JP2009073680A - Hydrogen production apparatus - Google Patents
Hydrogen production apparatus Download PDFInfo
- Publication number
- JP2009073680A JP2009073680A JP2007242569A JP2007242569A JP2009073680A JP 2009073680 A JP2009073680 A JP 2009073680A JP 2007242569 A JP2007242569 A JP 2007242569A JP 2007242569 A JP2007242569 A JP 2007242569A JP 2009073680 A JP2009073680 A JP 2009073680A
- Authority
- JP
- Japan
- Prior art keywords
- reaction tube
- heat transfer
- hydrogen production
- reforming
- production apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
本発明は、ジメチルエーテルと水蒸気を原料とし、改質器を介して水素を製造する水素製造装置に関する。 The present invention relates to a hydrogen production apparatus for producing hydrogen through a reformer using dimethyl ether and water vapor as raw materials.
未来社会の1つのビジョンとして水素をエネルギー媒体とした水素エネルギー社会の実現が注目されており、いくつかの有力な水素製造方法が考えられている。現在主流の水素製造方法は、天然ガスや液化石油ガス等を原料に、700℃以上の反応温度で、触媒の存在下、水蒸気改質法で水素を製造する。本方法では、原料中に、硫黄などの不純物を含むため、この前処理が必要である他、反応温度が高いため、反応器構造材に耐熱性が高い材料を用いる必要もある。
ジメチルエーテル(以下DMEと呼ぶ)の水蒸気改質は、DMEが合成燃料であることから天然ガスや液化石油ガスなどに比べ硫黄などの不純物が少なく、またFukushimaら(15th World hydrogen Energy Conference 30D-03(2004))により400℃以下の温度で水素生成が可能であることが示され、従来法と比べ低い温度で水素製造ができる可能性が示されている。
従来法での水素製造の熱は、700℃以上の高温が必要であり、この熱源として、化石燃料の燃焼熱を利用している。このため、水素製造の際は、水蒸気改質法によって、燃料改質に伴う生成二酸化炭素の他に、熱源での化石燃料燃焼により二酸化炭素が生成する。水素は、エネルギー源として利用する際、燃焼時には地球温暖化ガスである二酸化炭素が発生しない特徴がある。
As one vision of the future society, the realization of a hydrogen energy society using hydrogen as an energy medium is attracting attention, and several promising hydrogen production methods are considered. The current mainstream hydrogen production method uses natural gas or liquefied petroleum gas as a raw material, and produces hydrogen by a steam reforming method in the presence of a catalyst at a reaction temperature of 700 ° C. or higher. In this method, since impurities such as sulfur are contained in the raw material, this pretreatment is necessary, and since the reaction temperature is high, it is necessary to use a material having high heat resistance for the reactor structural material.
The steam reforming of dimethyl ether (hereinafter referred to as DME) has less impurities such as sulfur compared to natural gas and liquefied petroleum gas because DME is a synthetic fuel, and Fukushima et al. (15th World hydrogen Energy Conference 30D-03 ( 2004)) shows that hydrogen can be produced at a temperature of 400 ° C. or less, and the possibility of hydrogen production at a temperature lower than that of the conventional method is shown.
The heat of hydrogen production in the conventional method requires a high temperature of 700 ° C. or more, and the heat of combustion of fossil fuel is used as this heat source. For this reason, during the hydrogen production, carbon dioxide is generated by fossil fuel combustion in the heat source in addition to the generated carbon dioxide accompanying the fuel reforming by the steam reforming method. When hydrogen is used as an energy source, there is a feature that carbon dioxide, which is a global warming gas, is not generated during combustion.
しかしながら、現状ではその製造には二酸化炭素の発生を伴っている。また、この熱源に化石燃料の燃焼熱を利用した際は、二酸化炭素の他に、硫黄酸化物といった大気汚染物質が同時に生成する。
このように水素製造において、従来技術と比べ環境負荷軽減の可能性のあるDMEを用いる水素製造方法については、水蒸気改質触媒として、特開2003−38957号公報がある。
また、天然ガスと比べて低温で水素生成するDMEの特性を利用した、外部の熱源をDMEの水蒸気改質熱に利用し、原動機燃料とする方法として、特開平11−10670号公報がある。
As described above, Japanese Patent Laid-Open Publication No. 2003-38957 discloses a hydrogen production method using DME, which has a possibility of reducing the environmental load compared to the prior art in hydrogen production.
Japanese Patent Laid-Open No. 11-10670 discloses a method of using DME that generates hydrogen at a lower temperature than natural gas and using an external heat source for steam reforming heat of DME as a prime mover fuel.
上記の水蒸気改質プロセスにより水素を製造する際、内部に改質触媒を充填した改質反応管を用いて、水蒸気改質反応(吸熱反応)に必要な熱を改質反応管の外部から供給する。このとき、改質反応管内の触媒層の温度は、触媒層に供給される原料が持ち込む熱量、反応管外部から反応管内の触媒層への伝熱量、水蒸気改質反応の反応熱、の熱バランスで決まる。反応流体の流れに沿って長手方向に温度分布を生じるが、最高温度と最低温度の差が大きいと、特に高温部分では、触媒の耐熱性の点で劣化が早くなったり、設計想定外の副反応が起きて製品純度が低下し製品水素製造量が低下したりするという課題があった。 When hydrogen is produced by the above steam reforming process, heat necessary for steam reforming reaction (endothermic reaction) is supplied from the outside of the reforming reaction tube using a reforming reaction tube filled with a reforming catalyst. To do. At this time, the temperature of the catalyst layer in the reforming reaction tube is the heat balance between the amount of heat brought in by the raw material supplied to the catalyst layer, the amount of heat transferred from the outside of the reaction tube to the catalyst layer in the reaction tube, and the reaction heat of the steam reforming reaction. Determined by. A temperature distribution is generated in the longitudinal direction along the flow of the reaction fluid, but if the difference between the maximum temperature and the minimum temperature is large, deterioration at the point of heat resistance of the catalyst is accelerated, especially in the high temperature part. There was a problem that the reaction occurred, the product purity was lowered, and the product hydrogen production amount was lowered.
改質反応器の触媒層の温度を均一化する手段として、特開2006−45031号公報「水素製造装置」には、改質反応管から出た改質ガスの一部を改質反応管の原料に混合することにより、改質反応器への供給ガスの熱量を上げて、触媒層で起こる水蒸気改質反応による吸熱分を補い温度低下を抑制することにより触媒層内の温度を均一化する方法が開示されている。本方法では触媒層を流れる流体の流量が大きくなり圧損が大きくなるために原料ガスの供給圧を上げる必要があり、それに伴い反応管を初めとする系統の耐圧強度を上げる必要があり、また、改質反応管から出た改質ガスの一部を原料供給側にリサイクルするための冷却器、循環ブロアが必要で設備が大掛かりとなること、さらに原料供給側にリサイクルした改質ガスを所定の反応器供給温度にまで加熱するための熱エネルギーが必要となること、といった課題が生じる。 As a means for homogenizing the temperature of the catalyst layer of the reforming reactor, Japanese Patent Application Laid-Open No. 2006-45031 “Hydrogen Production Device” discloses that part of the reformed gas discharged from the reforming reaction tube By mixing with the raw material, the heat quantity of the gas supplied to the reforming reactor is increased, and the temperature in the catalyst layer is made uniform by compensating for the endothermic component caused by the steam reforming reaction that occurs in the catalyst layer and suppressing the temperature drop. A method is disclosed. In this method, since the flow rate of the fluid flowing through the catalyst layer increases and the pressure loss increases, it is necessary to increase the supply pressure of the raw material gas, and accordingly, it is necessary to increase the pressure resistance of the system including the reaction tube, A cooler and a circulation blower are required to recycle a part of the reformed gas from the reforming reaction tube to the raw material supply side, which requires a large facility, and the reformed gas recycled to the raw material supply side is predetermined. The subject that the thermal energy for heating even to reactor supply temperature is needed arises.
また、特開2004−352528号公報「水素製造システム」には、改質反応器を加熱するために燃焼排ガスを用いるシステムにおいて、改質反応器の加熱側を出た燃焼排ガスの一部を循環ブロアにより、改質反応器入口の燃焼排ガス導入口に循環することにより、加熱用の燃焼排ガス流量を増やし、触媒層内の温度を均一化する方法が開示されている。本方法では燃焼排ガスをリサイクルするための冷却器、循環ブロアが必要で設備が大掛かりとなること、さらに改質反応器入口の燃焼排ガス導入口に循環した、改質反応器の加熱側を出た燃焼排ガスを所定の温度にまで加熱するための熱エネルギーが必要となること、といった課題が生じる。 Japanese Patent Laid-Open No. 2004-352528, “Hydrogen Production System”, circulates a part of the combustion exhaust gas that has exited the heating side of the reforming reactor in a system that uses the combustion exhaust gas to heat the reforming reactor. A method of increasing the flow rate of the combustion exhaust gas for heating and making the temperature in the catalyst layer uniform by circulating to the combustion exhaust gas inlet at the reforming reactor inlet by a blower is disclosed. This method requires a cooler and a circulation blower to recycle the combustion exhaust gas, which requires a large amount of equipment. In addition, it exits the heating side of the reforming reactor that circulates to the combustion exhaust gas inlet at the reforming reactor inlet. The subject that the thermal energy for heating combustion exhaust gas to predetermined temperature is needed arises.
またさらに、特開2004−107110号公報「水素発生装置」には、触媒層内に高熱伝導性物質をガスの流れに沿って配することにより、触媒層内の温度を均一化する方法が開示されている。本方法では同一容積の改質反応器で比較して触媒充填量が減り水素製造量が確保できない懸念がある。 Furthermore, Japanese Patent Application Laid-Open No. 2004-107110 discloses a method for equalizing the temperature in the catalyst layer by disposing a highly thermally conductive substance in the catalyst layer along the gas flow. Has been. In this method, there is a concern that the amount of hydrogen produced cannot be ensured because the catalyst filling amount is reduced as compared with the reforming reactor of the same volume.
本発明は、上記の課題を解決するためになされたものであり、改質反応管外部の熱媒から改質反応管内部の触媒への伝熱特性を、改質反応管の長手方向に分布を持たせることにより、触媒層のDME濃度が高い部分を低温に保ち、また触媒層の高温(熱媒との温度差が小さい)部分で伝熱がよく、反応に必要な熱が十分に供給されるようにし、それにより、触媒寿命延伸、水素製造量増加、製品水素純度向上の効果をもたらし、DMEを原料として、低温で効率よく、水素製造できる水素製造装置を提供するものである。 The present invention has been made to solve the above problems, and distributes heat transfer characteristics from the heat medium outside the reforming reaction tube to the catalyst inside the reforming reaction tube in the longitudinal direction of the reforming reaction tube. By keeping the part of the catalyst layer where the DME concentration is high at a low temperature, heat transfer is good at the part of the catalyst layer where the temperature is high (the temperature difference with the heat medium is small), and sufficient heat is supplied for the reaction. Thus, the present invention provides an effect of extending the catalyst life, increasing the amount of hydrogen production, and improving the purity of product hydrogen, and provides a hydrogen production apparatus that can efficiently produce hydrogen at low temperature using DME as a raw material.
上記課題を解決するために本発明は、原料となるジメチルエーテルと水を気体状にするためのジメチルエーテル気化器および水蒸気発生器と、気化した前記ジメチルエーテルと水蒸気を混合するジメチルエーテル水蒸気混合器と、このジメチルエーテル水蒸気混合器によって混合されたジメチルエーテルと水蒸気の混合ガスを所定の改質器供給温度に予熱する混合ガス予熱器と、この混合ガス予熱器によって予熱された混合ガスを改質して水素の濃度が高い改質ガスとする改質触媒を充填した反応管を備えた改質反応器とで構成される水素製造装置において、前記反応管の伝熱特性が長手方向に分布を持つことを特徴とする水素製造装置を提供する。 In order to solve the above problems, the present invention provides a dimethyl ether vaporizer and a steam generator for making dimethyl ether and water as raw materials into a gaseous state, a dimethyl ether steam mixer for mixing the vaporized dimethyl ether and steam, and the dimethyl ether. A mixed gas preheater that preheats a mixed gas of dimethyl ether and water vapor mixed by the steam mixer to a predetermined reformer supply temperature, and reforms the mixed gas preheated by the mixed gas preheater to reduce the hydrogen concentration. A hydrogen production apparatus comprising a reforming reactor equipped with a reaction tube filled with a reforming catalyst that is a high reforming gas, wherein the heat transfer characteristics of the reaction tube have a distribution in the longitudinal direction A hydrogen production apparatus is provided.
本発明においては、改質反応管外部の熱媒から改質反応管内部の触媒への伝熱特性を、反応管の長手方向に分布を持たせることにより、触媒層のジメチルエーテル濃度が高い部分を低温に保ち、また触媒層の高温部分で伝熱がよく、反応に必要な熱が十分に供給されるようにし、それにより、触媒寿命を延伸させることができ、水素製造量を増加させ、製品水素純度を向上させることができる。 In the present invention, the heat transfer characteristic from the heat medium outside the reforming reaction tube to the catalyst inside the reforming reaction tube is distributed in the longitudinal direction of the reaction tube, so that the portion where the dimethyl ether concentration of the catalyst layer is high is obtained. Keep the temperature low and heat transfer is good in the high temperature part of the catalyst layer, so that the heat necessary for the reaction is sufficiently supplied, thereby extending the catalyst life, increasing the amount of hydrogen production, Hydrogen purity can be improved.
以下、本発明に係る水素製造装置の実施例について、図面を参照して説明する。図1は、本発明に係る水素製造装置の一実施形態を示すブロック図である。図2は、図1に示す改質反応器の反応管の一例を示す模式図である。図3は、この反応管内のプロセスガスの長手方向の温度分布を示すグラフである。 Embodiments of a hydrogen production apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a hydrogen production apparatus according to the present invention. FIG. 2 is a schematic diagram showing an example of a reaction tube of the reforming reactor shown in FIG. FIG. 3 is a graph showing the temperature distribution in the longitudinal direction of the process gas in the reaction tube.
図1に示すように、本発明に係る水素製造装置は、原料となるジメチルエーテル(DME)12と水11をガス状にするための水蒸気発生器5およびDME気化器6と、気化したガス状のDMEと水蒸気を混合するDME・水蒸気混合器7と、DMEと水蒸気の混合ガス13を所定の改質器供給温度に予熱する混合ガス予熱器2と、予熱されたDMEと水蒸気の混合ガス14が導入され改質ガス15に改質する改質触媒を充填した反応管を備えた改質反応器1と、改質ガス15から熱回収して原料であるジメチルエーテル(DME)12と水11を予熱する水予熱器3およびDME予熱器4とで構成される。
As shown in FIG. 1, the hydrogen production apparatus according to the present invention includes a dimethyl ether (DME) 12 and a
図1では、改質反応器1、混合ガス予熱器2、水蒸気発生器5、DME気化器6はそれぞれ熱媒23により加熱される構成を示した。熱媒23としては、燃焼排ガスや水蒸気や熱媒油が適用できる。具体的には、原子力発電所や火力発電所や製鉄所や化学工場やごみ焼却場などで発生する水蒸気や排気ガスを、直接または中間熱交換器を介して利用することも可能である。なお、図1では、熱媒23を改質反応器1、混合ガス予熱器2、水蒸気発生器5、DME気化器6の順に順次流通する構成を示しているが、これらの機器に個別に熱媒供給しても良いし、また、熱媒を使用せずに電気ヒータなどで加熱することも可能である。
In FIG. 1, the reforming
改質反応器1には、図2に示す反応管102が並列に複数設けられており、予熱されたDMEと水蒸気の混合ガス14が各反応管102に分配されるように構成されている。図2に示すように、反応管102の内部には改質触媒が充填された触媒層101が配置されており、予熱されたDMEと水蒸気の混合ガス14は触媒層101を通過する際、水蒸気改質反応により水素リッチな改質ガス15となり反応管102から流出する。改質反応器1内には水蒸気改質反応に必要な熱を供給するため熱媒23が混合ガス14の入口近傍の反応管102の上部に供給される。この熱媒23は熱を伝達して冷却され、改質ガス15の出口近傍の反応管102の下部から排出される。
A plurality of
以上の構成によれば、DME12は、DME予熱器4、DME気化器6を経由して、また、水11は、水予熱器3、水蒸気発生器5を経由して、各々ガス状になりDME・水蒸気混合器7に供給される。DME・水蒸気混合器7を経たDME・水蒸気混合ガス13は、混合ガス予熱器2で所定の改質器供給温度に予熱される。予熱されたDME・水蒸気混合ガス14は改質反応器1に供給される。
According to the above configuration, the
改質反応器1では、予熱されたDME・水蒸気混合ガス14が反応管102の内部に充填された触媒層101を通過する際、水蒸気改質反応により水素リッチな改質ガス15となり反応管102から流出する。改質ガス15は、水予熱器3、DME予熱器4でそれぞれ原料の水11、DME12と熱交換して次工程へ改質ガス15として排出される。また、熱媒23は、まず改質反応器1で水蒸気改質反応に必要な熱量を熱交換した後、混合ガス予熱器2でDME・水蒸気混合ガス13と熱交換し、その後、水蒸気発生器5で水と熱交換し、DME気化器6で原料DMEと熱交換し、それぞれの機器で必要な熱量を供給する。
In the reforming
改質反応器1の反応管102の内部の触媒層101では水蒸気改質反応が起こる。通常は、原料であるDME、水の流量が大きい入口部(原料ガスを触媒層上部から供給する場合には触媒層上部)で特に反応量が大きくなる。
A steam reforming reaction occurs in the
触媒層101の温度は、触媒層101に供給される原料が持ち込む熱量、反応管102外部から反応管102内の触媒層101への伝熱量、水蒸気改質反応(吸熱反応)の反応熱、のバランスで決まるが、水蒸気改質反応量が大きい触媒層101上部の温度が低下し、図3の反応管102の長手方向温度分布に示すような上部温度が低下し下部温度が上部より高い温度分布になる。
The temperature of the
なお、本実施例の温度分布は、反応管102に、図4に示される温度の影響によって水素と不純物の生成量が変化する触媒特性を有する触媒を充填し、熱媒の供給を改質反応管上端から供給して下端から排出した際に得られたものである。
Note that the temperature distribution in this example is such that the
最高温度と最低温度の差が大きいと、特に高温部分では、触媒の耐熱性の点で劣化が早くなったり、設計想定外の副反応が起きて製品純度が低下し製品水素製造量が低下したりするという問題があった。そこで、改質反応管外部の熱媒から改質反応管内部の触媒への伝熱特性を、改質反応管の長手方向に分布を持たせることにより、触媒層のDME濃度が高い部分を低温に保ち、また触媒層の高温(熱媒との温度差が小さい)部分で伝熱がよく、反応に必要な熱が十分に供給されるようにし、それにより、触媒寿命延伸、水素製造量増加、製品水素純度向上の効果をもたらし、ジメチルエーテルを原料として、低温で効率よく、水素製造できる水素製造装置を提供することができる。 If the difference between the maximum temperature and the minimum temperature is large, deterioration particularly in the heat resistance of the catalyst is rapid, and side reactions outside the design may occur due to catalyst heat resistance, resulting in decreased product purity and decreased product hydrogen production. There was a problem that. Therefore, by distributing the heat transfer characteristics from the heat medium outside the reforming reaction tube to the catalyst inside the reforming reaction tube in the longitudinal direction of the reforming reaction tube, the portion where the DME concentration in the catalyst layer is high And heat transfer is good at the high temperature part of the catalyst layer (the temperature difference with the heat medium is small), so that the heat necessary for the reaction is sufficiently supplied, thereby extending the catalyst life and increasing the amount of hydrogen production. Thus, it is possible to provide a hydrogen production apparatus that can effectively produce hydrogen at a low temperature using dimethyl ether as a raw material.
具体的な長手方向に伝熱特性に分布を持たせた反応管の一例を以下の実施例を参照して説明する。 An example of a reaction tube having a specific distribution of heat transfer characteristics in the longitudinal direction will be described with reference to the following examples.
(実施例1)
図5に長手方向に伝熱特性に分布を持たせた反応管102の一例を示す模式図を示す。なお、図2と同一部分には同一符号を付しその構成の説明は省略する。
(Example 1)
FIG. 5 is a schematic diagram showing an example of the
本実施例では、改質反応器1内に設置した反応管102の下部外表面に伝熱促進用のフィン120を配設して構成している。反応管102の内部には触媒111が充填されている。予熱されたDME・水蒸気混合ガス14は反応管102の上端から供給され、触媒111充填層で水蒸気改質反応を生じ、反応管102下端から改質ガス15として流出する。水蒸気改質反応に必要な熱は、改質反応器1の反応管102の外側に供給される熱媒によって与えられる。本実施例では、熱媒23は改質反応器1の上部から供給され、下部から排出される。
In this embodiment, the heat
これにより、反応管102の下部すなわち下流側で伝熱が促進される反応管とすることができる。触媒寿命の観点からは高温条件下で過剰の有機物(原料のDMEを含む)が存在すると触媒表面に炭素分が析出し活性低下につながるため、反応管102の入口付近のDME濃度が高い部分では低温であることが望ましい。また、反応器下流部分の温度が高い部分ではなるべく短時間のうちに反応を進めないと、前記した炭素析出で触媒の劣化が早くなったり、設計想定外の副反応が起きて製品純度が低下し製品水素製造量が低下したりするという問題がある。本実施例の反応管を用いることで、反応管上部の触媒層のDME濃度が高い部分は伝熱性が低いため低温に保たれる。また、反応管下部の触媒層の高温(熱媒との温度差が小さい)部分で伝熱がよく、反応に必要な熱が十分に供給される。
Thereby, it can be set as the reaction tube by which heat transfer is promoted in the lower part of
本実施例での反応管の長手方向温度分布を図6に示す。伝熱を促進するフィン120を反応管出口(下端)から反応管102の全長の1/2長さのところまで取り付けた。本図に示すように、フィン120の効果によりフィン取り付け部で温度が高くなる。これにより、水素製造量が増加する。
FIG. 6 shows the temperature distribution in the longitudinal direction of the reaction tube in this example. A
なお、図6の温度分布から伝熱促進用のフィン120は、反応管102の出口から反応管全長の1/4以上、3/4以下の長さの部分に配設することによって反応管102の下部の温度が上昇し本発明の効果が効率的に得ることができる。
From the temperature distribution of FIG. 6, the heat
以上の説明により、以下の効果が得られる。 With the above description, the following effects can be obtained.
(1)有機物(原料のDMEを含む)濃度が高い反応管入口付近が低温に保たれるため、触媒活性低下をもたらす炭素析出が抑制されるので、触媒寿命が延びる。 (1) Since the vicinity of the inlet of the reaction tube having a high concentration of organic matter (including raw material DME) is kept at a low temperature, carbon deposition that causes a decrease in catalyst activity is suppressed, so that the catalyst life is extended.
(2)反応管下部の熱媒との温度差が小さい触媒層の高温部分で伝熱が良いため、水素製造量が増加する。 (2) Since the heat transfer is good at the high temperature portion of the catalyst layer where the temperature difference with the heat medium at the bottom of the reaction tube is small, the amount of hydrogen production increases.
(3)反応器下流部分にフィンをつけて伝熱を促進することで、温度が高い部分で短時間のうちに反応が進むため、設計想定外の副反応が起きにくく、製品水素純度が向上する。 (3) By attaching fins to the downstream part of the reactor to promote heat transfer, the reaction proceeds in a short time in the part where the temperature is high, so side reactions outside the design are unlikely to occur and the product hydrogen purity is improved. To do.
(実施例2)
図7に長手方向に伝熱特性に分布を持たせた反応管の別の一例を示す模式図を示す。なお、図2と同一部分には同一符号を付しその構成の説明は省略する。
(Example 2)
FIG. 7 is a schematic diagram showing another example of a reaction tube having a distribution of heat transfer characteristics in the longitudinal direction. The same parts as those in FIG. 2 are denoted by the same reference numerals, and the description of the configuration is omitted.
本実施例では、改質反応器1内に設置した反応管102の上部外表面に伝熱の抵抗となる伝熱抵抗体121を配設した。伝熱抵抗体としては、高温状態で断熱効果を有する物質から構成され、その材料としては酸化ジルコニウム、酸化セリウム、酸化アルミニウム、酸化カルシウム、酸化マグネシウムのうち、少なくとも一つを成分として含むものを用いる。
In this example, a
図2において、反応管102の内部には触媒111が充填されている。予熱されたDME・水蒸気混合ガス14は反応管102の上端から供給され、触媒111充填層で水蒸気改質反応を生じ、反応管102下端から水素濃度が高いガスである改質ガス15として流出する。水蒸気改質反応に必要な熱は、改質反応器103の反応管102の外側に供給される熱媒23によって与えられる。本実施例では、熱媒23は上部から供給され、下部から排出される。これにより、反応管102の上部すなわち上流側では伝熱抵抗体121の作用で伝熱が抑制され、その分、下部すなわち下流側で伝熱が促進される反応管102とすることができる。触媒寿命の観点からは高温条件下で過剰の有機物(原料のDMEを含む)が存在すると触媒表面に炭素分が析出し触媒活性の低下につながるため、反応管102の入口付近のDME濃度が高い部分では低温であることが望ましい。また、反応器下流部分の温度が高い部分ではなるべく短時間のうちに反応を進めないと、前記した炭素析出で触媒の劣化が早くなったり、設計想定外の副反応が起きて製品純度が低下し製品水素製造量が低下したりするという問題がある。本実施例の反応管を用いることで、反応管上部の触媒層のDME濃度が高い部分は伝熱性が低いため低温に保たれる。
In FIG. 2, the
なお、図3の温度分布から伝熱抵抗体121は、反応管102の入口から反応管全長の1/4以上、3/4以下の長さの部分に配設することによって反応管102の上部の温度が低下し、その分、下部すなわち下流側で伝熱が促進され、本発明の効果が効率的に得ることができる。
From the temperature distribution in FIG. 3, the
これにより、以下の効果が得られる。 Thereby, the following effects are acquired.
(1)有機物(原料のDMEを含む)濃度が高い反応管入口付近が低温に保たれるため、触媒活性低下をもたらす炭素製出が抑制されるので、触媒寿命が延びる。 (1) Since the vicinity of the inlet of the reaction tube having a high concentration of organic matter (including raw material DME) is kept at a low temperature, carbon production that causes a decrease in catalyst activity is suppressed, and thus the catalyst life is extended.
(実施例3)
図8に長手方向に伝熱特性に分布を持たせた反応管の別の一例を示す模式図を示す。なお、図2と同一部分には同一符号を付しその構成の説明は省略する。
Example 3
FIG. 8 is a schematic diagram showing another example of a reaction tube having a distribution of heat transfer characteristics in the longitudinal direction. The same parts as those in FIG. 2 are denoted by the same reference numerals, and the description of the configuration is omitted.
本実施例では、改質反応器1内に設置した反応管102の下部外表面に伝熱促進用のフィン120を配設し、上部外表面に伝熱の抵抗となる伝熱抵抗体121を配設した。反応管102の内部には触媒111が充填されている。予熱されたDME・水蒸気混合ガス14は反応管102の上端から供給され、触媒111充填層で水蒸気改質反応を生じ、反応管102下端から水素ガスの濃度の高い改質ガス15として流出する。水蒸気改質反応に必要な熱は、改質反応器103の反応管102の外側に供給される熱媒23によって与えられる。本実施例では、熱媒23は上部から供給され、下部から排出される。これにより、反応管102の下部すなわち下流側で伝熱が促進される反応管102とすることができる。
In this embodiment,
触媒寿命の観点からは高温条件下で過剰の有機物(原料のDMEを含む)が存在すると触媒表面に炭素分が析出し活性低下につながるため、反応管入口付近のDME濃度が高い部分では低温であることが望ましい。また、反応器下流部分の温度が高い部分ではなるべく短時間のうちに反応を進めないと、前記した炭素析出で触媒の劣化が早くなったり、設計想定外の副反応が起きて製品純度が低下し製品水素製造量が低下したりするという問題がある。 From the viewpoint of catalyst life, if excessive organic substances (including raw material DME) exist under high temperature conditions, carbon will be deposited on the catalyst surface, leading to a decrease in activity. It is desirable to be. In addition, if the reaction is not advanced in the shortest possible time in the part where the temperature in the downstream part of the reactor is high, the deterioration of the catalyst is accelerated due to the above-described carbon deposition, or a side reaction outside the design assumption occurs, resulting in a decrease in product purity. However, there is a problem that the amount of product hydrogen production decreases.
本実施例の反応管を用いることで、反応管上部の触媒層のDME濃度が高い部分は伝熱性が低いため低温に保たれる。また、反応管下部の触媒層の高温(熱媒との温度差が小さい)部分で伝熱がよく、反応に必要な熱が十分に供給される。 By using the reaction tube of the present embodiment, the portion of the catalyst layer at the upper portion of the reaction tube where the DME concentration is high is kept at a low temperature because of low heat conductivity. Moreover, heat transfer is good at the high temperature (the temperature difference with the heat medium is small) of the catalyst layer at the lower part of the reaction tube, and sufficient heat necessary for the reaction is supplied.
本実施例での反応管の長手方向温度分布を図8に示す。伝熱を促進するフィンを反応管出口(下端)から反応管の全長の1/2長さのところまで取り付けた。伝熱の抵抗となる伝熱抵抗体を反応管入口(上端)から反応管の全長の1/2長さのところまで取り付けた。本図に示すように、伝熱抵抗体の効果により伝熱抵抗体取り付け部分で、従来例と比べ反応管の温度が低く保たれる。一方、フィンの効果によりフィン取り付け部で温度が高くなる。 FIG. 8 shows the temperature distribution in the longitudinal direction of the reaction tube in this example. Fins that promote heat transfer were attached from the outlet (lower end) of the reaction tube to a length that was ½ of the total length of the reaction tube. A heat transfer resistor serving as a heat transfer resistance was attached from the reaction tube inlet (upper end) to a half length of the total length of the reaction tube. As shown in this figure, the temperature of the reaction tube is kept lower in the heat transfer resistor mounting portion than in the conventional example due to the effect of the heat transfer resistor. On the other hand, due to the effect of the fin, the temperature is increased at the fin mounting portion.
なお、図8の温度分布から伝熱抵抗体121は、反応管102の入口から反応管全長の1/4以上、3/4以下の長さの部分に配設し、伝熱促進用のフィン120は、反応管102の出口から反応管全長の1/4以上、3/4以下の長さの部分に配設することによって、反応管102の上部の温度が低下し、反応管102の下部の温度が上昇し、本発明の効果が効率的に得ることができる。
From the temperature distribution in FIG. 8, the
これにより、以下の効果が得られる。 Thereby, the following effects are acquired.
(1)有機物(原料のDMEを含む)濃度が高い反応管入口付近が低温に保たれるため、触媒活性低下をもたらす炭素製出が抑制されるので、触媒寿命が延びる。 (1) Since the vicinity of the inlet of the reaction tube having a high concentration of organic matter (including raw material DME) is kept at a low temperature, carbon production that causes a decrease in catalyst activity is suppressed, and thus the catalyst life is extended.
(2)反応管下部の触媒層の高温(熱媒との温度差が小さい)部分で伝熱が良いため、水素製造量が増加する。 (2) Since the heat transfer is good at the high temperature (the temperature difference with the heat medium is small) of the catalyst layer at the bottom of the reaction tube, the amount of hydrogen production increases.
(3)反応器下流部分にフィンをつけて伝熱を促進することで、温度が高い部分で短時間のうちに反応が進むため、設計想定外の副反応が起きにくく、製品水素純度が向上する。 (3) By attaching fins to the downstream part of the reactor to promote heat transfer, the reaction proceeds in a short time in the part where the temperature is high, so side reactions outside the design are unlikely to occur and the product hydrogen purity is improved. To do.
1・・・改質反応器、2…混合ガス予熱器、3…水予熱器、4…ジメチルエーテル(DME)予熱器、5…水蒸気発生器、6…ジメチルエーテル(DME)気化器、7…ジメチルエーテル(DME)・水蒸気混合器、11…水、12…ジメチルエーテル(DME)、13…ジメチルエーテル(DME)・水蒸気混合ガス、14…予熱されたジメチルエーテル(DME)・水蒸気混合ガス、15…改質ガス、23…熱媒、101…触媒層、102…反応管、111…触媒、120…フィン、121…伝熱抵抗体、
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007242569A JP2009073680A (en) | 2007-09-19 | 2007-09-19 | Hydrogen production apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007242569A JP2009073680A (en) | 2007-09-19 | 2007-09-19 | Hydrogen production apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009073680A true JP2009073680A (en) | 2009-04-09 |
Family
ID=40609048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007242569A Pending JP2009073680A (en) | 2007-09-19 | 2007-09-19 | Hydrogen production apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009073680A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230091397A (en) * | 2021-12-16 | 2023-06-23 | 한국에너지기술연구원 | Tubular reactor for high heat fulx and method conducting endothermic reaction using the same |
-
2007
- 2007-09-19 JP JP2007242569A patent/JP2009073680A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230091397A (en) * | 2021-12-16 | 2023-06-23 | 한국에너지기술연구원 | Tubular reactor for high heat fulx and method conducting endothermic reaction using the same |
KR102656869B1 (en) | 2021-12-16 | 2024-04-18 | 한국에너지기술연구원 | Tubular reactor for high heat fulx and method conducting endothermic reaction using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4145785B2 (en) | Cylindrical steam reformer | |
JP5046359B2 (en) | Hydrogen generator and hydrogenation reactor | |
JP5015690B2 (en) | Apparatus and method for heating a catalyst for start-up of a compact fuel processor | |
RU2411075C2 (en) | Compact reforming reactor | |
JP2006160602A (en) | Small cylindrical reformer | |
JP2003327405A (en) | Fuel reforming apparatus and method of starting same | |
JP2001155756A (en) | Vapor-reforming reactor for fuel cell | |
JP2008088049A (en) | Hydrogen generating device and fuel cell system | |
KR101133301B1 (en) | Hydrogen generator and the application of the same | |
JP4469335B2 (en) | Hydrogen generator and fuel cell power generation system | |
KR20090004972A (en) | Solid oxide fuel cell and reformer | |
JP5163147B2 (en) | Heat exchanger and combined fuel reactor | |
JP2009073680A (en) | Hydrogen production apparatus | |
JP5895169B2 (en) | Hydrogen generator | |
JP5132183B2 (en) | Hydrogen production equipment | |
TWI626784B (en) | Gas fuel reformer and the integrated system for power generation | |
JP3432298B2 (en) | Fuel reformer | |
JP2005507137A (en) | System and method for preparing fuel for a fuel processing system | |
JP6518086B2 (en) | Fuel cell system | |
EP2123351A1 (en) | Steam-reforming-based fuel-processing apparatus integrated with burner and steam generator | |
KR102005715B1 (en) | Hydrogen production reactor including feed preheating part | |
KR102586411B1 (en) | High-efficiency fuel processing device with durability that enables stable hydrogen production and carbon monoxide removal through heat exchange optimization | |
JP2011051860A (en) | Hydrogen production apparatus and hydrogen production method | |
JP5948605B2 (en) | Hydrogen generator | |
JP2010159193A (en) | Hydrogen producing device and hydrogen producing method |