Nothing Special   »   [go: up one dir, main page]

JP2008210900A - Semiconductor light emitting element and light emitting device provided with the same - Google Patents

Semiconductor light emitting element and light emitting device provided with the same Download PDF

Info

Publication number
JP2008210900A
JP2008210900A JP2007044770A JP2007044770A JP2008210900A JP 2008210900 A JP2008210900 A JP 2008210900A JP 2007044770 A JP2007044770 A JP 2007044770A JP 2007044770 A JP2007044770 A JP 2007044770A JP 2008210900 A JP2008210900 A JP 2008210900A
Authority
JP
Japan
Prior art keywords
layer
light emitting
light
emitting device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007044770A
Other languages
Japanese (ja)
Other versions
JP5040355B2 (en
Inventor
Takashi Ichihara
隆志 市原
Yuma Kitadai
佑馬 北台
Hiroshi Yuasa
拓 湯浅
Takao Yamada
孝夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2007044770A priority Critical patent/JP5040355B2/en
Publication of JP2008210900A publication Critical patent/JP2008210900A/en
Application granted granted Critical
Publication of JP5040355B2 publication Critical patent/JP5040355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device having reduced loss of light to be absorbed by a pad electrode and also improved characteristic thereof. <P>SOLUTION: In the light emitting device 30 including a semiconductor light emitting element 1 and a wavelength converting member such as a phosphorus material or the like, reflecting layers 10c, 20c are provided on the outermost surface layers of a type p pad electrode 10a and a type n pad electrode 20a provided on the same surface side of the semiconductor light emitting element 1. Accordingly, the output light L emitted from a light emitting layer 4 of the semiconductor light emitting element 1 is capable of guiding a returning light having changed the traveling direction toward the semiconductor light emitting element 1 through reflection by a phosphorus material to the light visualizing side with the reflecting layers 10c, 20c of the pad electrode. Namely, absorption of light by the semiconductor light emitting element can be reduced to improve light extracting efficiency of the light emitting device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体発光素子及びこれを備えた発光装置に関し、特に光反射率が向上された電極に係る半導体発光素子及びこれを備えた発光装置に関する。   The present invention relates to a semiconductor light emitting element and a light emitting device including the same, and more particularly to a semiconductor light emitting element related to an electrode with improved light reflectivity and a light emitting device including the same.

窒化物系化合物半導体発光素子は、小型で電力効率が良く鮮やかな色の発光をする。また、半導体素子である発光素子は球切れ等の心配がない。さらに初期駆動特性が優れ、振動やオン・オフ点灯の繰り返しに強いという特徴を有する。このような優れた特性を有するため、発光ダイオード(Light Emitting Diode:LED)、レーザーダイオード(Laser Diode:LD)等の半導体発光素子は、各種の光源として利用されている。特に近年は、蛍光灯に代わる照明用の光源として、より低消費電力で長寿命の次世代照明として注目を集めており、更なる発光出力の向上及び発光効率の改善が求められている。   Nitride-based compound semiconductor light-emitting elements emit light of a bright color that is small and power efficient. In addition, a light emitting element which is a semiconductor element does not have a concern about a broken ball. Further, it has excellent initial driving characteristics and is strong against vibration and repeated on / off lighting. Because of such excellent characteristics, semiconductor light emitting devices such as light emitting diodes (LEDs) and laser diodes (LDs) are used as various light sources. In particular, in recent years, as a light source for illumination replacing a fluorescent lamp, attention has been attracted as next-generation illumination with lower power consumption and longer life, and further improvement in light emission output and improvement in light emission efficiency are required.

代表的な半導体発光素子の一例を図27に示す。図27(a)は半導体発光素子100の平面図を、図27(b)は、図27(a)の半導体発光素子100において、B−B’線に沿う断面図を示す。この図に示すGaN系化合物半導体素子100において、発光にかかわる半導体層105は、サファイヤ基板101上に成長されたn型窒化物半導体層102と、発光層103と、p型窒化物半導体層104で構成されている。電気を半導体層105に流すための電極は、p型窒化物半導体層104上に形成された透明電極106と、p型パッド電極107とからなるプラス側電極と、n型窒化物半導体層102上に、n型パッド電極108を配置したマイナス側電極とで構成されている。n型パッド電極108は、pn接合の下側と接続するため、発光層103の一部を切り欠き、露出されたn型半導体層102上に形成される。さらに素子を守る保護膜109が最表面に被覆される。また、パッド電極107、108には、ワイヤボンディング用のワイヤやフリップチップ用のバンプ等、半導体層105と外部電極とを電気的に接続するための部材(図示せず)が接続される。一般に、ワイヤはAu製のものが使用されていることから、これに接続されるパッド電極107、108の最表面には、ワイヤとの結合性を考慮してAuが採用されていた。   An example of a typical semiconductor light emitting device is shown in FIG. FIG. 27A is a plan view of the semiconductor light emitting device 100, and FIG. 27B is a cross-sectional view taken along line B-B ′ in the semiconductor light emitting device 100 of FIG. In the GaN-based compound semiconductor device 100 shown in this figure, the semiconductor layer 105 involved in light emission includes an n-type nitride semiconductor layer 102 grown on the sapphire substrate 101, a light-emitting layer 103, and a p-type nitride semiconductor layer 104. It is configured. Electrodes for flowing electricity to the semiconductor layer 105 are a positive electrode made up of a transparent electrode 106 formed on the p-type nitride semiconductor layer 104 and a p-type pad electrode 107, and an n-type nitride semiconductor layer 102. And a negative electrode on which an n-type pad electrode 108 is disposed. The n-type pad electrode 108 is formed on the exposed n-type semiconductor layer 102 by cutting away a part of the light-emitting layer 103 in order to connect to the lower side of the pn junction. Further, a protective film 109 for protecting the element is coated on the outermost surface. The pad electrodes 107 and 108 are connected to members (not shown) for electrically connecting the semiconductor layer 105 and external electrodes such as wire bonding wires and flip chip bumps. In general, since a wire made of Au is used, Au is adopted on the outermost surfaces of the pad electrodes 107 and 108 connected thereto in consideration of the bonding property with the wire.

上記のような半導体発光素子100において、電極形成面を主光取り出し面とするフェイスアップ実装された場合、発光層103から発光した光は、光の視認側であるパッド電極107の形成面側からだけでなく、その一部は、水平面方向にも発光する。   In the semiconductor light emitting device 100 as described above, when face-up mounting is performed with the electrode formation surface as the main light extraction surface, the light emitted from the light emitting layer 103 is emitted from the formation surface side of the pad electrode 107 which is the light viewing side. Not only that, part of the light also emits light in the horizontal plane direction.

上記の水平面方向に進行した光を視認側へと導光させることで、光取り出し効率を改善させた半導体発光素子が開発されている(例えば特許文献1及び特許文献2)。図28における半導体発光素子200において、図27と同様の部材については同一の符号を付し、詳細説明を省略する。半導体発光素子200のn型パッド電極108は、パナジウム(Pd)、タンタル(Ta)、白金(Pt)の上面に、金(Au)を積層した2層構造からなり、n型パッド電極108の上面がp型パッド電極107の上面と略同等の位置に形成されている。また、n型パッド電極108は、約45°の傾斜角度を有する側面を備えており、上面ほど先細り形状を成す。加えて、n型パッド電極108の表面には、Agからなる反射膜201が形成されている。この構造により、発光層103から放出した光を視認側へと反射させ、光を導光することにより光取り出し効率を向上させることができる。
特開2004−128321号公報 特開2005−19530号公報
Semiconductor light-emitting elements with improved light extraction efficiency have been developed by guiding light traveling in the horizontal plane direction to the viewing side (for example, Patent Document 1 and Patent Document 2). In the semiconductor light emitting device 200 in FIG. 28, the same members as those in FIG. 27 are denoted by the same reference numerals, and detailed description thereof is omitted. The n-type pad electrode 108 of the semiconductor light emitting device 200 has a two-layer structure in which gold (Au) is laminated on the upper surface of panadium (Pd), tantalum (Ta), and platinum (Pt), and the upper surface of the n-type pad electrode 108. Are formed at substantially the same position as the upper surface of the p-type pad electrode 107. The n-type pad electrode 108 has a side surface having an inclination angle of about 45 °, and the upper surface is tapered. In addition, a reflective film 201 made of Ag is formed on the surface of the n-type pad electrode 108. With this structure, it is possible to improve light extraction efficiency by reflecting light emitted from the light emitting layer 103 toward the viewing side and guiding the light.
JP 2004-128321 A JP 2005-19530 A

上記の半導体発光素子であれば、発光層からの出射光の導光経路を反射膜でもって矯正できるが、一端、光進行方向を光視認側へと変更できたとしても、その光の一部は、発光装置内を構成する部材で反射を1もしくは複数回繰り返すことにより乱反射され、再び発光素子側へと進路を変更し、つまり戻り光となる虞があった。戻り光は発光素子の特性の悪化、及び光取り出し効率の低下を招く。特に戻り光がパッド電極107、108へと進行した場合、光の損失が大きい。なぜなら、従来、パッド電極107、108の表面はワイヤとの接合性を考慮してAuから構成されるものが一般的であったが、Auは光を吸収してしまう特性を有するからである。これにより、発光装置全体の光出力が低減してしまう。   With the semiconductor light emitting device described above, the light guide path of the light emitted from the light emitting layer can be corrected with a reflective film. However, even if the light traveling direction can be changed to the light viewing side, a part of the light is emitted. May be irregularly reflected by repeating the reflection one or more times by members constituting the light emitting device, changing the path to the light emitting element side again, that is, there is a possibility of returning light. The return light causes deterioration of characteristics of the light emitting element and reduction of light extraction efficiency. In particular, when the return light travels to the pad electrodes 107 and 108, the loss of light is large. This is because, conventionally, the surface of the pad electrodes 107 and 108 is generally made of Au in consideration of the bonding property with the wire, but Au has a characteristic of absorbing light. Thereby, the light output of the whole light-emitting device will reduce.

同様の理由から、発光層より放出された光の一部が、パッド電極107、108の下層側へと進行した場合、パッド電極を構成するAuに吸収されてしまい発光素子外へと光が放出されない問題もあった。これは図27(b)に示すように、透明電極106と、GaN等のp型窒化物半導体層104との界面において、両者の屈折率差が小さいため全反射角が狭くなり大部分の光が透過されてしまう。したがって、発光層103からの光の一部が、接面するp型パッド電極107の下面に吸収されてしまい、光そのものが発光素子外へと放出されない虞があった。その結果、光の取り出し効率が低下する。   For the same reason, when a part of the light emitted from the light emitting layer travels to the lower layer side of the pad electrodes 107 and 108, it is absorbed by Au constituting the pad electrode and light is emitted outside the light emitting element. There was a problem that was not. As shown in FIG. 27B, at the interface between the transparent electrode 106 and the p-type nitride semiconductor layer 104 such as GaN, the difference in refractive index between the two is small, so that the total reflection angle becomes narrow and most of the light. Will be transmitted. Therefore, part of the light from the light emitting layer 103 is absorbed by the lower surface of the p-type pad electrode 107 that contacts the light emitting layer 103, and the light itself may not be emitted outside the light emitting element. As a result, the light extraction efficiency decreases.

本発明は、従来のこのような問題点を解消するためになされたものである。本発明の目的は、電極により吸収されていた光の損失を低減し、且つ光出力を向上させた発光装置を提供することにある。   The present invention has been made to solve the conventional problems. An object of the present invention is to provide a light emitting device that reduces the loss of light absorbed by an electrode and improves the light output.

上記の目的を達成するために、本発明の第1の発光装置は、半導体発光素子1と、半導体発光素子1が発する光を反射または散乱可能な光散乱部材33とを備える発光装置であって、半導体発光素子1は、第1導電型の半導体層3と、第1導電型半導体層3上の少なくとも一部に形成された発光層4と、発光層4の上に形成された第2導電型の半導体層5と、第2導電型の半導体層5上の少なくとも一部に設けられ、且つ第2導電型の半導体層5に電流を供給する第2導電型電極10と、が順次積層されて成り、第1導電型半導体層3上の少なくとも一部であって、第2導電型電極10と同一面側に配置され、第1導電型半導体層3に電流を供給する第1導電型電極20と、半導体発光素子1の積層方向において、第1導電型電極及び第2導電型電極20、10の少なくともいずれか一の電極は、表面側の反射層20c、10cと、反射層20c、10cの下層側に位置する第1層からなる少なくとも2層から形成されており、反射層20c、10cの反射率は、第1層の反射率よりも高く、反射層20c、10cの反射側と、半導体発光素子3の光出射側は同一面側であり、かつ光散乱部材を含有する封止部材36で封止されてなることをことを特徴とする。   In order to achieve the above object, a first light emitting device of the present invention is a light emitting device including a semiconductor light emitting element 1 and a light scattering member 33 capable of reflecting or scattering light emitted from the semiconductor light emitting element 1. The semiconductor light emitting element 1 includes a first conductive type semiconductor layer 3, a light emitting layer 4 formed on at least a part of the first conductive type semiconductor layer 3, and a second conductive type formed on the light emitting layer 4. And a second conductivity type electrode 10 provided on at least a part of the second conductivity type semiconductor layer 5 and supplying a current to the second conductivity type semiconductor layer 5 are sequentially stacked. A first conductivity type electrode which is at least part of the first conductivity type semiconductor layer 3 and is disposed on the same plane side as the second conductivity type electrode 10 and supplies a current to the first conductivity type semiconductor layer 3 20 and the stacking direction of the semiconductor light emitting device 1, the first conductive type electrode and the second conductive type At least one of the mold electrodes 20 and 10 is formed of at least two layers including a reflective layer 20c and 10c on the surface side and a first layer located on the lower layer side of the reflective layers 20c and 10c. The reflectivity of the layers 20c and 10c is higher than the reflectivity of the first layer, the reflection side of the reflection layers 20c and 10c and the light emission side of the semiconductor light emitting element 3 are on the same plane side, and contains a light scattering member It is characterized in that it is sealed with a sealing member 36.

また、本発明の第2の発光装置は、封止部材36が、半導体発光素子1側に光散乱部材33の分布領域を有してなることを特徴とする。   Further, the second light emitting device of the present invention is characterized in that the sealing member 36 has a distribution region of the light scattering member 33 on the semiconductor light emitting element 1 side.

また、本発明の第3の発光装置は、反射層20c、10cの反射率が90%以上であることを特徴とする。   Further, the third light emitting device of the present invention is characterized in that the reflectance of the reflective layers 20c and 10c is 90% or more.

また、本発明の第4の発光装置は、第1導電型電極及び第2導電型電極は、外部電極と電気的接続が可能な導電性部材35によって接続される外部接続部14b、14aを有しており、反射層20c、10cの反射率が外部接続部14b、14aの反射率よりも高いことを特徴とする。   In the fourth light emitting device of the present invention, the first conductivity type electrode and the second conductivity type electrode have external connection portions 14b and 14a connected by a conductive member 35 that can be electrically connected to the external electrode. The reflectance of the reflection layers 20c and 10c is higher than that of the external connection portions 14b and 14a.

また、本発明の第5の発光装置は、外部接続部14b、14aは反射層20c、10cに貫通孔を形成してなり、貫通孔によって第1層が露出されることを特徴とする。   The fifth light emitting device of the present invention is characterized in that the external connection portions 14b and 14a are formed with through holes in the reflective layers 20c and 10c, and the first layer is exposed through the through holes.

また、本発明の第6の発光装置は、第1導電型電極20及び第2導電型電極10は、第1層の下層側に最下層を有しており、最下層が反射層20b、10bによって構成されており、最下層の反射層20b、10bの反射率は表面の反射層20c、10cの反射率より高いことを特徴とする。   In the sixth light emitting device of the present invention, the first conductivity type electrode 20 and the second conductivity type electrode 10 have a lowermost layer on the lower layer side of the first layer, and the lowermost layer is the reflective layers 20b, 10b. The reflectance of the lowermost reflective layers 20b and 10b is higher than the reflectance of the reflective layers 20c and 10c on the surface.

また、本発明の第7の発光装置は、半導体発光素子1の積層方向において、第1導電型電極及び第2導電型電極20、10は少なくとも2層から形成されており、第1導電型電極20及び第2導電型電極10における一方の電極は表面側に反射層を有しており、かつ他方の電極は最下層に反射層を備えており、最下層の反射層の反射率は表面の反射層の反射率より高く、反射層20c、10cの反射側と、半導体発光素子3の光出射側は同一面側であり、かつ光散乱部材を含有する封止部材36で封止されてなることをことを特徴とする。   In the seventh light emitting device of the present invention, the first conductivity type electrode and the second conductivity type electrodes 20 and 10 are formed of at least two layers in the stacking direction of the semiconductor light emitting element 1, and the first conductivity type electrode One of the electrodes 20 and the second conductivity type electrode 10 has a reflective layer on the surface side, and the other electrode has a reflective layer in the lowermost layer, and the reflectance of the lowermost reflective layer is The reflectance of the reflective layer is higher than that of the reflective layer, and the reflective side of the reflective layers 20c and 10c and the light emitting side of the semiconductor light emitting element 3 are on the same plane side and are sealed with a sealing member 36 containing a light scattering member. It is characterized by that.

また、本発明の第8の発光装置は、半導体発光素子1を複数備えていることを特徴とする。   The eighth light-emitting device of the present invention is characterized by comprising a plurality of semiconductor light-emitting elements 1.

また、本発明の第9の発光装置は、反射層20c、10cは、Ag、Al、Rhの少なくとも一つからなる金属層、若しくはこれを含む合金の単層、又は複層を有することを特徴とする。   In the ninth light-emitting device of the present invention, the reflective layers 20c and 10c have a metal layer composed of at least one of Ag, Al, and Rh, or a single layer or multiple layers of an alloy including the metal layer. And

また、本発明の第10の発光装置は、散乱部材33がYAG系蛍光体あるいはLAG系蛍光体であることを特徴とする。   The tenth light emitting device of the present invention is characterized in that the scattering member 33 is a YAG phosphor or a LAG phosphor.

第1及び4乃至5発明によれば半導体発光素子からの出射光の一部が光散乱部材によって反射または散乱することで生じる半導体発光素子側への戻り光を、電極の表面に設けられた反射層によって反射できるため、半導体発光素子内へと吸収されるのを抑制できる。したがって半導体発光素子のライフ特性を向上させられる。また、反射層によって光の進行方向を半導体発光素子の略積層方向である光観測面側へと導光でき、これにより光取り出し効率が向上する。   According to the first and fourth to fifth aspects of the present invention, the return light to the semiconductor light emitting element side generated when a part of the light emitted from the semiconductor light emitting element is reflected or scattered by the light scattering member is reflected on the surface of the electrode. Since it can be reflected by the layer, absorption into the semiconductor light emitting element can be suppressed. Therefore, the life characteristics of the semiconductor light emitting device can be improved. Further, the light traveling direction can be guided to the light observation surface side, which is the substantially laminating direction of the semiconductor light emitting elements, by the reflection layer, thereby improving the light extraction efficiency.

また、第2及び第3発明によれば、素子側への戻り光をさらに光側面側へと高効率に導光できるため、光損失を抑制し発光装置の出力をより向上させることができる。   Further, according to the second and third inventions, the return light to the element side can be guided to the light side surface side with high efficiency, so that the light loss can be suppressed and the output of the light emitting device can be further improved.

第6発明によれば、発光層からの出射光の一部が電極の下層側に設けられた反射層でもって反射されるため、電極への光吸収を抑制でき素子自体からの光取り出し効率を向上できる。   According to the sixth invention, since a part of the light emitted from the light emitting layer is reflected by the reflective layer provided on the lower layer side of the electrode, the light absorption to the electrode can be suppressed and the light extraction efficiency from the element itself can be improved. Can be improved.

第7発明によれば、受光量に応じた電極位置に反射層を設けることができる。   According to the seventh aspect, the reflective layer can be provided at the electrode position corresponding to the amount of received light.

第8発明によれば、発光素子からの出射光である1次光の進行方向を、隣接する発光素子の反射層でもって光観測面側へと導光できる。また反射層の面積が総体的に増加するため、光散乱部材により反射された2次光における、光視認側への導光量が増大する。   According to the eighth aspect of the invention, the traveling direction of the primary light that is the emitted light from the light emitting element can be guided to the light observation surface side by the reflection layer of the adjacent light emitting element. Moreover, since the area of the reflective layer increases as a whole, the amount of light guided to the light viewing side in the secondary light reflected by the light scattering member increases.

第9発明によれば、高い反射率を有する反射層とできる。   According to the ninth aspect, a reflective layer having a high reflectance can be obtained.

第10発明によれば、光を反射または散乱する効果に加え、光源からの出射光の波長を変換可能であるため、所定の色域において高い発光効率を有する発光装置を得られる。加えて、所定のピーク波長を有する光源を選択的に搭載すれば、所望の発光色を高効率に出射できる発光装置となり、実現可能な出射光の波長幅が増大する。   According to the tenth aspect of the invention, in addition to the effect of reflecting or scattering light, the wavelength of light emitted from the light source can be converted, so that a light emitting device having high luminous efficiency in a predetermined color gamut can be obtained. In addition, if a light source having a predetermined peak wavelength is selectively mounted, a light emitting device that can emit a desired emission color with high efficiency is obtained, and the wavelength width of the output light that can be realized increases.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための、半導体発光素子及びこれを備えた発光装置を例示するものであって、本発明は、半導体発光素子及びこれを備えた発光装置を以下のものに特定しない。さらに、本明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」、及び「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。特に実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。   Embodiments of the present invention will be described below with reference to the drawings. However, the following examples illustrate a semiconductor light emitting element and a light emitting device including the semiconductor light emitting element for embodying the technical idea of the present invention. The present invention includes the semiconductor light emitting element and the same. The following light emitting devices are not specified. Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the “claims” and “means for solving problems” sections. It is appended to the members shown. However, the members shown in the claims are not limited to the members in the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the examples are not intended to limit the scope of the present invention only unless otherwise specified, but are merely illustrative examples. Only. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

(実施の形態1)
(半導体発光素子)
実施の形態1に係る半導体発光素子1を、図1を使用して説明する。図1(a)はその平面図、図1(b)は断面図を示す。図1(b)に示すように、例えばLEDのような半導体発光素子1は、成長基板2であるサファイヤ基板2aの上(図1(b)における上側)に、第1導電型半導体層3であるn型半導体層3a、発光層4、第2導電型半導体層5であるp型半導体層5aを順にエピタキシャル成長させた半導体層8と、さらに半導体層8の上に形成された透光性導電層6とを有する。結晶成長方法としては、例えば、有機金属気相成長法(MOCVD:metal-organic chemical vapor deposition)、ハイドライド気相成長法(HVPE)、ハイドライドCVD法、MBE(molecularbeam epitaxy)などの方法が利用できる。
(Embodiment 1)
(Semiconductor light emitting device)
A semiconductor light emitting device 1 according to the first embodiment will be described with reference to FIG. FIG. 1A is a plan view and FIG. 1B is a cross-sectional view. As shown in FIG. 1B, a semiconductor light emitting element 1 such as an LED is formed on a sapphire substrate 2a which is a growth substrate 2 (on the upper side in FIG. 1B) with a first conductive type semiconductor layer 3. A semiconductor layer 8 in which an n-type semiconductor layer 3a, a light emitting layer 4, and a p-type semiconductor layer 5a, which is the second conductive semiconductor layer 5, are epitaxially grown in this order, and a light-transmissive conductive layer formed on the semiconductor layer 8 6. As the crystal growth method, for example, metal-organic chemical vapor deposition (MOCVD), hydride vapor deposition (HVPE), hydride CVD, MBE (molecular beam epitaxy) and the like can be used.

続いて、発光層4およびp型半導体層5aの一部を選択的にエッチング除去して、n型半導体層3aの一部を露出させ、この露出領域に、第1導電型電極20であるn型パッド電極20aを形成している。またn型電極と同一面側であって、透光性導電層6上には、第2導電型電極10であるp型パッド電極10aが形成される。さらに、n型パッド電極20a及びp型パッド電極10aの表面のみを露出し、他の部分は保護膜7で被覆される。   Subsequently, the light emitting layer 4 and a part of the p-type semiconductor layer 5a are selectively removed by etching to expose a part of the n-type semiconductor layer 3a. In this exposed region, the n of the first conductivity type electrode 20 is formed. A mold pad electrode 20a is formed. A p-type pad electrode 10 a that is the second conductivity type electrode 10 is formed on the same surface side as the n-type electrode and on the translucent conductive layer 6. Further, only the surfaces of the n-type pad electrode 20 a and the p-type pad electrode 10 a are exposed, and the other portions are covered with the protective film 7.

なお本明細書において、層上などでいう「上」とは、必ずしも上面に接触して形成される場合に限られず、離間して上方に形成される場合も含んでおり、層と層の間に介在層が存在する場合も包含する意味で使用する。以下に半導体発光素子1の各構成要素に関して、具体的に説明する。   In the present specification, the term “upper” as used on a layer or the like is not necessarily limited to the case where the upper surface is formed in contact with the upper surface, but includes the case where the upper surface is formed apart from the upper surface. It is used in the meaning including the case where an intervening layer is present. Hereinafter, each component of the semiconductor light emitting device 1 will be specifically described.

(成長基板)
成長基板2は、半導体層8をエピタキシャル成長させることができる透光性基板で、基板の大きさや厚さ等は特に限定されない。この基板としては、C面、R面、及びA面のいずれかを主面とするサファイアやスピネル(MgA1)のような絶縁性基板、また炭化珪素(6H、4H、3C)、シリコン、ZnS、ZnO、Si、GaAs、ダイヤモンド、及び窒化物半導体と格子接合するニオブ酸リチウム、ガリウム酸ネオジウム等の酸化物基板が挙げられる。また、デバイス加工が出来る程度の厚膜(数十μm以上)であればGaNやAlN等の窒化物半導体基板を用いることもできる。異種基板はオフアングルしていてもよく、サファイアC面を用いる場合には、0.01°〜3.0°、好ましくは0.05°〜0.5°の範囲とする。また、成長基板を半導体層形成後に除去した構造、その取り出した半導体層を支持基板、例えば導電性基板に接着した構造等とすることもできる。
(Growth substrate)
The growth substrate 2 is a translucent substrate on which the semiconductor layer 8 can be epitaxially grown, and the size and thickness of the substrate are not particularly limited. As this substrate, an insulating substrate such as sapphire or spinel (MgA1 2 O 4 ) whose main surface is any of the C-plane, R-plane, and A-plane, silicon carbide (6H, 4H, 3C), silicon , ZnS, ZnO, Si, GaAs, diamond, and oxide substrates such as lithium niobate and neodymium gallate that are lattice-bonded to a nitride semiconductor. In addition, a nitride semiconductor substrate such as GaN or AlN can be used as long as it is thick enough to allow device processing (several tens of μm or more). The heterogeneous substrate may be off-angle, and when using the sapphire C-plane, the range is 0.01 ° to 3.0 °, preferably 0.05 ° to 0.5 °. Further, a structure in which the growth substrate is removed after forming the semiconductor layer, a structure in which the taken-out semiconductor layer is bonded to a supporting substrate, for example, a conductive substrate, or the like can also be employed.

(半導体層)
半導体としては、一般式がInAlGa1−x−yN(0≦x、0≦y、x+y≦1)であって、BやP、Asを混晶してもよい。また、n型半導体層3a、p型半導体層5aは、単層、多層を特に限定しない。また、半導体層8にはn型不純物、p型不純物を適宜含有させる。n型不純物としては、Si、Ge、Sn、S、O、Ti、Zr等のIV族、若しくはVI族元素を用いることができ、好ましくはSi、Ge、Snを、最も好ましくはSiを用いる。また、p型不純物としては、特に限定されないが、Be、Zn、Mn、Cr、Mg、Caなどが挙げられ、好ましくはMgが用いられる。これにより、各導電型の半導体を形成することができる。半導体層8には活性層である発光層4を有し、この活性層は単一(SQW)又は多重量子井戸構造(MQW)とする。以下に半導体層8の詳細を示す。
(Semiconductor layer)
As the semiconductor, the general formula In x Al y Ga 1-x -y N (0 ≦ x, 0 ≦ y, x + y ≦ 1) A, B and P, may be mixed with As. Further, the n-type semiconductor layer 3a and the p-type semiconductor layer 5a are not particularly limited to a single layer or a multilayer. Further, the semiconductor layer 8 appropriately contains n-type impurities and p-type impurities. As the n-type impurity, a group IV or group VI element such as Si, Ge, Sn, S, O, Ti, or Zr can be used, preferably Si, Ge, or Sn, and most preferably Si. The p-type impurity is not particularly limited, and examples thereof include Be, Zn, Mn, Cr, Mg, and Ca, and Mg is preferably used. Thereby, each conductivity type semiconductor can be formed. The semiconductor layer 8 has a light emitting layer 4 which is an active layer, and this active layer has a single (SQW) or multiple quantum well structure (MQW). Details of the semiconductor layer 8 will be described below.

成長基板2上に成長させる半導体はバッファ層(図1に図示せず)などの下地層を介して成長させても良い。バッファ層としては、一般式AlGa1−aN(0≦a≦0.8)で表される窒化物半導体、より好ましくは、AlGa1−aN(0≦a≦0.5)で示される窒化物半導体を用いる。バッファ層の膜厚は、好ましくは0.002〜0.5μm、より好ましくは0.005〜0.2μmとする。 The semiconductor grown on the growth substrate 2 may be grown via an underlayer such as a buffer layer (not shown in FIG. 1). As the buffer layer, a nitride semiconductor represented by the general formula Al a Ga 1-a N (0 ≦ a ≦ 0.8), more preferably Al a Ga 1-a N (0 ≦ a ≦ 0.5). The nitride semiconductor shown in FIG. The thickness of the buffer layer is preferably 0.002 to 0.5 μm, more preferably 0.005 to 0.2 μm.

次に、n型半導体層3aを成長させる。まずn型コンタクト層(図示せず)を成長させる。n型コンタクト層としては、通常、活性層のバンドギャップエネルギーより大きくなる組成であり、AlGa1−jN(0≦j<0.3)が好ましい。n型コンタクト層の膜厚は特に限定されるものではないが、好ましくは1μm以上、より好ましくは3μm以上である。また、n型コンタクト層と活性層との間にクラッド層などを介在させても良い。 Next, the n-type semiconductor layer 3a is grown. First, an n-type contact layer (not shown) is grown. The n-type contact layer generally has a composition that is larger than the band gap energy of the active layer, and Al j Ga 1-j N (0 ≦ j <0.3) is preferable. The thickness of the n-type contact layer is not particularly limited, but is preferably 1 μm or more, more preferably 3 μm or more. Further, a clad layer or the like may be interposed between the n-type contact layer and the active layer.

活性層は発光層4として機能し、少なくともAlInGa1−a−bN(0≦a≦1、0≦b≦1、a+b≦1)から成る井戸層と、AlInGa1−c−dN(0≦c≦1、0≦d≦1、c+d≦1)から成る障壁層とを含む量子井戸構造を有する。活性層に用いられる半導体は、ノンドープ、n型不純物ドープ、p型不純物ドープのいずれでも良い。好ましくは、ノンドープ又はn型不純物ドープの窒化物半導体を用いることにより、発光素子を高出力化することができる。さらに好ましくは、井戸層をアンドープとし、障壁層をn型不純物ドープとすることで、発光素子の出力と発光効率を高めることができる。また発光素子に用いる井戸層にAlを含ませることで、GaNのバンドギャップエネルギーである波長365nm付近、もしくはそれより短い波長を得ることができる。活性層から放出する光の波長は、発光素子の目的、用途等に応じて360nm〜650nm付近、好ましくは380nm〜560nmの波長とする。 The active layer functions as the light emitting layer 4, and includes a well layer made of at least Al a In b Ga 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, a + b ≦ 1), and Al c In d Ga. And a barrier layer made of 1-cdN (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, c + d ≦ 1). The semiconductor used for the active layer may be any of non-doped, n-type impurity doped, and p-type impurity doped. Preferably, by using a non-doped or n-type impurity doped nitride semiconductor, the output of the light-emitting element can be increased. More preferably, when the well layer is undoped and the barrier layer is n-type impurity doped, the output and the light emission efficiency of the light emitting element can be increased. Further, by including Al in the well layer used in the light emitting element, a wavelength near 365 nm which is the band gap energy of GaN or shorter than that can be obtained. The wavelength of light emitted from the active layer is approximately 360 to 650 nm, preferably 380 to 560 nm, depending on the purpose and application of the light-emitting element.

井戸層の膜厚は、好ましくは1nm以上30nm以下、より好ましくは2nm以上20nm以下、さらに好ましくは2nm以上20nm以下であり、1つの井戸層の単一量子井戸、障壁層などを介した複数の井戸層の多重量子井戸構造とできる。   The thickness of the well layer is preferably 1 nm or more and 30 nm or less, more preferably 2 nm or more and 20 nm or less, and further preferably 2 nm or more and 20 nm or less, and a plurality of well layers are provided via a single quantum well, a barrier layer, or the like. It can be a multiple quantum well structure of a well layer.

また、障壁層は、井戸層の場合と同様に、好ましくはp型不純物又はn型不純物がドープされているか又はアンドープであること、より好ましくはn型不純物がドープされているか又はアンドープであることである。例えば、LEDでは、5×1016/cm以上2×1018/cm以下が好ましい。この場合、井戸層はn型不純物を実質的に含有しないか、あるいはアンドープで成長させることが好ましい。また、障壁層にn型不純物をドープする場合、活性層内のすべての障壁層にドープしても良く、あるいは、一部をドープとし一部をアンドープとすることもできる。また、活性層内でn型層側に配置された障壁層にドープすることが好ましい。 The barrier layer is preferably doped or undoped with a p-type impurity or an n-type impurity, more preferably doped or undoped with an n-type impurity, as in the case of the well layer. It is. For example, the LED, preferably 5 × 10 16 / cm 3 or more 2 × 10 18 / cm 3 or less. In this case, the well layer preferably does not substantially contain n-type impurities or is grown undoped. In addition, when the n-type impurity is doped in the barrier layer, all the barrier layers in the active layer may be doped, or a part may be doped and a part may be undoped. Moreover, it is preferable to dope the barrier layer disposed on the n-type layer side in the active layer.

次に、活性層上にp型半導体層5aとして例えば以下の層を形成する。まずp型クラッド層としては、活性層のバンドギャップエネルギーより大きくなる組成であり、活性層へのキャリアの閉じ込めができるものであれば特に限定されない。例えばAlGa1−kN(0≦k<1)が用いられ、特にAlGa1−kN(0<k<0.4)が好ましい。p型クラッド層の膜厚は特に限定されないが、好ましくは0.01〜0.3μm、より好ましくは0.04〜0.2μmとする。p型クラッド層のp型不純物濃度は、1×1018〜1×1021/cm、好ましくは1×1019〜5×1020cmとする。p型クラッド層は、単一層でも多層膜層(超格子構造)でも良い。多層膜層の場合、例えばバンドギャップエネルギーの小さい層としては、n型クラッド層の場合と同様に、InGa1−lN(0≦l<1)、AlGa1−mN(0≦m<1、m>l)が挙げられる。多層膜層を形成する各層の膜厚は、超格子構造の場合は、一層の膜厚が好ましくは100Å以下、より好ましくは70Å以下、さらに好ましくは10〜40Åとすることができる。また、多層膜層である場合、バンドギャップエネルギーの大きい層及び小さい層の少なくともいずれか一方にp型不純物をドープさせても良い。 Next, for example, the following layers are formed as the p-type semiconductor layer 5a on the active layer. First, the p-type cladding layer is not particularly limited as long as it has a composition larger than the band gap energy of the active layer and can confine carriers in the active layer. For example, Al k Ga 1-k N (0 ≦ k <1) is used, and Al k Ga 1-k N (0 <k <0.4) is particularly preferable. The film thickness of the p-type cladding layer is not particularly limited, but is preferably 0.01 to 0.3 μm, more preferably 0.04 to 0.2 μm. The p-type impurity concentration of the p-type cladding layer is 1 × 10 18 to 1 × 10 21 / cm 3 , preferably 1 × 10 19 to 5 × 10 20 cm 3 . The p-type cladding layer may be a single layer or a multilayer layer (superlattice structure). In the case of a multilayer film layer, for example, as a layer having a small band gap energy, as in the case of the n-type cladding layer, In 1 Ga 1-l N (0 ≦ l <1), Al m Ga 1-m N (0 ≦ m <1, m> l). In the case of a superlattice structure, the thickness of each layer forming the multilayer layer is preferably 100 mm or less, more preferably 70 mm or less, and further preferably 10 to 40 mm. In the case of a multilayer film layer, p-type impurities may be doped into at least one of a layer having a large band gap energy and a layer having a small band gap energy.

p型コンタクト層は、AlGa1−fN(0≦f<1)が用いられ、特に、AlGa1−fN(0≦f<0.3)で構成することにより、オーミック電極であるp電極と良好なオーミックコンタクトが可能となる。p型不純物濃度は1×1017/cm以上が好ましい。 For the p-type contact layer, Al f Ga 1-f N (0 ≦ f <1) is used, and in particular, an ohmic electrode can be formed by being composed of Al f Ga 1-f N (0 ≦ f <0.3). It is possible to make a good ohmic contact with the p electrode. The p-type impurity concentration is preferably 1 × 10 17 / cm 3 or more.

以上のように窒化物半導体を成長基板2上に成長させた後、ウェハーを反応装置から取り出し、その後、酸素及び/又は窒素を含む雰囲気中で450℃以上で熱処理をする。これによりp型層に結合している水素が取り除かれ、p型の伝導性を示すp型半導体層5aを形成する。   After the nitride semiconductor is grown on the growth substrate 2 as described above, the wafer is taken out of the reaction apparatus, and then heat-treated at 450 ° C. or higher in an atmosphere containing oxygen and / or nitrogen. As a result, hydrogen bonded to the p-type layer is removed, and a p-type semiconductor layer 5a exhibiting p-type conductivity is formed.

また、半導体層8の積層構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。また、各層を超格子構造としたり、活性層である発光層4を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。次に、p型の半導体層5aの表面に所定の形状をなすマスク(図示せず)を形成し、p型の半導体層5a及び活性層である発光層4をエッチングして所定の位置のn型半導体層3aを構成するn型コンタクト層を露出させる。   Further, examples of the laminated structure of the semiconductor layer 8 include a homo structure having a MIS junction, a PIN junction, and a PN junction, a hetero structure, and a double hetero structure. Each layer may have a superlattice structure, or may have a single quantum well structure or a multiple quantum well structure in which the light emitting layer 4 as an active layer is formed in a thin film in which a quantum effect is generated. Next, a mask (not shown) having a predetermined shape is formed on the surface of the p-type semiconductor layer 5a, and the p-type semiconductor layer 5a and the light emitting layer 4 which is an active layer are etched to form n at a predetermined position. The n-type contact layer constituting the type semiconductor layer 3a is exposed.

(透光性導電層)
さらに、p型半導体層5a上に、透光性導電層6を形成する。露出したp型半導体層5aのほぼ前面に導電層が形成されることにより、電流をp型半導体層5a全体に均一に広げることができる。しかも透光性を備えることで、電極側を発光観測面とすることができる。なお透光性とは、発光素子の発光波長を透過できるという意味であって、必ずしも無色透明を意味するものではない。透光性導電層6は、オーミック接触を得るために、好ましくは酸素を含むものとする。酸素を含む透光性導電層6には数々の種類があるが、好ましくは亜鉛(Zn)、インジウム(In)、スズ(Sn)よりなる群から選択された少なくとも一種の元素を含む酸化物とする。具体的には、ITO、ZnO、In、SnO等、Zn、In、Snの酸化物を含む透光性導電層6を形成することが望ましく、好ましくはITOを使用する。あるいはNi等の金属を30Å等の膜厚でスパッタして透明にした金属膜でもよい。このように、露出したp型半導体層5aのほぼ全面に導電層が形成されることにより、電流をp型半導体層5a全体に均一に広げることができる。しかも透光性を備えることで、電極側を発光観測面とすることもできる。以下の例では、透光性導電層6としてITOの透光性電極を使用する例を説明する。
(Translucent conductive layer)
Further, the translucent conductive layer 6 is formed on the p-type semiconductor layer 5a. By forming the conductive layer almost on the front surface of the exposed p-type semiconductor layer 5a, the current can be spread uniformly over the entire p-type semiconductor layer 5a. In addition, by providing translucency, the electrode side can be a light emission observation surface. Note that translucency means that the light emission wavelength of the light emitting element can be transmitted, and does not necessarily mean colorless and transparent. The translucent conductive layer 6 preferably contains oxygen in order to obtain ohmic contact. There are various types of translucent conductive layers 6 containing oxygen, and preferably an oxide containing at least one element selected from the group consisting of zinc (Zn), indium (In), and tin (Sn) To do. Specifically, it is desirable to form a light-transmitting conductive layer 6 containing an oxide of Zn, In, Sn, such as ITO, ZnO, In 2 O 3 , SnO 2 , and preferably ITO is used. Alternatively, a metal film formed by sputtering a metal such as Ni with a film thickness of 30 mm or the like to make it transparent may be used. As described above, the conductive layer is formed on almost the entire surface of the exposed p-type semiconductor layer 5a, so that the current can be uniformly spread over the entire p-type semiconductor layer 5a. Moreover, by providing translucency, the electrode side can be used as a light emission observation surface. In the following example, an example in which an ITO translucent electrode is used as the translucent conductive layer 6 will be described.

透光性導電層6の中に酸素原子を含ませるには、酸素原子を含有させる層を形成した後、酸素を含む雰囲気にて熱処理すればよい。あるいは、反応性スパッタリング、イオンビームアシスト蒸着等により、それぞれの層に酸素原子を含有させることができるが、工程の容易さ等から熱処理が最も優れている。また、透光性導電層6の厚さは、凹凸面が形成できる程度の厚さとし、好ましくは1μm以下、さらに好ましくは100Åから5000Åとする。   In order to contain oxygen atoms in the light-transmitting conductive layer 6, after forming a layer containing oxygen atoms, heat treatment may be performed in an atmosphere containing oxygen. Alternatively, oxygen atoms can be contained in each layer by reactive sputtering, ion beam assisted vapor deposition, or the like, but heat treatment is most excellent from the standpoint of process ease. Moreover, the thickness of the translucent conductive layer 6 is set to such a thickness that an uneven surface can be formed, and is preferably 1 μm or less, more preferably 100 to 5000 mm.

(パッド電極)
図2を用いて本実施の形態1における、第1及び第2導電型電極を説明する。図2の半導体発光素子1は、図1に示される半導体発光素子1と同様のものであり、したがって同一の部材には同一の符号を付して詳細説明を省略する。図2における第2導電型電極10及び第1導電型電極20としての金属電極層であるパッド電極10a、20aは、p型半導体層5a側に設けられた透光性導電層6、および、露出したn型半導体層3aを構成するn型コンタクト層に対して形成される。また、パッド電極10a、20aは、単層あるいは多層の金属層を含有しており、さらに、パッド電極10a、20aの保護膜表面及び表面層をエッチングして孔を形成し、電極の下層側を露出させた領域でなる外部接続部14a、14bに、ボンディングワイヤ等の導電性部材35が接続される。例えば、パッド電極10a、20aの表面層10c、20cよりも下層に位置するAu層を露出させ、これにAu性の光導電性部材をボンディングさせれば、同一素材での結合が図れるため、両者の結合性を一層高めることができる。これにより装置の信頼性を高めることができる。さらに、導電性部材35は外部電極(図示せず)と接続され、これにより導電性部材35を介して半導体発光素子1に電力を供給することが可能となる。あるいは、パッド電極10a、20aの表面にAuバンプのような導電部材を配置し、この導電部材を介して対向された発光素子の電極と外部電極との電気的接続を図ることもできる。さらにp型パッド電極20aは、透光性導電層6と一部が直接接しており、透光性導電膜に均一に電流を流すことができる。
このように、電極に貫通孔、若しくは開口部を設けることで、その部分で好適な外部接続がなされ、残った表面層により、光反射を実現する構造となる。このため、好ましくは、上記電極の貫通孔、開口部で露出された下層側表面より、最表面層の反射層の光反射率を高くする。
(Pad electrode)
The first and second conductivity type electrodes in the first embodiment will be described with reference to FIG. The semiconductor light emitting device 1 of FIG. 2 is the same as the semiconductor light emitting device 1 shown in FIG. 1, and therefore, the same members are denoted by the same reference numerals and detailed description thereof is omitted. The pad electrodes 10a and 20a which are metal electrode layers as the second conductivity type electrode 10 and the first conductivity type electrode 20 in FIG. 2 are the translucent conductive layer 6 provided on the p-type semiconductor layer 5a side, and exposed. The n-type contact layer is formed on the n-type contact layer constituting the n-type semiconductor layer 3a. Further, the pad electrodes 10a and 20a contain a single layer or multiple layers of metal layers. Further, the surface of the protective film and the surface layer of the pad electrodes 10a and 20a are etched to form holes, and the lower layer side of the electrodes is formed. A conductive member 35 such as a bonding wire is connected to the external connection portions 14a and 14b which are exposed regions. For example, if an Au layer located below the surface layers 10c and 20c of the pad electrodes 10a and 20a is exposed and an Au photoconductive member is bonded thereto, bonding with the same material can be achieved. It is possible to further improve the bonding property. Thereby, the reliability of the apparatus can be increased. Furthermore, the conductive member 35 is connected to an external electrode (not shown), and thereby it is possible to supply power to the semiconductor light emitting element 1 via the conductive member 35. Alternatively, a conductive member such as an Au bump may be disposed on the surface of the pad electrodes 10a and 20a, and an electrical connection between the electrode of the light emitting element and the external electrode facing each other through the conductive member may be achieved. Further, the p-type pad electrode 20a is partly in direct contact with the translucent conductive layer 6, so that a current can flow uniformly through the translucent conductive film.
Thus, by providing a through hole or an opening in the electrode, a suitable external connection is made at that portion, and the remaining surface layer provides a structure that realizes light reflection. For this reason, preferably, the light reflectance of the reflective layer of the outermost surface layer is made higher than the surface of the lower layer side exposed at the through-hole and opening of the electrode.

図1(b)及び図2の例に示す半導体発光素子1では、p型パッド電極10aにおいて、半導体発光素子1の外面側を構成する最表面層に、高反射率の反射層10cが設けられる。高反射率とは、光の90%以上を反射可能な状態を言う。具体的に、反射層の部材としてはAg、Al、Rhの少なくとも1種類を含む単層もしくは合金を使用する。反射率に関して、Agは90%以上、Alは約90%であり、両部材とも高反射率である上にライフ特性にも優れる。これにより窒化物半導体よりなる発光素子の360nm〜650nm付近、望ましくは380nm〜560nmの波長の吸収を抑制できる。また、Rhは、光反射性およびバリア性に優れ、光取り出し効率が向上するため好適に用いることができる。実施の形態1では表面層の反射層として、上記の特長に加え安定性を加味してAlを使用した。また、n型パッド電極20aにおいても、外面側の最表面層に、p型パッド電極10aと同様の反射層20cを備えることができる。図1及び図3、図4、図5、図6における半導体発光素子1、1c、1d、1e、1fでは両電極10、20の最表面層に反射層10c、20cが設けられているが、反射層はp型パッド電極10a及びn型パッド電極20aの少なくともいずれか一方に設けられていればよく、好ましくは両方に設置される。これにより後述する発光装置の光取り出し効率を高めることができる。また、これらの反射層の上には、さらにSiO、Al等、保護膜と同様な材料からなる略透明な電極保護層(図示せず)が電極と同一パターンで被覆可能であり、これにより反射層の金属酸化が抑制される。 In the semiconductor light emitting device 1 shown in the examples of FIGS. 1B and 2, the p-type pad electrode 10 a is provided with a reflective layer 10 c having a high reflectivity on the outermost surface layer constituting the outer surface side of the semiconductor light emitting device 1. . High reflectivity refers to a state in which 90% or more of light can be reflected. Specifically, a single layer or alloy containing at least one of Ag, Al, and Rh is used as a member of the reflective layer. Regarding the reflectance, Ag is 90% or more, and Al is about 90%. Both members have high reflectance and excellent life characteristics. Thereby, absorption of a light emitting element made of a nitride semiconductor at a wavelength of about 360 nm to about 650 nm, preferably about 380 nm to 560 nm can be suppressed. Rh is excellent in light reflectivity and barrier properties, and can be suitably used because light extraction efficiency is improved. In the first embodiment, Al is used as the reflective layer of the surface layer in consideration of stability in addition to the above features. Also in the n-type pad electrode 20a, a reflective layer 20c similar to the p-type pad electrode 10a can be provided on the outermost surface layer on the outer surface side. In the semiconductor light emitting devices 1, 1 c, 1 d, 1 e, and 1 f in FIGS. 1, 3, 4, 5, and 6, the reflective layers 10 c and 20 c are provided on the outermost surface layers of the electrodes 10 and 20. The reflective layer may be provided on at least one of the p-type pad electrode 10a and the n-type pad electrode 20a, and is preferably provided on both. Thereby, the light extraction efficiency of the light emitting device described later can be increased. Further, on these reflective layers, a substantially transparent electrode protective layer (not shown) made of the same material as the protective film such as SiO 2 and Al 2 O 3 can be covered in the same pattern as the electrodes. Thereby, metal oxidation of the reflective layer is suppressed.

なお、p型パッド電極の最表面層10cに加えて、透光性導電層6との接面側である最下層にも反射層10bを設けることができる。同様にn型パッド電極20aにおいても、最表面層20cに加えて、n型半導体層3aとの接面側である最下層20bにも反射層を形成できる。つまりp型及びn型パッド電極10a、20aにおいて、反射層をその最表面層に加えて最下層にも構成できる。これにより、詳しくは後述するが、半導体発光素子1内部での光損失を低減でき、ひいては発光装置の光取り出し効率を高めることができる。   In addition to the outermost surface layer 10c of the p-type pad electrode, the reflective layer 10b can also be provided on the lowermost layer that is in contact with the translucent conductive layer 6. Similarly, in the n-type pad electrode 20a, in addition to the outermost surface layer 20c, a reflective layer can be formed on the lowermost layer 20b that is in contact with the n-type semiconductor layer 3a. That is, in the p-type and n-type pad electrodes 10a and 20a, a reflective layer can be formed in the lowermost layer in addition to the outermost surface layer. Thereby, although mentioned later in detail, the optical loss inside the semiconductor light emitting element 1 can be reduced, and by extension, the light extraction efficiency of the light emitting device can be increased.

また、反射層の形成箇所に関して、両パッド電極10a、20aの内の一方の電極の最表面層に反射層を設け、他方の電極の最下層に反射層を設けもよい。例えば、p型パッド電極10aの最下層側に反射層10bを設けることで素子内部での光損失を低減させることができる。さらにn型パッド電極20aの最下層には反射層を設けずして、表面層のみに反射層20cを形成することにより、n型パッド電極10aにおいて受光量の大きい領域のみに反射層を構成できる。つまり反射層を選択的に形成させることで、高効率に部材を利用できる。
また、上記Agとしては、APC(Pd、Cuを添加したAg)などのAg合金を用いることもでき、Agと、Pdなどの白金属元素、Cu、Mgなど、例えばPt、Co、Au、Pd、Ti、Mn、V、Cr、Zr、Rh、Cu、Al、Mg、Bi、Sn、Ir、Ga、Nd及びReからなる群から選択される1種又は2種以上の合金が挙げられ、0.1〜10atm%、好ましくは5wt%以下程度、添加したものがある。Al合金としては、AlにSi、Cu、Ta、Zrなどを0.1〜5atm%程度、添加したものなどを用いても良い。
In addition, regarding the formation position of the reflective layer, a reflective layer may be provided on the outermost surface layer of one of the pad electrodes 10a and 20a, and a reflective layer may be provided on the lowermost layer of the other electrode. For example, by providing the reflective layer 10b on the lowermost layer side of the p-type pad electrode 10a, light loss inside the device can be reduced. Further, by forming the reflective layer 20c only on the surface layer without providing the reflective layer in the lowermost layer of the n-type pad electrode 20a, the reflective layer can be configured only in the region where the amount of received light is large in the n-type pad electrode 10a. . That is, the member can be used with high efficiency by selectively forming the reflective layer.
Further, as the above Ag, an Ag alloy such as APC (Ag added with Pd, Cu) can also be used. Ag, a white metal element such as Pd, Cu, Mg, etc., for example, Pt, Co, Au, Pd Ti, Mn, V, Cr, Zr, Rh, Cu, Al, Mg, Bi, Sn, Ir, Ga, Nd, and one or more alloys selected from the group consisting of Re and 0. 0.1 to 10 atm%, preferably about 5 wt% or less. As Al alloy, you may use what added about 0.1-5 atm% of Si, Cu, Ta, Zr etc. to Al.

(電極の形状)
また、図1(a)の例における半導体発光素子1は、平面図において略正方形状を成す。この略正方形状内において、対向する辺の中点同士を結んだ中央線を境界とし、分割された2つの長方形状の各領域に、p型パッド電極10aとn型パッド電極20aが一組づつ設けられる。略正方形状である半導体発光素子1の角部であって、2分割された長方形領域における、長辺と短辺から構成された1つの略隅部に、p型パッド電極10aが設けられる。このp型パッド電極10aに接する短辺に対向する他方の短辺の中央領域近傍には、n型パッド電極20aが形成される。これと同様の部材が、略正方形状の中央線を基準にして他方の長方形状の領域にも、線対称に設けられている。
(Electrode shape)
In addition, the semiconductor light emitting element 1 in the example of FIG. 1A has a substantially square shape in a plan view. Within this substantially square shape, a pair of p-type pad electrode 10a and n-type pad electrode 20a is formed in each of the two rectangular regions divided by the center line connecting the midpoints of the opposite sides. Provided. A p-type pad electrode 10a is provided at one corner of the semiconductor light emitting element 1 having a substantially square shape, which is composed of a long side and a short side in a rectangular region divided into two. An n-type pad electrode 20a is formed in the vicinity of the central region of the other short side facing the short side in contact with the p-type pad electrode 10a. Similar members are provided symmetrically in the other rectangular region with respect to the substantially square center line.

また、p型パッド電極10aは、延伸された幅細の延伸導電部9を有する。図1(a)の例における延伸導電部9は、円状のp型パッド電極10aから、略正方形状の半導体発光素子1の周縁と、さらに2組のpn電極を分割する中央域に延伸されており、これらの延伸導電部9は連接されてなる。延伸導電部9の延伸方向及びその数は特に限定されず適宜変更可能であり、これにより配線電極面積や素子への電流供給量を自在に変更できる。例えば、延伸導電部9を無くすこともでき、また、発光素子の構造、面積によりn型電極や、両電極に設けることもできる。一例として種々の電極構造を図3、図4、図5、図6に示す。図3、図4、図5、図6の半導体発光素子1c、1d、1e、1fにおいて、図1(a)に示す半導体発光素子1と同一もしくは同質の部材には同一の符号を付して詳細説明を省略する。半導体発光素子1c、1d、1e、1fは、n型パッド電極20aより単数或いは複数延伸されたn型延伸導電部9bを有しており、複数のn型延伸導電部9bは略櫛状に平行に位置する。p型パッド電極より延伸された延伸導電部9は、図1(a)に示される半導体発光素子1の延伸導電部9bにおける延伸領域に加えて、平行に位置したn型延伸導電部9b間にも延伸でき、その先端はn型パッド電極20a近傍に構成されている。また、延伸導電部9、9bはパッド電極10a、20a、透光性導電層6上の金属層と異なる構造、材質、工程で形成されても良いが、好ましくはパッド電極と一体で形成される。これにより延伸導電部9、9bの最表面や最下層にも反射層を備えることができ、反射層の総括的な面積が増大する。また、半導体発光素子1の形状、及び一対のパッド電極を形成する領域形状は適宜変更できる。例えば、一対のパッド電極が形成される領域において、各パッド電極を長手方向の両端に隔離して形成し、長手方向に略垂直を成す方向を幅方向とした際の、素子の幅方向を薄くすることで、光が反射することにより生じる光の吸収を最小限に抑えつつ、幅方向からの光の取り出しを向上できる。   Further, the p-type pad electrode 10a has an elongated conductive portion 9 that is elongated. The stretched conductive portion 9 in the example of FIG. 1A is stretched from the circular p-type pad electrode 10a to the peripheral edge of the substantially square semiconductor light emitting element 1 and further to the central region that divides the two sets of pn electrodes. These extended conductive parts 9 are connected. The extending direction and the number of the extending conductive portions 9 are not particularly limited and can be changed as appropriate, whereby the wiring electrode area and the current supply amount to the element can be freely changed. For example, the stretched conductive portion 9 can be eliminated, and the n-type electrode or both electrodes can be provided depending on the structure and area of the light emitting element. As an example, various electrode structures are shown in FIG. 3, FIG. 4, FIG. 5, and FIG. 3, 4, 5, and 6, the same or similar members as those of the semiconductor light emitting device 1 shown in FIG. Detailed description is omitted. Each of the semiconductor light emitting devices 1c, 1d, 1e, and 1f has an n-type extended conductive portion 9b that is extended by one or more than the n-type pad electrode 20a, and the plurality of n-type extended conductive portions 9b are substantially comb-like parallel. Located in. In addition to the stretched region in the stretched conductive part 9b of the semiconductor light emitting device 1 shown in FIG. 1 (a), the stretched conductive part 9 stretched from the p-type pad electrode is between the n-type stretched conductive parts 9b located in parallel. Can be stretched, and the tip thereof is formed in the vicinity of the n-type pad electrode 20a. The extended conductive portions 9 and 9b may be formed with a structure, material, and process different from those of the metal layers on the pad electrodes 10a and 20a and the translucent conductive layer 6, but are preferably formed integrally with the pad electrode. . Thereby, a reflective layer can be provided also in the outermost surface and lowermost layer of the extending | stretching electroconductive parts 9 and 9b, and the comprehensive area of a reflective layer increases. The shape of the semiconductor light emitting element 1 and the shape of the region where the pair of pad electrodes are formed can be changed as appropriate. For example, in a region where a pair of pad electrodes are formed, each pad electrode is formed separately at both ends in the longitudinal direction, and the width direction of the element is thinned when the direction substantially perpendicular to the longitudinal direction is the width direction. Thus, extraction of light from the width direction can be improved while minimizing light absorption caused by reflection of light.

また本発明に係る他の実施の形態において、第2導電型電極10及び第1導電型電極20としてのパッド電極10a、20aの一部は、透光性導電層6に設けた貫通孔内に延在させて半導体層8に直接設けたり、あるいは透光性導電層6の外縁にて半導体層8に直接設けてもよい。このように、パッド電極10a、20aの一部が窒化物半導体層8に直接設けられることによってパッド電極の剥離を防止することができる。加えて、パッド電極の最下層の反射層10b、20bと透光性導電層6との界面を凹凸面とすることもできる。これにより多くの光を外部に取り出すことができ、さらに出力が改善される。   In another embodiment according to the present invention, part of the pad electrodes 10 a and 20 a as the second conductive type electrode 10 and the first conductive type electrode 20 is in a through hole provided in the translucent conductive layer 6. It may be extended and provided directly on the semiconductor layer 8 or may be provided directly on the semiconductor layer 8 at the outer edge of the translucent conductive layer 6. As described above, part of the pad electrodes 10a and 20a is directly provided on the nitride semiconductor layer 8 to prevent the pad electrodes from being peeled off. In addition, the interface between the reflective layers 10b and 20b at the lowermost layer of the pad electrode and the translucent conductive layer 6 can be an uneven surface. Thereby, a lot of light can be extracted to the outside, and the output is further improved.

また、p型窒化物半導体層5a側およびn型窒化物半導体層3a側に形成されるパッド電極10a、20a及び延伸導電部9、9bは、用いる金属の種類や膜厚を同じ構成とすることが好ましい。これによりp型窒化物半導体層5a側およびn型窒化物半導体層3a側とで同時にパッド電極10a、20a及び延伸導電部9、9bを形成でき、つまり形成工程を1つにすることができる。したがって、p型窒化物半導体層5a側およびn型窒化物半導体層3a側とを別々に形成する場合と比較して、パッド電極10a、20aの形成の工程を簡略化することができる。さらに、本実施の形態に係るパッド電極10a、20aであれば、パッド電極10a、20aを構成する金属の種類及び積層順序を変更すれば良く、電極の形成面積等の設計上の変化がないため、従来のマスクパターンを使用できる。つまり、専用設計を必要としないため、工程の簡略化に加えてコストの削減が図れる。電極の最表面層に反射層を有するパッド電極10a、20aとしては、例えば、積層順にTi/Rh/Au/Rh、あるいはTi/Rh/Au/Rh/Al、あるいはTi/Rh/Au/Rh/Al、あるいはTi/Rh/Al/SiO等とできる。ここで、Al、SiOは電極の電極保護層である。また、最下層に位置するTiは、p型パッド電極10aにおいては接面する透光性導電層6との密着層として機能し、またn型パッド電極20aにおいてはn型コンタクト層と接面する際のオーミック電極として機能する。上記の電極層のように、両パッド電極10a、20aの最下層に共通のTiを使用すれば、それぞれの最下層としての機能を兼ねることができる。ただ、両パッド電極10a、20aは別個の工程でも製作でき、これにより両者を別々の構造とできる。この場合、各電極における最下層を共通の部材で構成せずして、各電極の最下層における上記の機能をそれぞれ備えていれば足りる。さらに、電極による反射層の形成箇所を相違とできる。 The pad electrodes 10a and 20a and the stretched conductive portions 9 and 9b formed on the p-type nitride semiconductor layer 5a side and the n-type nitride semiconductor layer 3a side have the same configuration and type of metal used. Is preferred. As a result, the pad electrodes 10a, 20a and the extended conductive portions 9, 9b can be formed simultaneously on the p-type nitride semiconductor layer 5a side and the n-type nitride semiconductor layer 3a side, that is, the formation process can be made one. Therefore, the process of forming pad electrodes 10a and 20a can be simplified as compared with the case where p-type nitride semiconductor layer 5a side and n-type nitride semiconductor layer 3a side are separately formed. Furthermore, in the case of the pad electrodes 10a and 20a according to the present embodiment, the type of metal constituting the pad electrodes 10a and 20a and the stacking order may be changed, and there is no change in design such as the electrode formation area. Conventional mask patterns can be used. That is, since a dedicated design is not required, the cost can be reduced in addition to the simplification of the process. As the pad electrodes 10a and 20a having the reflective layer on the outermost surface layer of the electrode, for example, Ti / Rh / Au / Rh, Ti / Rh / Au / Rh / Al, or Ti / Rh / Au / Rh / Al 2 O 3 or Ti / Rh / Al / SiO 2 can be used. Here, Al 2 O 3 and SiO 2 are electrode protective layers of the electrodes. Further, Ti located in the lowermost layer functions as an adhesion layer with the translucent conductive layer 6 in contact with the p-type pad electrode 10a, and makes contact with the n-type contact layer in the n-type pad electrode 20a. It functions as an ohmic electrode. If common Ti is used for the lowermost layer of both pad electrodes 10a and 20a like said electrode layer, it can serve as the function of each lowermost layer. However, both the pad electrodes 10a and 20a can be manufactured in separate steps, whereby the two can have different structures. In this case, it is sufficient if the lowermost layer of each electrode is not formed of a common member and the above functions in the lowermost layer of each electrode are provided. Furthermore, the location where the reflective layer is formed by the electrodes can be different.

本発明の第1電極、第2電極としては、少なくとも最表面の反射層と、その下層を有し、下層側より反射層で光反射率を高くする。下層側には、半導体層とのオーミック接触用の層、透過性導電層との密着用の層などの接触層が設けられ、更にはその間に介在するバリア層、上記貫通孔、開口部で露出される外部接続用の層、を有していても良い。具体的には、半導体層側から順に、接触層/バリア層(外部接続層)/反射層の少なくとも3層の構造が好ましく、更に好ましくは、バリア層と外部接続層が別々の層として、接触層と反射層との間に設けられると、各層の機能を好適に高められ好ましい。また、最下層に、反射層を設ける場合には、上記接触層にそれを担う材料とすることができる。また、これらの各層は、複数の層で構成されても良く、各層の材料は種々の機能に応じた金属、合金などを用いる。更に、接触層から半導体層とのオーミック接触機能を分離して、本願中のp電極のように、透光性導電層を、各電極の接触層の下に設けることもでき、すなわち、半導体層、透光性導電層、第1、2電極をこの順に有する構造とできる。透光性導電層は、本願中のp電極のように、それよりも、光透過率の低い遮光性の第1、2電極に比して、大面積、若しくは断面において幅広に設けられて、電流拡散する構造、その第1、2電極から露出した領域を光取り出し領域とする素子構造であることが好ましく、特に発光層上の第2電極に好適に用いられる。   The first electrode and the second electrode of the present invention have at least the outermost reflective layer and its lower layer, and the light reflectance is higher in the reflective layer than on the lower layer side. On the lower layer side, there are provided contact layers such as a layer for ohmic contact with the semiconductor layer and a layer for adhesion with the transmissive conductive layer, and further exposed between the barrier layer interposed therebetween, the above-described through hole, and opening. The external connection layer may be provided. Specifically, a structure of at least three layers of a contact layer / barrier layer (external connection layer) / reflection layer is preferable in order from the semiconductor layer side, and more preferably, the barrier layer and the external connection layer are formed as separate layers. When provided between the layer and the reflective layer, the function of each layer is preferably enhanced, which is preferable. Moreover, when providing a reflective layer in the lowest layer, it can be set as the material which bears it to the said contact layer. In addition, each of these layers may be composed of a plurality of layers, and the material of each layer is a metal, an alloy, or the like corresponding to various functions. Furthermore, the ohmic contact function with the semiconductor layer can be separated from the contact layer, and a translucent conductive layer can be provided under the contact layer of each electrode, as in the p-electrode in the present application. , A translucent conductive layer, and first and second electrodes in this order. The translucent conductive layer is provided in a larger area or wider in cross section than the light-shielding first and second electrodes having lower light transmittance than the p-electrode in the present application, A structure in which current is diffused and an element structure in which a region exposed from the first and second electrodes is used as a light extraction region are preferable, and it is particularly suitable for the second electrode on the light emitting layer.

また、各電極は、少なくとも外部接続用の部分を有し、好ましくは、延伸導電部を有し、更に好ましくは、外部接続部が延伸導電部より、断面において幅広の構造とする。好適には延伸導電部の最表面層に少なくとも、反射層が設けられること、外部接続部に最下層の反射層が設けられることが好ましい。
最下層、最表面層に、高反射率の反射層を共に設ける場合には、少なくともその間に介在する層よりも、各々が高反射率の反射層とすることであり、更に好ましくは、最下層を最表面層より反射率を高くする。これにより、半導体層内部の光が半導体層の外からの戻り光よりも多く、それに対応した構造とでき、また、高反射材料において比較的不安定なAg、若しくはその合金でも、最下層で用いることで、それを抑制できる。また、最下層の反射層に対して、密着性を高めるために、光反射率低減を抑える薄膜で、密着層を下層の反射層と半導体層若しくは透光性導電層との間に設けることもできる。
Each electrode has at least a portion for external connection, preferably has an extended conductive portion, and more preferably has a structure in which the external connection portion is wider in cross section than the extended conductive portion. Preferably, at least a reflective layer is provided on the outermost surface layer of the stretched conductive portion, and a lowermost reflective layer is provided on the external connection portion.
In the case where a reflective layer having a high reflectance is provided on the lowermost layer and the outermost surface layer, it is preferable that each of them be a reflective layer having a higher reflectance than at least a layer interposed therebetween, more preferably the lowermost layer. The reflectance is made higher than that of the outermost surface layer. As a result, the light inside the semiconductor layer is larger than the return light from the outside of the semiconductor layer, and a structure corresponding to this can be obtained, and even Ag that is relatively unstable in a highly reflective material or an alloy thereof is used in the lowermost layer. That can be suppressed. In addition, in order to increase the adhesion to the lowermost reflective layer, a thin film that suppresses light reflectance reduction, and an adhesive layer may be provided between the lower reflective layer and the semiconductor layer or the light-transmitting conductive layer. it can.

ここで、バリア層はその下層(最下層)・上層(表面層)の拡散を防止、保護するようなものであれば良く、具体的な材料としては、W、Moなどの高融点材料や、白金属元素、Ni、Au等、好ましくはPt、W、Mo、Niが好適に用いられる。外部接続用の材料としてはAu、Alがある。各層の膜厚は、特に限定されないが、0.05〜5μmで形成され、また反射層は他の層(それより上層)に比して、薄膜に形成されることが好ましく、バリア層、外部接続層は、反射層より比較的厚膜に形成され、薄膜の密着層は1〜50nm程度で形成される。その他、上記各層間に保護層を有しても良い。密着層は、例えばTi、Niなど、を介在させる。   Here, the barrier layer only needs to prevent and protect diffusion of the lower layer (lowermost layer) / upper layer (surface layer), and specific materials include high melting point materials such as W and Mo, White metal elements, Ni, Au, etc., preferably Pt, W, Mo, Ni are preferably used. Examples of the external connection material include Au and Al. The thickness of each layer is not particularly limited, but it is preferably 0.05 to 5 μm, and the reflective layer is preferably formed as a thin film as compared to other layers (upper layers), barrier layers, external layers The connection layer is formed to be relatively thicker than the reflective layer, and the thin adhesion layer is formed with a thickness of about 1 to 50 nm. In addition, a protective layer may be provided between the layers. For example, Ti and Ni are interposed in the adhesion layer.

このような電極の具体例としては、10nm程度のNi薄膜層の上にAg(反射)/Ni・Ti(密着)/Pt(バリア)/Au(外部接続)/Al(反射)の他、Rh(反射)/Pt(バリア)/Au(外部接続)/Al(反射)、Al(反射)/Pt(バリア)/Au(外部接続)/Rh(反射)、Ti(密着層)/Rh(反射)/Pt(バリア)/Au(外部接続)/Al(反射)、Al(反射)/W(バリア)/Pt(バリア)/Au(外部接続)/Al(反射)、Ni(密着層)/Ag(反射)/Ni(密着・バリア)/Ti(密着層)/Au(外部接続)/Al(反射)を、この順に半導体層表面に積層した構造、若しくはその下層に透光性導電層を積層した構造などがある。   Specific examples of such an electrode include Rh in addition to Ag (reflection) /Ni.Ti (adhesion) / Pt (barrier) / Au (external connection) / Al (reflection) on a Ni thin film layer of about 10 nm. (Reflection) / Pt (barrier) / Au (external connection) / Al (reflection), Al (reflection) / Pt (barrier) / Au (external connection) / Rh (reflection), Ti (adhesion layer) / Rh (reflection) ) / Pt (barrier) / Au (external connection) / Al (reflection), Al (reflection) / W (barrier) / Pt (barrier) / Au (external connection) / Al (reflection), Ni (adhesion layer) / A structure in which Ag (reflection) / Ni (adhesion / barrier) / Ti (adhesion layer) / Au (external connection) / Al (reflection) are laminated in this order on the surface of the semiconductor layer, or a light-transmitting conductive layer is formed below the structure. There are stacked structures.

(下層の反射層の効果)
図7は実施の形態1に係る半導体発光素子1の断面図である。図7を用いて、発光層4からの出射光Lの光の進行具合について一例を説明する。出射光Lの少なくとも一部は、積層方向(図7における略上側)へと進行し、そのまま透光性導電層6内を透過する。これは、p型半導体層5a(例えば屈折率2.46)と透光性導電層6(例えば屈折率2.00)との界面では、両者の屈折率差が小さいため、全反射角が狭くなり大部分の光が進行してしまうためである。この透過光Lは、p型パッド電極10aや延伸導電部9の最下層に形成される高反射率の反射層10bによって、反射される。すなわち、従来であれば、p型パッド電極10aを構成する金属に吸収されていた出射光を光損失することなく、発光素子外へと取り出すことができる。さらに、反射層10bを形成することによって、金属電極であるp型パッド電極10aと透光性導電層6との界面における劣化を低減して、剥離、電気特性の悪化などを抑止できる。
(Effect of lower reflective layer)
FIG. 7 is a cross-sectional view of the semiconductor light emitting device 1 according to the first embodiment. With reference to FIG. 7, an example of the progress of light of the emitted light L from the light emitting layer 4 will be described. At least a part of the emitted light L travels in the stacking direction (substantially above in FIG. 7) and passes through the translucent conductive layer 6 as it is. This is because the total reflection angle is narrow at the interface between the p-type semiconductor layer 5a (for example, refractive index 2.46) and the translucent conductive layer 6 (for example, refractive index 2.00) because the difference in refractive index between the two is small. This is because most of the light travels. The transmitted light L is reflected by the p-type pad electrode 10a and the reflective layer 10b having a high reflectivity formed in the lowermost layer of the stretched conductive portion 9. That is, conventionally, the emitted light that has been absorbed by the metal constituting the p-type pad electrode 10a can be extracted outside the light emitting element without loss of light. Furthermore, by forming the reflective layer 10b, deterioration at the interface between the p-type pad electrode 10a, which is a metal electrode, and the translucent conductive layer 6 can be reduced, and peeling, deterioration of electrical characteristics, and the like can be suppressed.

一方、n型パッド電極20aの最下層に設けられた反射層20bは、発光層4よりも下側(図7における下側)に位置する。したがって、発光層4からの出射光Lを、素子外へと導光する効果は少ない。よって、n型パッド電極の最下層には、必ずしも反射層20bを設ける必要はない。ただ、n型パッド電極の最下層に反射層20bを設ける構造とすることで、上述したように、p型及びn型パッド電極10a、20aを、同種の材料でほぼ同時に形成可能となるため、製造工程を簡略化できる効果を有する。   On the other hand, the reflective layer 20b provided in the lowermost layer of the n-type pad electrode 20a is located below the light emitting layer 4 (lower side in FIG. 7). Therefore, the effect of guiding the emitted light L from the light emitting layer 4 to the outside of the element is small. Therefore, the reflective layer 20b is not necessarily provided in the lowermost layer of the n-type pad electrode. However, since the reflection layer 20b is provided in the lowermost layer of the n-type pad electrode, the p-type and n-type pad electrodes 10a and 20a can be formed of the same kind of material almost simultaneously as described above. This has the effect of simplifying the manufacturing process.

(保護膜)
パッド電極10a、20aを形成した後、ワイヤボンディングを行う領域を除いて半導体発光素子1のほぼ全面に絶縁性の保護膜7が形成される。保護膜7にはSiO2、TiO2、Al23、ポリイミド等が利用できる。
(Protective film)
After the pad electrodes 10a and 20a are formed, an insulating protective film 7 is formed on almost the entire surface of the semiconductor light emitting device 1 except for the region where wire bonding is performed. The protective film 7 is SiO 2, TiO 2, Al 2 O 3, available polyimide and the like.

また、半導体発光素子のサイズ及び形状、発光装置への搭載数は特に限定されず、発光装置における素子の搭載領域や所望される発光装置からの光束量、光出力量等を考慮して決定すればよい。   In addition, the size and shape of the semiconductor light emitting element and the number of mounted light emitting devices are not particularly limited, and may be determined in consideration of the element mounting area in the light emitting device, the desired light flux from the light emitting device, the light output amount, and the like. That's fine.

(発光装置)
次に、本発明の実施の形態1に係る発光装置として、砲弾型の発光装置の概略断面図を図8に示す。この発光装置30は導電性の部材からなるリードフレーム34で成型された凹形状のカップ31内であって、リードフレーム34上に載置されている発光素子32と、この発光素子32の発光層4から放たれた光の少なくとも一部を反射または散乱可能な光散乱部材33を有する。光散乱部材33としては、例えば、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素、二酸化珪素、重質炭酸カルシウム、軽質炭酸カルシウム等の拡散剤、および、これらを少なくとも一種以上含む混合物等を挙げることができる。蛍光体また、発光素子32は、上記の半導体発光素子1であるLEDを使用した。発光素子32に形成された第1及び第2導電型電極である正負の電極39は、導電性のボンディングワイヤ等の導電性部材35を介してリードフレーム34と電気的に接続される。さらにリードフレーム34の一部であるリードフレーム電極34aが突出するように、発光素子32、リードフレーム34、ボンディングワイヤ35は、砲弾形状のモールド37で覆われる。モールド37内には封止部材36として光透過性の樹脂が充填されており、さらに樹脂には光散乱部材33が含有されている。また、発光素子32の電極39が、樹脂36から突出しているリードフレーム電極34a及び導電性部材35等を介して外部電極と電気的に接続されることにより、発光素子32の層内に含有される発光層4から光が放出される。発光層4から出力される出射光の発光ピーク波長は特に限定されないが、実施の形態1においては、近紫外線から可視光の短波長領域である240nm〜500nm付近、好ましくは380nm〜420nm若しくは450nm〜470nmに発光スペクトルを有する半導体発光素子を用いた。また、実施の形態1に係る樹脂内の光散乱部材33は、図示されているように半導体発光素子1近傍に偏在して分布されている。これにより半導体発光素子1からの出射光を反射あるいは散乱させる効果が高まり、発光装置30より放出される光の出射角を広範囲とできるため四方に拡散された光を得ることができる。
(Light emitting device)
Next, FIG. 8 shows a schematic cross-sectional view of a bullet-type light emitting device as the light emitting device according to Embodiment 1 of the present invention. The light emitting device 30 is in a concave cup 31 formed by a lead frame 34 made of a conductive member, and includes a light emitting element 32 mounted on the lead frame 34 and a light emitting layer of the light emitting element 32. 4 has a light scattering member 33 capable of reflecting or scattering at least a part of the light emitted from 4. Examples of the light scattering member 33 include diffusing agents such as barium titanate, titanium oxide, aluminum oxide, silicon oxide, silicon dioxide, heavy calcium carbonate, and light calcium carbonate, and mixtures containing at least one of these. be able to. As the phosphor, the light emitting element 32 is an LED which is the semiconductor light emitting element 1 described above. Positive and negative electrodes 39, which are first and second conductivity type electrodes formed on the light emitting element 32, are electrically connected to the lead frame 34 via a conductive member 35 such as a conductive bonding wire. Further, the light emitting element 32, the lead frame 34, and the bonding wire 35 are covered with a bullet-shaped mold 37 so that the lead frame electrode 34 a that is a part of the lead frame 34 protrudes. The mold 37 is filled with a light transmissive resin as the sealing member 36, and the resin contains a light scattering member 33. Further, the electrode 39 of the light emitting element 32 is contained in the layer of the light emitting element 32 by being electrically connected to the external electrode through the lead frame electrode 34a protruding from the resin 36, the conductive member 35, and the like. Light is emitted from the light emitting layer 4. The emission peak wavelength of the emitted light output from the light emitting layer 4 is not particularly limited, but in the first embodiment, the short wavelength region from near ultraviolet to visible light is around 240 nm to 500 nm, preferably 380 nm to 420 nm or 450 nm to A semiconductor light emitting device having an emission spectrum at 470 nm was used. In addition, the light scattering member 33 in the resin according to the first embodiment is unevenly distributed in the vicinity of the semiconductor light emitting element 1 as illustrated. As a result, the effect of reflecting or scattering the light emitted from the semiconductor light emitting element 1 is enhanced, and the light emitted from the light emitting device 30 can have a wide range of light emission angles, so that light diffused in all directions can be obtained.

封止部材36の材料は透光性であれば特に限定されず、シリコーン樹脂組成物、変性シリコーン樹脂組成物等を使用することが好ましいが、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることができる。また、シリコーン樹脂、エポキシ樹脂、ユリア樹脂、フッ素樹脂およびこれらの樹脂を少なくとも一種以上含むハイブリッド樹脂等、耐候性に優れた封止部材36も利用できる。さらに、封止部材36は有機物に限られず、ガラス、シリカゲル等の耐光性に優れた無機物を用いることもできる。さらにまた、封止部材36の発光面側を所望の形状にすることによってレンズ効果を持たせることができ、発光素子チップからの発光を集束させることができる。実施の形態1では封止部材としてシリコーン樹脂を使用した。   The material of the sealing member 36 is not particularly limited as long as it is translucent, and it is preferable to use a silicone resin composition, a modified silicone resin composition, etc., but an epoxy resin composition, a modified epoxy resin composition, an acrylic resin An insulating resin composition having translucency such as a composition can be used. Moreover, the sealing member 36 excellent in weather resistance, such as a silicone resin, an epoxy resin, a urea resin, a fluororesin, and a hybrid resin containing at least one of these resins, can also be used. Furthermore, the sealing member 36 is not limited to an organic material, and an inorganic material having excellent light resistance such as glass and silica gel can also be used. Furthermore, by making the light emitting surface side of the sealing member 36 have a desired shape, a lens effect can be provided, and light emitted from the light emitting element chip can be focused. In Embodiment 1, a silicone resin is used as the sealing member.

また封止部材36は、接着性を有していることが好ましい。封止部材36に接着性を持たせることにより、発光素子32と、これを載置させるリードフレーム34の中央領域との固着性を高めることができる。接着性は、常温で接着性を示すものだけでなく、封止部材36に所定の熱と圧力を加えることにより接着するものも含む。また封止部材36の、固着強度を高めるために、温度や圧力を加える他、乾燥させることもできる。   Moreover, it is preferable that the sealing member 36 has adhesiveness. By providing the sealing member 36 with adhesiveness, it is possible to improve the adhesion between the light emitting element 32 and the central region of the lead frame 34 on which the light emitting element 32 is placed. The adhesiveness includes not only the adhesive exhibiting adhesiveness at normal temperature, but also the adhesive that adheres to the sealing member 36 by applying predetermined heat and pressure. Further, in order to increase the fixing strength of the sealing member 36, it can be dried in addition to applying temperature and pressure.

(波長変換部材)
封止部材36に、発光素子32の光で励起されて蛍光を発する蛍光物質等の波長変換部材を混入することで、発光素子32の光を異なる波長の光に変換し、発光素子32の光と波長変換部材で波長変換された光との混色光を外部に取り出すことが可能となる。つまり、光源からの光の一部が蛍光体を励起することで、主光源の波長とは異なった波長を持つ光が得られる。この波長変換部材としては蛍光体が好適に利用できる。なぜなら蛍光体は光散乱性及び光り反射性の機能をも備えているため、波長変換機能に加えて光散乱部材33としての役割を果たし上述した光の拡散効果を得ることができるからである。蛍光体は、封止部材36中にほぼ均一の割合で混合することも、部分的に偏在するように配合することもできる。例えば、発光素子32から所定の距離だけ離間させることにより、発光素子32で発生した熱が蛍光物質に伝達し難くして蛍光物質の劣化を抑制できる。また、蛍光体は、発光装置の表面上において一層からなる発光層中に二種類以上存在してもよいし、二層からなる発光層中にそれぞれ一種類あるいは二種類以上存在してもよい。これにより所望の波長を有する発光装置を実現できる。
(Wavelength conversion member)
By mixing a wavelength conversion member such as a fluorescent material that emits fluorescence when excited by the light of the light emitting element 32 into the sealing member 36, the light of the light emitting element 32 is converted into light of a different wavelength, and the light of the light emitting element 32. And the color-mixed light of the light converted in wavelength by the wavelength conversion member can be taken out to the outside. That is, a part of the light from the light source excites the phosphor, so that light having a wavelength different from that of the main light source can be obtained. As the wavelength conversion member, a phosphor can be preferably used. This is because the phosphor also has the functions of light scattering and light reflection, so that it can serve as the light scattering member 33 in addition to the wavelength conversion function and obtain the light diffusion effect described above. The phosphors can be mixed in the sealing member 36 at a substantially uniform ratio, or can be blended so as to be partially unevenly distributed. For example, by separating the light emitting element 32 from the light emitting element 32 by a predetermined distance, it is difficult for heat generated in the light emitting element 32 to be transmitted to the fluorescent substance, and deterioration of the fluorescent substance can be suppressed. Further, two or more kinds of phosphors may be present in the light emitting layer composed of one layer on the surface of the light emitting device, or one or more kinds of phosphors may be present in the light emitting layer composed of two layers. Thereby, a light emitting device having a desired wavelength can be realized.

代表的な蛍光体としては、銅で付括された硫化カドミ亜鉛やセリウムで付括されたYAG系蛍光体及びLAG系蛍光体が挙げられる。特に、高輝度且つ長時間の使用時においては(Re1-xSmx3(Al1-yGay512:Ce(0≦x<1、0≦y≦1、但し、Reは、Y、Gd、La、Luからなる群より選択される少なくとも一種の元素である。)等が好ましい。実施の形態1の波長変換部材としては、YAGまたはLAG蛍光体を使用した。発光装置30において、上記の波長を有する光源からの出射光と、その出射光の一部が該蛍光体により励起されて出射光とは異なる波長を有する光との混色により、例えば白色を得ることができる。また、蛍光体としては、ガラスや樹脂に蛍光体を混合した蛍光体ガラスや蛍光体含有樹脂を用いてもよい。また、光源から発する熱に耐性のあるもの、使用環境に左右されない耐候性のあるものがより望ましい。 Typical phosphors include cadmium zinc sulfide associated with copper and YAG phosphors and LAG phosphors associated with cerium. In particular, at the time of high luminance and long-term use (Re 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: Ce (0 ≦ x <1,0 ≦ y ≦ 1, where, Re Is at least one element selected from the group consisting of Y, Gd, La, and Lu. As the wavelength conversion member of the first embodiment, YAG or LAG phosphor was used. In the light emitting device 30, for example, white color is obtained by color mixing of light emitted from the light source having the above wavelength and light having a wavelength different from that of the emitted light because part of the emitted light is excited by the phosphor. Can do. Further, as the phosphor, phosphor glass or phosphor-containing resin obtained by mixing phosphor in glass or resin may be used. Further, those that are resistant to heat generated from the light source and those that are weather resistant not affected by the use environment are more desirable.

本発明の実施の形態1に係る発光装置30において、蛍光体は、2種類以上の蛍光体を混合させてもよい。即ち、Al、Ga、Y、La、Lu及びGdやSmの含有量が異なる2種類以上の(Re1-xSmx3(Al1-yGay512:Ce蛍光体を混合させて、RGBの波長成分を増やすことができる。また、黄〜赤色発光を有する窒化物蛍光体等を用いて赤味成分を増し、平均演色評価数Raの高い照明や電球色LED等を実現することもできる。具体的には、発光素子の発光波長に合わせてCIEの色度図上の色度点の異なる蛍光体の量を調整し含有させることでその蛍光体間と発光素子で結ばれる色度図上の任意の点を発光させることができる。 In the light emitting device 30 according to Embodiment 1 of the present invention, the phosphor may be a mixture of two or more types of phosphors. That, Al, Ga, Y, La , the content of Lu and Gd and Sm are two or more kinds of (Re 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: mixed Ce phosphor Thus, RGB wavelength components can be increased. Further, it is possible to increase the reddish component by using a nitride phosphor having yellow to red light emission, and to realize illumination with high average color rendering index Ra, light bulb color LED, and the like. Specifically, by adjusting the amount of phosphors having different chromaticity points on the CIE chromaticity diagram according to the light emission wavelength of the light emitting device, the phosphors are connected with each other on the chromaticity diagram. Any point can be made to emit light.

(表面層の反射層の効果)
図9は、実施の形態1に係る発光装置30であって、発光素子32近傍における一部拡大図である(パッド電極10a、20aの外部接続部及び導電性部材は省略)。これを用いて、発光素子32であるLEDの発光層4より放出された出射光Lの進行方向の一例を説明する。出射光Lは、LED側に配置された光散乱部材33でもって反射され四方へと散乱し、この散乱光の一部はLED側へと進行する。従来、この戻り光がパッド電極10a、20aへと進行した場合、パッド電極の最表面を構成するAu金属により光吸収され、光の損失を招いていた。実施の形態1の構造を備えるパッド電極10a、20aであれば、その最表面層の反射層10c、20cに高反射率を有する反射層を備えるため、戻り光の進行方向を略光視認側(図9における略上側)へと誘導できる。つまり光損失を抑制し、発光装置としての光取り出し効率を増加させることができる。また、発光素子32側への戻り光としては、光散乱部材33によって生じた散乱光に限らない。リードフレーム等の発光装置30内の全ての部材によって反射された光も含む。
(Effect of the reflective layer on the surface layer)
FIG. 9 is a partially enlarged view of the light emitting device 30 according to the first embodiment in the vicinity of the light emitting element 32 (external connection portions and conductive members of the pad electrodes 10a and 20a are omitted). An example of the traveling direction of the emitted light L emitted from the light emitting layer 4 of the LED that is the light emitting element 32 will be described using this. The emitted light L is reflected by the light scattering member 33 disposed on the LED side and scattered in all directions, and a part of the scattered light travels to the LED side. Conventionally, when the return light travels to the pad electrodes 10a and 20a, the light is absorbed by the Au metal that forms the outermost surface of the pad electrode, resulting in light loss. If it is pad electrode 10a, 20a provided with the structure of Embodiment 1, since the reflective layer 10c, 20c of the outermost surface layer is provided with a reflective layer having a high reflectivity, the traveling direction of the return light is substantially the light viewing side ( It is possible to guide to the substantially upper side in FIG. That is, light loss can be suppressed and light extraction efficiency as a light emitting device can be increased. Further, the return light to the light emitting element 32 side is not limited to the scattered light generated by the light scattering member 33. The light reflected by all members in the light emitting device 30 such as a lead frame is also included.

また、図8に示すように、実施の形態1に係る発光装置30では、蛍光体を封止部材36中にほぼ均一の割合で混合するのではなく、発光素子32近傍に沈降させている。このように、蛍光体を発光素子32の近傍に偏在させることで、波長変換された光の戻り光をパッド電極の最表面層の反射層10c、20cによって光視認側へと確実に誘導できる。また、光散乱部材33として蛍光体を用いた場合、発光素子の出射光と、蛍光体の変換光との混色により実現される発光装置としての出射光において、所望の波長変換量が低減することなく光視認側へと進行可能であるため、混色の割合を安定したものにでき、これにより発光装置毎の光ムラを低減できる。また当然ながら、光損失が低減できるため、総体的に発光装置としての光取り出し効率が上昇する。   As shown in FIG. 8, in the light emitting device 30 according to the first embodiment, the phosphor is not mixed in the sealing member 36 at a substantially uniform ratio but is settled in the vicinity of the light emitting element 32. In this way, by causing the phosphor to be unevenly distributed in the vicinity of the light emitting element 32, the return light of the wavelength-converted light can be reliably guided to the light viewing side by the reflective layers 10c and 20c on the outermost surface layer of the pad electrode. In addition, when a phosphor is used as the light scattering member 33, a desired wavelength conversion amount is reduced in the emitted light as a light emitting device realized by mixing the emitted light of the light emitting element and the converted light of the phosphor. Since it is possible to proceed to the light viewing side without any problem, the color mixing ratio can be stabilized, thereby reducing light unevenness for each light emitting device. Of course, since light loss can be reduced, the overall light extraction efficiency of the light emitting device increases.

さらに、光散乱部材33を発光素子32近傍に沈降させる構造をとることで、発光体の光源付近に均一に蛍光体層を薄く塗布できる。従って必要な部分だけに蛍光体層を形成することで材料や工程の利用効率が高まる。また生産性が高く、同じプロセスで多くの種類の蛍光体を扱えることになる。この蛍光体層は、薄く粒子が均一に塗布されているのが好適である。蛍光体層の厚膜が厚すぎると蛍光体の結晶が重なり合ってかげができ、効率が低下してしまうからである。   Further, by adopting a structure in which the light scattering member 33 is settled in the vicinity of the light emitting element 32, the phosphor layer can be uniformly and thinly applied in the vicinity of the light source of the light emitting body. Therefore, the use efficiency of materials and processes is increased by forming the phosphor layer only in necessary portions. In addition, it is highly productive and can handle many types of phosphors in the same process. The phosphor layer is preferably thinly coated with particles uniformly. This is because if the phosphor layer is too thick, the phosphor crystals overlap and cause shadowing, which reduces efficiency.

(添加部材)
また、封止部材36は、波長変換部材の他、粘度増量剤、顔料、蛍光物質等、使用用途に応じて適切な部材を添加することができ、これによって良好な指向特性を有する発光装置が得られる。同様に外来光や発光素子からの不要な波長をカットするフィルター効果を持たせたフィルター材として各種着色剤を添加させることもできる。
(Additive components)
In addition to the wavelength conversion member, the sealing member 36 can be added with an appropriate member such as a viscosity extender, a pigment, a fluorescent substance, or the like depending on the intended use, and thus a light emitting device having good directivity can be obtained. can get. Similarly, various colorants can be added as a filter material having a filter effect of cutting unnecessary wavelengths from extraneous light and light emitting elements.

ここで本明細書において拡散剤とは、例えば中心粒径が1nm以上5μm未満のものをいう。1μm以上5μm未満の拡散剤は、発光素子32及び蛍光物質からの光を良好に乱反射させ、大きな粒径の蛍光物質を用いることによって生じやすい色ムラを抑制することができるので、好適に使用できる。また、発光スペクトルの半値幅を狭めることができ、色純度の高い発光装置が得られる。一方、1nm以上1μm未満の拡散剤は、発光素子32からの光波長に対する干渉効果が低い反面、透明度が高く、光度を低下させることなく樹脂粘度を高めることができる。   Here, in this specification, the diffusing agent means, for example, one having a center particle diameter of 1 nm or more and less than 5 μm. A diffusing agent having a size of 1 μm or more and less than 5 μm can be suitably used because it diffuses light from the light emitting element 32 and the fluorescent material well, and can suppress color unevenness that tends to occur by using a fluorescent material having a large particle size. . In addition, the half width of the emission spectrum can be narrowed, and a light emitting device with high color purity can be obtained. On the other hand, the diffusing agent having a wavelength of 1 nm or more and less than 1 μm has a low interference effect on the light wavelength from the light emitting element 32, but has a high transparency and can increase the resin viscosity without reducing the luminous intensity.

(フィラー)
さらに、封止部材36中に蛍光物質の他にフィラーを含有させてもよい。具体的な材料としては、拡散剤と同様のものが使用できる。ただ、拡散剤とフィラーとは中心粒径が異なり、本明細書においてはフィラーの中心粒径は5μm以上100μm以下とすることが好ましい。このような粒径のフィラーを封止部材36中に含有させると、光散乱作用により発光装置の色度バラツキが改善される他、封止部材36の耐熱衝撃性を高めることができる。これにより、高温下での使用においても、発光素子と外部電極とを電気的に接続しているワイヤの断線や発光素子底面とパッケージの凹部底面と剥離等を防止可能な信頼性の高い発光装置とできる。さらには樹脂の流動性を長時間一定に調整することが可能となり、所望とする場所内に封止部材を形成することができ歩留まり良く量産することが可能となる。
(Filler)
Furthermore, the sealing member 36 may contain a filler in addition to the fluorescent material. As a specific material, the same material as the diffusing agent can be used. However, the diffusing agent and the filler have different center particle sizes. In this specification, the center particle size of the filler is preferably 5 μm or more and 100 μm or less. When a filler having such a particle size is contained in the sealing member 36, the chromaticity variation of the light emitting device is improved by the light scattering action, and the thermal shock resistance of the sealing member 36 can be enhanced. As a result, a highly reliable light-emitting device that can prevent disconnection of the wire that electrically connects the light-emitting element and the external electrode, and peeling between the bottom surface of the light-emitting element and the bottom surface of the recess of the package, even when used at high temperatures. And can. Furthermore, the fluidity of the resin can be adjusted to be constant for a long time, and a sealing member can be formed in a desired place, enabling mass production with a high yield.

(凸部)
また、光視認側への導光を高めるため、半導体発光素子内の発光素子表面上に、反射率の高い表層を備えた凸部を設けることもできる。図10に半導体発光素子1aの平面図を示す。この図の半導体発光素子1aにおいて、図1に示す半導体発光素子1と同様の部材については同一の符号を付し、詳細説明を省略する。半導体発光素子1aは、n型パッド電極20a形成用の露出面であるn型コンタクト層13の表面上に、電極と離間されて配置された複数の凸部11を有する。凸部11は、活性層を含む半導体積層構造を取り囲むように備えられる。この際の各凸部の搭載位置は均等に離間されても良く、また光の反射による導光経路を考慮して偏心した配置としても良い。さらに、凸部は発光観測面側から見て円形、菱形、三角形や六角形など所望に応じて種々の形状、また自在な載置個数をとりうる。また、実施の形態1に係る凸部11の頂部は、図1(b)における断面図において発光層4とほぼ同じ位置であるが、その高さはこれに限定されず自在に変更可能であり、例えば発光層4の位置よりも高くすることもできる。また上方に従って徐々に細くなる形状としてもよい。このような構造により発光層4からの出射光を観測面側へと高効率に反射できる。さらに、凸部11は単層、或いは多層の金属からなり、少なくとも上層にはAg、Al、Rhのいずれかの金属またはこれらの合金やそれらの組み合わせからなる反射層で構成される。あるいは、凸部11の露出面を上記の反射層を構成する金属で被覆する。これにより発光層からの出射光、および発光装置内の反射光が、凸部11によって光観測面側へと反射され、総括的に装置の光取り出し効率が上昇する。
(Convex)
Moreover, in order to improve the light guide to the light visual recognition side, the convex part provided with the surface layer with a high reflectance can also be provided on the light emitting element surface in a semiconductor light emitting element. FIG. 10 is a plan view of the semiconductor light emitting element 1a. In the semiconductor light emitting device 1a of this figure, the same members as those of the semiconductor light emitting device 1 shown in FIG. The semiconductor light emitting device 1a has a plurality of convex portions 11 arranged on the surface of the n-type contact layer 13 which is an exposed surface for forming the n-type pad electrode 20a and spaced from the electrode. The convex portion 11 is provided so as to surround the semiconductor multilayer structure including the active layer. At this time, the mounting positions of the respective convex portions may be evenly spaced, or may be arranged eccentrically in consideration of the light guide path by reflection of light. Furthermore, the convex portion can have various shapes such as a circular shape, a rhombus shape, a triangular shape, and a hexagonal shape as viewed from the light emission observation surface side, and can have any number of placements. Moreover, although the top part of the convex part 11 which concerns on Embodiment 1 is the substantially same position as the light emitting layer 4 in sectional drawing in FIG.1 (b), the height is not limited to this but can be changed freely. For example, it can be made higher than the position of the light emitting layer 4. Moreover, it is good also as a shape which becomes thin gradually as it goes upwards. With such a structure, the light emitted from the light emitting layer 4 can be reflected with high efficiency toward the observation surface. Furthermore, the convex part 11 consists of a single layer or a multilayer metal, and is comprised by the reflection layer which consists of any metal of Ag, Al, Rh, these alloys, or those combinations at least in the upper layer. Or the exposed surface of the convex part 11 is coat | covered with the metal which comprises said reflection layer. Thereby, the light emitted from the light emitting layer and the reflected light in the light emitting device are reflected by the convex portion 11 toward the light observation surface, and the light extraction efficiency of the device is generally increased.

また、n型コンタクト層の表面に形成させた円形、三角形、四角形など所定の形状に開口したマスクを利用して、RIE(反応性イオンエッチング)により該所定の形状の凹部を設けることにより、凸部11を形成することもできる。また、該所定の形状を残して他の部分を除去することにより凹凸すなわち凸部11を形成することもできる。n型コンタクト層に凹凸を形成する場合、n型電極とn型コンタクト層の界面以外はもちろん、該界面に凹凸を形成することもできる。さらに、凸部11の露出面に、上記電極の表面・最下層と同様な反射層を被覆する。   Further, by using a mask formed in a predetermined shape such as a circle, a triangle, or a rectangle formed on the surface of the n-type contact layer, a concave portion having the predetermined shape is formed by RIE (reactive ion etching). The part 11 can also be formed. Further, the unevenness, that is, the convex portion 11 can be formed by removing other portions while leaving the predetermined shape. When unevenness is formed on the n-type contact layer, the unevenness can be formed on the interface as well as the interface between the n-type electrode and the n-type contact layer. Further, the exposed surface of the convex portion 11 is covered with a reflective layer similar to the surface / lowermost layer of the electrode.

また、凸部11の高さは自在に変更でき、例えば活性層の位置よりも高くすることもできる。図11は、図10における半導体発光素子1aのn電極20a、p電極10a近傍の断面を拡大した概略図である(保護膜7は図示を省略)。この図の半導体発光素子1aにおいて、図1に示す半導体発光素子1と同様の部材については同一の符号を付し、詳細説明を省略する。半導体発光素子1aは、発光層4からほぼ水平側へと放出された出射光Lを、観測面側(図11における上側)へと反射させるための凸部として、凸状柱状物11aを有する。凸状柱状物11aは以下のような形成方法を採用すれば、工程を簡略化して形成できる。すなわち、半導体発光素子1aの製造において、p型半導体層5aを積層した後に、マスク材、例えばSiOとレジスト膜を塗布して所望のパターンに露光してマスクを画定し、マスクを介したエッチングなどで、発光素子として機能する発光層4が残存する部位、n型半導体層3a表面の最終的にn型電極が配置される部位、そしてn型半導体層3aから発光層4及びp型半導体層5aまでを含んだ凸状柱状物11aを形成することができる。あるいは、凸状柱状物11aをn型パッド電極20aの構成層と同じ部材及び積層高さとし、両者を同一工程で形成することもできる。また、その時、図11のように凸部11の露出面を覆う反射層12を別に被覆する構造でも良く、好ましくは図14のように表面層20cが被覆層12同様に下層の上面・側面を被覆する構造とすることで、被覆層12を省略できる。 Moreover, the height of the convex part 11 can be changed freely, for example, can also be made higher than the position of an active layer. FIG. 11 is an enlarged schematic view of the vicinity of the n-electrode 20a and the p-electrode 10a of the semiconductor light emitting device 1a in FIG. 10 (the protective film 7 is not shown). In the semiconductor light emitting device 1a of this figure, the same members as those of the semiconductor light emitting device 1 shown in FIG. The semiconductor light emitting element 1a includes a convex columnar body 11a as a convex portion for reflecting the emitted light L emitted from the light emitting layer 4 to the substantially horizontal side toward the observation surface side (upper side in FIG. 11). The convex columnar body 11a can be formed by simplifying the process if the following forming method is adopted. That is, in the manufacture of the semiconductor light emitting device 1a, after the p-type semiconductor layer 5a is stacked, a mask material, for example, SiO 2 and a resist film are applied and exposed to a desired pattern to define the mask, and etching through the mask is performed. The part where the light emitting layer 4 functioning as a light emitting element remains, the part where the n type electrode is finally disposed on the surface of the n type semiconductor layer 3a, and the light emitting layer 4 and the p type semiconductor layer from the n type semiconductor layer 3a The convex columnar object 11a including up to 5a can be formed. Alternatively, the convex columnar body 11a may have the same member and stacked height as the constituent layers of the n-type pad electrode 20a, and both may be formed in the same process. Further, at that time, a structure in which the reflective layer 12 covering the exposed surface of the convex portion 11 is separately covered as shown in FIG. 11 may be separately provided. Preferably, the surface layer 20c has the upper surface and side surfaces of the lower layer like the coating layer 12 as shown in FIG. The covering layer 12 can be omitted by adopting a covering structure.

このような凸状柱状物11aの形成方法であれば、n型電極を形成する露出面を形成すると共に、半導体層あるいはn型電極と同時に凸状柱状物11aを形成できるため、工程が簡略化される。また凸状柱状物11aを容易に活性層よりも高い位置に形成でき、これにより活性層4から側面方向に出射された光Lを、凸状柱状物11aでもって反射しやすい。つまり観測面方向へと光の進行方向を変えることができる。本実施の形態に係る半導体発光素子1aでは、凸状柱状物11aにおいて、露出する部分、すなわち外側表面に反射層12を被覆することで、凸状柱状物11a自身への光の吸収を防ぎ、さらに光の反射率を高めることができるため、観測面側への光取り出し効率が上昇する。反射層12は、上記に記載したパッド電極10a、20aの上下層に形成可能な反射層10b、10c、20b、20cと同一素材である、Ag、Al、Rhの少なくとも一つからなる金属層、あるいは、これを含む合金の単層もしくは複層とする。さらに、凸状柱状物11aはn型コンタクト層側からp型コンタクト層側に向かって徐々に細くなっていることが好ましい。凸状柱状物11aの側面が傾斜を帯びることにより、観測面側への光の取り出しをさらに向上させることができる。   With such a method for forming the convex columnar body 11a, the exposed surface for forming the n-type electrode can be formed, and the convex columnar body 11a can be formed simultaneously with the semiconductor layer or the n-type electrode, thereby simplifying the process. Is done. Further, the convex columnar body 11a can be easily formed at a position higher than the active layer, and thus the light L emitted from the active layer 4 in the side surface direction is easily reflected by the convex columnar body 11a. That is, the traveling direction of light can be changed toward the observation plane. In the semiconductor light emitting device 1a according to the present embodiment, in the convex columnar object 11a, the exposed portion, that is, the outer surface is coated with the reflective layer 12, thereby preventing the light from being absorbed into the convex columnar object 11a itself. Furthermore, since the reflectance of light can be increased, the light extraction efficiency to the observation surface side increases. The reflective layer 12 is a metal layer made of at least one of Ag, Al, and Rh, which is the same material as the reflective layers 10b, 10c, 20b, and 20c that can be formed on the upper and lower layers of the pad electrodes 10a and 20a described above. Or it is set as the single layer or multiple layer of the alloy containing this. Furthermore, it is preferable that the convex columnar body 11a is gradually narrowed from the n-type contact layer side toward the p-type contact layer side. Since the side surface of the convex columnar body 11a is inclined, the light extraction to the observation surface side can be further improved.

また、凸状柱状物11aの形成工程を、n型電極を形成する露出面の形成工程に兼用しなければ、凸状柱状物11aの高さは上記のものに限定されず自在とできる。この際、凸状柱状物11aの材質は特に限定されず、半導体発光素子の積層部材と同一、または反射層を構成するAg、Al、Rhの少なくとも一つからなる金属層、或いは、これを含む合金の単層もしくは複層とできる。   Moreover, if the process of forming the convex columnar object 11a is not used as the process of forming the exposed surface for forming the n-type electrode, the height of the convex columnar object 11a is not limited to the above and can be freely set. At this time, the material of the convex columnar body 11a is not particularly limited, and includes the metal layer made of at least one of Ag, Al, and Rh that is the same as the laminated member of the semiconductor light emitting element or that constitutes the reflective layer, or includes this. It can be a single layer or multiple layers of alloys.

(実施の形態2)
図12(a)に、本発明の一実施例による発光装置50の斜視図を示す。図12(b)は、図12(a)で示す発光装置50の6B−6B’線における断面図である。以下、図12(a)及び(b)に基づいて、表面実装型の発光装置50の概略を説明する。発光装置50は、リードフレーム54上に、上部に向かって略凹形状に開口している空間を備えるパッケージ57が装着されてなる。さらに、このパッケージ57の空間内であって、露出しているリードフレーム54上に発光素子52が実装されている。実施の形態2における発光素子52は、図6に示された半導体発光素子1fが単独で使用されているが、半導体発光素子の種類、搭載個数は特に限定されない。パッケージ57は、発光素子52を包囲する枠体となっている。また、パッケージ57の開口している空間内にはツェナーダイオード等、規定電圧以上の電圧が印加されると通電状態になる保護素子58も載置できる。さらに、発光素子52は、導電性部材であるボンディングワイヤ55やバンプ等を介して、リードフレーム54と電気的に接続されている。加えて、パッケージ57の開口している空間部は封止部材56により充填されている。また、封止部材56の表面にエポキシやシリコーン樹脂あるいはガラスなどでできたレンズを取り付けることにより、一層の指向性を高められる。さらに、リードフレーム54の底面に銅などのヒートシンクを取り付けて放熱性を高め、大電流投入を可能にすることもできる。
(Embodiment 2)
FIG. 12A is a perspective view of a light emitting device 50 according to an embodiment of the present invention. 12B is a cross-sectional view taken along line 6B-6B ′ of the light emitting device 50 shown in FIG. Hereinafter, an outline of the surface-mounted light-emitting device 50 will be described with reference to FIGS. 12 (a) and 12 (b). The light emitting device 50 includes a lead 57 and a package 57 having a space that is open in a substantially concave shape toward the top. Further, the light emitting element 52 is mounted on the exposed lead frame 54 in the space of the package 57. As the light emitting element 52 in the second embodiment, the semiconductor light emitting element 1f shown in FIG. 6 is used alone, but the type and the number of mounted semiconductor light emitting elements are not particularly limited. The package 57 is a frame that surrounds the light emitting element 52. In addition, a protective element 58 such as a Zener diode, which is energized when a voltage higher than a specified voltage is applied, can be placed in the open space of the package 57. Further, the light emitting element 52 is electrically connected to the lead frame 54 via bonding wires 55, bumps, and the like, which are conductive members. In addition, the open space of the package 57 is filled with a sealing member 56. Further, by attaching a lens made of epoxy, silicone resin, glass or the like to the surface of the sealing member 56, further directivity can be enhanced. Furthermore, a heat sink such as copper can be attached to the bottom surface of the lead frame 54 to improve heat dissipation, and a large current can be input.

パッケージ57内に含有されている光散乱部材としての蛍光体53を図12(b)に示す(図12(a)中の蛍光体53は省略されている。)。この蛍光体53には、実施の形態1と同様の蛍光体が使用できる。蛍光体53は、パッケージ57内で沈降しており、図12(b)に示すように、発光素子52の近傍に配置される。   A phosphor 53 as a light scattering member contained in the package 57 is shown in FIG. 12B (the phosphor 53 in FIG. 12A is omitted). As this phosphor 53, the same phosphor as in the first embodiment can be used. The phosphor 53 has settled in the package 57 and is arranged in the vicinity of the light emitting element 52 as shown in FIG.

実施の形態3に係る発光装置50であれば、実施の形態1及び2と同様、発光素子52に形成されたパッド電極の反射層(図示せず)により、光の損失を抑制し、光取り出し効率を上昇できる。   In the light emitting device 50 according to the third embodiment, as in the first and second embodiments, the light loss is suppressed by the reflection layer (not shown) of the pad electrode formed in the light emitting element 52, and the light extraction is performed. Increase efficiency.

(実施の形態3)
さらに実施の形態3として、複数の発光素子が実装された発光装置の一例を図13に示す。図13の発光装置60は、図12に示される発光装置50と比して、素子の搭載個数の点で相違であるが、他は同様の構造を有する。したがって同様の部材については同一の符号を付し、詳細説明を省略する。また、図13の発光装置60において、封止部材56は蛍光体3を含有するが図示が省略されている。
(Embodiment 3)
Furthermore, as Embodiment 3, an example of a light-emitting device in which a plurality of light-emitting elements is mounted is illustrated in FIG. The light emitting device 60 of FIG. 13 is different from the light emitting device 50 shown in FIG. 12 in terms of the number of mounted elements, but has the same structure as the others. Accordingly, similar members are denoted by the same reference numerals, and detailed description thereof is omitted. Further, in the light emitting device 60 of FIG. 13, the sealing member 56 contains the phosphor 3, but the illustration is omitted.

図13に係る発光装置60は、リードフレーム54の中央域において、図6(a)に示される半導体発光素子1fを3個搭載してなる。さらに、図14は、図13における6A−6A’線で切断した際の断面の一部拡大概略図である。なお、図14に示される半導体発光素子1fは図6(b)に係る半導体発光素子1fの断面図を使用している。
発光装置60は、リードフレーム54上に3つの発光素子52a、52b、52cが搭載されており、つまり各発光素子のp型パッド電極及びn型パッド電極の最表面層、最下層には適宜反射層が備えられる。また、封止部材56は、半導体発光素子1側に偏在された光散乱部材33の分布領域を有する。ただし、図14に示された光散乱部材33の量、形状、サイズ、搭載位置等は簡略化されたものである。図14を用いて発光装置60における光の進行方向の一例を説明する。一の発光素子(例えば図14の左側に載置する発光素子52a)における発光層4aからの出射光L1は、矢印L1で示すように、隣接する発光素子52bのp型パッド電極の最表面層に形成された反射層10c2によって反射され、光観測面側へと導光される。また上述の通り、発光層4aからの出射光の一部は、光散乱部材33等の発光装置60を構成する部材によって反射され、素子側への戻り光となる。この戻り光は、p型及びn型パッド電極の表面層に形成された反射層(例えば10c1、20c2、20c3)により光観測面側(図14における上側)へと導光される。また、パッド電極の最下層に位置する反射層(例えば10b3)は、発光層4aからの出射光Lが電極に吸収されるのを抑止する。
A light-emitting device 60 according to FIG. 13 includes three semiconductor light-emitting elements 1f shown in FIG. Further, FIG. 14 is a partially enlarged schematic view of a cross section taken along line 6A-6A ′ in FIG. Note that the semiconductor light emitting device 1f shown in FIG. 14 uses the cross-sectional view of the semiconductor light emitting device 1f shown in FIG.
In the light emitting device 60, three light emitting elements 52a, 52b, and 52c are mounted on a lead frame 54. That is, the light emitting device 60 is appropriately reflected on the outermost surface layer and the lowermost layer of the p-type pad electrode and the n-type pad electrode of each light-emitting element. A layer is provided. Further, the sealing member 56 has a distribution region of the light scattering member 33 that is unevenly distributed on the semiconductor light emitting element 1 side. However, the amount, shape, size, mounting position, etc. of the light scattering member 33 shown in FIG. 14 are simplified. An example of the traveling direction of light in the light emitting device 60 will be described with reference to FIG. The emitted light L1 from the light emitting layer 4a in one light emitting element (for example, the light emitting element 52a placed on the left side in FIG. 14) is the outermost surface layer of the p-type pad electrode of the adjacent light emitting element 52b as indicated by the arrow L1. The light is reflected by the reflective layer 10c2 formed on the light observation surface and guided to the light observation surface side. Further, as described above, a part of the light emitted from the light emitting layer 4a is reflected by a member constituting the light emitting device 60 such as the light scattering member 33 and becomes return light to the element side. This return light is guided to the light observation surface side (upper side in FIG. 14) by the reflective layers (for example, 10c1, 20c2, and 20c3) formed on the surface layers of the p-type and n-type pad electrodes. Moreover, the reflective layer (for example, 10b3) located in the lowest layer of the pad electrode suppresses the emission light L from the light emitting layer 4a from being absorbed by the electrode.

このように、反射層4aを有するパッド電極を備えた発光素子52a、52b、52cが、発光装置内60に複数載置されている場合、光散乱部材33等を介した発光層4aからの2次光のみならず、発光層4aより出射された直接光である1次光をも、その進行方向を矯正することができる。つまり、近傍に配置された複数の発光素子同士において、互いの1次光(図におけるL1の光)や2次光(図におけるL2の光)を光視認側へと導光できるため、素子自体から発光する光そのものの光取り出し効率を上昇させることができると共に、装置全体としての出力を上昇させることができる。また、図14に示すp型及びn型パッド電極では、その積層方向において、上層の部材が下層の部材を覆うように積層されており、つまり電極の上面と側面を含む全ての露出面が反射層で被覆されている。これにより反射層の受光量が増大するため、上記の効果が一層増す。さらに、発光装置において素子を複数搭載することにより、封止部材56の界面における光の反射角を大きくできるため、装置の出射光をより立体的にできる。   As described above, when a plurality of light emitting elements 52a, 52b, and 52c each having a pad electrode having the reflective layer 4a are placed in the light emitting device 60, two light emitting layers 4a from the light emitting layer 4a through the light scattering member 33 and the like are used. The traveling direction of not only the secondary light but also primary light that is direct light emitted from the light emitting layer 4a can be corrected. That is, among a plurality of light emitting elements arranged in the vicinity, each other's primary light (L1 light in the figure) and secondary light (L2 light in the figure) can be guided to the light viewing side. As a result, it is possible to increase the light extraction efficiency of the light itself emitted from the light source and to increase the output of the entire apparatus. In the p-type and n-type pad electrodes shown in FIG. 14, the upper layer member is laminated so as to cover the lower layer member in the laminating direction, that is, all exposed surfaces including the upper and side surfaces of the electrode are reflected. Covered with layers. As a result, the amount of light received by the reflective layer is increased, so that the above effect is further increased. Furthermore, by mounting a plurality of elements in the light emitting device, the reflection angle of light at the interface of the sealing member 56 can be increased, so that the emitted light of the device can be made more three-dimensional.

(表面実装型:比較例1、実施例1〜3)
図12に示されるように単独の素子を搭載した表面実装型の発光装置における特性を表1〜2に示す。比較例1〜2及び実施例1〜5の発光装置に搭載される半導体発光素子は、図6に示される電極形状を成しており、800μm×800μmの略正方形のサイズを有する。具体的に素子の中央領域にはn電極20aを、また素子の一辺の両方の角にはpパッド電極10aを有する。さらに、n電極20aからpパッド電極10a方向へ一方向に延伸された延伸導電部9bが形成されており、また、pパッド電極10aは素子の周辺及び対向辺に延伸された延伸導電部を備える。表1内において、比較例1の発光装置におけるパッド電極は、Ti/Rh/Au/Niからなる積層構造を有している。この最表面のNi層は、上述した最下層のNi密着層と同様な構成(組成・膜厚)で、保護膜との密着層として機能し、例えば6nmの薄膜層を設ける。尚、外部接続部の開口部では薄膜層であるため除去されている。比較例1に対して、実施例1〜3の発光装置のパッド電極は、積層順に、Ti/Rh/ASC/SiOから構成され、その最表面層に反射層(ASC)を有する。ASCは、アルミニウム(Al)にケイ素(Si)と銅(Cu)を添加したAlの合金である。合金とすることでAlのマイグレーションを防止でき、発光装置のライフ特性が向上する。実施例1〜3は、電極保護層の膜厚が100Å、500Å、1000Åと相違している他は同じ構造を有する。表1は、該条件を有する比較例1及び実施例1〜3の各発光装置において、その光出力、光束、順電圧、電力効率の値を示す。
(Surface mount type: Comparative Example 1, Examples 1 to 3)
Tables 1 and 2 show characteristics of the surface-mounted light-emitting device in which a single element is mounted as shown in FIG. The semiconductor light emitting elements mounted on the light emitting devices of Comparative Examples 1 and 2 and Examples 1 to 5 have the electrode shape shown in FIG. 6 and have a substantially square size of 800 μm × 800 μm. Specifically, an n-electrode 20a is provided in the central region of the device, and a p-pad electrode 10a is provided at both corners of one side of the device. Further, an extended conductive portion 9b extending in one direction from the n electrode 20a to the p pad electrode 10a is formed, and the p pad electrode 10a includes an extended conductive portion extended to the periphery and opposite sides of the element. . In Table 1, the pad electrode in the light emitting device of Comparative Example 1 has a laminated structure made of Ti / Rh / Au / Ni. This outermost Ni layer has the same structure (composition / film thickness) as the lowermost Ni adhesion layer described above, and functions as an adhesion layer with the protective film, for example, a 6 nm thin film layer is provided. In addition, since it is a thin film layer in the opening part of an external connection part, it is removed. Compared to Comparative Example 1, the pad electrodes of the light emitting devices of Examples 1 to 3 are composed of Ti / Rh / ASC / SiO 2 in the order of lamination, and have a reflective layer (ASC) on the outermost surface layer. ASC is an alloy of Al in which silicon (Si) and copper (Cu) are added to aluminum (Al). By using an alloy, migration of Al can be prevented, and the life characteristics of the light emitting device are improved. Examples 1 to 3 have the same structure except that the thickness of the electrode protective layer is different from 100 mm, 500 mm, and 1000 mm. Table 1 shows values of light output, luminous flux, forward voltage, and power efficiency in the light emitting devices of Comparative Example 1 and Examples 1 to 3 having the above conditions.

Figure 2008210900
Figure 2008210900

加えて、図15は比較例1及び実施例1〜3の発光装置に係る電力効率のグラフを、図16はその順電圧のグラフを、図17はその光出力のグラフを、図18はその光束のグラフを示す。表1及び図15〜18の各データより、反射層を有するパッド電極を備えた発光装置(実施例1〜3)は、反射層を有しない従来のパッド電極を有する発光装置(比較例1)と比較して、高い発光出力を得られることが確認された。特に、反射層上に被覆された電極保護層の膜厚が小さい発光装置(実施例1)は優れた特性を示した。   In addition, FIG. 15 is a graph of power efficiency related to the light emitting devices of Comparative Example 1 and Examples 1 to 3, FIG. 16 is a graph of the forward voltage, FIG. 17 is a graph of the light output, and FIG. A graph of luminous flux is shown. From Table 1 and each data of FIGS. 15 to 18, the light emitting device (Examples 1 to 3) provided with the pad electrode having the reflective layer is a light emitting device having the conventional pad electrode not having the reflective layer (Comparative Example 1). It was confirmed that a high light emission output can be obtained as compared with. In particular, the light emitting device (Example 1) in which the electrode protective layer coated on the reflective layer had a small thickness showed excellent characteristics.

(表面実装型:比較例2、実施例4〜5)
また、パッド電極の露出面である電極保護層の材質を各々変化させた、表面実装型の発光装置(実施例4、5)と、従来の発光装置(比較例2)との特性を比較したデータを表2に示す。比較例2はパッド電極内に反射層を有さず、比較例1と同様の積層構造をとる。実施例4及び5に係る発光装置は、Ti/Rh/ASC/電極保護層、から構成されたパッド電極を有するが、実施例4の電極保護層はSiO、実施例5の電極保護層はAlからなる点で異なる。
(Surface mount type: Comparative Example 2, Examples 4 to 5)
In addition, the characteristics of the surface mount type light emitting device (Examples 4 and 5) and the conventional light emitting device (Comparative Example 2) in which the material of the electrode protection layer that is the exposed surface of the pad electrode was changed were compared. The data is shown in Table 2. Comparative Example 2 does not have a reflective layer in the pad electrode, and has the same laminated structure as Comparative Example 1. The light emitting device according to Examples 4 and 5 has a pad electrode composed of Ti / Rh / ASC / electrode protective layer. The electrode protective layer of Example 4 is SiO 2 , and the electrode protective layer of Example 5 is It differs in that it is made of Al 2 O 3 .

Figure 2008210900
Figure 2008210900

また、図19は比較例2及び実施例4〜5の発光装置に係る電力効率のグラフを、図20はその順電圧のグラフを、図21はその光出力のグラフを、図22はその光束のグラフを示す。表2及び図19〜22の各データより、反射層を有するパッド電極を備えた発光装置(実施例4〜5)は、反射層を有しない従来のパッド電極を有する発光装置(比較例2)と比較して、高い発光出力を得られることが確認された。また、パッド電極の電極保護層の材料において、酸化ケイ素(SiO)、及び酸化アルミニウム(Al)間には、発光装置の特性としての違いは表れなかった。つまり、電力効率など発光装置としての特性が向上した要因は、電極保護層による依存は少なく反射層によるものが大きいと考えられる。 19 is a graph of power efficiency related to the light emitting devices of Comparative Example 2 and Examples 4 to 5, FIG. 20 is a graph of the forward voltage, FIG. 21 is a graph of the light output, and FIG. The graph of is shown. From the data in Table 2 and FIGS. 19 to 22, the light emitting device (Examples 4 to 5) having the pad electrode having the reflective layer is the light emitting device having the conventional pad electrode not having the reflective layer (Comparative Example 2). It was confirmed that a high light emission output can be obtained as compared with. Further, in the material of the electrode protective layer of the pad electrode, no difference in characteristics of the light emitting device appeared between silicon oxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ). That is, it is considered that the factors that improve the characteristics of the light emitting device such as the power efficiency are less dependent on the electrode protective layer and largely due to the reflective layer.

(砲弾型:比較例3、実施例6〜8)
また、図8に示されるように砲弾型の発光装置における特性を表3〜6に示す。表における比較例3〜4及び実施例6〜11の半導体発光装置に搭載される半導体発光素子は、図1または図4に示される電極形状を成しており、両半導体発光素子とも800μm×800μmの略正方形状のサイズを有する。具体的に、表3に示される特性評価は、図1に係る発光素子を搭載した砲弾型の発光装置に係るものである。また、比較例3の電極構造は積層順にTi/Rh/Au/Niであり、実施例6はTi/Rh/Au/Rh、実施例7はTi/Rh/Au/Rh/Al、実施例8はTi/Rh/Au/Rh/Al/Al23の電極構造を有する。さらに、電力効率及び、反射層の有無における特性を比較するため、比較例3を基準とした実施例6〜8の対比評価を表4に示す。

Figure 2008210900
Figure 2008210900
(Cannonball type: Comparative Example 3, Examples 6-8)
In addition, as shown in FIG. 8, the characteristics of the bullet-type light emitting device are shown in Tables 3 to 6. The semiconductor light emitting elements mounted on the semiconductor light emitting devices of Comparative Examples 3 to 4 and Examples 6 to 11 in the table have the electrode shape shown in FIG. 1 or FIG. 4, and both semiconductor light emitting elements are 800 μm × 800 μm. Having a substantially square size. Specifically, the characteristic evaluation shown in Table 3 relates to a bullet-type light emitting device equipped with the light emitting element according to FIG. Further, the electrode structure of Comparative Example 3 is Ti / Rh / Au / Ni in the order of lamination, Example 6 is Ti / Rh / Au / Rh, Example 7 is Ti / Rh / Au / Rh / Al, Example 8 Has an electrode structure of Ti / Rh / Au / Rh / Al / Al 2 O 3 . Furthermore, in order to compare the power efficiency and the characteristics in the presence or absence of the reflective layer, Table 4 shows a comparative evaluation of Examples 6 to 8 based on Comparative Example 3.
Figure 2008210900
Figure 2008210900

また、図23は、表3に基づいた比較例3及び実施例6〜8の光出力及び光束を示すグラフであり、図24は表4に係る電力効率、光出力比、光束比、電力効率比を示すグラフである。表及び図より、反射層を有する素子を搭載した発光装置は、反射層を備えないものと比較して全ての値で向上しており、特性の改善が確認された。   FIG. 23 is a graph showing the light output and light flux of Comparative Example 3 and Examples 6 to 8 based on Table 3, and FIG. 24 is the power efficiency, light output ratio, light flux ratio, and power efficiency according to Table 4. It is a graph which shows ratio. From the tables and figures, the light-emitting device equipped with the element having the reflective layer is improved in all values as compared with the device not provided with the reflective layer, and the improvement of the characteristics was confirmed.

(砲弾型:比較例4、実施例9〜11)
また、図4に係る半導体発光素子を搭載した砲弾型の発光装置に係る特性評価を表5に示す。比較例4、実施例9〜11の発光装置に搭載される半導体発光素子は、比較例3、実施例6〜8に係る半導体発光素子と比較して、その電極面積、電極配置、電極形状は異なるが、複層における積層材料及び積層順は同様である。さらに、電力効率及び反射層の有無における特性を比較するため、比較例4を基準とした実施例9〜11の対比評価を表6に示す。

Figure 2008210900
(Cannonball type: Comparative Example 4, Examples 9 to 11)
Table 5 shows the characteristic evaluation of a bullet-type light emitting device equipped with the semiconductor light emitting element according to FIG. The semiconductor light emitting elements mounted on the light emitting devices of Comparative Example 4 and Examples 9 to 11 were compared with the semiconductor light emitting elements according to Comparative Example 3 and Examples 6 to 8 in terms of electrode area, electrode arrangement, and electrode shape. Although different, the lamination material and the lamination order in the multilayer are the same. Furthermore, in order to compare the power efficiency and the characteristics with and without the reflective layer, Table 6 shows a comparative evaluation of Examples 9 to 11 with Comparative Example 4 as a reference.
Figure 2008210900

Figure 2008210900
Figure 2008210900

また、図25は、表5に係る比較例4、実施例9〜11の光出力及び光束を示すグラフであり、図26は表6に関する電力効率、光出力比、光束比、電力効率比を示すグラフである。表及び図より、反射層無しの発光素子を搭載した発光装置と比して、反射層ありのそれは、全ての値において上昇しており特性の向上が認められた。   FIG. 25 is a graph showing the light output and light flux of Comparative Example 4 and Examples 9 to 11 according to Table 5, and FIG. 26 shows the power efficiency, light output ratio, light flux ratio, and power efficiency ratio of Table 6. It is a graph to show. From the tables and figures, it was confirmed that the values with the reflective layer increased in all values and improved in characteristics as compared with the light emitting device equipped with the light emitting element without the reflective layer.

また、図1及び図4における半導体発光素子1、1dは、半導体層の積層方向と略直交する方向における半導体層の断面において、形状および断面積は同じであるが、電極配置領域が異なっている。具体的には図示されるように、半導体発光素子1の電極面積は、半導体発光素子1dの電極面積と比較して小さい。また反射層は電極の最上下層を構成するため、反射層領域は電極領域に準ずることになる。上記比較例及び実施例より、素子の電極配置面積の割合における発光装置の特性に関して、電極面積の小さい半導体発光素子を搭載した発光装置では、その光出力値及び光束値(表3及び図23)が、電極面積の大きい半導体発光素子を搭載した発光装置の光出力値及び光束値(表5及び図25)と比して大きい。これは電極配置面積が小さいと、露出する発光層領域の割合が増大するためである。一方、電極面積が同じである素子における、反射層無しを基準にした反射層有りの素子に係る光出力比、光束比、電力効率比を比較すれば、電極配置面積の大きい素子の光出力比、光束比、電力効率比(表4、図24)が、電極配置面積の小さい素子のそれら(表6、図26)に比して、同等以上に向上した。すなわち発光層における反射層の割合が一定以上の素子において、これを搭載する発光装置の光出力比、光束比、電力効率比が改善されることが確認された。尚、蛍光体を含有しない青色LEDの場合について評価したところ、上述したような最表面層の相違により、光出力、光束が変化しない、若しくは僅かな上昇程度の傾向が観られたに過ぎなかった。このことから、本実施例の発光装置は、蛍光体、光散乱部材との組み合わせにより、相乗的な効果を発現しうるものであることが確認できた。   In addition, the semiconductor light emitting devices 1 and 1d in FIGS. 1 and 4 have the same shape and cross-sectional area in the cross section of the semiconductor layer in a direction substantially orthogonal to the stacking direction of the semiconductor layers, but have different electrode arrangement regions. . Specifically, as illustrated, the electrode area of the semiconductor light emitting device 1 is smaller than the electrode area of the semiconductor light emitting device 1d. In addition, since the reflective layer constitutes the uppermost layer of the electrode, the reflective layer region conforms to the electrode region. From the above comparative examples and examples, regarding the characteristics of the light emitting device in the ratio of the electrode arrangement area of the element, in the light emitting device equipped with the semiconductor light emitting element having a small electrode area, its light output value and light flux value (Table 3 and FIG. 23) Is larger than the light output value and the luminous flux value (Table 5 and FIG. 25) of the light emitting device equipped with the semiconductor light emitting element having a large electrode area. This is because the ratio of the exposed light emitting layer region increases when the electrode arrangement area is small. On the other hand, when the light output ratio, the luminous flux ratio, and the power efficiency ratio of the element with the reflective layer with respect to the absence of the reflective layer are compared in the elements having the same electrode area, the light output ratio of the element having a large electrode arrangement area The luminous flux ratio and the power efficiency ratio (Table 4, FIG. 24) were improved to the same or higher levels as compared with those of the elements having a small electrode arrangement area (Table 6, FIG. 26). That is, it was confirmed that the light output ratio, the luminous flux ratio, and the power efficiency ratio of the light emitting device in which the ratio of the reflective layer to the light emitting layer is a certain level or more are improved. In addition, when the case of the blue LED not containing the phosphor was evaluated, due to the difference in the outermost surface layer as described above, the light output and the luminous flux did not change, or only a slight increase tendency was observed. . From this, it was confirmed that the light-emitting device of this example can exhibit a synergistic effect by the combination with the phosphor and the light scattering member.

本発明の半導体発光装置及び半導体発光装置の製造方法は、照明用光源、LEDディスプレイ、バックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。   The semiconductor light-emitting device and the method for manufacturing the semiconductor light-emitting device of the present invention can be suitably used for illumination light sources, LED displays, backlight sources, traffic lights, illumination switches, various sensors, various indicators, and the like.

実施の形態1に係るLEDの説明図であって、図1(a)はその平面図であり、図1(b)は、図1(a)の1B−1B’線における断面図である。FIG. 1A is an explanatory diagram of an LED according to Embodiment 1, FIG. 1A is a plan view thereof, and FIG. 1B is a cross-sectional view taken along line 1B-1B ′ of FIG. 実施の形態1に係るLEDの断面図である。2 is a cross-sectional view of the LED according to Embodiment 1. FIG. 実施の形態1に係る別のLEDの平面図である。6 is a plan view of another LED according to Embodiment 1. FIG. 実施の形態1に係る別のLEDの平面図である。6 is a plan view of another LED according to Embodiment 1. FIG. 実施の形態1に係る別のLEDの平面図である。6 is a plan view of another LED according to Embodiment 1. FIG. 実施の形態1に係るLEDの説明図であって、図6(a)はその平面図であり、図6(b)は図6(a)の6B−6B’線における断面図である。FIGS. 6A and 6B are explanatory diagrams of the LED according to Embodiment 1, in which FIG. 6A is a plan view, and FIG. 6B is a cross-sectional view taken along line 6B-6B ′ in FIG. 実施の形態1に係るLEDの断面図である。2 is a cross-sectional view of the LED according to Embodiment 1. FIG. 実施の形態1に係る発光装置の断面図である。2 is a cross-sectional view of the light emitting device according to Embodiment 1. FIG. 実施の形態1に係る発光装置の一部拡大図である。2 is a partially enlarged view of the light emitting device according to Embodiment 1. FIG. 実施の形態1に係る半導体発光素子の平面図である。1 is a plan view of a semiconductor light emitting element according to a first embodiment. 実施の形態1に係る半導体発光素子の一部拡大断面概略図である。1 is a partially enlarged cross-sectional schematic view of a semiconductor light emitting element according to a first embodiment. 実施の形態2に係る発光装置の説明図であって、図12(a)はその斜視図であり、図12(b)は、(a)の6B−6B’線における断面図である。FIGS. 12A and 12B are explanatory views of the light-emitting device according to Embodiment 2, and FIG. 12A is a perspective view thereof, and FIG. 12B is a cross-sectional view taken along line 6B-6B ′ of FIG. 実施の形態3に係る発光装置の斜視図である。6 is a perspective view of a light emitting device according to Embodiment 3. FIG. 図13の6A−6A’線における一部拡大断面概略図である。FIG. 14 is a partially enlarged schematic cross-sectional view taken along line 6A-6A ′ of FIG. 13. 比較例1、実施例1〜3に係る発光装置の電力効率のグラフである。It is a graph of the power efficiency of the light-emitting device which concerns on the comparative example 1 and Examples 1-3. 比較例1、実施例1〜3に係る発光装置の順電圧のグラフである。It is a graph of the forward voltage of the light-emitting device which concerns on the comparative example 1 and Examples 1-3. 比較例1、実施例1〜3に係る発光装置の光出力のグラフである。It is a graph of the light output of the light-emitting device which concerns on the comparative example 1 and Examples 1-3. 比較例1、実施例1〜3に係る発光装置の光束のグラフである。It is a graph of the light beam of the light-emitting device which concerns on the comparative example 1 and Examples 1-3. 比較例2、実施例4〜5に係る発光装置の電力効率のグラフである。It is a graph of the power efficiency of the light-emitting device which concerns on the comparative example 2 and Examples 4-5. 比較例2、実施例4〜5に係る発光装置の順電圧のグラフである。It is a graph of the forward voltage of the light-emitting device which concerns on the comparative example 2 and Examples 4-5. 比較例2、実施例4〜5に係る発光装置の光出力のグラフである。It is a graph of the light output of the light-emitting device which concerns on the comparative example 2 and Examples 4-5. 比較例2、実施例4〜5に係る発光装置の光束のグラフである。It is a graph of the light beam of the light-emitting device which concerns on the comparative example 2 and Examples 4-5. 比較例3、実施例6〜8に係る発光装置の特性を示すグラフである。It is a graph which shows the characteristic of the light-emitting device which concerns on the comparative example 3 and Examples 6-8. 比較例3、実施例6〜8に係る発光装置の電力効率及び出力比、光束比、電力効率比を示すグラフである。It is a graph which shows the power efficiency and output ratio of the light-emitting device which concerns on the comparative example 3, and Examples 6-8, luminous flux ratio, and power efficiency ratio. 比較例4、実施例9〜11に係る発光装置の特性を示すグラフである。It is a graph which shows the characteristic of the light-emitting device which concerns on the comparative example 4 and Examples 9-11. 比較例4、実施例9〜11に係る発光装置の電力効率及び出力比、光束比、電力効率比を示すグラフである。It is a graph which shows the power efficiency and output ratio, luminous flux ratio, and power efficiency ratio of the light-emitting device which concerns on the comparative example 4 and Examples 9-11. 従来の半導体発光素子の概略図であって、図27(a)はその平面図を、図27(b)は、(a)のB−B’線における断面図を示す。FIG. 27A is a schematic view of a conventional semiconductor light emitting device, FIG. 27A is a plan view thereof, and FIG. 27B is a cross-sectional view taken along line B-B ′ of FIG. 従来の半導体発光素子の断面図を示す。Sectional drawing of the conventional semiconductor light-emitting device is shown.

符号の説明Explanation of symbols

1、1a、1c、1d、1e、1f、100、200…半導体発光素子
2…成長基板
2a…サファイヤ基板
3…第1導電型半導体層
3a…n型半導体層
4、4a…発光層
5…第2導電型半導体層
5a…p型半導体層
6…透光性導電層
7…保護膜
8…半導体層
9…延伸導電部
9b…n型延伸導電部
10…第2導電型電極
10a…p型パッド電極
10b、10b3…p型パッド電極の最下層の反射層
10c、10c1、10c2…p型パッド電極の最表面層の反射層
11…凸部
11a…凸状柱状物
12…反射層
13…n型コンタクト層
14a、14b…外部接続部
20…第1導電型電極
20a…n型パッド電極
20b…n型パッド電極の最下層の反射層
20c、20c1、20c2、20c3…n型パッド電極の最表面層の反射層
30、40…発光装置
31…カップ
32、52a、52b、52c…発光素子
33…光散乱部材
34…リードフレーム
34a…リードフレーム電極
35…導電性部材
36…封止部材
37…モールド
39…電極
50、60…発光装置
52…発光素子
53…蛍光体
54…リードフレーム
55…ボンディングワイヤ
56…封止部材
57…パッケージ
58…保護素子
101…サファイヤ基板
102…n型窒化物半導体層
103…発光層
104…p型窒化物半導体層
105…半導体層
106…透明電極
107、108…パッド電極
109…保護膜
201…反射膜
L、L1、L2…出射光
DESCRIPTION OF SYMBOLS 1, 1a, 1c, 1d, 1e, 1f, 100, 200 ... Semiconductor light emitting element 2 ... Growth substrate 2a ... Sapphire substrate 3 ... 1st conductivity type semiconductor layer 3a ... N-type semiconductor layer 4, 4a ... Light emitting layer 5 ... 1st Two-conductivity-type semiconductor layer 5a ... p-type semiconductor layer 6 ... translucent conductive layer 7 ... protective film 8 ... semiconductor layer 9 ... stretched conductive portion 9b ... n-type stretched conductive portion 10 ... second conductive-type electrode 10a ... p-type pad Electrodes 10b, 10b3: Lowermost reflective layer of p-type pad electrode 10c, 10c1, 10c2: Reflective layer of outermost surface layer of p-type pad electrode 11: Convex portion 11a ... Convex columnar object 12 ... Reflective layer 13 ... n-type Contact layer 14a, 14b ... external connection portion 20 ... first conductivity type electrode 20a ... n-type pad electrode 20b ... lowermost reflective layer of n-type pad electrode 20c, 20c1, 20c2, 20c3 ... outermost surface layer of n-type pad electrode Reflection Layers 30, 40 ... Light emitting device 31 ... Cup 32, 52a, 52b, 52c ... Light emitting element 33 ... Light scattering member 34 ... Lead frame 34a ... Lead frame electrode 35 ... Conductive member 36 ... Sealing member 37 ... Mold 39 ... Electrode DESCRIPTION OF SYMBOLS 50, 60 ... Light-emitting device 52 ... Light-emitting element 53 ... Phosphor 54 ... Lead frame 55 ... Bonding wire 56 ... Sealing member 57 ... Package 58 ... Protection element 101 ... Sapphire substrate 102 ... N-type nitride semiconductor layer 103 ... Light-emitting layer 104 ... p-type nitride semiconductor layer 105 ... semiconductor layer 106 ... transparent electrode 107, 108 ... pad electrode 109 ... protective film 201 ... reflective film L, L1, L2 ... emitted light

Claims (10)

半導体発光素子(1)と、
前記半導体発光素子(1)が発する光を反射または散乱可能な光散乱部材(33)とを備える発光装置であって、
前記半導体発光素子(1)は、
第1導電型の半導体層(3)と、
前記第1導電型半導体層(3)上の少なくとも一部に形成された発光層(4)と、
前記発光層(4)の上に形成された第2導電型の半導体層(5)と、
前記第2導電型の半導体層(5)上の少なくとも一部に設けられ、且つ前記第2導電型の半導体層(5)に電流を供給する第2導電型電極(10)と、
が順次積層されて成り、
前記第1導電型半導体層(3)上の少なくとも一部であって、前記第2導電型電極(10)と同一面側に配置され、該第1導電型半導体層(3)に電流を供給する第1導電型電極(20)と、
前記半導体発光素子(1)の積層方向において、前記第1導電型電極(20)及び第2導電型電極(10)の少なくともいずれか一の電極は、表面側の反射層(20c,10c)と、該反射層(20c,10c)の下層側に位置する第1層からなる少なくとも2層から形成されており、
前記反射層(20c,10c)の反射率は、前記第1層の反射率よりも高く、
前記反射層(20c,10c)の反射側と、前記半導体発光素子(3)の光出射側は同一面側であり、かつ前記光散乱部材を含有する封止部材(36)で封止されてなることをことを特徴とする発光装置。
A semiconductor light emitting device (1);
A light emitting device comprising a light scattering member (33) capable of reflecting or scattering light emitted from the semiconductor light emitting element (1),
The semiconductor light emitting device (1)
A first conductivity type semiconductor layer (3);
A light emitting layer (4) formed on at least a part of the first conductive semiconductor layer (3);
A second conductive type semiconductor layer (5) formed on the light emitting layer (4);
A second conductivity type electrode (10) provided on at least a part of the second conductivity type semiconductor layer (5) and supplying a current to the second conductivity type semiconductor layer (5);
Are sequentially stacked,
At least part of the first conductivity type semiconductor layer (3) is disposed on the same side as the second conductivity type electrode (10), and supplies current to the first conductivity type semiconductor layer (3). A first conductivity type electrode (20),
In the stacking direction of the semiconductor light emitting device (1), at least one of the first conductivity type electrode (20) and the second conductivity type electrode (10) is a reflective layer (20c, 10c) on the surface side. , Formed of at least two layers consisting of the first layer located on the lower layer side of the reflective layer (20c, 10c),
The reflectance of the reflective layer (20c, 10c) is higher than the reflectance of the first layer,
The reflective side of the reflective layer (20c, 10c) and the light emitting side of the semiconductor light emitting element (3) are on the same plane side, and sealed with a sealing member (36) containing the light scattering member. A light emitting device characterized by comprising:
請求項1に記載の発光装置であって、
前記封止部材(36)が、前記半導体発光素子(1)側に前記光散乱部材(33)の分布領域を有してなることを特徴とする発光装置。
The light-emitting device according to claim 1,
The light emitting device, wherein the sealing member (36) has a distribution region of the light scattering member (33) on the semiconductor light emitting element (1) side.
請求項1または2に記載の発光装置であって、
前記反射層(20c,10c)の反射率が90%以上であることを特徴とする発光装置。
The light-emitting device according to claim 1 or 2,
The light-emitting device, wherein the reflective layer (20c, 10c) has a reflectance of 90% or more.
請求項1乃至3のいずれか一に記載の発光装置であって、
前記第1導電型電極及び第2導電型電極は、外部電極と電気的接続が可能な導電性部材(35)によって接続される外部接続部(14b,14a)を有しており、
前記反射層(20c,10c)の反射率が前記外部接続部(14b,14a)の反射率よりも高いことを特徴とする発光装置。
The light-emitting device according to any one of claims 1 to 3,
The first conductivity type electrode and the second conductivity type electrode have external connection portions (14b, 14a) connected by a conductive member (35) that can be electrically connected to the external electrode,
The light emitting device, wherein a reflectance of the reflective layer (20c, 10c) is higher than a reflectance of the external connection portion (14b, 14a).
請求項4に記載の発光装置であって、
前記外部接続部(14b,14a)は前記反射層(20c,10c)に貫通孔を形成してなり、
前記貫通孔によって前記第1層が露出されることを特徴とする発光装置。
The light-emitting device according to claim 4,
The external connection portion (14b, 14a) is formed by forming a through hole in the reflective layer (20c, 10c),
The light emitting device, wherein the first layer is exposed through the through hole.
請求項1乃至5のいずれか一に記載の発光装置であって、
さらに、前記第1導電型電極(20)及び前記第2導電型電極(10)は、前記第1層の下層側に最下層を有しており、
前記最下層が反射層(20b,10b)によって構成されており、
前記最下層の反射層(20b,10b)の反射率は前記表面の反射層(20c,10c)の反射率より高いことを特徴とする発光装置。
A light-emitting device according to any one of claims 1 to 5,
Further, the first conductivity type electrode (20) and the second conductivity type electrode (10) have a lowermost layer on the lower layer side of the first layer,
The lowermost layer is constituted by a reflective layer (20b, 10b),
The light emitting device according to claim 1, wherein a reflectance of the lowermost reflective layer (20b, 10b) is higher than a reflectance of the reflective layer (20c, 10c) on the surface.
請求項1に記載の発光装置であって、
前記半導体発光素子(1)の積層方向において、前記第1導電型電極及び第2導電型電極(20,10)は少なくとも2層から形成されており、
前記第1導電型電極(20)及び第2導電型電極(10)における一方の電極は表面側に反射層を有しており、かつ他方の電極は最下層に反射層を備えており、
前記最下層の反射層の反射率は前記表面の反射層の反射率より高く、
前記反射層(20c,10c)の反射側と、前記半導体発光素子(3)の光出射側は同一面側であり、かつ前記光散乱部材を含有する封止部材(36)で封止されてなることをことを特徴とする発光装置。
The light-emitting device according to claim 1,
In the stacking direction of the semiconductor light emitting device (1), the first conductivity type electrode and the second conductivity type electrode (20, 10) are formed of at least two layers,
One of the first conductivity type electrode (20) and the second conductivity type electrode (10) has a reflective layer on the surface side, and the other electrode has a reflective layer on the bottom layer,
The reflectance of the lowermost reflective layer is higher than the reflectance of the surface reflective layer,
The reflective side of the reflective layer (20c, 10c) and the light emitting side of the semiconductor light emitting element (3) are on the same plane side, and sealed with a sealing member (36) containing the light scattering member. A light emitting device characterized by comprising:
請求項1乃至7のいずれか一に記載の発光装置であって、
前記半導体発光素子(1)を複数備えていることを特徴とする発光措置。
The light emitting device according to any one of claims 1 to 7,
A light emitting measure comprising a plurality of the semiconductor light emitting elements (1).
請求項1乃至8のいずれか一に記載の発光装置であって、
前記反射層(20c,10c)は、Ag、Al、Rhの少なくとも一つからなる金属層、若しくはこれを含む合金の単層、又は複層を有することを特徴とする発光装置。
A light-emitting device according to any one of claims 1 to 8,
The light-emitting device, wherein the reflective layer (20c, 10c) includes a metal layer made of at least one of Ag, Al, and Rh, or a single layer or an alloy layer including the metal layer.
請求項1乃至9のいずれか一に記載の発光装置であって、
前記散乱部材(33)がYAG系蛍光体あるいはLAG系蛍光体であることを特徴とする発光装置。
A light emitting device according to any one of claims 1 to 9,
The light emitting device, wherein the scattering member (33) is a YAG phosphor or a LAG phosphor.
JP2007044770A 2007-02-24 2007-02-24 Semiconductor light emitting device and light emitting device having the same Active JP5040355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007044770A JP5040355B2 (en) 2007-02-24 2007-02-24 Semiconductor light emitting device and light emitting device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044770A JP5040355B2 (en) 2007-02-24 2007-02-24 Semiconductor light emitting device and light emitting device having the same

Publications (2)

Publication Number Publication Date
JP2008210900A true JP2008210900A (en) 2008-09-11
JP5040355B2 JP5040355B2 (en) 2012-10-03

Family

ID=39786972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044770A Active JP5040355B2 (en) 2007-02-24 2007-02-24 Semiconductor light emitting device and light emitting device having the same

Country Status (1)

Country Link
JP (1) JP5040355B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014155B1 (en) 2010-03-10 2011-02-10 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
JP2011114240A (en) * 2009-11-27 2011-06-09 Nichia Corp Semiconductor light emitting element
WO2011068161A1 (en) * 2009-12-04 2011-06-09 昭和電工株式会社 Semiconductor light emitting element, electronic apparatus, and light emitting device
CN102142498A (en) * 2009-12-18 2011-08-03 夏普株式会社 Light emitting device with more uniform current spreading
JP2011199211A (en) * 2010-03-24 2011-10-06 Kowa Denki Sangyo Kk Lighting device
JP2012222196A (en) * 2011-04-11 2012-11-12 Nichia Chem Ind Ltd Light-emitting element
JP2013243253A (en) * 2012-05-21 2013-12-05 Nichia Chem Ind Ltd Semiconductor light-emitting element
JP2013258277A (en) * 2012-06-12 2013-12-26 Nichia Chem Ind Ltd Semiconductor light-emitting element and light-emitting device
JP2014500624A (en) * 2010-11-18 2014-01-09 ソウル バイオシス カンパニー リミテッド Light emitting diode chip with electrode pad
CN104347776A (en) * 2014-10-31 2015-02-11 厦门市三安光电科技有限公司 LED (light emitting diode) structure and preparing method of LED structure
CN104510238A (en) * 2015-01-08 2015-04-15 东华大学 Blanket with thermal storage and temperature regulation functions and preparation method for blanket
JP5715686B2 (en) * 2011-03-23 2015-05-13 創光科学株式会社 Nitride semiconductor ultraviolet light emitting device
JP2016039365A (en) * 2014-08-07 2016-03-22 エルジー イノテック カンパニー リミテッド Light-emitting element and illumination system
WO2016051857A1 (en) * 2014-09-30 2016-04-07 シャープ株式会社 Nitride semiconductor light emitting device
JP2016100510A (en) * 2014-11-25 2016-05-30 泰谷光電科技股▲ふん▼有限公司 Light emitting diode having current diffusion structure
US9412906B2 (en) 2014-02-20 2016-08-09 Epistar Corporation Light-emitting device
US9520536B2 (en) 2010-11-18 2016-12-13 Seoul Viosys Co., Ltd. Light emitting diode chip having electrode pad
JP2018006535A (en) * 2016-06-30 2018-01-11 ウシオ電機株式会社 Semiconductor light-emitting device
WO2018026191A1 (en) * 2016-08-05 2018-02-08 서울바이오시스주식회사 Light emitting device
CN108336200A (en) * 2018-03-27 2018-07-27 湘能华磊光电股份有限公司 LED chip structure and preparation method thereof
US10840409B2 (en) 2016-08-05 2020-11-17 Seoul Viosys Co., Ltd. Light emitting diode
JP7503672B2 (en) 2021-02-24 2024-06-20 晶元光電股▲ふん▼有限公司 Photoelectric Components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183573A (en) * 1993-12-24 1995-07-21 Ricoh Co Ltd Edge-luminous light-emitting diode
JPH10321913A (en) * 1997-05-19 1998-12-04 Sharp Corp Gallium nitride based light-emitting compound semiconductor element and its manufacture
JP2001077433A (en) * 1999-06-30 2001-03-23 Nichia Chem Ind Ltd Light-emitting device and formation method thereof
JP2002170999A (en) * 2000-12-04 2002-06-14 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
JP2006066903A (en) * 2004-07-29 2006-03-09 Showa Denko Kk Positive electrode for semiconductor light-emitting element
JP2006324511A (en) * 2005-05-19 2006-11-30 Nichia Chem Ind Ltd Nitride semiconductor element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183573A (en) * 1993-12-24 1995-07-21 Ricoh Co Ltd Edge-luminous light-emitting diode
JPH10321913A (en) * 1997-05-19 1998-12-04 Sharp Corp Gallium nitride based light-emitting compound semiconductor element and its manufacture
JP2001077433A (en) * 1999-06-30 2001-03-23 Nichia Chem Ind Ltd Light-emitting device and formation method thereof
JP2002170999A (en) * 2000-12-04 2002-06-14 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
JP2006066903A (en) * 2004-07-29 2006-03-09 Showa Denko Kk Positive electrode for semiconductor light-emitting element
JP2006324511A (en) * 2005-05-19 2006-11-30 Nichia Chem Ind Ltd Nitride semiconductor element

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114240A (en) * 2009-11-27 2011-06-09 Nichia Corp Semiconductor light emitting element
WO2011068161A1 (en) * 2009-12-04 2011-06-09 昭和電工株式会社 Semiconductor light emitting element, electronic apparatus, and light emitting device
US8592837B2 (en) 2009-12-04 2013-11-26 Toyoda Gosei Co., Ltd. Semiconductor light emitting element, electronic apparatus, and light emitting device
CN102142498A (en) * 2009-12-18 2011-08-03 夏普株式会社 Light emitting device with more uniform current spreading
US9455377B2 (en) 2010-03-10 2016-09-27 Lg Innotek Co., Ltd. Light emitting device
EP2372791A3 (en) * 2010-03-10 2012-07-18 LG Innotek Co., Ltd. Light emitting diode
US9899567B2 (en) 2010-03-10 2018-02-20 Lg Innotek Co., Ltd. Light emitting device
US8653547B2 (en) 2010-03-10 2014-02-18 Lg Innotek Co., Ltd Light emitting device and light emitting device package
KR101014155B1 (en) 2010-03-10 2011-02-10 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
JP2011199211A (en) * 2010-03-24 2011-10-06 Kowa Denki Sangyo Kk Lighting device
JP2014500624A (en) * 2010-11-18 2014-01-09 ソウル バイオシス カンパニー リミテッド Light emitting diode chip with electrode pad
US10608141B2 (en) 2010-11-18 2020-03-31 Seoul Viosys Co., Ltd. Light emitting diode chip having electrode pad
US8987772B2 (en) 2010-11-18 2015-03-24 Seoul Viosys Co., Ltd. Light emitting diode chip having electrode pad
CN105742447B (en) * 2010-11-18 2019-03-26 首尔伟傲世有限公司 Light emitting diode with electrode pad
US9929314B2 (en) 2010-11-18 2018-03-27 Seoul Viosys Co., Ltd. Light emitting diode chip having electrode pad
US9520536B2 (en) 2010-11-18 2016-12-13 Seoul Viosys Co., Ltd. Light emitting diode chip having electrode pad
CN105742447A (en) * 2010-11-18 2016-07-06 首尔伟傲世有限公司 Light emitting diode chip having electrode pad
US9397264B2 (en) 2010-11-18 2016-07-19 Seoul Viosys Co., Ltd. Light emitting diode chip having electrode pad
JP5715686B2 (en) * 2011-03-23 2015-05-13 創光科学株式会社 Nitride semiconductor ultraviolet light emitting device
JP2012222196A (en) * 2011-04-11 2012-11-12 Nichia Chem Ind Ltd Light-emitting element
JP2013243253A (en) * 2012-05-21 2013-12-05 Nichia Chem Ind Ltd Semiconductor light-emitting element
JP2013258277A (en) * 2012-06-12 2013-12-26 Nichia Chem Ind Ltd Semiconductor light-emitting element and light-emitting device
US9755109B2 (en) 2014-02-20 2017-09-05 Epistar Corporation Light-emitting device
US9412906B2 (en) 2014-02-20 2016-08-09 Epistar Corporation Light-emitting device
US10056525B2 (en) 2014-02-20 2018-08-21 Epistar Corporation Light-emitting device
US10396243B2 (en) 2014-02-20 2019-08-27 Epistar Corporation Light-emitting device
JP2016039365A (en) * 2014-08-07 2016-03-22 エルジー イノテック カンパニー リミテッド Light-emitting element and illumination system
WO2016051857A1 (en) * 2014-09-30 2016-04-07 シャープ株式会社 Nitride semiconductor light emitting device
CN104347776A (en) * 2014-10-31 2015-02-11 厦门市三安光电科技有限公司 LED (light emitting diode) structure and preparing method of LED structure
JP2016100510A (en) * 2014-11-25 2016-05-30 泰谷光電科技股▲ふん▼有限公司 Light emitting diode having current diffusion structure
CN104510238A (en) * 2015-01-08 2015-04-15 东华大学 Blanket with thermal storage and temperature regulation functions and preparation method for blanket
JP2021129121A (en) * 2016-06-30 2021-09-02 ウシオ電機株式会社 Light irradiation device
JP2018006535A (en) * 2016-06-30 2018-01-11 ウシオ電機株式会社 Semiconductor light-emitting device
JP7228120B2 (en) 2016-06-30 2023-02-24 ウシオ電機株式会社 Light irradiation device
WO2018026191A1 (en) * 2016-08-05 2018-02-08 서울바이오시스주식회사 Light emitting device
US10840409B2 (en) 2016-08-05 2020-11-17 Seoul Viosys Co., Ltd. Light emitting diode
CN108336200A (en) * 2018-03-27 2018-07-27 湘能华磊光电股份有限公司 LED chip structure and preparation method thereof
JP7503672B2 (en) 2021-02-24 2024-06-20 晶元光電股▲ふん▼有限公司 Photoelectric Components

Also Published As

Publication number Publication date
JP5040355B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5040355B2 (en) Semiconductor light emitting device and light emitting device having the same
US10121945B2 (en) Semiconductor light emitting device
JP4899825B2 (en) Semiconductor light emitting device, light emitting device
JP4765632B2 (en) Semiconductor light emitting device
JP5634003B2 (en) Light emitting device
US8217568B2 (en) Light emitting element and light emitting device using the light emitting element
JP6056150B2 (en) Semiconductor light emitting device
JP4572604B2 (en) Semiconductor light emitting element and light emitting device using the same
JP6101001B2 (en) Light emitting device package and illumination system including the same
JP4882792B2 (en) Semiconductor light emitting device
JP5186800B2 (en) Nitride semiconductor light emitting device, light emitting device including the same, and method for manufacturing nitride semiconductor light emitting device
EP2362455B1 (en) Light emitting device
JP4415575B2 (en) Semiconductor light emitting element and light emitting device using the same
JP6542509B2 (en) Phosphor and light emitting device package including the same
JP2009164423A (en) Light-emitting element
JP5560674B2 (en) Semiconductor light emitting device
KR20220012215A (en) Interconnects for Light Emitting Diode Chips
US10693049B2 (en) Light emitting device package and lighting system comprising same
JP4581540B2 (en) Semiconductor light emitting element and light emitting device using the same
KR20120003775A (en) Light emitting device and method for fabricating the same, light emitting device package, and lighting system
KR20120045530A (en) Light emitting device
JP2012099815A (en) Light-emitting device and illumination system
KR101746002B1 (en) Light emitting device
JP5983068B2 (en) Semiconductor light emitting element and light emitting device
KR20120048401A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5040355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250