Nothing Special   »   [go: up one dir, main page]

JP2008030061A - Mold powder for continuous casting of high aluminum steel - Google Patents

Mold powder for continuous casting of high aluminum steel Download PDF

Info

Publication number
JP2008030061A
JP2008030061A JP2006203975A JP2006203975A JP2008030061A JP 2008030061 A JP2008030061 A JP 2008030061A JP 2006203975 A JP2006203975 A JP 2006203975A JP 2006203975 A JP2006203975 A JP 2006203975A JP 2008030061 A JP2008030061 A JP 2008030061A
Authority
JP
Japan
Prior art keywords
amount
sio
mold powder
mold
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006203975A
Other languages
Japanese (ja)
Other versions
JP4430638B2 (en
Inventor
Koji Miyake
孝司 三宅
Tomoaki Omoto
智昭 尾本
Yukimasa Iwamoto
行正 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Kobe Steel Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd, Kobe Steel Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2006203975A priority Critical patent/JP4430638B2/en
Publication of JP2008030061A publication Critical patent/JP2008030061A/en
Application granted granted Critical
Publication of JP4430638B2 publication Critical patent/JP4430638B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide mold powder which can prevent the generation of shrinkages and cracks of a cast slab and can manufacture the cast slab having excellent surface quality even when a high aluminum steel containing 0.1% or more of dissolved aluminum is manufactured by continuous casting process. <P>SOLUTION: The mold powder for continuously casting the steel containing 0.1% or more of dissolved aluminum is composed of 35 to 60% of T-CaO, 5 to 20% of SiO<SB>2</SB>, 15 to 30% of Al<SB>2</SB>O<SB>3</SB>, 0.2 to 1.0% of MgO, 7 to 13% of Li<SB>2</SB>O, 7.0 to 13% of F, 10.5 to 14% of C, and unavoidable impurity, and satisfies the expression; 2.5≤[T-CaO]/[SiO<SB>2</SB>]≤12.0, where [T-CaO] and [SiO<SB>2</SB>] show the contents (mass%) of T-CaO and SiO<SB>2</SB>in the mold powder, respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高アルミニウム鋼、殊に溶存Al量が0.1質量%以上である鋼の連続鋳造に用いられるモールドパウダーに関するものである。   The present invention relates to a mold powder used for continuous casting of high aluminum steel, particularly steel having a dissolved Al content of 0.1% by mass or more.

鋼の連続鋳造では、良好な表面品質の鋳片を製造するために、モールドパウダーが鋳型内の溶鋼表面上に添加される。これは、溶鋼からの熱で滓化溶融し、溶融スラグ層を形成し、順次鋳型と凝固シェルとの隙間に流入して、消費される。モールドパウダーは、主にCaOとSiO2とからなり、さらに溶融スラグの粘度や凝固温度を調整するためにAl23、MgO、Na2O、FやLi2Oなど、またスラグの溶融速度を調整するためにCなどが加えられている。このモールドパウダーの主な作用としては、(ア)鋳型および凝固シェル間の潤滑性を確保すること、および(イ)凝固シェルから鋳型への抜熱速度を抑えて緩冷却させることなどが挙げられる。 In continuous casting of steel, mold powder is added onto the molten steel surface in the mold to produce a slab of good surface quality. This melts and melts with the heat from the molten steel, forms a molten slag layer, and then flows into the gap between the mold and the solidified shell and is consumed. The mold powder is mainly composed of CaO and SiO 2, and Al 2 O 3 , MgO, Na 2 O, F, Li 2 O, etc. to adjust the viscosity and solidification temperature of the molten slag, and the slag melting rate C or the like is added to adjust the value. The main effects of this mold powder include (a) ensuring lubricity between the mold and the solidified shell, and (b) slow cooling by suppressing the rate of heat removal from the solidified shell to the mold. .

まず上記(ア)で挙げた鋳型および凝固シェル間の潤滑性を確保するためには、鋳型および凝固シェルの隙間にモールドパウダーから得られる溶融スラグが適正量流入するように、その粘度および凝固温度を適正に設定することが重要である。一般的に高速鋳造となるほど、溶融スラグの流入量を確保するため、低粘度のものが使用される。   First, in order to ensure the lubricity between the mold and the solidified shell mentioned in (a) above, its viscosity and solidification temperature so that an appropriate amount of molten slag obtained from the mold powder flows into the gap between the mold and the solidified shell. It is important to set properly. Generally, the higher the casting speed, the lower the viscosity of the molten slag in order to ensure the amount of inflow.

また上記(イ)の緩冷却は、得られる鋳片の表面品質に直結するため重要である。亜包晶鋼のように鋳片表面割れの発生しやすい鋼種では、特に緩冷却が必要とされる。緩冷却のためには、モールドパウダーから得られるスラグフィルム中、特にその鋳型側表面に結晶を晶出させることが有効である。スラグフィルムの鋳型側表面に結晶が晶出すると、フィルムと鋳型との間に凹凸が形成され、この凹凸に含まれる空気層が断熱層として作用するからである。このための結晶として、カスピダイン(3CaO・2SiO2・CaF2)が、一般的に利用されている。 In addition, the slow cooling (b) is important because it directly affects the surface quality of the resulting slab. In the case of a steel type such as hypoperitectic steel, where slab surface cracks are likely to occur, particularly slow cooling is required. For slow cooling, it is effective to crystallize the slag film obtained from the mold powder, particularly on the mold side surface. This is because when crystals crystallize on the mold side surface of the slag film, irregularities are formed between the film and the mold, and the air layer contained in the irregularities acts as a heat insulating layer. As a crystal for this purpose, caspidine (3CaO.2SiO 2 .CaF 2 ) is generally used.

しかし溶存Al量が0.1%以上であるような高アルミニウム鋼の連続鋳造では、(ア)の潤滑性の確保、および(イ)の緩冷却が困難となる。なぜなら高アルミニウム鋼の連続鋳造では、下記式(2):
4Al+3SiO2 → 2Al23+3Si … (2)
で表される化学反応により、SiO2が消費されるからである。そのため溶融スラグ中において塩基度[CaO]/[SiO2]が上昇し、その結果、凝固温度が著しく上昇する。そして鋳型壁面にスラグベアが形成され、溶融スラグの流入が阻害される。そのため潤滑性が損なわれて、凝固シェルと鋳型とが焼き付き、ブレークアウトが発生してしまう。なおスラグベアは、一般に、溶融スラグが冷却され凝固して形成された部分と、溶融スラグないしモールドパウダーが焼結した層が団子状に固まって形成された部分とから構成される。
However, in continuous casting of high aluminum steel having a dissolved Al content of 0.1% or more, it becomes difficult to ensure the lubricity of (a) and to slowly cool (a). Because in the continuous casting of high aluminum steel, the following formula (2):
4Al + 3SiO 2 → 2Al 2 O 3 + 3Si (2)
This is because SiO 2 is consumed by the chemical reaction represented by Therefore, the basicity [CaO] / [SiO 2 ] is increased in the molten slag, and as a result, the solidification temperature is significantly increased. And a slag bear is formed in a mold wall surface, and inflow of molten slag is inhibited. Therefore, lubricity is impaired, the solidified shell and the mold are seized, and breakout occurs. The slag bear is generally composed of a part formed by cooling and solidifying molten slag and a part formed by melting a layer obtained by sintering molten slag or mold powder.

上記式(2)の化学反応により引き起こされる溶融スラグの組成変動は、鋳片の表面品質を悪化させ得る。そこで特許文献1は、連続鋳造用フラックス中において、あらかじめSiO2量を極力低下させ、Al23を適量に調整することより、上記式(2)の反応を抑制して、組成変動を防ぐことを提案している(特許請求の範囲、段落[0009])。しかしSiO2量が少ないと、カスピダインを生成させることが難しく、緩冷却の達成が困難となる。 Variation in the composition of the molten slag caused by the chemical reaction of the above formula (2) can deteriorate the surface quality of the slab. Therefore, in Patent Document 1, in the flux for continuous casting, the amount of SiO 2 is reduced as much as possible, and Al 2 O 3 is adjusted to an appropriate amount, thereby suppressing the reaction of the above formula (2) and preventing composition variation. (Claims, paragraph [0009]). However, when the amount of SiO 2 is small, it is difficult to produce cuspidyne and it is difficult to achieve slow cooling.

また高アルミニウム鋼の連続鋳造では溶融スラグの組成が変動するため、カスピダインを安定して生成させることが困難である。高アルミニウム鋼の連続鋳造においてカスピダインの結晶を晶出させるために、特許文献2は、CaO、SiO2 、Li2O、F、Na2O、K2OおよびAl23含有率が所定の式を満たすような特定の組成を有するモールドパウダーを提案している(特許請求の範囲、段落[0011]および[0017])。 Further, in the continuous casting of high aluminum steel, the composition of the molten slag varies, so that it is difficult to stably generate cuspidyne. In order to crystallize caspidyne crystals in continuous casting of high aluminum steel, Patent Document 2 discloses that CaO, SiO 2 , Li 2 O, F, Na 2 O, K 2 O, and Al 2 O 3 contents are predetermined. A mold powder having a specific composition that satisfies the formula is proposed (claims, paragraphs [0011] and [0017]).

他方、特許文献3は、カスピダインとは異なる複合結晶を生じさせて緩冷却を達成するために、周期律表IA族に属する元素の酸化物を2種類以上含有するモールドパウダーを開示している(特許請求の範囲および段落[0013])。なお特許文献3の発明では、想定する複合結晶として、LiCa2FSiO4やNaCa2FSiO4などを開示しているが、実施例で用いられている周期律表IA族に属する元素の酸化物の中では、Na2O量が最も多いことから、メインの複合結晶としてNaCa2FSiO4を想定していると考えられる(段落[0020]および[0030])。また特許文献3の発明は、モールドパウダーの軟化温度を低減させることが目的であるため、周期律表IA族に属する元素の酸化物を2種類以上含有させることを特徴としている(段落[0024])。
特開平9−85404号公報(特許請求の範囲、段落[0009]) 特開2002−346708号公報(特許請求の範囲、段落[0011]および[0017]) 特開平10−216907号公報(特許請求の範囲、段落[0013]、[0020]、[0024]および[0030])
On the other hand, Patent Document 3 discloses a mold powder containing two or more kinds of oxides of elements belonging to Group IA of the Periodic Table in order to produce a complex crystal different from caspidyne to achieve slow cooling ( Claims and paragraph [0013]). In the invention of Patent Document 3, LiCa 2 FSiO 4 and NaCa 2 FSiO 4 are disclosed as assumed composite crystals, but oxides of elements belonging to Group IA of the periodic table used in the examples are disclosed. Among them, since the amount of Na 2 O is the largest, it is considered that NaCa 2 FSiO 4 is assumed as the main composite crystal (paragraphs [0020] and [0030]). The invention of Patent Document 3 is characterized by containing two or more oxides of elements belonging to Group IA of the periodic table because the purpose is to reduce the softening temperature of the mold powder (paragraph [0024] ).
JP-A-9-85404 (Claims, paragraph [0009]) JP 2002-346708 A (Claims, paragraphs [0011] and [0017]) JP-A-10-216907 (claims, paragraphs [0013], [0020], [0024] and [0030])

上記のように従来技術では、鋼(殊に高アルミニウム鋼)の連続鋳造で表面品質に優れた鋳片を製造するために、様々なモールドパウダーが提案されている。しかし技術分野では、さらなる改良が絶えず求められる。従って本発明の目的は、溶存Al量が0.1%以上である高アルミニウム鋼を連続鋳造する場合でも、鋳片表面の凹みや割れの発生を防止して、表面品質に優れた鋳片を製造できるモールドパウダーを提供することにある。   As described above, in the prior art, various mold powders have been proposed in order to produce a slab excellent in surface quality by continuous casting of steel (particularly high aluminum steel). However, further improvements are continually required in the technical field. Therefore, the object of the present invention is to prevent the occurrence of dents and cracks on the surface of the slab, even when continuously casting high aluminum steel having a dissolved Al content of 0.1% or more, and to produce a slab having excellent surface quality. The object is to provide a mold powder that can be manufactured.

上記目的を達成し得た本発明のモールドパウダーとは、
T−CaO:35〜60%(質量%の意味、以下同じ)、
SiO2:5〜20%、
Al23:15〜30%、
MgO:0.2〜1.0%、
Li2O:7〜13%、
F:7.0〜13%、
C:10.5〜14%、
および不可避不純物からなり、
下記式(1):
2.5≦[T−CaO]/[SiO2]≦12.0 … (1)
〔式中、[T−CaO]および[SiO2]は、それぞれ、T−CaOおよびSiO2のモールドパウダー中の含有量(質量%)を表す。〕
を満たすことを特徴とする、溶存Al量が0.1%以上である鋼を連続鋳造するためのモールドパウダーである。
The mold powder of the present invention that can achieve the above-mentioned object is:
T-CaO: 35 to 60% (meaning mass%, the same shall apply hereinafter),
SiO 2 : 5 to 20%,
Al 2 O 3: 15~30%,
MgO: 0.2-1.0%,
Li 2 O: 7-13%
F: 7.0 to 13%
C: 10.5-14%
And consisting of inevitable impurities
Following formula (1):
2.5 ≦ [T-CaO] / [SiO 2 ] ≦ 12.0 (1)
Wherein, [T-CaO] and [SiO 2], respectively, represent the content in the mold powder of T-CaO and SiO 2 (mass%). ]
A mold powder for continuously casting steel having a dissolved Al content of 0.1% or more.

本発明のモールドパウダーを連続鋳造に用いると、鋳片表面の凹みや割れを防止して、表面品質に優れた高アルミニウム鋼を製造することができる。   When the mold powder of the present invention is used for continuous casting, dents and cracks on the surface of the slab can be prevented, and high aluminum steel excellent in surface quality can be produced.

亜包晶鋼のように鋳片表面割れの発生しやすい鋼種では、割れを抑制するために、抜熱速度を低下させて、緩冷却することが重要である。そのため従来では、一般的に、モールドパウダーから得られるスラグフィルム中にカスピダイン(3CaO・2SiO2・CaF2)を晶出させて、その鋳型側表面に凹凸(空気による断熱層)を形成させることで、緩冷却を達成していた。しかし高アルミニウム鋼の場合は、組成変動のために、カスピダインを安定して生成させることが困難である。そこで本発明者らは、スラグフィルム中に、カスピダインに代わる結晶を晶出させることを検討した。 In a steel type such as hypoperitectic steel, where slab surface cracks are likely to occur, it is important to cool slowly by decreasing the heat removal rate in order to suppress cracking. Therefore, conventionally, by generally crystallizing caspidine (3CaO · 2SiO 2 · CaF 2 ) in a slag film obtained from mold powder, an unevenness (heat insulation layer by air) is formed on the mold side surface. Was achieving slow cooling. However, in the case of high aluminum steel, it is difficult to stably produce cuspidyne due to composition variation. Accordingly, the present inventors have studied to crystallize crystals instead of cuspidine in a slag film.

しかし緩冷却のために、ダイカルシウムシリケート(2CaO・SiO2)、メイエナイト(12CaO・7Al23)およびゲーレナイト(2CaO・SiO2・Al23)といった結晶を晶出させると、鋳型銅板温度の変動が大きくなる問題があり、また鋳片の凹みや割れの防止にも有効ではない。これらは、粗大な結晶としてスラグフィルム中で不均一に晶出するため、鋳型側の表面に不均一な凹凸(空気層)を形成し、その結果、抜熱速度にバラツキが生ずる。そうすると凝固シェルの厚みが不均一になるため、変態収縮で、鋳片表面に凹みや割れが発生すると考えられる。 However, when crystals such as dicalcium silicate (2CaO · SiO 2 ), mayenite (12CaO · 7Al 2 O 3 ) and gelenite (2CaO · SiO 2 · Al 2 O 3 ) are crystallized for slow cooling, the temperature of the mold copper plate There is a problem that the fluctuation of the slab becomes large, and it is not effective in preventing dents and cracks in the slab. Since these crystallize non-uniformly in the slag film as coarse crystals, non-uniform unevenness (air layer) is formed on the surface on the mold side, and as a result, the heat extraction rate varies. Then, since the thickness of the solidified shell becomes non-uniform, it is considered that dents and cracks are generated on the slab surface due to transformation shrinkage.

そこで鋭意検討した結果、カスピダインの代わりに、LiAlO2をスラグフィルム中に晶出させることで、鋳片の凹みや割れを有効に防止できることを見出した。LiAlO2を晶出させることにより、鋳片の凹みや割れを防止できる正確なメカニズムは不明であるが、次のように推定できる。 As a result of intensive studies, it was found that dents and cracks in the slab can be effectively prevented by crystallizing LiAlO 2 in the slag film instead of caspidine. The exact mechanism by which LiAlO 2 is crystallized to prevent slab dents and cracks is unknown, but can be estimated as follows.

LiAlO2は、スラグフィルムの鋳型側表面に、微細な結晶として均一に晶出するため、均一な空気層が形成される。その結果、均一な抜熱が達成され、鋳型銅板温度の変動が小さく、また均一な緩冷却により均一な厚みの凝固シェルが形成されて、変態収縮による鋳片の凹凸や割れも抑制されると考えられる。但し、本発明はこのような推定メカニズムに限定されない。 Since LiAlO 2 crystallizes uniformly as fine crystals on the mold side surface of the slag film, a uniform air layer is formed. As a result, uniform heat removal is achieved, fluctuations in the mold copper plate temperature are small, uniform solidified shells are formed by uniform slow cooling, and unevenness and cracks in the slab due to transformation shrinkage are suppressed. Conceivable. However, the present invention is not limited to such an estimation mechanism.

本発明のモールドパウダーは、カスピダインの代わりにLiAlO2を晶出させるために、各成分量および塩基度[T−CaO]/[SiO2]が、適正範囲に調整されていることを特徴とする。さらに溶融スラグ(モールドパウダー)の凝固温度を適正範囲に調整して、潤滑性を確保するという観点から、各成分組成が適正範囲に調整されていることも、本発明のモールドパウダーの特徴である。以下、本発明のモールドパウダー中の各成分量、および塩基度[T−CaO]/[SiO2]を、それぞれ説明する。 The mold powder of the present invention is characterized in that the amount of each component and the basicity [T-CaO] / [SiO 2 ] are adjusted to an appropriate range in order to crystallize LiAlO 2 instead of caspidine. . Further, from the viewpoint of ensuring lubricity by adjusting the solidification temperature of molten slag (mold powder) to an appropriate range, it is also a feature of the mold powder of the present invention that each component composition is adjusted to an appropriate range. . Hereinafter, the amount of each component in the mold powder of the present invention and the basicity [T-CaO] / [SiO 2 ] will be described.

〈T−CaO:35〜60%〉
本発明において「T−CaO」とは、モールドパウダー中に含まれる全てのCaを、CaOに換算した際のCaO量(質量%)を表す。モールドパウダー中のT−CaO量は、35%以上、好ましくは38%以上、より好ましくは40%以上であり、60%以下、好ましくは55%以下、より好ましくは50%以下である。T−CaO量が35%未満であると、相対的にSiO2量が増加し、LiAlO2よりもゲーレナイト(2CaO・SiO2・Al23)が生成しやすくなる。逆にT−CaO量が60%を超えると、相対的にLi2O量が低下してLiAlO2が生成しにくくなり、またメイエナイト(12CaO・7Al23)の粗大な結晶が優先的に晶出する。さらに溶融スラグの凝固温度が高くなりすぎるおそれがある。
<T-CaO: 35-60%>
In the present invention, “T-CaO” represents the CaO amount (% by mass) when all Ca contained in the mold powder is converted to CaO. The amount of T-CaO in the mold powder is 35% or more, preferably 38% or more, more preferably 40% or more, 60% or less, preferably 55% or less, more preferably 50% or less. When the amount of T-CaO is less than 35%, the amount of SiO 2 is relatively increased, and gehlenite (2CaO · SiO 2 · Al 2 O 3 ) is more easily generated than LiAlO 2 . On the other hand, when the amount of T-CaO exceeds 60%, the amount of Li 2 O is relatively reduced and LiAlO 2 is hardly formed, and coarse crystals of mayenite (12CaO · 7Al 2 O 3 ) are preferentially used. Crystallize. Furthermore, the solidification temperature of the molten slag may become too high.

〈SiO2:5〜20%〉
SiO2量は、5%以上、好ましくは6%以上、より好ましくは7%以上であり、20%以下、好ましくは17%以下、より好ましくは14%以下である。ガラス形成化合物であるSiO2量が少ないと、液相の溶融スラグから粗大な結晶が晶出しやすくなる。そしてLiAlO2は、一般に介在物の融点を低下させるLiO2から構成されることから、メイエナイト(12CaO・7Al23)などと比べて、その融点はかなり低いと推定される。そのためSiO2量が5質量%未満であると、LiAlO2よりも融点が高く、且つSiO2を含まないメイエナイトの粗大な結晶が優先的に生成し、その結果、スラグフィルムの鋳型側表面に不均一な凹凸が形成されると考えられる。また凝固温度も上昇し、潤滑性が損なわれて、スラグベアが生成しやすくなる。逆にSiO2量が20%を超えても、SiO2から構成されるゲーレナイト(2CaO・SiO2・Al23)やダイカルシウムシリケート(2CaO・SiO2)が多く生成する。
<SiO 2: 5~20%>
The amount of SiO 2 is 5% or more, preferably 6% or more, more preferably 7% or more, 20% or less, preferably 17% or less, more preferably 14% or less. When the amount of SiO 2 that is a glass-forming compound is small, coarse crystals are easily crystallized from the liquid phase molten slag. Since LiAlO 2 is generally composed of LiO 2 that lowers the melting point of inclusions, it is estimated that its melting point is considerably lower than that of mayenite (12CaO · 7Al 2 O 3 ). Therefore, if the amount of SiO 2 is less than 5% by mass, coarse crystals of mayenite having a melting point higher than that of LiAlO 2 and not containing SiO 2 are preferentially formed. It is thought that uniform unevenness is formed. In addition, the solidification temperature rises, the lubricity is impaired, and slag bear is easily generated. Also the amount of SiO 2 exceeds 20% Conversely, gehlenite composed of SiO 2 (2CaO · SiO 2 · Al 2 O 3) and Dicalcium silicate (2CaO · SiO 2) is more produced.

〈Al23:15〜30%〉
Al23量は、15%以上、好ましくは16%以上、より好ましくは17%以上であり、30%以下、好ましくは28%以下、より好ましくは26%以下である。Al23を15%以上という高濃度で含有させておくことにより、LiAlO2が形成されやすくなる。またモールドパウダー中のAl23量が15%以上であると、溶融スラグ中のAl23濃度は飽和状態に近くなり、上記式(2)の反応を抑制して、溶融スラグの組成、殊にSiO2量を適正範囲に維持することができる。なおAl23量が15%未満であると、Al23成分を含まないダイカルシウムシリケート(2CaO・SiO2)の粗大な結晶が形成されやすくなり、抜熱速度にバラツキが生じて、鋳片表面の品質に悪影響を及ぼすことがある。しかし逆にAl23量が30%を超えると、メイエナイト(12CaO・7Al23)が生成しやすくなり、また溶融スラグの凝固温度が上昇しすぎて、適正な潤滑性を確保することが困難になる。
<Al 2 O 3: 15~30% >
The amount of Al 2 O 3 is 15% or more, preferably 16% or more, more preferably 17% or more, and 30% or less, preferably 28% or less, more preferably 26% or less. By containing Al 2 O 3 at a high concentration of 15% or more, LiAlO 2 is easily formed. Further, if the Al 2 O 3 content in the mold powder is 15% or more, the Al 2 O 3 concentration in the molten slag becomes close to saturation, and the reaction of the above formula (2) is suppressed, and the composition of the molten slag In particular, the amount of SiO 2 can be maintained within an appropriate range. If the amount of Al 2 O 3 is less than 15%, coarse crystals of dicalcium silicate (2CaO · SiO 2 ) that does not contain an Al 2 O 3 component are likely to be formed, resulting in variations in the heat removal rate. It may adversely affect the quality of the slab surface. On the other hand, if the amount of Al 2 O 3 exceeds 30%, mayenite (12CaO · 7Al 2 O 3 ) is likely to be formed, and the solidification temperature of the molten slag will rise too much to ensure proper lubricity. Becomes difficult.

〈MgO:0.2〜1.0%〉
MgO量は、0.2%以上、好ましくは0.3%以上、より好ましくは0.4%以上であり、1.0%以下、好ましくは0.9%以下、より好ましくは0.8%以下である。MgOは、スラグフィルム中で結晶が晶出するための核として作用する。そのためMgO量が1.0%を超えると、核が多くなりすぎて結晶の晶出を適切に制御できなくなり、殊にモールドパウダー組成によっては、ダイカルシウムシリケート(2CaO・SiO2)などが優先的に晶出する場合がある。一方、MgO量が0.2%未満であると、結晶の核が少なすぎるため、低温の平衡温度に達するまでは結晶が充分に晶出せず、殊に溶鋼が高温である鋳型メニスカス直下では、緩冷却が達成されにくくなる。また平衡温度に達すると、粗大な結晶が一度に晶出するため、抜熱速度にバラツキが生じる。
<MgO: 0.2 to 1.0%>
The amount of MgO is 0.2% or more, preferably 0.3% or more, more preferably 0.4% or more, 1.0% or less, preferably 0.9% or less, more preferably 0.8%. It is as follows. MgO acts as a nucleus for crystallizing in the slag film. Therefore, if the MgO content exceeds 1.0%, the number of nuclei becomes too large to control the crystallization of crystals properly, and in particular, depending on the mold powder composition, dicalcium silicate (2CaO · SiO 2 ) is preferential. May crystallize. On the other hand, if the amount of MgO is less than 0.2%, the number of crystal nuclei is too small, so that the crystal does not crystallize sufficiently until the low temperature equilibrium temperature is reached. Slow cooling is difficult to achieve. Also, when the equilibrium temperature is reached, coarse crystals are crystallized at a time, resulting in variations in the heat removal rate.

〈Li2O:7〜13%〉
Li2O量は、7%以上、好ましくは7.5%以上、より好ましくは8.0%以上であり、13%以下、好ましくは12%以下、より好ましくは11%以下である。Li2O量が7%未満であると、充分な量のLiAlO2を晶出させることが難しく、また溶融スラグの凝固温度および粘度が上昇して、充分な潤滑性を確保できない場合がある。逆にLi2O量が13%を超えても、LiAlO2が晶出する最適範囲から外れて、その晶出量が低下し、緩冷却が達成されない場合がある。さらに溶融スラグの粘度が大きく低下して、溶融スラグが局所的に過剰流入したり、脈動が生じて、連続鋳造の安定操業に悪影響を及ぼすことがある。
<Li 2 O: 7~13%>
The amount of Li 2 O is 7% or more, preferably 7.5% or more, more preferably 8.0% or more, and 13% or less, preferably 12% or less, more preferably 11% or less. If the amount of Li 2 O is less than 7%, it is difficult to crystallize a sufficient amount of LiAlO 2 , and the solidification temperature and viscosity of the molten slag increase, so that sufficient lubricity may not be ensured. On the other hand, even if the Li 2 O content exceeds 13%, the LiAlO 2 may deviate from the optimum range for crystallization, the crystallization amount may decrease, and slow cooling may not be achieved. Further, the viscosity of the molten slag is greatly reduced, and the molten slag may locally flow excessively or pulsate, which may adversely affect the stable operation of continuous casting.

〈F:7.0〜13%〉
F量は、7.0%以上、好ましくは7.5%以上、より好ましくは8.0%以上であり、13%以下、好ましくは12%以下、より好ましくは11%以下である。F量が7%未満であると、溶融スラグの凝固温度および粘度が上昇し、潤滑性を確保できなくなる場合がある。一方、Fは結晶晶出を抑制する作用を有するため、F量が過剰であると、溶融スラグの鋳型側表面に充分な結晶を晶出させることができず、緩冷却を達成することが困難になる。殊にF量が13%を超えると、LiAlO2の晶出量が急激に低減する。
<F: 7.0 to 13%>
The F amount is 7.0% or more, preferably 7.5% or more, more preferably 8.0% or more, and 13% or less, preferably 12% or less, more preferably 11% or less. If the F content is less than 7%, the solidification temperature and viscosity of the molten slag increase, and lubricity may not be ensured. On the other hand, since F has an action of suppressing crystal crystallization, if the amount of F is excessive, sufficient crystals cannot be crystallized on the mold side surface of the molten slag, and it is difficult to achieve slow cooling. become. In particular, when the amount of F exceeds 13%, the crystallization amount of LiAlO 2 is drastically reduced.

〈C:10.5〜14%〉
本発明で規定するC量は、モールドパウダー中に含まれる全てのC量を表す。即ち本発明のC量は、モールドパウダーの原料として添加されるような、単体の炭素量(遊離C量)と、例えばLi2O原料として添加されるLi2CO3などの化合物中の炭素量との合計を表す。モールドパウダー中のC量は、10.5%以上、好ましくは11.0%以上、より好ましくは11.5%以上であり、14%以下、好ましくは13.5%以下、より好ましくは13%以下である。C量が10.5%未満であると、モールドパウダーの溶融速度が大きくなりすぎて、流入過多となり、不均一流入が生ずる。その結果、鋳片の縦割れが発生しやすくなる。逆にC量が14%を超えると、溶融速度が小さくなりすぎて、充分なスラグフィルムの厚みが確保できなくなる。その結果、工業生産上で不可避的に発生する鋳型内の湯面変動の際に、スラグフィルムの膜切れを起こし、焼付きや、溶鋼が直接鋳型に接することによる急冷のために、鋳片の表面品質が劣化する。
<C: 10.5-14%>
The amount of C specified in the present invention represents all the amount of C contained in the mold powder. That C content of the present invention, such as is added as a raw material for mold powder, carbon content alone (free C amount) and, for example, the amount of carbon compounds in such Li 2 CO 3 added as Li 2 O feed And the total. The amount of C in the mold powder is 10.5% or more, preferably 11.0% or more, more preferably 11.5% or more, 14% or less, preferably 13.5% or less, more preferably 13%. It is as follows. If the amount of C is less than 10.5%, the melting rate of the mold powder becomes too high, resulting in excessive inflow and non-uniform inflow. As a result, the vertical crack of the slab is likely to occur. On the other hand, if the amount of C exceeds 14%, the melting rate becomes too low to ensure a sufficient thickness of the slag film. As a result, slag film breakage occurs when the molten metal level in the mold inevitably occurs in industrial production, causing seizure and rapid cooling due to direct contact of the molten steel with the mold. Surface quality is degraded.

本発明のモールドパウダーは、上記成分および不可避不純物からなる。なお一般的なモールドパウダーには、粘度や凝固温度を低減させるために、Na2OやK2Oが添加されているが、本発明のモールドパウダーは、これらを含有しないことも特徴とする。なぜなら高アルミニウム鋼の連続鋳造では、下記の反応式(3)および(4):
2Al+3Na2O → Al23+6Na … (3)
2Al+3K2O → 2Al23+6K … (4)
で示される化学反応が起こるため、Na2OやK2Oが消費されて、これらの作用が充分に発揮されず、逆に本発明が想定する以上のAl23が生成して、溶融スラグの凝固温度などに悪影響を及ぼすからである。またNa2OやK2Oを添加すると、モールドパウダーの軟化開始温度から溶融温度までの差が広がるため、溶融スラグないしモールドパウダーの焼結層が形成され易くなり、その結果、スラグベアの生成が助長される。さらにNa2Oが存在すると、Na−Al−O結晶が不均一に晶出して、スラグフィルムの凹凸(空気層)にバラツキが生ずることがある。
The mold powder of the present invention comprises the above components and inevitable impurities. In order to reduce the viscosity and the solidification temperature, Na 2 O and K 2 O are added to a general mold powder, but the mold powder of the present invention is also characterized by not containing these. Because, in the continuous casting of high aluminum steel, the following reaction formulas (3) and (4):
2Al + 3Na 2 O → Al 2 O 3 + 6Na (3)
2Al + 3K 2 O → 2Al 2 O 3 + 6K (4)
Therefore, Na 2 O and K 2 O are consumed, and these effects are not fully exhibited. Conversely, Al 2 O 3 more than expected by the present invention is generated and melted. This is because it adversely affects the solidification temperature of the slag. In addition, when Na 2 O or K 2 O is added, the difference from the softening start temperature of the mold powder to the melting temperature widens, so that it becomes easy to form a molten slag or a mold powder sintered layer. Be encouraged. In addition, when Na 2 O is present, Na—Al—O crystals may be crystallized non-uniformly, and unevenness (air layer) of the slag film may occur.

〈2.5≦[T−CaO]/[SiO2]≦12.0〉
塩基度[T−CaO]/[SiO2]は、2.5以上、好ましくは3.0以上、より好ましくは3.5以上であり、12.0以下、好ましくは11.0以下、より好ましくは10.0以下である。塩基度が2.5未満であると、相対的にSiO2量が増加し、LiAlO2よりもダイカルシウムシリケート(2CaO・SiO2)やゲーレナイト(2CaO・SiO2・Al23)が生成しやすくなる。逆に塩基度が12.0を超えても、相対的に、ガラス形成化合物であるSiO2量が減少し、LiAlO2よりも融点が高いと考えられるダイカルシウムシリケート(2CaO・SiO2)、メイエナイト(12CaO・7Al23)やゲーレナイト(2CaO・SiO2・Al23)の粗大な結晶が優先的に生成する。また塩基度が高すぎると、凝固温度が高くなって潤滑性に悪影響を及ぼし得る。
<2.5 ≦ [T-CaO] / [SiO 2 ] ≦ 12.0>
The basicity [T-CaO] / [SiO 2 ] is 2.5 or more, preferably 3.0 or more, more preferably 3.5 or more, 12.0 or less, preferably 11.0 or less, more preferably Is 10.0 or less. When the basicity is less than 2.5, the amount of SiO 2 is relatively increased, and dicalcium silicate (2CaO · SiO 2 ) and gehlenite (2CaO · SiO 2 · Al 2 O 3 ) are generated rather than LiAlO 2. It becomes easy. Conversely, even when the basicity exceeds 12.0, the amount of SiO 2 that is a glass-forming compound is relatively decreased, and dicalcium silicate (2CaO · SiO 2 ), mayenite, which is considered to have a melting point higher than LiAlO 2. Coarse crystals of (12CaO · 7Al 2 O 3 ) and gehlenite (2CaO · SiO 2 · Al 2 O 3 ) are preferentially generated. On the other hand, if the basicity is too high, the coagulation temperature becomes high and the lubricity can be adversely affected.

本発明のモールドパウダー(溶融スラグ)の凝固温度は、好ましくは1050〜1220℃、より好ましくは1050〜1190℃である。凝固温度が1050℃未満であると、結晶が晶出しにくくなり、緩冷却の効果を充分に発揮させることができないおそれがある。一方、凝固温度が1220℃を超えると、スラグベアが生成し、スラグベアによる不均一流入のために、ブレークアウトや鋳片表面の割れが生ずる場合がある。   The solidification temperature of the mold powder (molten slag) of the present invention is preferably 1050 to 1220 ° C, more preferably 1050 to 1190 ° C. If the solidification temperature is lower than 1050 ° C., the crystals are difficult to crystallize, and the effect of slow cooling may not be fully exhibited. On the other hand, when the solidification temperature exceeds 1220 ° C., slag bear is generated, and breakout and cracking of the slab surface may occur due to non-uniform inflow by the slag bear.

連続鋳造する鋼の溶存Al量は、本発明のモールドパウダーの効果を充分に発揮させるために、0.1%以上、好ましくは0.3%以上、より好ましくは0.5%以上であり、2.5%以下、好ましくは2.0%以下、より好ましくは1.7%以下である。ここで鋼の溶存Al量とは、連続鋳造に用いる溶鋼中に溶けているAlの量を表し、この量には、Al23等の化合物として存在しているAl量は含まれない。 The amount of dissolved Al in continuously cast steel is 0.1% or more, preferably 0.3% or more, more preferably 0.5% or more, in order to sufficiently exert the effect of the mold powder of the present invention. It is 2.5% or less, preferably 2.0% or less, and more preferably 1.7% or less. Here, the amount of dissolved Al in the steel represents the amount of Al dissolved in the molten steel used for continuous casting, and this amount does not include the amount of Al present as a compound such as Al 2 O 3 .

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and both are included in the technical scope of the present invention.

垂直曲げ型連続鋳造機を用いて、1ヒート240トンの溶鋼から、Cr−Mo添加鋼を鋳造した。この実施例では、以下の表1に示す組成のモールドパウダーと、C量が0.18%、Si量が0.04%、Mn量が2.1%、Cr、Mo、NiおよびP量が1%以下、溶存Al量が1.6%であり、残部がFeおよび不可避不純物からなる溶鋼とを用いた。連続鋳造におけるモールドサイズは240×1230mmであり、鋳造速度は1.4m/分である。   Using a vertical bending type continuous casting machine, Cr-Mo-added steel was cast from molten steel of 240 tons per heat. In this example, the mold powder having the composition shown in Table 1 below, the amount of C is 0.18%, the amount of Si is 0.04%, the amount of Mn is 2.1%, the amount of Cr, Mo, Ni, and P are 1% or less, the amount of dissolved Al was 1.6%, and the balance was molten steel consisting of Fe and inevitable impurities. The mold size in continuous casting is 240 × 1230 mm, and the casting speed is 1.4 m / min.

Figure 2008030061
Figure 2008030061

モールドパウダーから得られるスラグフィルム中に存在するLiAlO2、カスピダイン(3CaO・2SiO2・CaF2)、ダイカルシウムシリケート(2CaO・SiO2)、メイエナイト(12CaO・7Al23)およびゲーレナイト(2CaO・SiO2・Al23)の量を調べるために、鋳造終了後に鋳型内からスラグフィルムを採取し、X線回折(Cu管球40kV、200mA)で、それぞれの結晶のX線回折強度を測定した。これらのX線回折強度の大小を、表2に示す。 LiAlO 2 present in slag film obtained from mold powder, caspidyne (3CaO · 2SiO 2 · CaF 2 ), dicalcium silicate (2CaO · SiO 2 ), mayenite (12CaO · 7Al 2 O 3 ) and gelenite (2CaO · SiO 2 ) In order to investigate the amount of ( 2 · Al 2 O 3 ), a slag film was taken from the mold after the casting was finished, and the X-ray diffraction intensity of each crystal was measured by X-ray diffraction (Cu tube 40 kV, 200 mA). . Table 2 shows the magnitude of these X-ray diffraction intensities.

Figure 2008030061
Figure 2008030061

潤滑性の指針として、モールドパウダー(溶融スラグ)の凝固温度および消費量を算出した。凝固温度(℃)は、溶融スラグの粘度ηおよび温度Tから算出した。具体的には振動片法により、昇温しながら溶融スラグの粘度ηを連続的に測定し、粘度ηの対数logηを縦軸に、粘度の測定温度Tの逆数1/Tを横軸にとったグラフを作成し、このグラフの変曲点に対応する温度Tを凝固温度として求めた。消費量(kg/m2)は、長さ10mの鋳片が鋳造される毎に鋳型内に添加したモールドパウダー量を測定し、その添加量を鋳造された鋳片の表面積で割ることにより求めた。これらの結果を表3に示す。なお表3に示す消費量の値は、鋳造の最トップおよび最ボトム部の鋳造速度低下部分を除いた値の平均値である。 As a guideline for lubricity, the solidification temperature and consumption of mold powder (molten slag) were calculated. The solidification temperature (° C.) was calculated from the viscosity η and temperature T of the molten slag. Specifically, the viscosity η of the molten slag is continuously measured while raising the temperature by the vibrating piece method, the logarithm log η of the viscosity η is taken on the vertical axis, and the reciprocal 1 / T of the viscosity measurement temperature T is taken on the horizontal axis. The temperature T corresponding to the inflection point of this graph was determined as the solidification temperature. The consumption (kg / m 2 ) is obtained by measuring the amount of mold powder added into the mold every time a 10 m long slab is cast, and dividing the added amount by the surface area of the cast slab. It was. These results are shown in Table 3. In addition, the value of the consumption shown in Table 3 is an average value of values excluding the casting speed reduction portions at the top and bottom of the casting.

緩冷却の指針として、鋳型熱流束(MW/m2)を算出した。鋳型熱流束は、鋳型冷却水の流量と入口出口の温度差とから、鋳型での総抜熱量を求め、これを、鋳型銅板と鋳片との接触面積で割ることにより算出した。熱流束値が1.5MW/m2以上のものを「強冷却」、1.5MW/m2未満のものを「緩冷却」と判定した。この結果を表3に示す。 The mold heat flux (MW / m 2 ) was calculated as a guide for slow cooling. The mold heat flux was calculated by obtaining the total heat removal amount in the mold from the flow rate of the mold cooling water and the temperature difference between the inlet and outlet, and dividing this by the contact area between the mold copper plate and the slab. A sample having a heat flux value of 1.5 MW / m 2 or more was determined as “strong cooling”, and a sample having a heat flux value of less than 1.5 MW / m 2 was determined as “slow cooling”. The results are shown in Table 3.

連続鋳造の安定操業の指針として、鋳型銅板に埋設した熱電対を用いて、一定速度で鋳造した一定区間における温度変動(℃)を測定した。この結果を表3に示す。なお連続鋳造では、温度変動が15℃を超えると、鋳造速度の減速措置、それでも変動が収まらない場合は鋳造停止措置を行う場合がある。   As a guideline for stable operation of continuous casting, the temperature fluctuation (° C.) in a fixed section cast at a constant speed was measured using a thermocouple embedded in a mold copper plate. The results are shown in Table 3. In continuous casting, when the temperature fluctuation exceeds 15 ° C., the casting speed may be reduced, and if the fluctuation still does not stop, the casting stoppage may be taken.

鋳片の表面品質の指針として、凹みおよび割れを評価した。鋳片表面の凹みは、定常状態で鋳造できた部位のスラブを1ヒートから2枚任意に抜き取りし、スラブ広面の表裏面を目視検査して、凹みが認められた部位について凹み深さを測定し、深さが2mm以上の凹みがあるものを、「凹み有り」と評価した。鋳片表面の割れは、鋳片の広面の表面および裏面を目視観察し、長さ100mm以上の割れが1つでも存在するものを、「割れ有り」と評価した。これらの結果を表3に示す。   As an indicator of the surface quality of the slab, dents and cracks were evaluated. As for the dent on the surface of the slab, two slabs of the part that could be cast in a steady state are arbitrarily extracted from one heat, and the front and back surfaces of the wide surface of the slab are visually inspected, and the dent depth is measured at the part where the dent is recognized. And the thing with a dent with a depth of 2 mm or more was evaluated as "there is a dent". The crack on the surface of the slab was evaluated by visually observing the front and back surfaces of the wide surface of the slab, and having at least one crack having a length of 100 mm or more as “cracked”. These results are shown in Table 3.

Figure 2008030061
Figure 2008030061

表1〜3の結果から明らかなように、本発明の要件を満たすモールドパウダーNo.1〜10は、そのスラグフィルム中にカスピダインが形成されなくとも、緩冷却を実現でき、凹みや割れの無い表面品質に優れた鋳片を製造することができる。No.1〜10での緩冷却は、スラグフィルム中のLiAlO2により達成されると考えられる。またNo.1〜10は、その凝固温度が適正範囲内にあり、適正な潤滑性を有していることが分かる。またこれらを用いた連続鋳造では、温度変動が少なく、安定に操業することができる。 As is apparent from the results of Tables 1 to 3, the mold powder No. 1 satisfying the requirements of the present invention. Nos. 1 to 10 can realize slow cooling without producing caspidyne in the slag film, and can produce a slab excellent in surface quality free from dents and cracks. No. Slow cooling at 1-10 is believed to be achieved by LiAlO 2 in the slag film. No. As for 1-10, it turns out that the coagulation | solidification temperature exists in an appropriate range, and has appropriate lubricity. Moreover, in continuous casting using these, there is little temperature fluctuation and it can operate stably.

これらに対して、本発明の要件を満たさないモールドパウダーNo.11〜25を用いた連続鋳造では、以下に記載する理由により、凹みや割れの有る鋳片しか得られなかった。   In contrast, mold powder No. which does not satisfy the requirements of the present invention. In continuous casting using 11 to 25, only a slab having dents and cracks was obtained for the reasons described below.

No.11は、SiO2量が少ないため、メイエナイトが優先的に晶出し、鋳片の割れが発生した。また凝固温度の上昇から、溶融スラグの潤滑性が損なわれて、温度変動も大きくなった。
No.12は、SiO2量が多いため、ゲーレナイトが多く晶出し、均一な緩冷却が達成できず、鋳片表面に凹みや割れが発生した。
No.13は、CaO量が少ないため、ゲーレナイトが多く晶出し、均一な緩冷却が達成できず、鋳片表面に凹みや割れが発生した。
No.14は、CaO量が多いため、メイエナイトが多く晶出し、鋳片の割れが発生した。また凝固温度の上昇から、溶融スラグの潤滑性が損なわれて、温度変動も大きくなった。
No. In No. 11, since the amount of SiO 2 was small, the mayenite crystallized preferentially and cracks in the slab occurred. In addition, due to the increase in the solidification temperature, the lubricity of the molten slag was impaired and the temperature fluctuation increased.
No. Since No. 12 had a large amount of SiO 2 , much gehlenite was crystallized and uniform slow cooling could not be achieved, and dents and cracks occurred on the surface of the slab.
No. In No. 13, since the amount of CaO was small, much gehlenite was crystallized, and uniform slow cooling could not be achieved, and dents and cracks occurred on the surface of the slab.
No. In No. 14, since the amount of CaO was large, a large amount of mayenite was crystallized and cracking of the slab occurred. In addition, due to the increase in the solidification temperature, the lubricity of the molten slag was impaired and the temperature fluctuation increased.

No.15は、Al23量が多くて、メイエナイトなどの粗大な結晶が多く形成されたため、抜熱速度にバラツキが生じ、鋳片表面に凹みや割れが発生した。
No.16は、Al23量が少なくて、ダイカルシウムシリケートの粗大な結晶が多く形成されたため、鋳片表面に凹みや割れが発生した。
No.17は、Li2Oが多いため、LiAlO2晶出の最適範囲から外れて充分な量のLiAlO2が晶出されなかったこと、および溶融スラグの粘度低下により、鋳片表面に凹みや割れが発生した。
No.18は、Li2O量が少ないため、LiAlO2が晶出せず、抜熱速度にバラツキが生じ、鋳片表面に凹みや割れが発生した。
No. No. 15 had a large amount of Al 2 O 3 and a large amount of coarse crystals such as mayenite were formed, resulting in variations in the heat removal rate, and dents and cracks on the slab surface.
No. In No. 16, since the amount of Al 2 O 3 was small and a large amount of coarse crystals of dicalcium silicate were formed, dents and cracks occurred on the surface of the slab.
No. No. 17 has a large amount of Li 2 O, so that a sufficient amount of LiAlO 2 was not crystallized out of the optimal range of LiAlO 2 crystallization, and the slab surface had dents and cracks due to a decrease in the viscosity of the molten slag. Occurred.
No. In No. 18, since the amount of Li 2 O was small, LiAlO 2 was not crystallized, the heat extraction speed varied, and dents and cracks occurred on the surface of the slab.

No.19は、F量が多くて、充分な結晶が晶出されず緩冷却できなかったため、また粘度低下による過剰流入のため、鋳片表面に凹みや割れが発生した。
No.20は、F量が低いため、溶融スラグの凝固温度が上昇し、スラグベアが発生した。その結果、不均一流入により鋳片の縦割れが発生した。
No.21は、MgO量が少なくて粗大な結晶が晶出して、抜熱速度にバラツキが生じ、鋳片表面に凹みや割れが発生した。
No.22は、MgO量が多くて、ダイカルシウムシリケートの粗大な結晶が多く形成されたため、抜熱速度にバラツキが生じ、鋳片表面に凹みや割れが発生した。
No. In No. 19, since the amount of F was large, sufficient crystals were not crystallized and could not be slowly cooled, and excessive inflow due to a decrease in viscosity caused dents and cracks on the slab surface.
No. In No. 20, since the F amount was low, the solidification temperature of the molten slag increased and slag bear was generated. As a result, vertical slabs of the slab occurred due to uneven flow.
No. In No. 21, coarse crystals were crystallized with a small amount of MgO, the heat extraction speed varied, and dents and cracks occurred on the surface of the slab.
No. No. 22 had a large amount of MgO and a large number of coarse crystals of dicalcium silicate were formed, resulting in variations in the heat removal rate, resulting in dents and cracks on the slab surface.

No.23は、Na2OおよびK2Oが存在するため、溶融スラグないしモールドパウダーが焼結した層が多く生成し、その結果、スラグベアが生成した。またNa−Al−O結晶が不均一に晶出したため、抜熱速度のバラツキが生じ、鋳片表面に凹みや割れが生じた。
No.24は、C量が多くて、溶融速度が不充分であるため、スラグフィルムが充分に形成されない部分が生じ、その部分が急冷されて、鋳片表面に割れが発生した。
No.25は、C量が少なくて、溶融速度が増大したため、流入過多および不均一流入が生じ、鋳片表面に凹みや割れが発生した。
No. Since Na 2 O and K 2 O existed in No. 23, many layers of molten slag or mold powder were sintered, and as a result, slag bear was generated. Moreover, since the Na—Al—O crystal was crystallized non-uniformly, the heat extraction rate varied, and the slab surface was dented or cracked.
No. In No. 24, since the amount of C was large and the melting rate was insufficient, a portion where the slag film was not sufficiently formed was generated, the portion was rapidly cooled, and cracks occurred on the surface of the slab.
No. In No. 25, since the amount of C was small and the melting rate increased, excessive inflow and non-uniform inflow occurred, and dents and cracks occurred on the surface of the slab.

Claims (1)

鋼の連続鋳造に用いられるモールドパウダーであって、
T−CaO:35〜60%(質量%の意味、以下同じ)、
SiO2:5〜20%、
Al23:15〜30%、
MgO:0.2〜1.0%、
Li2O:7〜13%、
F:7.0〜13%、
C:10.5〜14%、
および不可避不純物からなり、
下記式(1):
2.5≦[T−CaO]/[SiO2]≦12.0 … (1)
〔式中、[T−CaO]および[SiO2]は、それぞれ、T−CaOおよびSiO2のモールドパウダー中の含有量(質量%)を表す。〕
を満たすことを特徴とする、溶存Al量が0.1%以上である鋼を連続鋳造するためのモールドパウダー。
Mold powder used for continuous casting of steel,
T-CaO: 35 to 60% (meaning mass%, the same shall apply hereinafter),
SiO 2 : 5 to 20%,
Al 2 O 3: 15~30%,
MgO: 0.2-1.0%,
Li 2 O: 7-13%
F: 7.0 to 13%
C: 10.5-14%
And consisting of inevitable impurities
Following formula (1):
2.5 ≦ [T-CaO] / [SiO 2 ] ≦ 12.0 (1)
Wherein, [T-CaO] and [SiO 2], respectively, represent the content in the mold powder of T-CaO and SiO 2 (mass%). ]
A mold powder for continuously casting steel having a dissolved Al content of 0.1% or more.
JP2006203975A 2006-07-26 2006-07-26 Mold powder for continuous casting of high aluminum steel Expired - Fee Related JP4430638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006203975A JP4430638B2 (en) 2006-07-26 2006-07-26 Mold powder for continuous casting of high aluminum steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006203975A JP4430638B2 (en) 2006-07-26 2006-07-26 Mold powder for continuous casting of high aluminum steel

Publications (2)

Publication Number Publication Date
JP2008030061A true JP2008030061A (en) 2008-02-14
JP4430638B2 JP4430638B2 (en) 2010-03-10

Family

ID=39120017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006203975A Expired - Fee Related JP4430638B2 (en) 2006-07-26 2006-07-26 Mold powder for continuous casting of high aluminum steel

Country Status (1)

Country Link
JP (1) JP4430638B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147998A (en) * 2009-12-24 2011-08-04 Jfe Steel Corp Mold powder for continuous casting of steel and continuous casting method
JP2012125826A (en) * 2010-12-17 2012-07-05 Jfe Steel Corp Mold powder for continuous casting and continuous casting method
JP2012206160A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp Continuous casting method
CN102006950B (en) * 2009-07-07 2014-03-12 新日铁住金株式会社 Method for manufacturing continuous casting of steel and method for continuous casting of steel using same
JP2015186813A (en) * 2014-03-26 2015-10-29 新日鐵住金株式会社 MOLD FLUX FOR CONTINUOUS CASTING OF Al-CONTAINING STEEL AND CONTINUOUS CASTING METHOD
WO2017078178A1 (en) * 2015-11-05 2017-05-11 新日鐵住金株式会社 Mold flux for continuous casting and continuous casting method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006950B (en) * 2009-07-07 2014-03-12 新日铁住金株式会社 Method for manufacturing continuous casting of steel and method for continuous casting of steel using same
JP2011147998A (en) * 2009-12-24 2011-08-04 Jfe Steel Corp Mold powder for continuous casting of steel and continuous casting method
JP2012125826A (en) * 2010-12-17 2012-07-05 Jfe Steel Corp Mold powder for continuous casting and continuous casting method
JP2012206160A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp Continuous casting method
JP2015186813A (en) * 2014-03-26 2015-10-29 新日鐵住金株式会社 MOLD FLUX FOR CONTINUOUS CASTING OF Al-CONTAINING STEEL AND CONTINUOUS CASTING METHOD
WO2017078178A1 (en) * 2015-11-05 2017-05-11 新日鐵住金株式会社 Mold flux for continuous casting and continuous casting method
JPWO2017078178A1 (en) * 2015-11-05 2018-09-06 新日鐵住金株式会社 Mold flux for continuous casting and continuous casting method
US11453048B2 (en) 2015-11-05 2022-09-27 Nippon Steel Corporation Mold flux for continuous casting and continuous casting method

Also Published As

Publication number Publication date
JP4430638B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4646849B2 (en) Mold powder for continuous casting of high aluminum steel
CN101745615B (en) Function protecting material of continuous casting crystallizer for large square low-carbon steel
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
JP4932635B2 (en) Continuous casting powder and steel continuous casting method
JP3993623B1 (en) High Al steel continuous casting method
WO2007125871A1 (en) Method of continuous casting of high-aluminum steel and mold powder
JP6169648B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel
JP5703919B2 (en) Mold flux for continuous casting of steel and continuous casting method
JP2017087273A (en) CONTINUOUS CASTING MOLD POWDER FOR Ti-CONTAINING STEEL, AND CONTINUOUS CASTING METHOD
JP6674093B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP4527693B2 (en) Continuous casting method of high Al steel slab
JP6510342B2 (en) Continuous casting powder for Al-containing steel and continuous casting method
JP4010929B2 (en) Mold additive for continuous casting of steel
JP6135081B2 (en) Continuous casting method for medium carbon steel
CN104624998B (en) A kind of especially big round billet peritectic steel function protecting material of continuous casting crystallizer
JP4345457B2 (en) High Al steel high speed casting method
JP4527832B2 (en) Steel continuous casting method
JP4451798B2 (en) Continuous casting method
JP7161035B2 (en) Mold flux and casting method using the same
JP7284397B2 (en) Mold powder for continuous casting
JP4626522B2 (en) Mold powder for continuous casting and continuous casting method for plain steel
JP5693420B2 (en) Continuous casting method
JP2004122139A (en) Method for continuously casting extra-low carbon steel and mold powder for continuous casting
JP2006247744A (en) Continuous casting method for steel
JP2024124883A (en) Continuous casting method for steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees