信号を生成する第1のシグナルメータ回路と、
を有し、
前記目的局強度検出部は、
前記中間信号に応じた被計測信号から前記目的局検知帯域に応じた信号成分を抽出する第2のバンドパスフィルタと、
前記第2のバンドパスフィルタの出力信号に基づく被計測信号を平滑化して前記目的局強度に応じた第2の電界強度信号を生成する第2のシグナルメータ回路と、
を有することを特徴とするFM受信機。
The FM receiver according to claim 1 or 2,
The adjacent disturbance inclusion intensity detecting unit is
A first bandpass filter for extracting a signal component corresponding to the adjacent disturbance detection band from a signal under measurement corresponding to the intermediate signal;
A first signal meter circuit for smoothing a signal under measurement based on an output signal of the first bandpass filter to generate a first electric field strength signal corresponding to the adjacent disturbance inclusion strength;
Have
The target station intensity detector
A second bandpass filter for extracting a signal component corresponding to the target station detection band from the signal under measurement corresponding to the intermediate signal;
A second signal meter circuit for smoothing a signal under measurement based on an output signal of the second bandpass filter to generate a second electric field strength signal corresponding to the target station strength;
An FM receiver comprising:
請求項3に記載のFM受信機において、
前記受信信号中の目的AM信号に応じた帯域幅のAM受信用バンドパスフィルタと、前記AM受信用バンドパスフィルタの出力信号に基づいて電界強度信号を生成するAM受信用シグナルメータ回路とを備え、前記中間信号に基づいて前記目的AM信号を検波可能なAM受信部を有し、
前記第2のバンドパスフィルタとして前記AM受信用バンドパスフィルタを用い、
前記第2のシグナルメータ回路として前記AM受信用シグナルメータ回路を用いること、
を特徴とするFM受信機。
The FM receiver according to claim 3.
An AM reception band-pass filter having a bandwidth corresponding to a target AM signal in the received signal; and an AM reception signal meter circuit that generates an electric field strength signal based on an output signal of the AM reception band-pass filter. An AM receiver capable of detecting the target AM signal based on the intermediate signal;
Using the AM reception bandpass filter as the second bandpass filter,
Using the AM reception signal meter circuit as the second signal meter circuit;
FM receiver characterized by.
請求項2に記載のFM受信機において、
前記隣接妨害包含強度検出部は、
前記中間信号に応じた被計測信号から前記隣接妨害検知帯域に応じた信号成分を抽出する第1のバンドパスフィルタと、
前記第1のバンドパスフィルタの出力信号に基づく被計測信号を平滑化して前記隣接妨害包含強度に応じた第1の電界強度信号を生成する第1のシグナルメータ回路と、
を有し、
当該FM受信機は、さらに、前記可変帯域バンドパスフィルタの出力信号に基づく被計測信号を平滑化して電界強度信号を生成する第2のシグナルメータ回路を有し、前記目的局強度検出部として、前記帯域バンドパスフィルタ及び前記第2のシグナルメータ回路を用い、
前記帯域幅制御部は、前記隣接妨害の有無の判定時に、前記可変帯域バンドパスフィルタの通過帯域を前記目的局検知帯域に設定し、
前記第2のシグナルメータ回路は、前記目的局検知帯域に設定された前記可変帯域バンドパスフィルタの出力信号に基づいて、前記目的局強度に応じた第2の電界強度信号を生成すること、
を特徴とするFM受信機。
The FM receiver according to claim 2.
The adjacent disturbance inclusion intensity detecting unit is
A first bandpass filter for extracting a signal component corresponding to the adjacent disturbance detection band from a signal under measurement corresponding to the intermediate signal;
A first signal meter circuit for smoothing a signal under measurement based on an output signal of the first bandpass filter to generate a first electric field strength signal corresponding to the adjacent disturbance inclusion strength;
Have
The FM receiver further includes a second signal meter circuit that smoothes a signal under measurement based on an output signal of the variable band-pass filter to generate an electric field strength signal, and the target station strength detection unit includes: Using the band-pass filter and the second signal meter circuit,
The bandwidth control unit sets the passband of the variable bandpass filter to the target station detection band when determining the presence or absence of the adjacent interference,
The second signal meter circuit generates a second electric field strength signal corresponding to the target station intensity based on an output signal of the variable band bandpass filter set in the target station detection band;
FM receiver characterized by.
請求項3から請求項5に記載のFM受信機において、
前記第1及び第2のシグナルメータ回路の前記受信電界強度に対する前記電界強度信号の変化特性は、前記目的受信局のみが受信される状態での前記第1の電界強度信号と前記第2の電界強度信号とが所定の基準値に応じた強度差を有する基準相互関係に保たれる平衡区間を有し、
前記隣接妨害判定部は、前記平衡区間にて、前記第1の電界強度信号が、前記第2の電界強度信号に対して前記基準相互関係をなす信号強度よりも所定の閾値以上高い状態を、前記隣接妨害が発生していると判定すること、
を特徴とするFM受信機。
The FM receiver according to claim 3, wherein:
The change characteristics of the electric field strength signal with respect to the received electric field strength of the first and second signal meter circuits are the first electric field strength signal and the second electric field in a state where only the target receiving station is received. Having an equilibrium section where the intensity signal is kept in a reference correlation with an intensity difference according to a predetermined reference value;
The adjacent disturbance determination unit has a state in which the first electric field strength signal is higher than a signal strength that has the reference correlation with the second electric field strength signal by a predetermined threshold or more in the equilibrium section. Determining that the adjacent disturbance has occurred;
FM receiver characterized by.
請求項6に記載のFM受信機において、
前記基準相互関係における前記第1の電界強度信号は前記第2の電界強度信号より前記閾値分、絶対値もしくは相対値にて低く設定され、
前記隣接妨害判定部は、
前記第1の電界強度信号と前記第2の電界強度信号とを比較する比較手段を有し、
前記第1及び第2の電界強度信号の大小関係に基づいて前記隣接妨害の有無を判定すること、
を特徴とするFM受信機。
The FM receiver according to claim 6,
The first electric field strength signal in the reference correlation is set lower than the second electric field strength signal by the threshold value, in absolute value or relative value,
The adjacent disturbance determination unit
Comparing means for comparing the first electric field strength signal and the second electric field strength signal;
Determining the presence or absence of the adjacent disturbance based on a magnitude relationship between the first and second electric field strength signals;
FM receiver characterized by.
請求項6又は請求項7に記載のFM受信機において、
前記隣接妨害検出帯域に含まれるFM信号の変調度を求める変調度検出手段と、
前記変調度に応じて前記閾値を制御する閾値制御手段と、
を有することを特徴とするFM受信機。
The FM receiver according to claim 6 or 7,
A modulation degree detection means for obtaining a modulation degree of an FM signal included in the adjacent disturbance detection band;
Threshold control means for controlling the threshold according to the degree of modulation;
An FM receiver comprising:
請求項3から請求項5に記載のFM受信機において、
前記隣接妨害判定部は、前記第1の電界強度信号の実際のレベルが、前記目的受信局のみが受信される状態であるとした場合に前記第2の電界強度信号の実際のレベルから推定される前記第1の電界強度信号のレベルよりも所定の閾値以上高い状態を、前記隣接妨害が発生していると判定すること、
を特徴とするFM受信機。
The FM receiver according to claim 3, wherein:
The adjacent interference determination unit is estimated from the actual level of the second electric field strength signal when the actual level of the first electric field strength signal is in a state where only the target receiving station is received. Determining that the adjacent disturbance has occurred in a state higher than a level of the first electric field strength signal by a predetermined threshold or more,
FM receiver characterized by.
JP2008124389A 2008-05-12 2008-05-12 Fm receiver Pending JP2009273093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124389A JP2009273093A (en) 2008-05-12 2008-05-12 Fm receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124389A JP2009273093A (en) 2008-05-12 2008-05-12 Fm receiver

Publications (1)

Publication Number Publication Date
JP2009273093A true JP2009273093A (en) 2009-11-19

Family

ID=41439213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124389A Pending JP2009273093A (en) 2008-05-12 2008-05-12 Fm receiver

Country Status (1)

Country Link
JP (1) JP2009273093A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263429A (en) * 2009-05-07 2010-11-18 Sanyo Electric Co Ltd Receiving apparatus
JP2012186799A (en) * 2011-02-16 2012-09-27 Asahi Kasei Corp Interfering wave detection device and interfering wave elimination device
JP2016510538A (en) * 2013-01-14 2016-04-07 クゥアルコム・インコーポレイテッドQualcomm Incorporated System and method for detecting or signaling the presence of bursty interference on a wireless network

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263429A (en) * 2009-05-07 2010-11-18 Sanyo Electric Co Ltd Receiving apparatus
JP2012186799A (en) * 2011-02-16 2012-09-27 Asahi Kasei Corp Interfering wave detection device and interfering wave elimination device
JP2016510538A (en) * 2013-01-14 2016-04-07 クゥアルコム・インコーポレイテッドQualcomm Incorporated System and method for detecting or signaling the presence of bursty interference on a wireless network

Similar Documents

Publication Publication Date Title
US7920839B2 (en) System and method for station detection and seek in a radio receiver
US8095095B2 (en) Band switch control apparatus for intermediate frequency filter
EP0430469B1 (en) A signal quality detecting circuit for FM receivers
JP4916974B2 (en) FM tuner
JP2009081839A (en) Fm tuner
JP4837591B2 (en) FM receiver
US8463216B2 (en) Method and apparatus for sensing inter-modulation to improve radio performance in single and dual tuner
US5073976A (en) Signal-to-noise ratio indicating circuit for fm receivers
US9838053B2 (en) Method and apparatus for sensing inter-modulation to improve radio performance in single and dual tuner
JP2009273093A (en) Fm receiver
JP4159964B2 (en) Audio broadcast receiving apparatus and automatic channel selection method
JP2009152873A (en) Tuner for fm data broadcasting
JP3911267B2 (en) FM radio receiver
JP2004297574A (en) Signal detection apparatus, and receiver capable of utilizing the apparatus
JP3696112B2 (en) Broadcast receiver and control method thereof
JP2009152874A (en) Tuner for fm data broadcasting
JP2009105729A (en) Fm radio receiver
JP2008227751A (en) Receiver for vehicle
JP2011114527A (en) If band control system of fm radio tuner
JP2015002407A (en) Reception device and automatic channel selection method
JP2009147500A (en) Radio receiver
JP2000312156A (en) Fm receiver

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110601