Nothing Special   »   [go: up one dir, main page]

JP2008121062A - Plating device and plating method - Google Patents

Plating device and plating method Download PDF

Info

Publication number
JP2008121062A
JP2008121062A JP2006305598A JP2006305598A JP2008121062A JP 2008121062 A JP2008121062 A JP 2008121062A JP 2006305598 A JP2006305598 A JP 2006305598A JP 2006305598 A JP2006305598 A JP 2006305598A JP 2008121062 A JP2008121062 A JP 2008121062A
Authority
JP
Japan
Prior art keywords
plating solution
plating
substrate
resistor
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006305598A
Other languages
Japanese (ja)
Other versions
JP2008121062A5 (en
Inventor
Hisashi Kawakami
尚志 川上
Tsutomu Nakada
勉 中田
Nobutoshi Saito
信利 齋藤
Tadaaki Yamamoto
忠明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006305598A priority Critical patent/JP2008121062A/en
Publication of JP2008121062A publication Critical patent/JP2008121062A/en
Publication of JP2008121062A5 publication Critical patent/JP2008121062A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating device and a plating method capable of enhancing the uniformity of a plated film thickness and the uniformity of a plated film surface by controlling the current density distribution in a plating tank uniformly and regulating the flow of a plating solution. <P>SOLUTION: The plating device is equipped with: a resistor holder 60 for holding a resistor R installed so as to shield the plating solution Q held in a plating unit 30 to the anode 10 side and the substrate W side; a shield 170 for shielding an electrical path not passing through the resistor R; plating solution jetting ports 183A, B for jetting the plating solution to a gap S1 between the substrate W and the resistor R to flow the solution through the gap S1; and plating solution circulation systems 250, 260 for circulating the plating solution through the anode area A2 partitioned by the resistor R and the resistor holder 60 and a substrate area A1, respectively. A partition member is provided in an overflow tank 40 to shield between the plating solutions overflowing from each of the substrate area A1 and the anode area A2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば基板の表面(被めっき面)にめっきを施すめっき装置、特に半導体ウェーハ等の表面に設けられた微細なトレンチやビアホール、レジスト開口部にめっき膜を形成したり、半導体ウェーハの表面にパッケージの電源等と電気的に接続するバンプ(突起状接続電極)を形成したりするのに用いて好適なめっき装置及びめっき方法に関するものである。   The present invention is, for example, a plating apparatus that performs plating on the surface (surface to be plated) of a substrate, in particular, forming a plating film in fine trenches, via holes, resist openings provided on the surface of a semiconductor wafer or the like, The present invention relates to a plating apparatus and a plating method suitable for use in forming bumps (projection-like connection electrodes) that are electrically connected to a power source of a package on the surface.

従来例えば、TAB(Tape Automated Bonding)やFC(フリップチップ)においては、配線が形成された半導体チップの表面の所定個所(電極)に金、銅、はんだ、或いは鉛フリーはんだやニッケル、更にはこれらを多層に積層した突起状接続電極(バンプ)を形成し、このバンプを介してパッケージの電極やTAB電極と電気的に接続することが広く行われている。このバンプの形成方法としては、めっき法、蒸着法、印刷法、ボールバンプ法といった種々の手法があるが、半導体チップのI/O数の増加、細ピッチ化に伴い、微細化が可能で性能が比較的安定しているめっき法が多く用いられるようになってきている。特に、電気めっきによって得られる金属膜は高純度で、膜形成速度が速く、膜厚制御方法が簡単であるという特徴がある。   Conventionally, for example, in TAB (Tape Automated Bonding) and FC (flip chip), gold, copper, solder, lead-free solder, nickel, and the like are provided at predetermined positions (electrodes) on the surface of a semiconductor chip on which wiring is formed. It is widely practiced to form projecting connection electrodes (bumps) that are laminated in multiple layers and to be electrically connected to package electrodes and TAB electrodes via the bumps. There are various bump forming methods, such as plating, vapor deposition, printing, and ball bump. However, as the number of I / Os in semiconductor chips increases and the pitch decreases, miniaturization is possible and performance is improved. A plating method that is relatively stable is increasingly used. In particular, the metal film obtained by electroplating is characterized by high purity, high film formation speed, and simple film thickness control method.

図16は、いわゆるディップ方式を使用した従来の電気めっき装置300の一例を示す概略構成図である。同図に示すようにこの電気めっき装置300は、内部にめっき液Qを保持するめっき槽301内に、基板Wと、基板Wの周縁部及び裏面を水密的にシールし表面(被めっき面)を露出させて着脱自在に保持する基板ホルダ310と、アノード340と、アノード340を保持して基板Wと対向させるアノードホルダ350と、アノード340と基板Wの間に設置され中央に中央孔330を有する誘電体からなる調整板(レギュレーションプレート)320とを浸漬して構成されている。そして導線370aを介してアノード340をめっき電源360の陽極に、導線370bを介して基板Wをめっき電源360の陰極にそれぞれ接続することで、基板Wとアノード340との電位差により、めっき液Q中の金属イオンが基板Wの表面より電子を受け取り、基板W上に金属が析出して金属膜が形成される。   FIG. 16 is a schematic configuration diagram showing an example of a conventional electroplating apparatus 300 using a so-called dip method. As shown in the figure, this electroplating apparatus 300 has a plating tank 301 that holds a plating solution Q therein, and the substrate W and the peripheral edge and the back surface of the substrate W are sealed in a watertight manner (surface to be plated). A substrate holder 310 that exposes and detachably holds, an anode 340, an anode holder 350 that holds the anode 340 and faces the substrate W, and a central hole 330 that is installed between the anode 340 and the substrate W and that has a central hole 330 in the center. An adjustment plate (regulation plate) 320 made of a dielectric material is dipped. Then, the anode 340 is connected to the anode of the plating power source 360 via the lead wire 370a, and the substrate W is connected to the cathode of the plating power source 360 via the lead wire 370b, so that the potential difference between the substrate W and the anode 340 causes a difference in the plating solution Q. The metal ions receive electrons from the surface of the substrate W, and the metal is deposited on the substrate W to form a metal film.

このめっき装置300によれば、アノード340と基板Wとの間に、中央孔330を有する調整板320を配置したので、この調整板320によってめっき槽301内の電位分布を調整することができ、基板Wの表面に形成される金属膜の膜厚分布をある程度調整することができる。   According to this plating apparatus 300, since the adjusting plate 320 having the central hole 330 is disposed between the anode 340 and the substrate W, the potential distribution in the plating tank 301 can be adjusted by the adjusting plate 320. The film thickness distribution of the metal film formed on the surface of the substrate W can be adjusted to some extent.

一方半導体基板(ウェーハ)は、年々大面積となる傾向にあり、それに伴う弊害も生じてきた。つまり、大面積の基板の場合、基板の外周近傍に接続するカソードから基板の中央までの導電層の電気抵抗が大きくなり、基板の面内で電位差が生じて、基板各部のめっき速度に差が生じてしまう。図17は代表的な電解めっきの等価回路を示しており、回路中には、以下のような抵抗成分が存在する。
R1:電源360とアノード340との間の電源線抵抗及び各種接触抵抗
R2:アノード340における分極抵抗
R3:めっき液Qの抵抗
R4:カソード400における分極抵抗
R5:導電層の抵抗
R6:カソード400と電源360との間の電源線抵抗及び各種接触抵抗
On the other hand, semiconductor substrates (wafers) tend to have a large area year by year, and there have been problems associated therewith. In other words, in the case of a large-area substrate, the electrical resistance of the conductive layer from the cathode connected to the vicinity of the outer periphery of the substrate to the center of the substrate increases, causing a potential difference in the plane of the substrate, and there is a difference in the plating speed of each part of the substrate. It will occur. FIG. 17 shows a typical equivalent circuit of electrolytic plating, and the following resistance components exist in the circuit.
R1: Power line resistance and various contact resistances between the power supply 360 and the anode 340 R2: Polarization resistance at the anode 340 R3: Resistance of the plating solution Q R4: Polarization resistance at the cathode 400 R5: Resistance of the conductive layer R6: With the cathode 400 Power line resistance and various contact resistances with the power source 360

図17から明らかなように、導電層の抵抗R5が他の電気抵抗R1〜R4およびR6に比べて大きくなると、この抵抗R5の両端に生じる電位差が大きくなり、それに伴って基板各部でのめっき電流に差が生じる。このため、カソード400から遠い位置ではめっき膜の成長速度が低下する。これは、基板Wの面内で電流密度が異なることを意味し、めっき膜の特性自体(めっき膜の抵抗率、純度、埋め込み特性など)が面内で均一とならない。   As is clear from FIG. 17, when the resistance R5 of the conductive layer is larger than the other electric resistances R1 to R4 and R6, the potential difference generated at both ends of the resistance R5 increases, and accordingly, the plating currents at various parts of the substrate are increased. There will be a difference. For this reason, the growth rate of the plating film decreases at a position far from the cathode 400. This means that the current density is different in the plane of the substrate W, and the characteristics of the plating film itself (the resistivity, purity, embedding characteristics, etc. of the plating film) are not uniform in the plane.

この欠点を防止するため、図18に示すように、アノード340と基板Wの間に、めっき液Qの電気伝導率よりも小さい電気伝導率の高抵抗構造体430を配置することが行われている。このように構成すれば、図17に示す等価回路に比べて、高抵抗構造体430による抵抗Rpが追加されるため、高抵抗構造体430による抵抗Rpが大きな値になると、(R2+R3+Rp+R4)/(R2+R3+Rp+R4+R5)は1に近づき、抵抗R5、すなわち導電層による抵抗成分の影響を受けにくくなり、基板各部でのめっき電流に差があまり生じなくなる。   In order to prevent this drawback, a high resistance structure 430 having an electric conductivity smaller than the electric conductivity of the plating solution Q is disposed between the anode 340 and the substrate W as shown in FIG. Yes. With this configuration, the resistance Rp due to the high resistance structure 430 is added as compared with the equivalent circuit shown in FIG. 17, and therefore when the resistance Rp due to the high resistance structure 430 becomes a large value, (R2 + R3 + Rp + R4) / ( R2 + R3 + Rp + R4 + R5) approaches 1 and is less affected by the resistance component R5, that is, the resistance component due to the conductive layer, so that there is little difference in the plating current at each part of the substrate.

ところで近年のSOC、WL‐CSPなどの高密度実装技術においては、基板の全面にわたって形成した金属膜の表面形状及び膜厚の高精度の均一性がますます要求されるようになってきている。しかしながら上記従来のめっき方法では、高精度の均一性に応えた金属膜を形成することは非常に困難であった。また、例えば基板の内部に設けた、直径10〜20μm、深さ70〜150μm程度の、アスペクト比が高く、深さの深いビアホールの内部に、内部にボイド等の欠陥が生じることを防止しつつ、めっきで金属膜を確実に埋め込むことは、かなり困難であるばかりでなく、多大の時間を要するのが現状であった。
特開2004−225129号公報 特開2003−268591号公報
By the way, in recent high-density mounting technologies such as SOC and WL-CSP, there is an increasing demand for high-precision uniformity of the surface shape and film thickness of the metal film formed over the entire surface of the substrate. However, with the conventional plating method, it has been very difficult to form a metal film that responds to high-precision uniformity. Further, for example, while preventing a defect such as a void from being generated inside a via hole having a high aspect ratio and a depth of about 10 to 20 μm and a depth of about 70 to 150 μm provided inside the substrate. In addition, it is not only difficult to reliably embed a metal film by plating, but it takes a lot of time.
JP 2004-225129 A JP 2003-258591 A

本発明は上述の点に鑑みてなされたものでありその目的は、めっき槽内の電流密度分布をより均一に調整し、さらにめっき液の流れを調整して、めっき膜厚均一性およびめっき表面の均一性をさらに高めることができるめっき装置及びめっき方法を提供することにある。   The present invention has been made in view of the above points, and its purpose is to more uniformly adjust the current density distribution in the plating tank, and further adjust the flow of the plating solution, thereby achieving uniform plating film thickness and plating surface. An object of the present invention is to provide a plating apparatus and a plating method that can further improve the uniformity of the film.

本願請求項1に記載の発明は、めっき液を保持し、このめっき液中に基板と抵抗体とアノードとをこの順番で収納し前記基板とアノード間に通電することで基板の被めっき面にめっきを施すめっきユニットと、このめっきユニットを内部に収納するオーバーフロー槽とを有するめっき槽と、前記基板を保持して基板の被めっき面を前記めっき液に接触させる基板ホルダと、前記めっきユニット内に保持されるめっき液をアノード側と基板側に遮断するように設置され、前記抵抗体を保持する開口部を有する抵抗体ホルダと、前記アノードと前記基板の間の電気経路のうち前記抵抗体を経由しない電気経路を遮断するシールと、前記基板と前記抵抗体との間の隙間にめっき液を噴射してこの隙間にめっき液を流通させる複数のめっき液噴射口を有するめっき液流通機構と、前記めっきユニット内の抵抗体及び抵抗体ホルダで区画されたアノード領域及び基板領域内にそれぞれめっき液を循環させるめっき液循環系と、を具備し、さらに前記オーバーフロー槽に、前記アノード領域からオーバーフローするめっき液と、基板領域からオーバーフローするめっき液とを遮断する仕切り部材を設けたことを特徴とするめっき装置にある。   The invention according to claim 1 of the present application holds the plating solution, stores the substrate, the resistor, and the anode in this plating solution in this order, and energizes between the substrate and the anode so that the surface to be plated is provided. A plating tank having a plating unit for performing plating, an overflow tank for accommodating the plating unit therein, a substrate holder for holding the substrate and bringing the surface to be plated into contact with the plating solution, and in the plating unit A resistor holder having an opening for holding the resistor, and the resistor out of the electrical path between the anode and the substrate. And a plurality of plating solution injection holes for injecting the plating solution into the gap between the substrate and the resistor and flowing the plating solution into the gap. A plating solution circulation mechanism, and a plating solution circulation system for circulating the plating solution in each of the anode region and the substrate region defined by the resistor and resistor holder in the plating unit, and further in the overflow tank In the plating apparatus, a partition member is provided to block the plating solution overflowing from the anode region and the plating solution overflowing from the substrate region.

本願請求項2に記載の発明は、前記めっき液流通機構は、前記めっき液噴射口による前記基板と前記抵抗体の間の隙間へのめっき液の噴射と、前記隙間に満たされためっき液の排出により、この隙間にめっき液を流通させる構成であることを特徴とする請求項1に記載のめっき装置にある。   In the invention according to claim 2 of the present application, the plating solution circulation mechanism is configured such that the plating solution is injected into the gap between the substrate and the resistor by the plating solution injection port, and the plating solution filled in the gap. The plating apparatus according to claim 1, wherein the plating solution is circulated through the gap by discharging.

本願請求項3に記載の発明は、前記複数のめっき液噴射口は、前記抵抗体ホルダの開口部の周囲または前記基板の外周部に沿って配置されていることを特徴とする請求項1又は2に記載のめっき装置にある。   The invention according to claim 3 of the present application is characterized in that the plurality of plating solution injection holes are arranged around the opening of the resistor holder or along the outer periphery of the substrate. 2 in the plating apparatus.

本願請求項4に記載の発明は、前記めっき液噴射口は、このめっき液噴射口から噴射されるめっき液が、前記基板ホルダに保持された基板の被めっき面の中央に向かって直線状又は扇状に広がって流れるように構成されていることを特徴とする請求項1乃至3の内の何れかに記載のめっき装置にある。   In the invention according to claim 4 of the present application, the plating solution injection port is formed such that the plating solution injected from the plating solution injection port is linear or toward the center of the surface to be plated of the substrate held by the substrate holder. The plating apparatus according to any one of claims 1 to 3, wherein the plating apparatus is configured to flow in a fan shape.

本願請求項5に記載の発明は、前記めっき液流通機構は、前記複数のめっき液噴射口を切り替えてこれら複数のめっき液噴射口の全部又は一部からめっき液を噴射させる切替機構を有することを特徴とする請求項1乃至4の内の何れかに記載のめっき装置にある。   The invention according to claim 5 of the present application is characterized in that the plating solution circulation mechanism has a switching mechanism for switching the plurality of plating solution injection ports and injecting the plating solution from all or a part of the plurality of plating solution injection ports. The plating apparatus according to any one of claims 1 to 4, wherein:

本願請求項6に記載の発明は、前記基板ホルダは、クランパにより、抵抗体ホルダに密着して取り付けられていることを特徴とする請求項1乃至5の内の何れかに記載のめっき装置にある。   The invention according to claim 6 of the present application is the plating apparatus according to any one of claims 1 to 5, wherein the substrate holder is attached in close contact with the resistor holder by a clamper. is there.

本願請求項7に記載の発明は、基板ホルダに保持した基板の被めっき面をめっきユニット内のめっき液に接触させて配置すると共に、前記基板の被めっき面に対向させてアノードを前記めっきユニット内のめっき液に浸漬して配置し、開口部を有しこの開口部に抵抗体を保持した抵抗体ホルダを、前記基板と前記アノードとの間に、前記めっきユニット内のめっき液を遮断するように配置し、さらに前記基板と前記抵抗体との間の隙間にめっき液を噴射して流通させる複数のめっき液噴射口を配置し、前記めっき液噴射口から基板の被めっき面の中央へ向けてめっき液を噴射すると同時に前記隙間に満たされためっき液を隙間の外部に排出しながら、前記アノードと前記基板との間にめっき電流を通電して基板の被めっき面にめっきを行うことを特徴とするめっき方法にある。   According to the seventh aspect of the present invention, the surface of the substrate held by the substrate holder is disposed in contact with the plating solution in the plating unit, and the anode is opposed to the surface of the substrate to be plated. A resistor holder that is immersed in the plating solution and has an opening and holds the resistor in the opening is shielded between the substrate and the anode from the plating solution in the plating unit. And a plurality of plating solution injection ports for injecting and circulating the plating solution into the gap between the substrate and the resistor, and from the plating solution injection port to the center of the surface to be plated of the substrate While the plating solution is sprayed toward the surface, the plating solution filled in the gap is discharged to the outside of the gap, and a plating current is passed between the anode and the substrate to perform plating on the surface to be plated. In the plating method comprising.

本願請求項8に記載の発明は、前記複数のめっき液噴射口を、前記抵抗体ホルダの開口部の周囲、または前記基板の外周部に沿って配置することを特徴とする請求項7に記載のめっき方法にある。   The invention according to claim 8 of the present application is characterized in that the plurality of plating solution injection holes are arranged around the opening of the resistor holder or along the outer periphery of the substrate. In the plating method.

本願請求項9に記載の発明は、前記めっき液噴射口から噴射されるめっき液を、前記基板ホルダに保持された基板の被めっき面の中央に向かって直線状又は扇状に流すことを特徴とする請求項7又は8に記載のめっき方法にある。   The invention according to claim 9 of the present application is characterized in that the plating solution injected from the plating solution injection port flows in a straight line shape or a fan shape toward the center of the surface to be plated of the substrate held by the substrate holder. The plating method according to claim 7 or 8.

本願請求項10に記載の発明は、めっき液を噴射する前記複数のめっき液噴射口を切り替えることによって、これら複数のめっき液噴射口の全部又は一部からめっき液を噴射させることを特徴とする請求項7乃至9の内の何れかに記載のめっき方法にある。   The invention described in claim 10 is characterized in that the plating solution is ejected from all or a part of the plurality of plating solution ejection ports by switching the plurality of plating solution ejection ports from which the plating solution is ejected. It exists in the plating method in any one of Claim 7 thru | or 9.

本願請求項11に記載の発明は、前記基板ホルダを、クランパにより、前記抵抗体ホルダに一体に密着して取り付けることを特徴とする請求項7乃至10の内の何れかに記載のめっき方法にある。   The invention according to claim 11 of the present application is the plating method according to any one of claims 7 to 10, wherein the substrate holder is attached in close contact with the resistor holder by a clamper. is there.

本願請求項1に記載の発明によれば、電流の整流作用の高い抵抗体を用いたので、基板の被めっき面上の電流密度の均一化が図れ、めっき膜厚の均一化が図れる。
まためっき液噴射口から基板と抵抗体の間の隙間にめっき液を噴射してこの隙間のめっき液を攪拌・流通するので、例え基板と抵抗体間の隙間が狭くても、容易にめっき液を攪拌・流通させることができ、めっき表面の均一性が図れる。特に基板と抵抗体との間隔が6mm未満の場合、有効である。
また抵抗体ホルダによってめっきユニット内に保持されているめっき液をアノード側と基板側に遮断し、且つ抵抗体を経由しない電気経路をシールによって遮断し、さらにめっきユニット内のアノード領域及び基板領域内にそれぞれめっき液を循環させるめっき液循環系を設けるとともにオーバーフロー槽に仕切り部材を設けることによりアノード側のめっき液とカソード側のめっき液を絶縁したので、抵抗体以外の電流経路への電流のリークが遮断でき、この点からも基板の被めっき面上の電流密度の均一化が図れ、めっき膜厚の均一化が図れる。
According to the first aspect of the present invention, since the resistor having a high current rectifying function is used, the current density on the surface to be plated of the substrate can be made uniform, and the plating film thickness can be made uniform.
In addition, since the plating solution is sprayed from the plating solution injection port into the gap between the substrate and the resistor, and the plating solution in this gap is stirred and distributed, the plating solution can be easily used even if the gap between the substrate and the resistor is narrow. Can be stirred and distributed, and the uniformity of the plating surface can be achieved. This is particularly effective when the distance between the substrate and the resistor is less than 6 mm.
In addition, the plating solution held in the plating unit by the resistor holder is shut off to the anode side and the substrate side, and the electrical path that does not pass through the resistor is shut off by a seal, and further in the anode region and the substrate region in the plating unit. Since the plating solution circulation system that circulates the plating solution and the partition member in the overflow tank are provided to insulate the anode side plating solution from the cathode side plating solution, current leaks to the current path other than the resistor. From this point, the current density on the surface to be plated of the substrate can be made uniform, and the plating film thickness can be made uniform.

本願請求項2に記載の発明によれば、めっき液噴射口から基板と抵抗体の間の隙間へ噴射されためっき液をスムーズにその外部ヘ排出することができ、この隙間へのめっき液の流通が良好になる。   According to the second aspect of the present invention, the plating solution injected from the plating solution injection port into the gap between the substrate and the resistor can be smoothly discharged to the outside. Distribution is good.

本願請求項3,請求項4に記載の発明によれば、めっき液噴射口から噴射されためっき液が基板の被めっき面の周囲から中央に向かうので、抵抗体の周囲を回り込むことなく、基板と抵抗体間の隙間に確実にめっき液を流し込むことができ、基板の被めっき面全面にわたってよどむことなくめっき液を流通させることができる。   According to the invention described in claims 3 and 4 of the present application, since the plating solution sprayed from the plating solution spray port is directed from the periphery of the surface to be plated of the substrate toward the center, the substrate is not circulated around the resistor. The plating solution can be surely poured into the gap between the resistor and the resistor, and the plating solution can be distributed without stagnation over the entire surface to be plated of the substrate.

本願請求項5に記載の発明によれば、めっき液にランダムな流れを与えることができ、めっき表面の均一性をさらに高めることができる。   According to the fifth aspect of the present invention, a random flow can be given to the plating solution, and the uniformity of the plating surface can be further improved.

本願請求項6に記載の発明によれば、抵抗体ホルダに基板ホルダを簡便に着脱でき、また抵抗体に対する基板の位置決めが容易に行える。また両者を密着・一体化することで、容易に基板ホルダと抵抗体ホルダの間に形成される隙間を密閉構造又は密閉状態に近い構造に構成でき、めっき液の抵抗体周囲への回り込みを防止でき、めっき液を確実に基板と抵抗体間に通過させることができる。   According to the sixth aspect of the present invention, the substrate holder can be easily attached to and detached from the resistor holder, and the substrate can be easily positioned with respect to the resistor. Also, by tightly bonding and integrating them, the gap formed between the substrate holder and resistor holder can be easily configured in a sealed structure or a structure close to a sealed state, preventing the plating solution from wrapping around the resistor It is possible to reliably pass the plating solution between the substrate and the resistor.

本願請求項7に記載の発明によれば、電流の整流作用の高い抵抗体を用いたので、基板の被めっき面上の電流密度の均一化が図れ、めっき膜厚の均一化が図れる。
まためっき液噴射口から基板と抵抗体の間の隙間にめっき液を噴射してこの隙間のめっき液を攪拌・流通するので、例え基板と抵抗体間の隙間が狭くても、容易にめっき液を攪拌・流通させることができ、めっき表面の均一性が図れる。
According to the seventh aspect of the present invention, since the resistor having a high current rectifying function is used, the current density on the surface to be plated of the substrate can be made uniform, and the plating film thickness can be made uniform.
In addition, since the plating solution is sprayed from the plating solution injection port into the gap between the substrate and the resistor, and the plating solution in this gap is stirred and distributed, the plating solution can be easily used even if the gap between the substrate and the resistor is narrow. Can be stirred and distributed, and the uniformity of the plating surface can be achieved.

本願請求項8,請求項9に記載の発明によれば、めっき液噴射口から噴射されためっき液が基板の被めっき面の周囲から中央に向かうので、抵抗体の周囲を回り込むことなく、基板と抵抗体間の隙間に確実にめっき液を流し込むことができ、基板の被めっき面全面にわたってよどむことなくめっき液を流通させることができる。   According to the invention described in claims 8 and 9 of the present application, since the plating solution sprayed from the plating solution spray port is directed from the periphery of the surface to be plated of the substrate toward the center, the substrate is not circulated around the resistor. The plating solution can be surely poured into the gap between the resistor and the resistor, and the plating solution can be distributed without stagnation over the entire surface to be plated of the substrate.

本願請求項10に記載の発明によれば、めっき液にランダムな流れを与えることができ、めっき表面の均一性をさらに高めることができる。   According to the invention described in claim 10 of the present application, a random flow can be given to the plating solution, and the uniformity of the plating surface can be further improved.

本願請求項11に記載の発明によれば、抵抗体ホルダに基板ホルダを簡便に着脱でき、また抵抗体に対する基板の位置決めが容易に行える。また両者を密着・一体化することで、容易に基板ホルダと抵抗体ホルダの間に形成される隙間を密閉構造又は密閉状態に近い構造に構成で、めっき液の抵抗体周囲への回り込みを防止でき、めっき液を確実に基板と抵抗体間に通過させることができる。   According to the invention of claim 11 of the present application, the substrate holder can be easily attached to and detached from the resistor holder, and the substrate can be easily positioned with respect to the resistor. In addition, by closely adhering and integrating the two, the gap formed between the substrate holder and resistor holder can be configured to have a sealed structure or a structure close to the sealed state, preventing the plating solution from wrapping around the resistor. It is possible to reliably pass the plating solution between the substrate and the resistor.

以下、本発明の実施形態を図面を参照して詳細に説明する。
図1は本発明の一実施形態にかかるめっき装置1−1の全体概略構成図であり、図2はめっき装置1−1を構成する各部品の内のアノード10とめっきユニット30とオーバーフロー槽40と基板ホルダ50と抵抗体ホルダ60とをその上方から見た概略平面図である。この実施形態では本発明をディップ式バンプめっき装置へ適用している。図1に示すようにめっき装置1−1は、めっき液Qを保持しこのめっき液Q中に基板Wとアノード10を抵抗体Rを挟んで収納するめっきユニット30と、基板Wとアノード10間に接続される電源20と、前記基板Wを保持して基板Wの被めっき面W1を前記めっき液Qに接触させる基板ホルダ50と、前記めっきユニット30内に保持されるめっき液Qをアノード10側と基板W側に遮断するように設置され、中央に前記抵抗体Rを保持する開口部61を有する抵抗体ホルダ60と、前記アノード10と前記基板Wの間の電気経路のうち前記抵抗体Rを経由しない電気経路を遮断するシール(絶縁シール)170と、前記めっきユニット30内の抵抗体R及び抵抗体ホルダ60で区画された基板領域A1にめっき液Qを循環させるめっき液循環系250及びアノード領域A2にめっき液Qを循環させるめっき液循環系260と、前記基板Wと抵抗体Rとの間の隙間S1にめっき液Qを噴射してこの隙間S1にめっき液Qを流通させる複数のめっき液噴射口183を有するめっき液流通機構180と、前記めっきユニット30を内部に収納し、前記アノード領域A2からオーバーフローするめっき液Qと、基板領域A1からオーバーフローするめっき液Qとを遮断する仕切り部材220(図2参照)を具備するオーバーフロー槽40と、前記基板ホルダ50を抵抗体ホルダ60に取り付けるクランパ240と、前記基板領域A1内のめっき液Qと、アノード領域A2内のめっき液Qとをそれぞれ所定の温度に維持する温度制御手段270,280と、を有して構成されている。なおめっきユニット30とオーバーフロー槽40全体をめっき槽5とする。以下各構成部品について詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall schematic configuration diagram of a plating apparatus 1-1 according to an embodiment of the present invention, and FIG. 2 is an anode 10, a plating unit 30 and an overflow tank 40 among components constituting the plating apparatus 1-1. It is the schematic plan view which looked at the substrate holder 50 and the resistor holder 60 from the upper direction. In this embodiment, the present invention is applied to a dip bump plating apparatus. As shown in FIG. 1, the plating apparatus 1-1 includes a plating unit 30 that holds a plating solution Q and stores the substrate W and the anode 10 in the plating solution Q with a resistor R interposed therebetween, and between the substrate W and the anode 10. A power source 20 connected to the substrate, a substrate holder 50 for holding the substrate W and bringing the plating surface W1 of the substrate W into contact with the plating solution Q, and a plating solution Q held in the plating unit 30 for the anode 10 A resistor holder 60 having an opening 61 for holding the resistor R at the center, and the resistor in the electric path between the anode 10 and the substrate W. Plating that circulates the plating solution Q in a substrate region A1 defined by a seal (insulation seal) 170 that blocks an electrical path that does not pass through R, and the resistor R and the resistor holder 60 in the plating unit 30 The plating solution circulation system 260 that circulates the plating solution Q in the circulation system 250 and the anode region A2, and the plating solution Q is injected into the gap S1 between the substrate W and the resistor R, and the plating solution Q is injected into the gap S1. A plating solution distribution mechanism 180 having a plurality of plating solution injection ports 183 to be distributed; a plating solution Q that houses the plating unit 30 and overflows from the anode region A2; and a plating solution Q that overflows from the substrate region A1 An overflow tank 40 including a partition member 220 (see FIG. 2), a clamper 240 for attaching the substrate holder 50 to the resistor holder 60, a plating solution Q in the substrate region A1, and an anode region A2. Temperature control means 270 and 280 for maintaining the plating solution Q at a predetermined temperature are provided. The plating unit 30 and the entire overflow tank 40 are referred to as a plating tank 5. Hereinafter, each component will be described in detail.

基板ホルダ50は、基板Wの外周部及び裏面(被めっき面W1の反対側の面)を気密的にシールした状態で基板Wの被めっき面W1を露出させて保持し、この被めっき面W1だけをめっきユニット30内のめっき液Qに接触させる構造に構成されている。基板ホルダ50の基板Wを保持したその周囲の部分は抵抗体ホルダ60側に突出する当接部51となっている。   The substrate holder 50 exposes and holds the plated surface W1 of the substrate W in a state where the outer peripheral portion and the back surface (the surface opposite to the plated surface W1) of the substrate W are hermetically sealed, and this plated surface W1. Only a contact is made with the plating solution Q in the plating unit 30. A peripheral portion of the substrate holder 50 that holds the substrate W is a contact portion 51 that protrudes toward the resistor holder 60 side.

抵抗体Rとしてこの実施形態では略円板状のセラミック製の多孔質体を用いており、具体的には気孔率30%以下の多孔質構造体であり、炭化ケイ素、表面を酸化処理した炭化ケイ素、アルミナ又はプラスチックの1つ、又はそれらの組み合わせによって構成されている。   In this embodiment, the resistor R is a substantially disk-shaped ceramic porous body. Specifically, the resistor R is a porous structure having a porosity of 30% or less. It is composed of one of silicon, alumina, or plastic, or a combination thereof.

図3は抵抗体ホルダ60を基板W側から見た概略図である。同図及び図1に示すように、抵抗体ホルダ60は絶縁性部材で構成され、前記抵抗体Rをちょうど収納・保持する外形寸法形状の円形の開口部61をそのほぼ中央に設けている。抵抗体ホルダ60は図2に示すように、めっきユニット30内に保持されるめっき液Qをアノード10側と基板W側とに遮断するように設置されており、これによってめっきユニット30内を前述の基板領域A1とアノード領域A2とに区画している。抵抗体Rの外周と抵抗体ホルダ60の開口部61の内周の隙間は、絶縁性の材料で構成されたシール170によって密閉され、この隙間から電流がリークしないようにしている。抵抗体ホルダ60の開口部61の周囲には、複数本のめっき液噴射管181が取り付けられ、それらの先端はめっき液噴射口183(183A,183B)となっている。これらめっき液噴射管181とめっき液噴射口183と下記する切替機構190とによってめっき液流通機構180が構成されている。各めっき液噴射口183(183A,183B)は、略等間隔で抵抗体ホルダ60の開口部61の周囲に開口している。これら各めっき液噴射口183は図3に実線及び点線の矢印で示すように、各めっき液噴射口183から噴射されるめっき液Qが基板ホルダ50に保持された基板Wの被めっき面W1の中央に向かって流れていくように構成されている。また図3に示す右側の各めっき液噴射口183Aと、左側の各めっき液噴射口183Bは、図1に示す切替機構190によって分岐したそれぞれの分岐管251A,251Bが接続されている。また図3に示すように、抵抗体ホルダ60の基板W側を向く抵抗体Rの周囲の面は、前記基板ホルダ50の当接部51を当接して基板ホルダ50と抵抗体ホルダ60から形成される隙間(空間)S1を密閉状態(密閉空間)又はそれに近い状態にする当接面63となっており、当接面63には開口部61の内周から抵抗体ホルダ60の外周に至る上下左右四本の溝状のめっき液排出部210が設けられている。   FIG. 3 is a schematic view of the resistor holder 60 as viewed from the substrate W side. As shown in FIG. 1 and FIG. 1, the resistor holder 60 is made of an insulating member, and is provided with a circular opening 61 having an outer shape and shape that accommodates and holds the resistor R just at the center. As shown in FIG. 2, the resistor holder 60 is installed so as to block the plating solution Q held in the plating unit 30 from the anode 10 side and the substrate W side. Are divided into a substrate region A1 and an anode region A2. A gap between the outer circumference of the resistor R and the inner circumference of the opening 61 of the resistor holder 60 is sealed by a seal 170 made of an insulating material so that current does not leak from the gap. Around the opening 61 of the resistor holder 60, a plurality of plating solution injection pipes 181 are attached, and their tips are plating solution injection ports 183 (183A, 183B). A plating solution circulation mechanism 180 is constituted by the plating solution injection pipe 181, the plating solution injection port 183, and the switching mechanism 190 described below. Each plating solution injection port 183 (183A, 183B) is opened around the opening 61 of the resistor holder 60 at substantially equal intervals. Each of these plating solution injection ports 183 is formed on the surface W1 to be plated of the substrate W on which the plating solution Q injected from each of the plating solution injection ports 183 is held by the substrate holder 50, as indicated by solid and dotted arrows in FIG. It is configured to flow toward the center. Further, the respective branch pipes 251A and 251B branched by the switching mechanism 190 shown in FIG. 1 are connected to the respective right plating liquid injection holes 183A and the left plating liquid injection holes 183B shown in FIG. As shown in FIG. 3, the peripheral surface of the resistor R facing the substrate W side of the resistor holder 60 is formed from the substrate holder 50 and the resistor holder 60 by contacting the contact portion 51 of the substrate holder 50. The contact surface 63 that makes the gap (space) S <b> 1 to be in a sealed state (closed space) or a state close thereto is provided, and the contact surface 63 extends from the inner periphery of the opening 61 to the outer periphery of the resistor holder 60. Four grooved plating solution discharge parts 210 are provided in the upper, lower, left and right directions.

図4はクランパ240の概略正面図である。同図に示すようにクランパ240は、抵抗体ホルダ60の基板W側を向く面の下部の左右両側に軸支部243によって回動自在に取り付けられ、また抵抗体ホルダ60の基板W側を向く面の上部の左右両側に一対のクランパ保持部245を設けて構成されている。クランパ240はその上部がクランパ保持部245に保持された際に図1に示すように基板ホルダ50の背面を押圧・支持し、抵抗体ホルダ60の当接面63を基板ホルダ50の当接部51に当接(圧接)し、これによって基板ホルダ50を抵抗体ホルダ60に一体に取り付けるものである。基板ホルダ50を抵抗体ホルダ60に着脱する場合は、クランパ240を図4に点線で示す位置まで左右に回動して開く。抵抗体ホルダ60の下部中央には、抵抗体ホルダ60に基板ホルダ50を取り付ける際に基板ホルダ50の下辺部を当接して抵抗体ホルダ60に対する基板ホルダ50の上下方向の位置合せを行うためのストッパー247が設置されている。   FIG. 4 is a schematic front view of the clamper 240. As shown in the figure, the clamper 240 is pivotally attached to both the left and right sides of the lower surface of the resistor holder 60 facing the substrate W side by pivot support portions 243, and the surface of the resistor holder 60 facing the substrate W side. A pair of clamper holding portions 245 are provided on the left and right sides of the upper portion of the upper portion. When the upper portion of the clamper 240 is held by the clamper holding portion 245, the back surface of the substrate holder 50 is pressed and supported as shown in FIG. 1, and the contact surface 63 of the resistor holder 60 is made to contact the contact portion of the substrate holder 50. The substrate holder 50 is integrally attached to the resistor holder 60 by abutting (pressure contact) 51. When the substrate holder 50 is attached to or detached from the resistor holder 60, the clamper 240 is rotated left and right to the position indicated by the dotted line in FIG. In the lower center of the resistor holder 60, when the substrate holder 50 is attached to the resistor holder 60, the lower side portion of the substrate holder 50 is brought into contact with the resistor holder 60 so as to align the substrate holder 50 in the vertical direction. A stopper 247 is installed.

めっき液循環系250は基板領域A1側のめっきユニット30からオーバーフローする側のオーバーフロー槽40の底部と抵抗体ホルダ60の各めっき液噴射管181間を連結するめっき液循環用配管251中に、ポンプ110とフィルタ130と流量計150とを取り付けて構成され、さらに切替機構190を取り付けている。切替機構190はめっき液循環用配管251を2本の分岐管251A,251Bに分岐するものであり、一方の分岐管251Aは前記各めっき液噴射口183Aに、他方の分岐管251Bは前記各めっき液噴射口183Bにそれぞれ接続されている。   The plating solution circulation system 250 is pumped into a plating solution circulation pipe 251 connecting the bottom of the overflow tank 40 on the overflow side from the plating unit 30 on the substrate area A1 side and each plating solution injection pipe 181 of the resistor holder 60. 110, a filter 130, and a flow meter 150 are attached, and a switching mechanism 190 is further attached. The switching mechanism 190 branches the plating solution circulation pipe 251 into two branch pipes 251A and 251B. One branch pipe 251A is connected to each of the plating solution injection ports 183A, and the other branch pipe 251B is connected to each of the plating pipes. Each is connected to the liquid injection port 183B.

めっき液循環系260はアノード領域A2側のめっきユニット30からオーバーフローする側のオーバーフロー槽40の底部とアノード領域A2側のメッキ層30の底部間を連結するめっき液循環用配管261中に、ポンプ120とフィルタ140と流量計160とを取り付けて構成されている。   The plating solution circulation system 260 includes a pump 120 in a plating solution circulation pipe 261 that connects between the bottom of the overflow tank 40 overflowing from the plating unit 30 on the anode region A2 side and the bottom of the plating layer 30 on the anode region A2 side. The filter 140 and the flow meter 160 are attached.

温度制御手段270は、基板領域A1側のめっきユニット30からオーバーフローする側のオーバーフロー槽40から配管271を引き出し、この配管271中にポンプ90と温度調整ユニット70を接続し、再び前記オーバーフロー槽40に接続するように構成されている。   The temperature control means 270 draws the pipe 271 from the overflow tank 40 on the overflow side from the plating unit 30 on the substrate area A1 side, connects the pump 90 and the temperature adjustment unit 70 into the pipe 271, and returns to the overflow tank 40 again. Configured to connect.

温度制御手段280は、アノード領域A2側のめっきユニット30からオーバーフローする側のオーバーフロー槽40から配管281を引き出し、この配管281中にポンプ100と温度調整ユニット80を接続し、再び前記オーバーフロー槽40に接続するように構成されている。   The temperature control means 280 draws the pipe 281 from the overflow tank 40 on the overflow side from the plating unit 30 on the anode region A2 side, connects the pump 100 and the temperature adjustment unit 80 into this pipe 281, and again enters the overflow tank 40. Configured to connect.

次に上記めっき装置1−1によって基板Wにめっきを行う方法について説明する。まず基板Wを保持した基板ホルダ50と、抵抗体Rを保持した抵抗体ホルダ60とをクランパ240によって一体化する。このとき前述のように基板ホルダ50の当接部51が抵抗体ホルダ60の当接面63に当接することで、基板ホルダ50と抵抗体ホルダ60の間に形成される隙間S1の周囲が覆われ、この隙間S1が密閉状態又はそれに近い状態になる。この隙間S1は前記めっき液排出部210(図3参照)によって外部に連通している。   Next, a method for plating the substrate W by the plating apparatus 1-1 will be described. First, the substrate holder 50 holding the substrate W and the resistor holder 60 holding the resistor R are integrated by the clamper 240. At this time, as described above, the contact portion 51 of the substrate holder 50 contacts the contact surface 63 of the resistor holder 60, so that the periphery of the gap S1 formed between the substrate holder 50 and the resistor holder 60 is covered. This gap S1 is in a sealed state or a state close thereto. The gap S1 communicates with the outside through the plating solution discharge part 210 (see FIG. 3).

そして前記一体化した基板ホルダ50と抵抗体ホルダ60も及びアノード10を、めっきユニット30内のめっき液Q中に浸漬する。そしてめっき液循環系250のポンプ110を駆動することで、基板領域A1側のオーバーフロー槽40内のめっき液Qを分岐管251A又は分岐管251Bを介してそれぞれに接続されためっき液噴射口183A又はめっき液噴射口183Bから基板Wと抵抗体Rの間の密閉状態に近い隙間S1内に噴射させ、この隙間S1内のめっき液Qを満遍なくランダムに流通・攪拌させ、その後抵抗体ホルダ60に設けためっき液排出部210(図3参照)からめっきユニット30内に排出して、めっきユニット30をオーバーフローさせ、オーバーフローしためっき液Qを再びポンプ110によって循環させる。同様にめっき液循環系260のポンプ120を駆動することで、アノード領域A2側のオーバーフロー槽40内のめっき液Qをめっきユニット30のアノード領域A2内に導入してめっきユニット30をオーバーフローさせ、オーバーフローしためっき液Qを再びポンプ120によって循環させる。また同時に温度制御手段270のポンプ90と、温度制御手段280のポンプ100を駆動することで、それぞれ基板領域A1側のめっき液Qとアノード領域A2側のめっき液Qの温度を所定温度(管理温度範囲内)に制御する。この実施形態では両者の温度を同一としている。そしてこの状態で電源20によって基板Wとアノード10間にめっき液Qを通して電流を流すと、基板Wの被めっき面W1上に所望のめっき膜が形成されていく。   Then, the integrated substrate holder 50 and resistor holder 60 and the anode 10 are immersed in the plating solution Q in the plating unit 30. Then, by driving the pump 110 of the plating solution circulation system 250, the plating solution injection port 183A connected to the plating solution Q in the overflow tank 40 on the substrate region A1 side via the branch pipe 251A or the branch pipe 251B, or The plating solution injection port 183B is injected into the gap S1 close to the sealed state between the substrate W and the resistor R, and the plating solution Q in the gap S1 is uniformly distributed and stirred uniformly, and then provided in the resistor holder 60. The plating solution discharge unit 210 (see FIG. 3) discharges the plating unit 30 to overflow the plating unit 30, and the overflowed plating solution Q is circulated by the pump 110 again. Similarly, by driving the pump 120 of the plating solution circulation system 260, the plating solution Q in the overflow tank 40 on the anode region A2 side is introduced into the anode region A2 of the plating unit 30 to overflow the plating unit 30 and overflow. The plating solution Q is circulated by the pump 120 again. At the same time, by driving the pump 90 of the temperature control means 270 and the pump 100 of the temperature control means 280, the temperature of the plating solution Q on the substrate region A1 side and the plating solution Q on the anode region A2 side is set to a predetermined temperature (management temperature). (Within range). In this embodiment, both temperatures are the same. In this state, when a current is passed through the plating solution Q between the substrate W and the anode 10 by the power supply 20, a desired plating film is formed on the surface W1 to be plated of the substrate W.

ところで基板ホルダ50と抵抗体ホルダ60の間の密閉状態に近い隙間S1にめっき液Qを満遍なくランダムに流通・攪拌させる方法としてこの実施形態では、切替機構190をまず分岐管251Aに切り替えることで、図3に示す実線の矢印のように、右側半分のめっき液噴射口183Aからめっき液Qを噴射させてめっき液排出部210から排出させ、所定時間経過後に切替機構190を分岐管251Bに切り替えることで点線矢印のように左側半分のめっき液噴射口183Bからめっき液Qを噴射させてめっき液排出部210から排出させ、この動作を繰り返すこととした。   By the way, in this embodiment, the switching mechanism 190 is first switched to the branch pipe 251A as a method of uniformly circulating and stirring the plating solution Q in the gap S1 close to the sealed state between the substrate holder 50 and the resistor holder 60. As shown by the solid line arrows in FIG. 3, the plating solution Q is ejected from the plating solution ejection port 183A on the right half and is ejected from the plating solution ejection unit 210, and the switching mechanism 190 is switched to the branch pipe 251B after a predetermined time has elapsed. Then, as indicated by the dotted arrow, the plating solution Q is ejected from the plating solution ejection port 183B on the left half, and is ejected from the plating solution ejection part 210, and this operation is repeated.

なおめっき液噴射口183から噴出させるめっき液Qの噴射・排出方法には、種々の方法が考えられる。例えば図5(a)に実線矢印で示すように、一方のめっき液噴射口183Aからめっき液Qを噴射させる際は他方のめっき液噴射口183Bからめっき液Qを排出し、点線矢印で示すように他方のめっき液噴射口183Bからめっき液Qを噴射させる際は一方のめっき液噴射口183Aからめっき液Qを排出するようにしても良い。この場合めっき液排出部210は不要となる。また図5(b)に示すように、めっき液噴射口183A,183Bを1又は複数個ずつ交互に配置しても良い。また前記図3を用いて説明したのと同様に、図6(a)に実線矢印で示すように、一方のめっき液噴射口183Aからめっき液Qを噴射させる際は他方のめっき液噴射口183Bからのめっき液Qの噴射は停止してめっき液排出部210から排出し、点線矢印で示すように他方のめっき液噴射口183Bからめっき液Qを噴射させる際は一方のめっき液噴射口183Aからのめっき液Qの噴射は停止してめっき液排出部210から排出しても良い。この場合も図6(b)に示すように、めっき液噴射口183A,183Bを1又は複数個ずつ交互に配置しても良い。また図7(a)に示すように、めっき液噴射口183を3以上の複数組(この例では4組)に分割し(183A,183B,183C,183D)、これら各めっき液噴射口183A,B,C,Dを順番に切り替えてめっき液Qを順番に噴射させるようにしても良い。   Various methods can be considered as a method of spraying / discharging the plating solution Q ejected from the plating solution ejection port 183. For example, as shown by a solid arrow in FIG. 5A, when the plating solution Q is ejected from one plating solution ejection port 183A, the plating solution Q is discharged from the other plating solution ejection port 183B and is represented by a dotted arrow. When the plating solution Q is jetted from the other plating solution jet port 183B, the plating solution Q may be discharged from the one plating solution jet port 183A. In this case, the plating solution discharge part 210 is unnecessary. Further, as shown in FIG. 5B, one or a plurality of plating solution injection holes 183A and 183B may be alternately arranged. Similarly to the case described with reference to FIG. 3, when the plating solution Q is injected from one plating solution injection port 183A, as shown by the solid line arrow in FIG. 6A, the other plating solution injection port 183B. When the plating solution Q is ejected from the other plating solution injection port 183B as shown by the dotted line arrow, the injection of the plating solution Q from the plating solution discharge unit 210 is stopped and discharged from the one plating solution injection port 183A. The injection of the plating solution Q may be stopped and discharged from the plating solution discharge unit 210. Also in this case, as shown in FIG. 6B, one or a plurality of plating solution injection ports 183A and 183B may be alternately arranged. Further, as shown in FIG. 7A, the plating solution injection port 183 is divided into three or more sets (four sets in this example) (183A, 183B, 183C, 183D), and each of these plating solution injection ports 183A, B, C, and D may be switched in order and the plating solution Q may be sprayed in order.

そして上記本実施形態を用いれば、被めっき面W1に形成されるめっき膜の膜厚の均一性及びめっき表面の均一性が、従来に比べてより向上する。以下その理由を述べる。
〔抵抗体Rと攪拌〕
即ちまず上記めっき装置1−1においては、アノード10と基板Wの間に抵抗体Rを配置しているが、前記図16,図17を用いて説明したように、抵抗体Rは前記図15に示す誘電体からなる調整板320に比べて電流の整流効果が高い。このため調整板320を用いた方法では基板とカソードの接点近傍(基板の外周近傍)のめっき膜厚が厚くなるのに比べ、めっき膜厚の均一化を図ることができる。なお抵抗体Rによる効果(基板W上の電流密度均一性)を高めるためには、抵抗体Rと基板Wの被めっき面W1間の間隔を狭く(6mm未満)する必要がある。
And if the said this embodiment is used, the uniformity of the film thickness of the plating film formed in the to-be-plated surface W1 and the uniformity of the plating surface will improve more compared with the past. The reason is described below.
[Resistor R and stirring]
That is, first, in the plating apparatus 1-1, the resistor R is arranged between the anode 10 and the substrate W. As described with reference to FIGS. The current rectifying effect is higher than that of the adjustment plate 320 made of a dielectric shown in FIG. For this reason, in the method using the adjusting plate 320, the plating film thickness can be made uniform as compared with the case where the plating film thickness near the contact point between the substrate and the cathode (near the outer periphery of the substrate) is increased. In addition, in order to improve the effect (current density uniformity on the substrate W) due to the resistor R, it is necessary to narrow the distance between the resistor R and the surface W1 to be plated of the substrate W (less than 6 mm).

一方例えばバンプめっきにおいて、バンプ高さの面内均一性及びバンプ表面の均一性を向上させるためには、基板Wの被めっき面W1と接するめっき液Qを攪拌しなければならない。しかしながら抵抗体Rを使用した場合、上述のように抵抗体Rと基板Wの間隔が6mm未満程度と狭くなるので、上記従来の図15に示すディップ式めっき装置300のように調整板320と基板W間のめっき液Qを攪拌するためのパドルの設置が困難となる。そこで本実施形態においては、基板Wと抵抗体Rの間の隙間S1内にその外周側からめっき液Qを噴射して隙間S1内のめっき液Qを流通させる複数のめっき液噴射口183を有するめっき液流通機構180を設置したのである。これによって抵抗体Rと基板W間に満遍なくランダムな流れのめっき液Qを流通させることが可能となり、狭い隙間S1のめっき液Qであってもこれを確実に攪拌することができるようになり、めっき膜厚の均一性及びめっき表面の均一性を図ることができる。   On the other hand, for example, in bump plating, in order to improve the in-plane uniformity of the bump height and the uniformity of the bump surface, the plating solution Q in contact with the surface to be plated W1 of the substrate W must be stirred. However, when the resistor R is used, the distance between the resistor R and the substrate W becomes as narrow as less than about 6 mm as described above. Therefore, the adjustment plate 320 and the substrate as in the conventional dip plating apparatus 300 shown in FIG. It becomes difficult to install a paddle for stirring the plating solution Q between W. Therefore, in the present embodiment, a plurality of plating solution injection ports 183 for injecting the plating solution Q from the outer peripheral side into the gap S1 between the substrate W and the resistor R to flow the plating solution Q in the gap S1 are provided. A plating solution distribution mechanism 180 was installed. This makes it possible to distribute the plating solution Q in a uniform and random flow between the resistor R and the substrate W, and even with the plating solution Q in the narrow gap S1, it can be reliably stirred. The uniformity of the plating film thickness and the uniformity of the plating surface can be achieved.

なお例えば直径約300mmの円形で幅6mm未満の狭い隙間にめっき液Qを流す場合、流路抵抗によりめっき液Qの流れ易い場所と流れにくい場所とが生じ易く、そのような場合はめっき液Qがよどみ、満遍に流通させることが困難となる。そこで本実施形態では、基板ホルダ50に保持された基板Wの被めっき面W1の外周から中央に向かう方向にめっき液Qを噴射することにより、抵抗体Rの周囲を回り込むことなく、基板Wと抵抗体R間の狭い隙間S1に確実にめっき液Qを流し込むようにし、基板W全面にわたってよどむことなくめっき液Qを流通させるようにしている。   For example, when the plating solution Q is caused to flow through a narrow gap of about 300 mm in diameter and less than 6 mm in width, a place where the plating solution Q is easy to flow and a place where it is difficult to flow are likely to be generated due to flow path resistance. Stagnation and difficult to distribute uniformly. Therefore, in the present embodiment, by spraying the plating solution Q in the direction from the outer periphery of the surface W1 of the substrate W held by the substrate holder 50 toward the center, the substrate W The plating solution Q is surely poured into the narrow gap S1 between the resistors R, and the plating solution Q is circulated over the entire surface of the substrate W.

またバンプ表面の形状はめっき液Qの流れの影響を受け易く、めっき液Qの流れが一定方向である場合、バンプ表面の形状が不均一になる恐れがあり、このためめっき液Qにランダムな流れを与える必要がある。そこで上記実施形態では、ランダムな流れを与えるためにめっき液Qを噴射するめっき液噴射口183を所定タイミングで切り替えて変更し、これによってメッキ液Qをランダムに流すこととし、これによってバンプ高さの面内均一性及びバンプ表面の均一性を向上させている。なおめっき液噴射口183から供給しためっき液Qが抵抗体Rの周囲を回り込むことなく、確実に基板Wと抵抗体R間の隙間S1を通過するようにするため、基板ホルダ50と抵抗体ホルダ60から形成される隙間は密閉状態又はそれに近い状態としている。   Further, the shape of the bump surface is easily affected by the flow of the plating solution Q. If the flow of the plating solution Q is in a certain direction, the shape of the bump surface may be non-uniform. Need to give flow. Therefore, in the above embodiment, the plating solution injection port 183 for injecting the plating solution Q is changed and changed at a predetermined timing in order to give a random flow, thereby causing the plating solution Q to flow at random, and thereby the bump height. In-plane uniformity and bump surface uniformity are improved. In order to ensure that the plating solution Q supplied from the plating solution injection port 183 does not go around the resistor R and passes through the gap S1 between the substrate W and the resistor R, the substrate holder 50 and the resistor holder The gap formed from 60 is in a sealed state or a state close thereto.

〔抵抗体R以外の電気経路の遮断〕
基板Wの被めっき面W1の電流密度を均一化するためには、抵抗体R以外の電流経路への電流のリークを遮断しなければならない。そのためにはアノード10側(アノード領域A2)のめっき液Qとカソード側(基板領域A1)のめっき液Qとが絶縁されていることが必要である。このためこの実施形態においては、抵抗体ホルダ60によってめっきユニット30を基板領域A1とアノード領域A2に分け、オーバーフローしためっき液Q同士が触れないようにオーバーフロー槽40に仕切り部材220を設置している。また抵抗体Rと抵抗体ホルダ60の隙間からの電流リークを防ぐため、抵抗体Rの外周にシール170を設置している。
[Interruption of electrical paths other than resistor R]
In order to make the current density of the surface W1 to be plated of the substrate W uniform, current leakage to the current path other than the resistor R must be blocked. For this purpose, the plating solution Q on the anode 10 side (anode region A2) and the plating solution Q on the cathode side (substrate region A1) must be insulated. Therefore, in this embodiment, the plating unit 30 is divided into the substrate region A1 and the anode region A2 by the resistor holder 60, and the partition member 220 is installed in the overflow tank 40 so that the overflowed plating solutions Q do not touch each other. . In order to prevent current leakage from the gap between the resistor R and the resistor holder 60, a seal 170 is provided on the outer periphery of the resistor R.

〔クランパ240による基板ホルダ50の取り付け〕
良好なめっき膜厚の均一性を得るためには、抵抗体Rの中心と基板Wの被めっき面W1の中心の位置が一致していることが必要である。したがって抵抗体ホルダ60に基板ホルダ50を取り付ける際には常に互いの中心がずれないように取り付けることが必要であり、また基板ホルダ50の装脱着が容易であることも必要である。そこで上記実施形態では、抵抗体ホルダ60にクランパ240を取り付け、このクランパ240を用いて基板ホルダ50を抵抗体ホルダ60に確実に固定することにより、簡便に基板ホルダ50の装脱着および抵抗体Rと基板Wの位置合わせを行うこととした。抵抗体Rと基板Wの上下の位置関係は前述のようにストッパ247に基板ホルダ50下端を乗せることによって常に同じ位置に合わせることができ、また左右の位置関係は左右のクランパ240で基板ホルダ50を左右から挟み込むことによって常に同じ位置に合わせることができる。このように上下左右の位置を合わせることにより簡便に抵抗体Rと基板Wの中心を合わせることができる。
[Attaching the substrate holder 50 by the clamper 240]
In order to obtain a good plating film thickness uniformity, it is necessary that the center of the resistor R and the center of the surface W1 of the substrate W coincide with each other. Accordingly, when the substrate holder 50 is attached to the resistor holder 60, it is necessary to always attach the substrate holders 50 so that their centers do not deviate from each other, and the substrate holder 50 needs to be easily attached and detached. Therefore, in the above-described embodiment, by attaching the clamper 240 to the resistor holder 60 and securely fixing the substrate holder 50 to the resistor holder 60 using the clamper 240, the substrate holder 50 can be easily attached and detached and the resistor R And the alignment of the substrate W. The positional relationship between the resistor R and the substrate W can be always adjusted to the same position by placing the lower end of the substrate holder 50 on the stopper 247 as described above. Can be always adjusted to the same position. Thus, the center of the resistor R and the substrate W can be easily aligned by aligning the vertical and horizontal positions.

また、めっき液Qを抵抗体Rと基板W間の隙間S1に確実に流し込み、該隙間S1のめっき液Qを満遍なくランダムに攪拌するためには、抵抗体Rと基板W間の隙間S1が密閉あるいは密閉に近い状態であることが必要であるが、抵抗体ホルダ60に取り付けたクランパ240で基板ホルダ50を押さえることにより、抵抗体ホルダ60と基板ホルダ50を容易に密着させることができるため、抵抗体Rと基板Wの間の隙間S1を容易に密閉あるいは密閉に近い状態とすることができる。   Further, in order to surely flow the plating solution Q into the gap S1 between the resistor R and the substrate W and uniformly stir the plating solution Q in the gap S1 uniformly, the gap S1 between the resistor R and the substrate W is sealed. Alternatively, it is necessary to be in a state close to sealing, but by pressing the substrate holder 50 with the clamper 240 attached to the resistor holder 60, the resistor holder 60 and the substrate holder 50 can be easily brought into close contact with each other. The gap S1 between the resistor R and the substrate W can be easily sealed or nearly sealed.

なお本発明にかかるめっき装置1−1は、将来の基板大口径化に対応することができる。即ち将来的に、基板Wの直径が400mm等となった場合、基板Wの中心から外周までの距離がさらに長くなることにより、ターミナルイフェクトの影響が更に大きくなり、現在の誘電体からなる調整板では基板外周部の厚膜化を防止することがますます困難になる。従来の調整板の代わりに抵抗体Rを使用することにより基板W上の電流密度は均一化され、バンプの面内均一性も向上する。このように抵抗体Rをディップ方式のバンプめっき装置1−1に適用し、さらに上記実施形態のように各種の工夫を加えることにより、将来の基板大口径化に対応することができる。   In addition, the plating apparatus 1-1 concerning this invention can respond to the board | substrate diameter increase in the future. That is, when the diameter of the substrate W becomes 400 mm or the like in the future, the distance from the center to the outer periphery of the substrate W becomes longer, thereby further increasing the influence of the terminal effect, and the adjustment plate made of the current dielectric. Then, it becomes increasingly difficult to prevent the outer peripheral portion of the substrate from becoming thicker. By using the resistor R instead of the conventional adjusting plate, the current density on the substrate W is made uniform, and the in-plane uniformity of the bumps is also improved. Thus, by applying the resistor R to the bump plating apparatus 1-1 of the dip method and adding various devices as in the above embodiment, it is possible to cope with future increase in the substrate diameter.

前記図1に示すめっき装置1−1において、抵抗体Rにセラミック製多孔質体(気孔径10〜20μm、気孔率30%)を使用し、めっき液Qは硫酸銅、硫酸、塩素および添加剤を用いて調整した。使用した基板Wは、直径が200mm、Cuシード層の厚さが600nm、レジストパターンの孔の直径、深さがそれぞれ150μm、120μmの半導体ウェーハを用いた。図1に示すようにアノード10、抵抗体R、基板W等の各部材をセットした。基板Wと抵抗体R間の距離は5.5mmとした。そして図3で説明したように、基板Wと抵抗体Rの間に2組のめっき液噴射口183A,183Bから交互にめっき液Qを噴射し、めっきユニット30からオーバーフローしためっき液Qをポンプ110およびフィルター130を介して再びめっき液噴射口183A,183Bへと循環させた。またアノード10側のめっき液Qもポンプ120およびフィルター140を介して循環させた。さらに基板W側のめっき液Qの温度を温度調整ユニット70により、またアノード側のめっき液Qの温度を温度調整ユニット80により23℃に保った。この状態で基板表面の孔にめっきされる銅(バンプ)の高さが100μmとなるように電流を供給してめっきを行ったところ、図8(a)に示すように基板面内において高さの均一なバンプが得られた。   In the plating apparatus 1-1 shown in FIG. 1, a ceramic porous body (pore diameter 10 to 20 μm, porosity 30%) is used for the resistor R, and the plating solution Q is copper sulfate, sulfuric acid, chlorine and additives. It adjusted using. The substrate W used was a semiconductor wafer having a diameter of 200 mm, a Cu seed layer thickness of 600 nm, and a resist pattern hole diameter and depth of 150 μm and 120 μm, respectively. As shown in FIG. 1, each member such as the anode 10, the resistor R, and the substrate W was set. The distance between the substrate W and the resistor R was 5.5 mm. Then, as described with reference to FIG. 3, the plating solution Q is alternately sprayed from the two sets of plating solution injection ports 183A and 183B between the substrate W and the resistor R, and the plating solution Q overflowed from the plating unit 30 is pumped 110. And it was made to circulate through the filter 130 again to the plating solution injection ports 183A and 183B. The plating solution Q on the anode 10 side was also circulated through the pump 120 and the filter 140. Further, the temperature of the plating solution Q on the substrate W side was maintained at 23 ° C. by the temperature adjustment unit 70, and the temperature of the plating solution Q on the anode side was maintained at 23 ° C. by the temperature adjustment unit 80. In this state, when plating was performed by supplying a current so that the height of copper (bump) to be plated in the hole on the substrate surface was 100 μm, the height in the substrate surface as shown in FIG. A uniform bump was obtained.

(比較例1)
図9に比較例にかかるめっき装置500の全体概略構成図を示す。このめっき装置500において、前記めっき装置1−1と相違する点は、抵抗体Rの代りに多孔板230を設置した点のみである。その他の構成はめっき装置1−1と同一である。図10は多孔板230を示す図であり、図10(a)は平面図、図10(b)は側面図である。同図に示すように多孔板230は円板状で、アノード10と基板Wの間に設置され、複数の円形の通孔231(内径2mm)を円形領域内に均等に分布して構成されている。めっき液Qや基板Wの構成、基板Wと多孔板230間の離間距離も前記実施例1のものと同一である。そして前記実施例1の場合と全く同一の方法によって、基板表面の孔にめっきされる銅(バンプ)の高さが100μmとなるように電流を供給してめっきを行ったところ、図8(b)に示すように基板中央部よりも外周部においてバンプの高さが高くなった。
(Comparative Example 1)
FIG. 9 shows an overall schematic configuration diagram of a plating apparatus 500 according to a comparative example. The plating apparatus 500 is different from the plating apparatus 1-1 only in that a porous plate 230 is installed instead of the resistor R. Other configurations are the same as those of the plating apparatus 1-1. FIG. 10 is a view showing the perforated plate 230, FIG. 10 (a) is a plan view, and FIG. 10 (b) is a side view. As shown in the figure, the perforated plate 230 has a disc shape, is installed between the anode 10 and the substrate W, and has a plurality of circular through holes 231 (inner diameter 2 mm) distributed evenly in a circular region. Yes. The configuration of the plating solution Q and the substrate W and the separation distance between the substrate W and the porous plate 230 are the same as those in the first embodiment. Then, when plating was performed by supplying the current so that the height of the copper (bump) to be plated in the hole on the surface of the substrate was 100 μm by the same method as in Example 1, FIG. ), The height of the bump was higher in the outer peripheral portion than in the central portion of the substrate.

前記実施例1と同一の構成のめっき装置1−1を用い、めっき液噴射口183からのめっ液Qの噴射状態を各種異ならせた。即ち実施例1と同様に、抵抗体Rとしてセラミック製多孔質体(気孔径10〜20μm、気孔率30%)を使用し、めっき液Qは硫酸銅、硫酸、塩素および添加剤を用いて調整した。使用した基板Wは、直径が200mm、Cuシード層の厚さが600nm、レジストパターンの孔の直径、深さがそれぞれ150μm、120μmの半導体ウェーハを用いた。図1に示すようにアノード10、抵抗体R、基板W等の各部材をセットした。基板Wと抵抗体R間の距離は5.5mmとした。そして図5〜図7及び図11に示すように、基板Wと抵抗体Rの間にめっき液噴射口183からめっき液Qを流速3L/minで噴射し、めっきユニット30からオーバーフローしためっき液Qをポンプ110およびフィルター130を介してめっき液噴射口183へと循環させた。またアノード10側のめっき液Qもポンプ120、およびフィルター140を介して循環させた。さらに基板W側のめっき液Qの温度を温度調整ユニット70により、またアノード10側のめっき液Qの温度を温度調整ユニット80により23℃に保った。   Using the plating apparatus 1-1 having the same configuration as that of Example 1, the spraying state of the liquid Q from the plating solution injection port 183 was varied. That is, as in Example 1, a ceramic porous body (pore diameter 10 to 20 μm, porosity 30%) was used as the resistor R, and the plating solution Q was adjusted using copper sulfate, sulfuric acid, chlorine and additives. did. The substrate W used was a semiconductor wafer having a diameter of 200 mm, a Cu seed layer thickness of 600 nm, and a resist pattern hole diameter and depth of 150 μm and 120 μm, respectively. As shown in FIG. 1, each member such as the anode 10, the resistor R, and the substrate W was set. The distance between the substrate W and the resistor R was 5.5 mm. As shown in FIGS. 5 to 7 and 11, the plating solution Q is injected between the substrate W and the resistor R from the plating solution injection port 183 at a flow rate of 3 L / min, and overflows from the plating unit 30. Was circulated to the plating solution injection port 183 through the pump 110 and the filter 130. The plating solution Q on the anode 10 side was also circulated through the pump 120 and the filter 140. Further, the temperature of the plating solution Q on the substrate W side was kept at 23 ° C. by the temperature adjustment unit 70, and the temperature of the plating solution Q on the anode 10 side was kept at 23 ° C.

そして以下の各噴射・排出方法(1)〜(4)によってメッキ液Qを攪拌し、それぞれの場合の基板表面の孔にめっきされる銅(バンプ)の高さが100μmとなるように電流を供給してめっきを行い、その結果を調べた。   Then, the plating solution Q is agitated by the following injection / discharge methods (1) to (4), and the current is applied so that the height of the copper (bump) plated in the hole on the substrate surface in each case becomes 100 μm. The plating was carried out and the results were examined.

〔噴射・排出方法1〕前述した図5(a),(b)に示すめっき液Qの噴射・排出方法を用い、めっき液噴射口183Aからめっき液Qを噴射すると同時にめっき液噴射口Bからめっき液Qを排出し、5秒後にめっき液噴射口183A,183Bを逆に切り替えて噴射と排出を逆転し、めっき液Qの流れを反転させた。これを繰り返してめっき液Qにランダムな流れを与えて攪拌した。 [Injection / Discharge Method 1] Using the above-described injection / discharge method of the plating solution Q shown in FIGS. 5A and 5B, the plating solution Q is injected from the plating solution injection port 183A and simultaneously from the plating solution injection port B. The plating solution Q was discharged, and after 5 seconds, the plating solution injection ports 183A and 183B were switched in reverse to reverse the injection and discharge, thereby reversing the flow of the plating solution Q. This was repeated to give a random flow to the plating solution Q and stirred.

〔噴射・排出方法2〕前述した図6(a),(b)に示すめっき液Qの噴射・排出方法を用い、めっき液噴射口183Aからめっき液Qを5秒間噴射した後、めっき液噴射口183Bに切り替えてめっき液Qを5秒間噴射し、めっき液Qの流れを反転させた。これを繰り返してめっき液Qにランダムな流れを与えて攪拌した。 [Injection / Discharge Method 2] Using the above-described injection / discharge method of the plating solution Q shown in FIGS. 6A and 6B, the plating solution Q is injected from the plating solution injection port 183A for 5 seconds, and then the plating solution is injected. Switching to the port 183B, the plating solution Q was sprayed for 5 seconds, and the flow of the plating solution Q was reversed. This was repeated to give a random flow to the plating solution Q and stirred.

〔噴射・排出方法3〕前述した図7に示すめっき液Qの噴射・排出方法を用い、めっき液噴射口183A〜Dを2秒毎に切り替えてめっき液Qの流れを変化させた。これを繰り返してめっき液Qにランダムな流れを与えて攪拌した。 [Injection / Discharge Method 3] Using the plating solution Q injection / discharge method shown in FIG. 7, the plating solution injection ports 183A to 183D were switched every 2 seconds to change the flow of the plating solution Q. This was repeated to give a random flow to the plating solution Q and stirred.

〔噴射・排出方法4〕図11に示す噴射・排出方法を用い、めっき中にめっき液噴射口183Aのみからめっき液Qを噴射し続け、めっき液Qの流れを一方向とした。なお、噴射されためっき液Qは排出口210から排出させた。 [Injection / Discharge Method 4] Using the injection / discharge method shown in FIG. 11, during the plating, the plating solution Q was continuously injected only from the plating solution injection port 183A, and the flow of the plating solution Q was set to one direction. The sprayed plating solution Q was discharged from the discharge port 210.

以上の噴射・排出方法1〜4によってめっきされた基板表面の孔の銅(バンプ)の状態は、噴射・排出方法1,2,3では図12(a)に示すようにバンプ表面の形状が均一であったが、噴射・排出方法4では図12(b)に示すようにめっき液の流れの影響を受けて不均一であった。   The state of the copper (bump) in the hole on the surface of the substrate plated by the above jetting / discharging methods 1 to 4 is as shown in FIG. Although uniform, the injection / discharge method 4 was non-uniform under the influence of the flow of the plating solution as shown in FIG.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの形状や構造や材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば、上記実施形態では、めっき液噴射口183を抵抗体ホルダ60の開口部61の周囲に配置したが、例えば図13に示すめっき装置1−2のように、基板Wの外周部に沿って配置してもよい。なお図14はめっき装置1−2の基板ホルダ50を抵抗体R側から見た概略図である。図13に示すめっき装置1−2において、前記図1に示すめっき装置1−1と同一又は相当部分には同一符号を付す。なお以下で説明する事項以外の事項については、前記めっき装置1−1と同じである。即ちこのめっき装置1−2においては、基板ホルダ50の基板Wを保持した面側の基板Wの周囲の位置にめっき液噴射口183(183A,183B)が位置するように複数本のめっき液噴射管181を取り付けている。この実施形態の場合もめっき液噴射管181とめっき液噴射口183と切替機構190とによってめっき液流通機構180が構成されている。なおこの実施形態のように基板ホルダ50側にめっき液流通機構180を配置する場合も、前記図5〜図7に示すような各種噴射・排出方法が適用できる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. Note that any shape, structure, or material not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are exhibited. For example, in the above embodiment, the plating solution injection port 183 is disposed around the opening 61 of the resistor holder 60. However, for example, like the plating apparatus 1-2 illustrated in FIG. You may arrange. FIG. 14 is a schematic view of the substrate holder 50 of the plating apparatus 1-2 as viewed from the resistor R side. In the plating apparatus 1-2 shown in FIG. 13, the same or equivalent parts as those in the plating apparatus 1-1 shown in FIG. Note that matters other than those described below are the same as those of the plating apparatus 1-1. That is, in this plating apparatus 1-2, a plurality of plating solution injections are performed so that the plating solution injection ports 183 (183A, 183B) are positioned around the substrate W on the side of the substrate holder 50 that holds the substrate W. A tube 181 is attached. Also in this embodiment, the plating solution distribution mechanism 180 is configured by the plating solution injection pipe 181, the plating solution injection port 183, and the switching mechanism 190. In addition, also when arrange | positioning the plating solution distribution | circulation mechanism 180 at the board | substrate holder 50 side like this embodiment, the various injection | emission / discharge methods as shown to the said FIGS. 5-7 are applicable.

まためっき液噴射口183から噴射されるめっき液Qの噴射状態には種々の噴射状態が考えられるが、例えば図15(a)に示すように、めっき液噴射口183から噴射されるめっき液Qが、基板Wの被めっき面W1の中央に向かって直線状に流れるように構成しても良いし、図15(b)に示すように、基板Wの被めっき面W1の中央に向かって扇状に広がって流れるように構成しても良い。めっき液Qの流れの相違は、めっき液噴射口183の周囲に形成される凹溝185の形状等によって実現できる。また上記実施形態ではクランパ240を抵抗体ホルダ60に取り付けたが、その代りに基板ホルダ50側に取り付けても良い。   Various spraying states can be considered as the spraying state of the plating solution Q sprayed from the plating solution spraying port 183. For example, as shown in FIG. 15A, the plating solution Q sprayed from the plating solution spraying port 183. May be configured to flow linearly toward the center of the surface to be plated W1 of the substrate W, or fan-shaped toward the center of the surface to be plated W1 of the substrate W as shown in FIG. You may comprise so that it may spread and flow. The difference in the flow of the plating solution Q can be realized by the shape of the concave groove 185 formed around the plating solution injection port 183. Moreover, in the said embodiment, although the clamper 240 was attached to the resistor holder 60, you may attach to the board | substrate holder 50 side instead.

めっき装置1−1の全体概略構成図である。It is the whole schematic block diagram of the plating apparatus 1-1. めっき装置1−1のアノード10とめっきユニット30とオーバーフロー槽40と基板ホルダ50と抵抗体ホルダ60とをその上方から見た概略平面図である。It is the schematic plan view which looked at the anode 10, the plating unit 30, the overflow tank 40, the board | substrate holder 50, and the resistor holder 60 of the plating apparatus 1-1 from the upper direction. 抵抗体R及び抵抗体ホルダ60を基板W側から見た概略図である。It is the schematic which looked at the resistor R and the resistor holder 60 from the board | substrate W side. クランパ240の概略正面図である。3 is a schematic front view of a clamper 240. FIG. めっき液Qの噴射・排出方法を示す図であり、図5(a)と図5(b)は抵抗体ホルダ60を示す概略図、図5(c)は各めっき液噴射口183A,183Bの噴射タイミングを示す図である。FIG. 5A and FIG. 5B are schematic views showing the resistor holder 60, and FIG. 5C is a view of each of the plating solution injection ports 183A and 183B. It is a figure which shows injection timing. めっき液Qの噴射・排出方法を示す図であり、図6(a)と図6(b)は抵抗体ホルダ60を示す概略図、図6(c)は各めっき液噴射口183A,183Bの噴射タイミングを示す図である。FIG. 6A and FIG. 6B are schematic views showing a resistor holder 60, and FIG. 6C is a view of each of the plating solution injection ports 183A and 183B. It is a figure which shows injection timing. めっき液Qの噴射・排出方法を示す図であり、図7(a)は抵抗体ホルダ60を示す概略図、図7(b)は各めっき液噴射口183A,183Bの噴射タイミングを示す図である。FIGS. 7A and 7B are diagrams illustrating a method of spraying and discharging the plating solution Q, FIG. 7A is a schematic diagram illustrating the resistor holder 60, and FIG. 7B is a diagram illustrating spray timings of the plating solution spray ports 183A and 183B. is there. 基板W上のバンプの高さ分布を示す図である。FIG. 4 is a diagram illustrating a bump height distribution on a substrate W. めっき装置500の全体概略構成図である。1 is an overall schematic configuration diagram of a plating apparatus 500. FIG. 多孔板230を示す図であり、図7(a)は平面図、図7(b)は側面図である。FIG. 7A is a plan view and FIG. 7B is a side view showing a porous plate 230. めっき液Qの噴射・排出方法を示す図である。It is a figure which shows the injection / discharge method of the plating solution Q. バンプ断面を示す図である。It is a figure which shows bump cross section. めっき装置1−2の全体概略構成図である。It is a whole schematic block diagram of the plating apparatus 1-2. めっき装置1−2の基板ホルダ50の概略図である。It is the schematic of the substrate holder 50 of the plating apparatus 1-2. めっき液噴射口183から噴射されるめっき液の噴射状態を示す図である。It is a figure which shows the injection state of the plating solution injected from the plating solution injection port. 電気めっき装置300を示す概略構成図である。1 is a schematic configuration diagram showing an electroplating apparatus 300. FIG. 代表的な電解めっきの等価回路を示す図である。It is a figure which shows the equivalent circuit of typical electrolytic plating. 高抵抗構造体を挿入した電解めっきの等価回路を示す図である。It is a figure which shows the equivalent circuit of the electroplating which inserted the high resistance structure.

符号の説明Explanation of symbols

1−1 めっき装置
Q めっき液
W 基板
W1 被めっき面
R 抵抗体
A1 基板領域
A2 アノード領域
S1 隙間
5 めっき槽
10 アノード
20 電源
30 めっきユニット
40 オーバーフロー槽
50 基板ホルダ
60 抵抗体ホルダ
61 開口部
70 温度調整ユニット
80 温度調整ユニット
170 シール
180 めっき液流通機構
181 めっき液噴射管
183(183A,183B,183C,183D) めっき液噴射口
190 切替機構
210 めっき液排出部(めっき液排出口)
220 仕切り部材(仕切り板)
240 クランパ
247 ストッパ
250 めっき液循環系
260 めっき液循環系
270 温度制御手段
280 温度制御手段
1-1 Plating apparatus Q Plating solution W Substrate W1 Surface to be plated R Resistor A1 Substrate region A2 Anode region S1 Gap 5 Plating tank 10 Anode 20 Power supply 30 Plating unit 40 Overflow tank 50 Substrate holder 60 Resistor holder 61 Opening 70 Temperature Adjustment unit 80 Temperature adjustment unit 170 Seal 180 Plating solution distribution mechanism 181 Plating solution injection pipe 183 (183A, 183B, 183C, 183D) Plating solution injection port 190 Switching mechanism 210 Plating solution discharge part (plating solution discharge port)
220 Partition member (partition plate)
240 Clamper 247 Stopper 250 Plating solution circulation system 260 Plating solution circulation system 270 Temperature control means 280 Temperature control means

Claims (11)

めっき液を保持し、このめっき液中に基板と抵抗体とアノードとをこの順番で収納し前記基板とアノード間に通電することで基板の被めっき面にめっきを施すめっきユニットと、このめっきユニットを内部に収納するオーバーフロー槽とを有するめっき槽と、
前記基板を保持して基板の被めっき面を前記めっき液に接触させる基板ホルダと、
前記めっきユニット内に保持されるめっき液をアノード側と基板側に遮断するように設置され、前記抵抗体を保持する開口部を有する抵抗体ホルダと、
前記アノードと前記基板の間の電気経路のうち前記抵抗体を経由しない電気経路を遮断するシールと、
前記基板と前記抵抗体との間の隙間にめっき液を噴射してこの隙間にめっき液を流通させる複数のめっき液噴射口を有するめっき液流通機構と、
前記めっきユニット内の抵抗体及び抵抗体ホルダで区画されたアノード領域及び基板領域内にそれぞれめっき液を循環させるめっき液循環系と、を具備し、
さらに前記オーバーフロー槽に、前記アノード領域からオーバーフローするめっき液と、基板領域からオーバーフローするめっき液とを遮断する仕切り部材を設けたことを特徴とするめっき装置。
A plating unit for holding a plating solution, storing a substrate, a resistor, and an anode in this order in this order and energizing between the substrate and the anode to plate the surface to be plated, and this plating unit A plating tank having an overflow tank for storing the inside,
A substrate holder for holding the substrate and bringing the plating surface of the substrate into contact with the plating solution;
A resistor holder that is installed to block the plating solution held in the plating unit on the anode side and the substrate side, and has an opening for holding the resistor;
A seal that blocks an electrical path that does not pass through the resistor among electrical paths between the anode and the substrate;
A plating solution distribution mechanism having a plurality of plating solution injection ports for injecting a plating solution into a gap between the substrate and the resistor and distributing the plating solution in the gap;
A plating solution circulation system for circulating a plating solution in each of an anode region and a substrate region defined by a resistor and a resistor holder in the plating unit, and
Furthermore, the plating apparatus characterized by providing the said overflow tank with the partition member which interrupts | blocks the plating solution which overflows from the said anode area | region, and the plating solution which overflows from a board | substrate area | region.
前記めっき液流通機構は、前記めっき液噴射口による前記基板と前記抵抗体の間の隙間へのめっき液の噴射と、前記隙間に満たされためっき液の排出により、この隙間にめっき液を流通させる構成であることを特徴とする請求項1に記載のめっき装置。   The plating solution distribution mechanism distributes the plating solution into the gap by spraying the plating solution into the gap between the substrate and the resistor through the plating solution injection port and discharging the plating solution filled in the gap. The plating apparatus according to claim 1, wherein the plating apparatus is configured to perform the above-described configuration. 前記複数のめっき液噴射口は、前記抵抗体ホルダの開口部の周囲または前記基板の外周部に沿って配置されていることを特徴とする請求項1又は2に記載のめっき装置。   3. The plating apparatus according to claim 1, wherein the plurality of plating solution ejection ports are arranged around an opening of the resistor holder or along an outer peripheral portion of the substrate. 前記めっき液噴射口は、このめっき液噴射口から噴射されるめっき液が、前記基板ホルダに保持された基板の被めっき面の中央に向かって直線状又は扇状に広がって流れるように構成されていることを特徴とする請求項1乃至3の内の何れかに記載のめっき装置。   The plating solution spray port is configured such that the plating solution sprayed from the plating solution spray port flows linearly or in a fan shape toward the center of the plated surface of the substrate held by the substrate holder. The plating apparatus according to any one of claims 1 to 3, wherein: 前記めっき液流通機構は、前記複数のめっき液噴射口を切り替えてこれら複数のめっき液噴射口の全部又は一部からめっき液を噴射させる切替機構を有することを特徴とする請求項1乃至4の内の何れかに記載のめっき装置。   5. The plating solution distribution mechanism according to claim 1, further comprising a switching mechanism for switching the plurality of plating solution injection ports to inject the plating solution from all or a part of the plurality of plating solution injection ports. The plating apparatus in any one of. 前記基板ホルダは、クランパにより、抵抗体ホルダに密着して取り付けられていることを特徴とする請求項1乃至5の内の何れかに記載のめっき装置。   6. The plating apparatus according to claim 1, wherein the substrate holder is attached in close contact with the resistor holder by a clamper. 基板ホルダに保持した基板の被めっき面をめっきユニット内のめっき液に接触させて配置すると共に、
前記基板の被めっき面に対向させてアノードを前記めっきユニット内のめっき液に浸漬して配置し、
開口部を有しこの開口部に抵抗体を保持した抵抗体ホルダを、前記基板と前記アノードとの間に、前記めっきユニット内のめっき液を遮断するように配置し、
さらに前記基板と前記抵抗体との間の隙間にめっき液を噴射して流通させる複数のめっき液噴射口を配置し、
前記めっき液噴射口から基板の被めっき面の中央へ向けてめっき液を噴射すると同時に前記隙間に満たされためっき液を隙間の外部に排出しながら、前記アノードと前記基板との間にめっき電流を通電して基板の被めっき面にめっきを行うことを特徴とするめっき方法。
While placing the plating surface of the substrate held in the substrate holder in contact with the plating solution in the plating unit,
The anode is immersed in a plating solution in the plating unit so as to face the surface to be plated of the substrate, and is arranged.
A resistor holder having an opening and holding a resistor in the opening is arranged between the substrate and the anode so as to block the plating solution in the plating unit,
Further, a plurality of plating solution injection ports for injecting and distributing the plating solution into the gap between the substrate and the resistor are arranged,
A plating current is injected between the anode and the substrate while discharging the plating solution filled in the gap from the plating solution injection port toward the center of the surface to be plated of the substrate. The plating method is characterized in that the surface to be plated is plated by energizing the substrate.
前記複数のめっき液噴射口を、前記抵抗体ホルダの開口部の周囲、または前記基板の外周部に沿って配置することを特徴とする請求項7に記載のめっき方法。   The plating method according to claim 7, wherein the plurality of plating solution injection ports are arranged around an opening of the resistor holder or along an outer peripheral portion of the substrate. 前記めっき液噴射口から噴射されるめっき液を、前記基板ホルダに保持された基板の被めっき面の中央に向かって直線状又は扇状に流すことを特徴とする請求項7又は8に記載のめっき方法。   The plating solution according to claim 7 or 8, wherein the plating solution injected from the plating solution injection port is caused to flow linearly or in a fan shape toward the center of the surface to be plated of the substrate held by the substrate holder. Method. めっき液を噴射する前記複数のめっき液噴射口を切り替えることによって、これら複数のめっき液噴射口の全部又は一部からめっき液を噴射させることを特徴とする請求項7乃至9の内の何れかに記載のめっき方法。   The plating solution is sprayed from all or a part of the plurality of plating solution injection ports by switching the plurality of plating solution injection ports for injecting the plating solution. The plating method described in 1. 前記基板ホルダを、クランパにより、前記抵抗体ホルダに一体に密着して取り付けることを特徴とする請求項7乃至10の内の何れかに記載のめっき方法。   The plating method according to claim 7, wherein the substrate holder is attached to the resistor holder in close contact with a clamper.
JP2006305598A 2006-11-10 2006-11-10 Plating device and plating method Pending JP2008121062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006305598A JP2008121062A (en) 2006-11-10 2006-11-10 Plating device and plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305598A JP2008121062A (en) 2006-11-10 2006-11-10 Plating device and plating method

Publications (2)

Publication Number Publication Date
JP2008121062A true JP2008121062A (en) 2008-05-29
JP2008121062A5 JP2008121062A5 (en) 2009-09-10

Family

ID=39506141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305598A Pending JP2008121062A (en) 2006-11-10 2006-11-10 Plating device and plating method

Country Status (1)

Country Link
JP (1) JP2008121062A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263758A (en) * 2008-04-30 2009-11-12 Ebara Corp Electroplating device and electroplating method
JP2013040395A (en) * 2011-08-19 2013-02-28 Ebara Corp Substrate processing device and substrate processing method
CN103938257A (en) * 2014-05-08 2014-07-23 中国科学院宁波材料技术与工程研究所 Multipurpose electrochemical cell device as well as electroplating and analysis method
EP2631935A3 (en) * 2012-02-27 2018-03-21 Ebara Corporation Substrate cleaning apparatus and substrate cleaning method
JP7074937B1 (en) * 2021-06-04 2022-05-24 株式会社荏原製作所 Plating equipment
CN115161611A (en) * 2022-05-20 2022-10-11 成都中科卓尔智能科技集团有限公司 Film coating system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315383A (en) * 1998-03-05 1999-11-16 Ebara Corp Plating device for substrate
JP2000087299A (en) * 1998-09-08 2000-03-28 Ebara Corp Substrate plating apparatus
JP2002241996A (en) * 2001-02-15 2002-08-28 Ibiden Co Ltd Electroplating apparatus, plating solution retaining member for electroplating apparatus and method for producing copper wiring semiconductor
JP2003253488A (en) * 2002-03-07 2003-09-10 Ebara Corp Electrolytic treatment apparatus
JP2004083932A (en) * 2002-08-22 2004-03-18 Ebara Corp Electrolytic treatment apparatus
JP2004250785A (en) * 2003-01-31 2004-09-09 Ebara Corp Electrolytic treatment apparatus and substrate treatment apparatus
JP2005146334A (en) * 2003-11-13 2005-06-09 Ebara Corp Plating method and plating apparatus
JP2005264339A (en) * 2000-04-20 2005-09-29 Toshiba Corp Electrolytic treatment method and apparatus therefor
JP2006519932A (en) * 2003-03-11 2006-08-31 株式会社荏原製作所 Plating equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315383A (en) * 1998-03-05 1999-11-16 Ebara Corp Plating device for substrate
JP2000087299A (en) * 1998-09-08 2000-03-28 Ebara Corp Substrate plating apparatus
JP2005264339A (en) * 2000-04-20 2005-09-29 Toshiba Corp Electrolytic treatment method and apparatus therefor
JP2002241996A (en) * 2001-02-15 2002-08-28 Ibiden Co Ltd Electroplating apparatus, plating solution retaining member for electroplating apparatus and method for producing copper wiring semiconductor
JP2003253488A (en) * 2002-03-07 2003-09-10 Ebara Corp Electrolytic treatment apparatus
JP2004083932A (en) * 2002-08-22 2004-03-18 Ebara Corp Electrolytic treatment apparatus
JP2004250785A (en) * 2003-01-31 2004-09-09 Ebara Corp Electrolytic treatment apparatus and substrate treatment apparatus
JP2006519932A (en) * 2003-03-11 2006-08-31 株式会社荏原製作所 Plating equipment
JP2005146334A (en) * 2003-11-13 2005-06-09 Ebara Corp Plating method and plating apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263758A (en) * 2008-04-30 2009-11-12 Ebara Corp Electroplating device and electroplating method
JP2013040395A (en) * 2011-08-19 2013-02-28 Ebara Corp Substrate processing device and substrate processing method
US9556533B2 (en) 2011-08-19 2017-01-31 Ebara Corporation Substrate processing apparatus and substrate processing method
KR101796326B1 (en) * 2011-08-19 2017-11-09 가부시키가이샤 에바라 세이사꾸쇼 Substrate processing device and substrate processing method
EP2631935A3 (en) * 2012-02-27 2018-03-21 Ebara Corporation Substrate cleaning apparatus and substrate cleaning method
US9972510B2 (en) 2012-02-27 2018-05-15 Ebara Corporation Substrate cleaning apparatus and substrate cleaning method
CN103938257A (en) * 2014-05-08 2014-07-23 中国科学院宁波材料技术与工程研究所 Multipurpose electrochemical cell device as well as electroplating and analysis method
JP7074937B1 (en) * 2021-06-04 2022-05-24 株式会社荏原製作所 Plating equipment
CN115161611A (en) * 2022-05-20 2022-10-11 成都中科卓尔智能科技集团有限公司 Film coating system

Similar Documents

Publication Publication Date Title
JP4434948B2 (en) Plating apparatus and plating method
JP4805141B2 (en) Electroplating equipment
EP0859877B1 (en) Flexible continuous cathode contact circuit for electrolytic plating of c4, tab microbumps, and ultra large scale interconnects
US11591709B2 (en) Apparatus for plating
KR20170026112A (en) Plating apparatus, plating method, and substrate holder
KR101127777B1 (en) Method and apparatus for plating semiconductor wafers
KR101613406B1 (en) Device for vertical galvanic metal deposition on a substrate
JP5763151B2 (en) Electrolytic plating shielding plate and electrolytic plating apparatus having the same
KR102569414B1 (en) Plating apparatus
JP2008121062A (en) Plating device and plating method
US11066755B2 (en) Plating apparatus and plating method
JP2004225129A (en) Plating method and plating device
JP2005097732A (en) Plating apparatus
US20130098769A1 (en) Method for manufacturing semiconductor device, and apparatus for manufacturing semiconductor device
KR20140087649A (en) Plating device for printed circuit board
JP5822212B2 (en) Electrolytic plating equipment
JP2011026708A (en) Plating apparatus
US20060163058A1 (en) Apparatus for plating a semiconductor wafer and plating solution bath used therein
JPS61270889A (en) Plating apparatus
TWI857080B (en) Apparatus for plating
KR20100067823A (en) Electroplating device and fabricating method for the
JP2003253496A (en) Tool and method for electroplating
JP2004162093A (en) Plating device, plating method, and method for producing electronic device
JPH10214838A (en) Semiconductor manufacturing device and method for manufacturing semiconductor device
JP2005330567A (en) Substrate plating method and substrate plating equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090724

A977 Report on retrieval

Effective date: 20090918

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108