Nothing Special   »   [go: up one dir, main page]

JP2008098476A - Solid-state imaging apparatus, and imaging apparatus - Google Patents

Solid-state imaging apparatus, and imaging apparatus Download PDF

Info

Publication number
JP2008098476A
JP2008098476A JP2006279733A JP2006279733A JP2008098476A JP 2008098476 A JP2008098476 A JP 2008098476A JP 2006279733 A JP2006279733 A JP 2006279733A JP 2006279733 A JP2006279733 A JP 2006279733A JP 2008098476 A JP2008098476 A JP 2008098476A
Authority
JP
Japan
Prior art keywords
pixels
charge
solid
imaging device
conversion unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006279733A
Other languages
Japanese (ja)
Other versions
JP4341664B2 (en
JP2008098476A5 (en
Inventor
Yoshiharu Kudo
義治 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006279733A priority Critical patent/JP4341664B2/en
Priority to US11/860,192 priority patent/US7916195B2/en
Priority to TW096136479A priority patent/TWI362107B/en
Priority to KR1020070103002A priority patent/KR101398289B1/en
Priority to CN2010101183321A priority patent/CN101777566B/en
Priority to CN2007103061312A priority patent/CN101188245B/en
Priority to CN201010118373A priority patent/CN101777567A/en
Publication of JP2008098476A publication Critical patent/JP2008098476A/en
Publication of JP2008098476A5 publication Critical patent/JP2008098476A5/ja
Application granted granted Critical
Publication of JP4341664B2 publication Critical patent/JP4341664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve optical characteristics and to efficiently array pixels by contriving the arrangement of a charge voltage conversion part and a transistor group. <P>SOLUTION: The solid-state imaging apparatus comprises a plurality of pixels 11 including photoelectric conversion parts 12 for converting an incident light quantity to electric signals and forming an oblique grid array inclined to a scanning direction, and a charge voltage conversion part 13 for converting a signal charge read from the photoelectric conversion part 12 arranged between the two pixels 11A and 11B adjacent to each other in the diagonal direction of the pixels among the plurality of pixels 11 to a voltage. The charge voltage conversion part 13 is shared by the two pixels 11A and 11B, and a set of the transistor group 21 is arranged in a shared block 16 constituted of a pixel pair 14 comprising the two pixels 11A and 11B adjacent each other in the diagonal direction and a pixel pair 14 adjacent to the pixel pair and having wiring 15 connecting the charge voltage conversion parts 13 of the respective pixel pairs 14. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体撮像装置および撮像装置に関する。   The present invention relates to a solid-state imaging device and an imaging device.

近年のデジタルカメラの普及とともに、普及価格帯のカメラでもより高い解像度が要求されるようになってきている。また、デジタルカメラだけでなくビデオカメラ、携帯電話用カメラなどにも高解像度の要求がある。一般的に光学サイズ(固体撮像装置の外寸)は変わらないため多画素化は画素の微細化と同義である。   With the spread of digital cameras in recent years, higher resolutions are required even for cameras with popular prices. In addition to digital cameras, video cameras, mobile phone cameras, and the like are also required to have high resolution. In general, since the optical size (outer dimensions of the solid-state imaging device) does not change, the increase in the number of pixels is synonymous with the miniaturization of pixels.

画素の微細化は、すなわち画素に入る光子数の減少に直結し、これにより量子効率の改善ではカバーできない絶対的な感度の低下が発生する。これはCCDイメージセンサ、CMOSイメージセンサ共に同じである。ただし、一般的にCMOSイメージセンサの方が、メタル配線が高い(厚い)ため集光が難しく、これに伴って感度が低い。   Pixel miniaturization is directly linked to a decrease in the number of photons entering the pixel, thereby causing an absolute sensitivity decrease that cannot be covered by an improvement in quantum efficiency. This is the same for both CCD image sensors and CMOS image sensors. However, in general, a CMOS image sensor is more difficult to condense because the metal wiring is higher (thick), and the sensitivity is lower accordingly.

このような状況に対して、画像処理の観点から解像度の低下を抑制しつつ、感度を上げる技術が提案されている。その技術を図8によって説明する。   In such a situation, a technique for increasing sensitivity while suppressing a decrease in resolution from the viewpoint of image processing has been proposed. This technique will be described with reference to FIG.

図8に示すように、いわゆるハニカム画素配列は、各画素111を斜め正方画素配列にすることで、半分の実画素数でも垂直・水平方向の空間解像度の劣化を抑制できるということがわかっている。同じ有効画素領域で画素数を半分にできるため、単位画素あたりの面積が増し、感度が向上できる。人工空間において垂直方向および水平方向の線が多いことや、画像データがXY座標で表されていることから、この2軸の空間解像度が解像感において重要であり、よってハニカム画素配列は多くの場面で高感度であるといえる。   As shown in FIG. 8, it is known that the so-called honeycomb pixel arrangement can suppress the deterioration of the spatial resolution in the vertical and horizontal directions even if the actual number of pixels is half that of the pixel 111. . Since the number of pixels can be halved in the same effective pixel region, the area per unit pixel increases and the sensitivity can be improved. Since there are many vertical and horizontal lines in the artificial space and the image data is represented by XY coordinates, the spatial resolution of these two axes is important in the sense of resolution. It can be said that the scene is highly sensitive.

しかしながら、ハニカム画素配列は集積化するのには適さない画素配列である。一般的に画像データは垂直、水平の2軸でのデータ配列となっており、正方格子イメージセンサの画素もそれにならった配列となっている。これに伴って制御(駆動・読み出し)も垂直方向および水平方向になっている。一方、ハニカム画素配列では画素が斜め正方格子になっているので制御素子の配列がジグザグになってしまう。   However, the honeycomb pixel array is not suitable for integration. In general, image data has a data array with two axes, vertical and horizontal, and pixels of a square lattice image sensor have an array according to the data array. Along with this, control (driving / reading) is also performed in the vertical and horizontal directions. On the other hand, in the honeycomb pixel arrangement, the pixels are arranged in a diagonal square lattice, so that the arrangement of the control elements becomes zigzag.

例えばCMOSイメージセンサにおいて一般的な正方格子画素配列であれば垂直方向・水平方向の軸それぞれのメタル配線層を変えることにより効率的に配線を行える。それに対してハニカム画素配列では同じ行、もしくは同じ列の画素の間に隣接行、隣接列の画素が入り込むため、配線はジグザグに配置せざるを得ない。このため配線が重なる部分においてシリコン表面に形成されたトランジスタなどの要素への接続が困難となることがある。   For example, in the case of a general square lattice pixel arrangement in a CMOS image sensor, wiring can be performed efficiently by changing the metal wiring layers of the vertical and horizontal axes. On the other hand, in the honeycomb pixel array, the pixels in the adjacent row and the adjacent column enter between the pixels in the same row or the same column, so that the wiring has to be arranged in a zigzag manner. For this reason, it may be difficult to connect to an element such as a transistor formed on the silicon surface in a portion where the wiring overlaps.

ハニカム画素配列は前記のように配線密度が高いことが問題である。したがって配線数を低減することによりメタル開口を大きく保つ必要がある。このためには画素トランジスタの共有が有効である(例えば、特許文献1参照。)。   The honeycomb pixel array has a problem that the wiring density is high as described above. Therefore, it is necessary to keep the metal opening large by reducing the number of wirings. For this purpose, sharing of pixel transistors is effective (for example, see Patent Document 1).

しかしながら特許文献1に開示された技術では、微細画素における特性の劣化を免れない。つまり、特許文献1に開示された技術では、図9(1)に示すように、電荷電圧変換部の転送ゲートTGが画素111の辺部分に配置されており、読み出し特性には優れるものの、集光スポット面積を圧迫するという問題を有する。また、画素間に電荷電圧変換部であるフローティングディフュージョンFDの共有部分を配置したとしても、2画素間で画素トランジスタを共有したのでは、フォトダイオードPD面積を十分に確保することは困難である。   However, the technique disclosed in Patent Document 1 cannot avoid deterioration of characteristics in a fine pixel. That is, in the technique disclosed in Patent Document 1, as shown in FIG. 9A, the transfer gate TG of the charge-voltage conversion unit is arranged in the side portion of the pixel 111, and the readout characteristics are excellent. There is a problem of pressing the light spot area. Further, even if a shared portion of the floating diffusion FD that is a charge-voltage converter is disposed between the pixels, it is difficult to ensure a sufficient photodiode PD area if the pixel transistor is shared between the two pixels.

また、複数の画素が2次元正方配列された画素群では、図9(2)に示すように、共有される電荷電圧変換部であるフローティングディフュージョンFDは、転送ゲートTGを介して画素111の角部に配置されている。斜めに隣り合う二つの画素間で、それらの画素111の角部に転送ゲートTGを配置することにより、画素111の集光中心から転送ゲートTGまでの距離を離すことができ、転送ゲートTGに光が吸収されることによる感度の低下が抑制できる。   Further, in the pixel group in which a plurality of pixels are arranged in a two-dimensional square array, as shown in FIG. 9B, the floating diffusion FD that is a shared charge-voltage conversion unit is connected to the corner of the pixel 111 via the transfer gate TG. It is arranged in the part. By disposing the transfer gate TG between two diagonally adjacent pixels at the corners of the pixels 111, the distance from the condensing center of the pixel 111 to the transfer gate TG can be increased. A decrease in sensitivity due to light absorption can be suppressed.

特開2004−128193号公報JP 2004-128193 A

解決しようとする問題点は、いわゆるハニカム画素配列では、電荷電圧変換部が画素の辺部分に配置しており、読み出し特性には優れるものの、集光スポット面積を圧迫するという問題を有する点であり、また、画素間に電荷電圧変換部である電荷電圧変換部(例えばフローティングディフュージョン:FD)の共有部分を配置したとしても、2画素間で画素トランジスタを共有したのでは、光電変換部(例えばフォトダイオード:PD)の面積を十分に確保することが困難な点である。   The problem to be solved is that in the so-called honeycomb pixel arrangement, the charge-voltage conversion unit is arranged on the side portion of the pixel, and although it has excellent readout characteristics, it has a problem of pressing the condensing spot area. In addition, even if a shared portion of a charge-voltage conversion unit (for example, floating diffusion: FD) that is a charge-voltage conversion unit is arranged between pixels, if a pixel transistor is shared between two pixels, a photoelectric conversion unit (for example, photo It is difficult to ensure a sufficient area of the diode (PD).

本発明は、電荷電圧変換部、転送トランジスタ、増幅トランジスタ、リセットトランジスタ等のトランジスタ群の配置を工夫して、光学的特性を高めるとともに効率的な画素配列を可能にすることを課題とする。   An object of the present invention is to devise the arrangement of transistor groups such as a charge-voltage converter, a transfer transistor, an amplifying transistor, and a reset transistor to improve optical characteristics and enable efficient pixel arrangement.

本発明の固体撮像装置は、入射光量を電気信号に変換する光電変換部を含み、走査方向に対して傾斜した斜め格子配列を成す複数の画素と、前記複数の画素のうち該画素の対角方向に隣接し合う二つの画素間に配置された前記光電変換部から読み出した信号電荷を電圧に変換する電荷電圧変換部とを備え、前記電荷電圧変換部は前記二つの画素に共有されていて、前記対角方向に隣接し合う二つの画素で構成される画素対と該画素対に隣接する画素対とで構成され、前記各画素対の前記電荷電圧変換部を接続した配線を有する共有ブロックに一組のトランジスタ群が配置されていることを特徴とする。   The solid-state imaging device of the present invention includes a photoelectric conversion unit that converts an incident light amount into an electric signal, and includes a plurality of pixels that form an oblique grid array inclined with respect to a scanning direction, and a diagonal of the pixels among the plurality of pixels. A charge-voltage conversion unit that converts a signal charge read from the photoelectric conversion unit disposed between two adjacent pixels in a direction into a voltage, and the charge-voltage conversion unit is shared by the two pixels. A shared block comprising a pixel pair composed of two pixels adjacent to each other in the diagonal direction and a pixel pair adjacent to the pixel pair, and having a wiring connecting the charge-voltage conversion unit of each pixel pair One set of transistor groups is arranged in each.

本発明の固体撮像装置では、画素の対角方向に隣接し合う二つの画素間に前記光電変換部から読み出した信号電荷を電圧に変換する電荷電圧変換部が配置されたことから、高い読み出し特性を得つつ、集光スポット面積が確保される。また2対の画素対と、前記各画素対の前記電荷電圧変換部を接続した配線とを有する共有ブロックを備え、前記共有ブロックに一組のトランジスタ群を配置したことから、4画素間で画素トランジスタを共有する構成となり、光電変換部の受光面積が十分に確保される。なお、2画素では光電変換部の受光面積が十分に確保することが困難であり、また、4画素を越えると電荷電圧変換部(例えばフローティングディフュージョン)容量が増大することにより電荷−電圧変換における変換効率が極端に低下し、電圧検出における精度が劣化する。よって、4画素間で画素トランジスタを共有する構成としている。   In the solid-state imaging device of the present invention, the charge voltage conversion unit that converts the signal charge read from the photoelectric conversion unit into a voltage is disposed between two pixels that are adjacent to each other in the diagonal direction of the pixel. A condensing spot area is ensured while obtaining. In addition, since a shared block having two pixel pairs and a wiring connecting the charge-voltage converters of each pixel pair is provided, and a set of transistor groups is arranged in the shared block, pixels between four pixels The transistor is shared, and the light receiving area of the photoelectric conversion unit is sufficiently secured. In addition, it is difficult to secure a sufficient light receiving area of the photoelectric conversion unit with two pixels, and when the number of pixels exceeds four, the capacitance in the charge voltage conversion unit (for example, floating diffusion) increases, thereby converting in charge-voltage conversion. The efficiency is extremely lowered, and the accuracy in voltage detection is deteriorated. Therefore, the pixel transistor is shared between the four pixels.

本発明の撮像装置は、入射光を集光する集光光学部と、前記集光光学部で集光した光を受光して光電変換する固体撮像装置と、光電変換された信号を処理する信号処理部とを備え、前記固体撮像装置は、入射光量を電気信号に変換する光電変換部を含み、走査方向に対して傾斜した斜め格子配列を成す複数の画素と、前記複数の画素のうち該画素の対角方向に隣接し合う二つの画素間に配置された前記光電変換部から読み出した信号電荷を電圧に変換する電荷電圧変換部とを備え、前記電荷電圧変換部は前記二つの画素に共有されていて、前記対角方向に隣接し合う二つの画素で構成される画素対と該画素対に隣接する画素対とで構成され、前記各画素対の前記電荷電圧変換部を接続した配線を有する共有ブロックに一組のトランジスタ群が配置されていることを特徴とする。   The imaging device of the present invention includes a condensing optical unit that collects incident light, a solid-state imaging device that receives and photoelectrically converts the light collected by the condensing optical unit, and a signal that processes the photoelectrically converted signal The solid-state imaging device includes a photoelectric conversion unit that converts the amount of incident light into an electrical signal, a plurality of pixels that form an oblique grid array that is inclined with respect to a scanning direction, and the pixel among the plurality of pixels A charge-voltage conversion unit that converts a signal charge read from the photoelectric conversion unit disposed between two pixels adjacent to each other in the diagonal direction of the pixel into a voltage, and the charge-voltage conversion unit is connected to the two pixels. Wiring that is composed of a pixel pair composed of two pixels that are shared and are adjacent to each other in the diagonal direction, and a pixel pair that is adjacent to the pixel pair, and that connects the charge-voltage conversion unit of each pixel pair A set of transistors in a shared block having Characterized in that it is location.

本発明の撮像装置では、本願発明の固体撮像装置を用いることから、上記説明したのと同様に、各画素の光電変換部の受光面積が十分に確保される。   In the imaging apparatus of the present invention, since the solid-state imaging apparatus of the present invention is used, the light receiving area of the photoelectric conversion unit of each pixel is sufficiently secured as described above.

本発明の固体撮像装置によれば、各画素の光電変換部の受光面積が十分に確保されるため、解像度を維持しつつ高感度化ができるので、光学的特性を高めるという利点がある。また、4画素間で画素トランジスタを共有する構成としたので、配線が簡略化でき、効率的な画素配置を提供することができる。   According to the solid-state imaging device of the present invention, since the light receiving area of the photoelectric conversion unit of each pixel is sufficiently secured, the sensitivity can be increased while maintaining the resolution, and thus there is an advantage that the optical characteristics are improved. In addition, since the pixel transistor is shared between the four pixels, wiring can be simplified and an efficient pixel arrangement can be provided.

本発明の撮像装置によれば、本願発明の固体撮像装置を用いることから、上記説明したのと同様な効果が得られるとともに、画素特性、例えば高感度化が可能になるという利点がある。   According to the imaging device of the present invention, since the solid-state imaging device of the present invention is used, there are advantages that the same effects as described above can be obtained and that pixel characteristics such as high sensitivity can be achieved.

本発明の固体撮像装置に係る一実施の形態(第1実施例)を、図1の平面レイアウト図および図2の共有ブロックの拡大図によって説明する。図1および図2では、光学的あるいは電気的に特性を最大化するためのアンプ等、トランジスタの配置を示す。   An embodiment (first example) according to the solid-state imaging device of the present invention will be described with reference to a plan layout diagram of FIG. 1 and an enlarged view of a shared block of FIG. 1 and 2 show the arrangement of transistors such as amplifiers for maximizing the characteristics optically or electrically.

図1および図2に示すように、固体撮像装置1には、入射光を電気信号に変換する光電変換部(例えばフォトダイオード)12を有する複数の画素11が備えられている。上記複数の画素11は、隣接する画素に対して行方向もしくは列方向にずらして配列された、いわゆるハニカム画素配列となっている。ここでは、一例として、走査方向に対して斜め45度方向に傾斜した斜め正方格子画素配列とした。上記複数の画素11のうち対角方向に隣接し合う二つの画素11(11A)、11(11B)間に、光電変換部12(12A)、12(12B)から読み出した信号電荷を電圧に変換する電荷電圧変換部13が配置され、この電荷電圧変換部13は上記二つの画素11A、11Bに共有されている。さらに、画素の対角方向(垂直方向もしくは水平方向、図面では垂直方向)に隣接し合う二つの画素11A、11Bで構成される画素対14(14A)とこの画素対14Aに隣接する画素対14(14B)とで構成される2対の画素対と、各画素対14A、14Bの上記電荷電圧変換部13(13A)、31(31B)を接続した制御信号配線15とを有する共有ブロック16を備え、共有ブロック16に一組のトランジスタ群21が配置されている。   As shown in FIGS. 1 and 2, the solid-state imaging device 1 includes a plurality of pixels 11 having a photoelectric conversion unit (for example, a photodiode) 12 that converts incident light into an electrical signal. The plurality of pixels 11 have a so-called honeycomb pixel arrangement in which the pixels 11 are arranged shifted in the row direction or the column direction with respect to adjacent pixels. Here, as an example, an oblique square lattice pixel array inclined in the direction of 45 degrees oblique to the scanning direction is used. The signal charges read from the photoelectric conversion units 12 (12A) and 12 (12B) are converted into voltages between two pixels 11 (11A) and 11 (11B) that are adjacent to each other in the diagonal direction among the plurality of pixels 11. The charge voltage conversion unit 13 is disposed, and the charge voltage conversion unit 13 is shared by the two pixels 11A and 11B. Further, a pixel pair 14 (14A) composed of two pixels 11A and 11B adjacent to each other in the diagonal direction (vertical direction or horizontal direction, vertical direction in the drawing), and a pixel pair 14 adjacent to the pixel pair 14A. (14B) and a common block 16 having a control signal line 15 to which the charge-voltage converters 13 (13A) and 31 (31B) of the pixel pairs 14A and 14B are connected. A pair of transistor groups 21 is arranged in the shared block 16.

上記トランジスタ群21は、例えば、信号増幅手段となる増幅トランジスタTrA、リセットトランジスタTrR、選択トランジスタTrSを有する。すなわち、4画素で1組のトランジスタ群21を有する。そして4行分の画素が1つのブロックに含まれるレイアウトとなっている。また各光電変換部12の転送ゲートTGは光電変換部12の角部に配置されており、垂直方向(光電変換部12の対角方向)に隣接する画素11A、11B間で電荷電圧変換部13のフローティングディフュージョンFDを共有する。また、フローティングディフュージョンFDと光電変換部12との間には転送ゲートTGが設けられている。   The transistor group 21 includes, for example, an amplification transistor TrA, a reset transistor TrR, and a selection transistor TrS that are signal amplification means. That is, one transistor group 21 is formed of four pixels. The layout includes four rows of pixels in one block. The transfer gate TG of each photoelectric conversion unit 12 is arranged at the corner of the photoelectric conversion unit 12, and the charge-voltage conversion unit 13 between the pixels 11 </ b> A and 11 </ b> B adjacent in the vertical direction (diagonal direction of the photoelectric conversion unit 12). Share the floating diffusion FD. A transfer gate TG is provided between the floating diffusion FD and the photoelectric conversion unit 12.

そして、上記共有ブロック16は垂直方向および水平方向に等ピッチで2次元配列されている。また、同時アクセスする上記トランジスタ群21を構成する複数のトランジスタは上記斜め方向に一列に配列されている。一見してわかるとおり、転送ゲートTGがある領域Aとアンプなどトランジスタ群21がある領域Bに明白に分離されていることから、各々の制御用配線が入り組むことなく配線が可能となっている。なお、図面では各配線(転送ゲート配線TG1、転送ゲート配線TG2、リセット配線RST、セレクト配線SEL、転送ゲート配線TG3、転送ゲート配線TG4等)を直線で示しているが、実際には、光電変換部12上を避けるように配置されている。   The shared blocks 16 are two-dimensionally arranged at equal pitches in the vertical and horizontal directions. The plurality of transistors constituting the transistor group 21 to be accessed simultaneously are arranged in a line in the oblique direction. As can be seen at a glance, since the region A where the transfer gate TG is present and the region B where the transistor group 21 such as an amplifier is clearly separated, wiring is possible without complicated control wires. . In the drawing, each line (transfer gate line TG1, transfer gate line TG2, reset line RST, select line SEL, transfer gate line TG3, transfer gate line TG4, etc.) is shown by a straight line. It arrange | positions so that the part 12 top may be avoided.

次に、本発明の固体撮像装置に係る一実施の形態(第2実施例)を、図4の平面レイアウト図によって説明する。   Next, an embodiment (second example) according to the solid-state imaging device of the present invention will be described with reference to a plan layout diagram of FIG.

この第2実施例の固体撮像装置2は、前記第1実施例の固体撮像装置1を改良したものである。上記固体撮像装置1では、前記図1中C部に示すように、光電変換部12の両側にトランジスタ群21、21が配置される部分が生じる。これにより光電変換部12の受光面積の同一化を図ろうとすると、小さい受光面を持つ光電変換部に合わせざるを得ないため、飽和電荷量の低下につながる。また、図3に示すように、一般的なベイヤー配列を45度かたむけたような色配列にすると、画素A、画素Bのように同色の画素でも光電変換部(例えばフォトダイオード)12の配向が異なるという特徴がある。共有構成では光電変換部12の配向によりシェーディングが変わるためシェーディング補正テーブルを色毎に2方向ずつ持つ必要がある。   The solid-state imaging device 2 of the second embodiment is an improvement of the solid-state imaging device 1 of the first embodiment. In the solid-state imaging device 1, as shown in part C in FIG. 1, there are portions where the transistor groups 21 and 21 are arranged on both sides of the photoelectric conversion unit 12. As a result, if the light receiving area of the photoelectric conversion unit 12 is to be equalized, it must be matched with the photoelectric conversion unit having a small light receiving surface, which leads to a decrease in the saturation charge amount. In addition, as shown in FIG. 3, when a general Bayer arrangement is made to have a color arrangement extending 45 degrees, even in pixels of the same color, such as pixels A and B, the orientation of the photoelectric conversion unit (for example, photodiode) 12 is aligned. It is different. In the shared configuration, since shading changes depending on the orientation of the photoelectric conversion unit 12, it is necessary to have a shading correction table for each color in two directions.

そこで、第2実施例の固体撮像装置2では、図4に示すように、単位ブロックの構成は第1の実施例とほぼ同様とする。本第2実施例の特徴は、アンプ、リセットなどのトランジスタ群21が斜め方向に1直線上に配置されていることである。これにより第1実施例の固体撮像装置1の課題であった半導体表面の無効領域を低減し、光電変換部12の受光面積を最大化することが可能となる。また、色配列に関しては、図5に示すように、斜めベイヤー配列でも同色では画素A、画素Bのように同一配向になっており、シェーディングテーブルの数が抑制できる。   Therefore, in the solid-state imaging device 2 of the second embodiment, as shown in FIG. 4, the configuration of the unit block is almost the same as that of the first embodiment. The feature of the second embodiment is that transistor groups 21 such as amplifiers and resets are arranged on a straight line in an oblique direction. As a result, the ineffective area on the semiconductor surface, which is a problem of the solid-state imaging device 1 of the first embodiment, can be reduced, and the light receiving area of the photoelectric conversion unit 12 can be maximized. As for the color arrangement, as shown in FIG. 5, even in the diagonal Bayer arrangement, the same color is the same orientation as the pixel A and the pixel B, and the number of shading tables can be suppressed.

なお、固体撮像装置2のレイアウト構成では、同一行に配置された光電変換部12の読み出し方向が2方向になるため、転送ゲートTGへの制御信号配線15が増すことと、すべての制御配線(転送ゲート配線TG1、転送ゲート配線TG2、リセット配線RST、セレクト配線SEL、転送ゲート配線TG3、転送ゲート配線TG4等)が画素トランジスタ列からなる上記トランジスタ群21の上を通るため、配線が制限されることである。このため、第2実施例の固体撮像装置2では、第1層のメタル配線で同一行の光電変換部12A、12Bの転送ゲートTG、TG同士を局所接続し、さらに第2層のメタル配線で水平方向の配線を行なうことでメタル配線の密度増大を抑制している。この場合、図6に示すように、共有ブロック16が配置され、リセット配線RST、セレクト配線SELは列間で制御線が異なる。   In the layout configuration of the solid-state imaging device 2, the readout directions of the photoelectric conversion units 12 arranged in the same row are two directions, so that the number of control signal wirings 15 to the transfer gate TG is increased and all the control wirings ( The transfer gate line TG1, the transfer gate line TG2, the reset line RST, the select line SEL, the transfer gate line TG3, the transfer gate line TG4, etc.) pass over the transistor group 21 including the pixel transistor array, so that the lines are limited. That is. For this reason, in the solid-state imaging device 2 of the second embodiment, the transfer gates TG and TG of the photoelectric conversion units 12A and 12B in the same row are locally connected by the first-layer metal wiring, and further by the second-layer metal wiring. By performing the horizontal wiring, the increase in the density of the metal wiring is suppressed. In this case, as shown in FIG. 6, the shared block 16 is arranged, and the reset line RST and the select line SEL have different control lines between columns.

本発明の固体撮像装置1、2では、画素の対角方向に隣接し合う二つの画素11(11A)、11(11B)間に光電変換部12(12A)、12(12B)から読み出した信号電荷を電圧に変換する電荷電圧変換部13が配置されたことから、高い読み出し特性を得つつ、集光スポット面積が確保される。また2対の画素対14(14A)、14(14B)と、各画素対14A、14Bの電荷電圧変換部13A、13Bを接続した制御信号配線15とを有する共有ブロック16を備え、この共有ブロック16に一組のトランジスタ群21を配置したことから、4画素間で画素トランジスタを共有する構成となり、光電変換部12の受光面積が十分に確保される。なお、2画素の共有では光電変換部の受光面積が十分に確保することが困難であり、また、4画素を越える共有では電荷電圧変換部(例えばフローティングディフュージョン)容量が増大することにより電荷−電圧変換における変換効率が極端に低下し、電圧検出における精度が劣化する。よって、4画素間で画素トランジスタを共有する構成としている。よって、各画素の光電変換部12の受光面積が十分に確保されるため、解像度を維持しつつ高感度化ができるので、光学的特性を高めるという利点がある。また、4画素間で画素トランジスタを共有する構成としたので、配線が簡略化でき、効率的な画素配置を提供することができる。   In the solid-state imaging devices 1 and 2 of the present invention, signals read from the photoelectric conversion units 12 (12A) and 12 (12B) between two pixels 11 (11A) and 11 (11B) adjacent in the diagonal direction of the pixels. Since the charge-voltage conversion unit 13 for converting the charge into the voltage is arranged, a condensing spot area is ensured while obtaining high reading characteristics. The shared block 16 includes two pairs of pixels 14 (14A) and 14 (14B) and a control signal wiring 15 to which the charge voltage conversion units 13A and 13B of the pixel pairs 14A and 14B are connected. Since a set of transistor groups 21 is arranged in 16, the pixel transistors are shared among the four pixels, and a light receiving area of the photoelectric conversion unit 12 is sufficiently secured. In addition, it is difficult to secure a sufficient light receiving area of the photoelectric conversion unit when sharing two pixels, and charge-voltage is increased due to an increase in charge-voltage conversion unit (for example, floating diffusion) capacitance when sharing more than four pixels. Conversion efficiency in conversion is extremely lowered, and accuracy in voltage detection is deteriorated. Therefore, the pixel transistor is shared between the four pixels. Therefore, since the light receiving area of the photoelectric conversion unit 12 of each pixel is sufficiently secured, the sensitivity can be increased while maintaining the resolution, and thus there is an advantage that the optical characteristics are improved. In addition, since the pixel transistor is shared between the four pixels, wiring can be simplified and an efficient pixel arrangement can be provided.

次に、本発明の撮像装置に係る一実施の形態(実施例)を、図7のブロック図によって説明する。   Next, an embodiment (example) according to the imaging apparatus of the present invention will be described with reference to the block diagram of FIG.

図7に示すように、撮像装置50は、撮像部51に固体撮像装置(図示せず)を備えている。この撮像部51の集光側には像を結像させる結像光学系52が備えられ、また、撮像部51には、それを駆動する駆動回路、固体撮像装置で光電変換された信号を画像に処理する信号処理回路等を有する信号処理部53が接続されている。また上記信号処理部によって処理された画像信号は画像記憶部(図示せず)によって記憶させることができる。このような撮像装置50において、上記固体撮像素子には、前記実施の形態で説明した固体撮像装置1または固体撮像装置2を用いることができる。   As illustrated in FIG. 7, the imaging device 50 includes a solid-state imaging device (not shown) in the imaging unit 51. An imaging optical system 52 that forms an image is provided on the light condensing side of the imaging unit 51, and the imaging unit 51 has an image of a signal that is photoelectrically converted by a driving circuit that drives the imaging unit 51 and a solid-state imaging device. A signal processing unit 53 having a signal processing circuit or the like for processing is connected. The image signal processed by the signal processing unit can be stored by an image storage unit (not shown). In such an imaging device 50, the solid-state imaging device 1 or the solid-state imaging device 2 described in the above embodiment can be used as the solid-state imaging device.

本発明の撮像装置50では、本願発明の固体撮像装置1または固体撮像装置2を用いることから、上記説明したのと同様に、各画素の光電変換部の面積が十分に確保される。よって、画素特性、例えば高感度化が可能になるという利点がある。   Since the imaging device 50 of the present invention uses the solid-state imaging device 1 or the solid-state imaging device 2 of the present invention, the area of the photoelectric conversion portion of each pixel is sufficiently secured as described above. Therefore, there is an advantage that pixel characteristics such as high sensitivity can be achieved.

なお、本発明の撮像装置50は、上記構成に限定されることはなく、固体撮像装置を用いる撮像装置であれば如何なる構成のものにも適用することができる。   The imaging device 50 of the present invention is not limited to the above configuration, and can be applied to any configuration as long as the imaging device uses a solid-state imaging device.

上記固体撮像装置1、2はワンチップとして形成された形態であってもよいし、撮像部と、信号処理部または光学系とがまとめてパッケージングされた撮像機能を有するモジュール状の形態であってもよい。また、本発明は、固体撮像装置のみではなく、撮像装置にも適用可能である。この場合、撮像装置として、高画質化の効果が得られる。ここで、撮像装置は、例えば、カメラや撮像機能を有する携帯機器のことを示す。また「撮像」は、通常のカメラ撮影時における像の撮りこみだけではなく、広義の意味として、指紋検出なども含むものである。   The solid-state imaging devices 1 and 2 may be formed as a single chip, or may be a module-shaped configuration having an imaging function in which an imaging unit and a signal processing unit or an optical system are packaged together. May be. Further, the present invention can be applied not only to a solid-state imaging device but also to an imaging device. In this case, an effect of improving the image quality can be obtained as the imaging device. Here, the imaging device indicates, for example, a camera or a portable device having an imaging function. “Imaging” includes not only capturing an image during normal camera shooting but also includes fingerprint detection in a broad sense.

本発明の固体撮像装置に係る一実施の形態(第1実施例)を示した平面レイアウト図である。1 is a plan layout diagram illustrating an embodiment (first example) according to a solid-state imaging device of the present invention. 共有ブロックの拡大図である。It is an enlarged view of a shared block. 第1実施例の固体撮像装置の色配列例を示した平面レイアウト図である。FIG. 2 is a plan layout diagram illustrating an example of a color arrangement of the solid-state imaging device according to the first embodiment. 本発明の固体撮像装置に係る一実施の形態(第2実施例)を示した平面レイアウト図である。It is the plane layout figure which showed one embodiment (2nd Example) which concerns on the solid-state imaging device of this invention. 第2実施例の固体撮像装置の色配列例を示した平面レイアウト図である。It is the plane layout figure which showed the example of a color arrangement | sequence of the solid-state imaging device of 2nd Example. 第2実施例の固体撮像装置の配線例を示した配線図である。It is the wiring diagram which showed the example of wiring of the solid-state imaging device of 2nd Example. 本発明の撮像装置に係る一実施の形態(実施例)を示したブロック図である。It is the block diagram which showed one Embodiment (Example) which concerns on the imaging device of this invention. 一般的なハニカム画素配列の一例を示した平面レイアウト図である。It is the plane layout figure which showed an example of the general honeycomb pixel arrangement | sequence. 従来の電荷電圧変換部の共有状態の一例を示した平面レイアウト図である。It is the plane layout figure which showed an example of the shared state of the conventional charge voltage conversion part.

符号の説明Explanation of symbols

1…固体撮像装置、11…画素、12…光電変換部、13…電荷電圧変換部、14…画素対、15…信号制御配線、16…共有ブロック、21…トランジスタ群   DESCRIPTION OF SYMBOLS 1 ... Solid-state imaging device, 11 ... Pixel, 12 ... Photoelectric conversion part, 13 ... Charge voltage conversion part, 14 ... Pixel pair, 15 ... Signal control wiring, 16 ... Shared block, 21 ... Transistor group

Claims (6)

入射光量を電気信号に変換する光電変換部を含み、走査方向に対して傾斜した斜め格子配列を成す複数の画素と、
前記複数の画素のうち該画素の対角方向に隣接し合う二つの画素間に配置された前記光電変換部から読み出した信号電荷を電圧に変換する電荷電圧変換部とを備え、
前記電荷電圧変換部は前記二つの画素に共有されていて、
前記対角方向に隣接し合う二つの画素で構成される画素対と該画素対に隣接する画素対とで構成され、前記各画素対の前記電荷電圧変換部を接続した配線を有する共有ブロックに一組のトランジスタ群が配置されている
ことを特徴とする固体撮像装置。
A plurality of pixels including a photoelectric conversion unit that converts an incident light amount into an electrical signal, and forming an oblique grid array inclined with respect to the scanning direction;
A charge-voltage converter that converts a signal charge read from the photoelectric converter disposed between two pixels adjacent to each other in the diagonal direction of the plurality of pixels into a voltage;
The charge-voltage converter is shared by the two pixels,
A common block including a pixel pair composed of two pixels adjacent in the diagonal direction and a pixel pair adjacent to the pixel pair, and having a wiring connecting the charge-voltage converters of the pixel pairs. A solid-state imaging device, wherein a set of transistors is arranged.
前記対角方向に隣接し合う二つの画素で構成される画素対に信号増幅手段が配置されている
ことを特徴とする請求項1記載の固体撮像装置。
2. The solid-state imaging device according to claim 1, wherein a signal amplifying unit is arranged in a pixel pair composed of two pixels adjacent in the diagonal direction.
前記一組のトランジスタ群は、前記光電変換部から前記電荷電圧変換部へ電荷の転送、前記電荷電圧変換部の信号電荷の増幅、前記電荷電圧変換部の信号電荷のリセットを行う
ことを特徴とする請求項1記載の固体撮像装置。
The set of transistors performs transfer of charge from the photoelectric conversion unit to the charge-voltage conversion unit, amplification of signal charge of the charge-voltage conversion unit, and reset of signal charge of the charge-voltage conversion unit. The solid-state imaging device according to claim 1.
前記共有ブロックは垂直方向および水平方向に等ピッチで配列されている
ことを特徴とする請求項3記載の固体撮像装置。
The solid-state imaging device according to claim 3, wherein the shared blocks are arranged at equal pitches in a vertical direction and a horizontal direction.
前記トランジスタ群を構成する複数のトランジスタが斜め方向に一列に配列され、
前記共有ブロックが等ピッチに配列されている
ことを特徴とする請求項3記載の固体撮像装置。
A plurality of transistors constituting the transistor group are arranged in a line in an oblique direction,
The solid-state imaging device according to claim 3, wherein the shared blocks are arranged at an equal pitch.
入射光を集光する集光光学部と、
前記集光光学部で集光した光を受光して光電変換する固体撮像装置と、
光電変換された信号を処理する信号処理部とを備え、
前記固体撮像装置は、
入射光量を電気信号に変換する光電変換部を含み、走査方向に対して傾斜した斜め格子配列を成す複数の画素と、
前記複数の画素のうち該画素の対角方向に隣接し合う二つの画素間に配置された前記光電変換部から読み出した信号電荷を電圧に変換する電荷電圧変換部を備え、
前記電荷電圧変換部は前記二つの画素に共有されていて、
前記対角方向に隣接し合う二つの画素で構成される画素対と該画素対に隣接する画素対とで構成され、前記各画素対の前記電荷電圧変換部を接続した配線を有する共有ブロックに一組のトランジスタ群が配置されている
ことを特徴とする撮像装置。
A condensing optical unit that condenses incident light;
A solid-state imaging device that receives and photoelectrically converts light collected by the condensing optical unit; and
A signal processing unit for processing the photoelectrically converted signal,
The solid-state imaging device
A plurality of pixels including a photoelectric conversion unit that converts an incident light amount into an electrical signal, and forming an oblique grid array inclined with respect to the scanning direction;
A charge-voltage conversion unit that converts a signal charge read from the photoelectric conversion unit disposed between two pixels adjacent to each other in the diagonal direction of the plurality of pixels into a voltage;
The charge-voltage converter is shared by the two pixels,
A common block including a pixel pair composed of two pixels adjacent in the diagonal direction and a pixel pair adjacent to the pixel pair, and having a wiring connecting the charge-voltage converters of the pixel pairs. An image pickup apparatus in which a set of transistors is arranged.
JP2006279733A 2006-10-13 2006-10-13 Solid-state imaging device and imaging device Expired - Fee Related JP4341664B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006279733A JP4341664B2 (en) 2006-10-13 2006-10-13 Solid-state imaging device and imaging device
US11/860,192 US7916195B2 (en) 2006-10-13 2007-09-24 Solid-state imaging device, imaging apparatus and camera
TW096136479A TWI362107B (en) 2006-10-13 2007-09-28 Solid-state imaging device, imaging apparatus and camera
KR1020070103002A KR101398289B1 (en) 2006-10-13 2007-10-12 Solid-state imaging device, imaging apparatus and camera
CN2010101183321A CN101777566B (en) 2006-10-13 2007-10-15 Imaging apparatus and camera
CN2007103061312A CN101188245B (en) 2006-10-13 2007-10-15 Solid-state imaging device, imaging apparatus
CN201010118373A CN101777567A (en) 2006-10-13 2007-10-15 Imaging apparatus and camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279733A JP4341664B2 (en) 2006-10-13 2006-10-13 Solid-state imaging device and imaging device

Publications (3)

Publication Number Publication Date
JP2008098476A true JP2008098476A (en) 2008-04-24
JP2008098476A5 JP2008098476A5 (en) 2008-06-05
JP4341664B2 JP4341664B2 (en) 2009-10-07

Family

ID=39380989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279733A Expired - Fee Related JP4341664B2 (en) 2006-10-13 2006-10-13 Solid-state imaging device and imaging device

Country Status (2)

Country Link
JP (1) JP4341664B2 (en)
CN (1) CN101188245B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301181A (en) * 2007-05-31 2008-12-11 Fujitsu Microelectronics Ltd Solid imaging circuit and camera system
JP2010003869A (en) * 2008-06-20 2010-01-07 Sony Corp Image processing apparatus, image processing method, and manufacturing apparatus
JP2010147965A (en) * 2008-12-22 2010-07-01 Sony Corp Solid-state imaging device and electronic apparatus
JP2013038312A (en) * 2011-08-10 2013-02-21 Fujifilm Corp Mos type solid state image sensor and imaging apparatus
US9287302B2 (en) 2013-12-09 2016-03-15 Kabushiki Kaisha Toshiba Solid-state imaging device
JP2017022612A (en) * 2015-07-13 2017-01-26 日本放送協会 Imaging apparatus, imaging method and control circuit

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9686485B2 (en) * 2014-05-30 2017-06-20 Apple Inc. Pixel binning in an image sensor
US9774801B2 (en) * 2014-12-05 2017-09-26 Qualcomm Incorporated Solid state image sensor with enhanced charge capacity and dynamic range
JP6562675B2 (en) * 2015-03-26 2019-08-21 キヤノン株式会社 Photoelectric conversion device, imaging system, and driving method of photoelectric conversion device
JP6750614B2 (en) * 2015-04-07 2020-09-02 ソニー株式会社 Solid-state image sensor and electronic device
US10893224B2 (en) * 2016-02-29 2021-01-12 Sony Corporation Imaging element and electronic device
KR102489832B1 (en) * 2018-01-12 2023-01-18 삼성전자주식회사 Pixel array included in image sensor and image sensor including the same
JP2020043219A (en) 2018-09-11 2020-03-19 ソニーセミコンダクタソリューションズ株式会社 Circuit board, semiconductor device, and electronic device
CN109738792B (en) * 2018-12-16 2020-06-12 深圳先进技术研究院 SiPM array signal reading method and device and SiPM array module
US11438486B2 (en) 2019-08-26 2022-09-06 Qualcomm Incorporated 3D active depth sensing with laser pulse train bursts and a gated sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492250B2 (en) * 2004-08-11 2010-06-30 ソニー株式会社 Solid-state image sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301181A (en) * 2007-05-31 2008-12-11 Fujitsu Microelectronics Ltd Solid imaging circuit and camera system
JP2010003869A (en) * 2008-06-20 2010-01-07 Sony Corp Image processing apparatus, image processing method, and manufacturing apparatus
US8576311B2 (en) 2008-06-20 2013-11-05 Sony Corporation Image processing apparatus, image processing method and manufacturing apparatus
JP2010147965A (en) * 2008-12-22 2010-07-01 Sony Corp Solid-state imaging device and electronic apparatus
US8638379B2 (en) 2008-12-22 2014-01-28 Sony Corporation Solid-state image pickup device with shared amplifier nearest pixel corresponding to shortest light wavelength and electronic apparatus using the same
JP2013038312A (en) * 2011-08-10 2013-02-21 Fujifilm Corp Mos type solid state image sensor and imaging apparatus
US9287302B2 (en) 2013-12-09 2016-03-15 Kabushiki Kaisha Toshiba Solid-state imaging device
KR101621158B1 (en) 2013-12-09 2016-05-13 가부시끼가이샤 도시바 Solid-state imaging device
JP2017022612A (en) * 2015-07-13 2017-01-26 日本放送協会 Imaging apparatus, imaging method and control circuit

Also Published As

Publication number Publication date
JP4341664B2 (en) 2009-10-07
CN101188245B (en) 2010-11-10
CN101188245A (en) 2008-05-28

Similar Documents

Publication Publication Date Title
JP4341664B2 (en) Solid-state imaging device and imaging device
JP4793042B2 (en) Solid-state imaging device and imaging apparatus
JP4752447B2 (en) Solid-state imaging device and camera
KR101068698B1 (en) Solid state imaging device
KR102545845B1 (en) Semiconductor device and electronic apparatus
US8355069B2 (en) Solid-state image pickup device
KR101696463B1 (en) Solid-state imaging device, signal processing method thereof and image capturing apparatus
JP5537172B2 (en) Solid-state imaging device and electronic apparatus
JP4799594B2 (en) Solid-state imaging device and manufacturing method thereof
JP5793688B2 (en) Solid-state imaging device
JP6026102B2 (en) Solid-state imaging device and electronic device
JP2009038263A (en) Solid-state imaging element, and electronic information apparatus
JP6135677B2 (en) Imaging device and imaging apparatus
JP2011029291A (en) Solid-state imaging device and camera
JP2004186407A (en) Photoelectric converter
JP5422455B2 (en) Solid-state imaging device
JP5789446B2 (en) MOS type solid-state imaging device and imaging apparatus
JP5172584B2 (en) Imaging device
JP5526342B2 (en) Solid-state imaging device
JP4992352B2 (en) Solid-state imaging device
WO2010090133A1 (en) Solid-state image pickup device
US10341597B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP6536627B2 (en) Solid-state imaging device and electronic device
JP4840536B2 (en) Solid-state imaging device and imaging apparatus
JP2021103793A (en) Light receiving element and electronic apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4341664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees