JP2008075705A - Method of starting low temperature liquefied gas pump - Google Patents
Method of starting low temperature liquefied gas pump Download PDFInfo
- Publication number
- JP2008075705A JP2008075705A JP2006253707A JP2006253707A JP2008075705A JP 2008075705 A JP2008075705 A JP 2008075705A JP 2006253707 A JP2006253707 A JP 2006253707A JP 2006253707 A JP2006253707 A JP 2006253707A JP 2008075705 A JP2008075705 A JP 2008075705A
- Authority
- JP
- Japan
- Prior art keywords
- liquefied gas
- low
- temperature liquefied
- pump
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
本発明は、低温液化ガスポンプの起動方法に関し、詳しくは、低温液化ガス貯槽に貯留された液体酸素、液体窒素、液体アルゴン等の低温液化ガスをタンクローリーや別の貯槽に移液する際の低温液化ガスポンプの起動方法に関する。 The present invention relates to a method for starting a cryogenic liquefied gas pump, and more specifically, cryogenic liquefaction when transferring cryogenic liquefied gas such as liquid oxygen, liquid nitrogen, and liquid argon stored in a cryogenic liquefied gas storage tank to a tank lorry or another storage tank. The present invention relates to a method for starting a gas pump.
低温液化ガス貯槽に貯留された低温液化ガスを低温液化ガスポンプによってタンクローリー等に移送する際には、低温液化ガス貯槽の底部と低温液化ガスポンプの吸入側とを吸入弁を介して接続する吸入管と、前記低温液化ガスポンプの吐出側と低温液化ガス送液先とを送液弁を介して接続する送液管とを備えた低温液化ガス移送装置が用いられている。この低温液化ガス移送装置で低温液化ガス貯槽内の低温液化ガスを送液する際には、低温液化ガスポンプでキャビテーション現象が発生しないように、低温液化ガスポンプを起動する前に、低温液化ガスポンプや前後の配管及び弁を低温液化ガス温度まで予冷する必要があり、これらの予冷が完了したことを確認してから低温液化ガスの送液を開始するようにしている。 When the low-temperature liquefied gas stored in the low-temperature liquefied gas storage tank is transferred to a tank lorry or the like by the low-temperature liquefied gas pump, a suction pipe that connects the bottom of the low-temperature liquefied gas storage tank and the suction side of the low-temperature liquefied gas pump via a suction valve; A low-temperature liquefied gas transfer device including a liquid supply pipe that connects a discharge side of the low-temperature liquefied gas pump and a low-temperature liquefied gas supply destination via a liquid supply valve is used. When transferring low-temperature liquefied gas in the low-temperature liquefied gas storage tank with this low-temperature liquefied gas transfer device, before starting the low-temperature liquefied gas pump, before and after starting the low-temperature liquefied gas pump, It is necessary to pre-cool the pipes and valves to the low-temperature liquefied gas temperature, and the delivery of the low-temperature liquefied gas is started after confirming that the pre-cooling has been completed.
低温液化ガスポンプ等の予冷完了を確認して自動的に低温液化ガスポンプを起動させるための方法として、低温液化ガスポンプの下流位置に上向きの流路を有する還流路を設けるとともに、上向き流路の部分を低温液化ガスが液状で通過していることを検出するセンサーを設け、このセンサーが低温液化ガスが液状で通過したことを検出したときに予冷完了と判断し、低温液化ガスポンプを起動すると同時に所定の弁を開閉して送液を開始する方法が提案されている(例えば、特許文献1参照。)。
しかしながら、特許文献1記載の方法では、センサー部分を低温液化ガスが液状で通過したとしても、低温液化ガスポンプの内部や配管や弁の内部に僅かにガスが残留していたり、ポンプ起動時に気化ガスが発生したりすると、脈動が発生し、低温液化ガスポンプの吐出側圧力が所定圧力まで上昇しないことがあった。また、そのために予冷とポンプ起動とを繰り返して行うことになり、低温液化ガスの放出量が増加することがあった。 However, in the method described in Patent Document 1, even if the low-temperature liquefied gas passes through the sensor portion in a liquid state, a slight amount of gas remains inside the low-temperature liquefied gas pump, piping, or valves, or the vaporized gas is generated when the pump is started. Or the like, pulsation occurs, and the discharge-side pressure of the low-temperature liquefied gas pump may not rise to a predetermined pressure. For this reason, precooling and pump start-up are repeatedly performed, and the amount of low-temperature liquefied gas released may increase.
そこで本発明は、低温液化ガスポンプ内等の残留ガスや気化ガスを確実に排出することができ、低温液化ガスポンプを起動したときの脈動の発生や、吐出圧力が規定圧力まで上昇しないなどの不具合を解消し、低温液化ガスの送液を確実にかつ効率よく行うことができる低温液化ガスポンプの起動方法を提供することを目的としている。 Therefore, the present invention can reliably discharge residual gas and vaporized gas in the low-temperature liquefied gas pump, etc., causing problems such as pulsation when the low-temperature liquefied gas pump is started and discharge pressure does not rise to the specified pressure. It is an object of the present invention to provide a starting method of a low-temperature liquefied gas pump that can eliminate the low-temperature liquefied gas reliably and efficiently.
上記目的を達成するため、本発明の低温液化ガスポンプの起動方法は、低温液化ガス貯槽と低温液化ポンプの吸入側とを接続する吸入管と、前記低温液化ガスポンプの吐出側と低温液化ガスの送液先とを接続する送液管とを備えた低温液化ガス移送装置における前記低温液化ガスポンプの起動方法において、前記吸入管に設けた吸入弁と、前記送液管に設けた送液弁の上流側から分岐した配管に設けられた排出弁とを開き、前記低温液化ガスポンプに前記低温液化ガス貯槽から低温液化ガスを流通させて該低温液化ガスポンプを予冷した後、該低温液化ガスポンプを起動し、該低温液化ガスポンプの吐出側圧力があらかじめ設定した圧力となったとき、あるいは、低温液化ガスポンプの吸入側圧力と吐出側圧力との差圧があらかじめ設定した圧力となったときに、前記排出弁を閉じて前記送液先への送液を開始することを特徴としている。 In order to achieve the above object, the method of starting the low-temperature liquefied gas pump according to the present invention includes a suction pipe connecting a low-temperature liquefied gas storage tank and a suction side of the low-temperature liquefied pump, a discharge side of the low-temperature liquefied gas pump, and a low-temperature liquefied gas feed. In the start-up method of the low-temperature liquefied gas pump in the low-temperature liquefied gas transfer device having a liquid feed pipe connected to the liquid tip, the suction valve provided in the suction pipe and the upstream of the liquid feed valve provided in the liquid feed pipe Open the discharge valve provided in the pipe branched from the side, after circulating the low-temperature liquefied gas pump from the low-temperature liquefied gas storage tank through the low-temperature liquefied gas storage tank, pre-cooled the low-temperature liquefied gas pump, start the low-temperature liquefied gas pump, When the discharge side pressure of the low temperature liquefied gas pump becomes a preset pressure, or the differential pressure between the suction side pressure and the discharge side pressure of the low temperature liquefied gas pump is preset. When it becomes a force to close the discharge valve is characterized in that to start the liquid feed to the liquid feed destination.
また、前記排出弁は、前記送液弁上流側の送液管から分岐して前記低温液化ガス貯槽に接続したバイパス管のバイパス弁、前記送液弁上流側の送液管から分岐したブロー管に設けたブロー弁の少なくともいずれか一方であり、低温液化ガスポンプの吐出側圧力は、該低温液化ガスポンプから前記送液弁に至る管内の圧力であり、前記差圧の設定値は、前記低温液化ガスポンプの揚程と低温液化ガスの密度とから算出することを特徴としている。 The discharge valve includes a bypass valve of a bypass pipe branched from the liquid supply pipe upstream of the liquid supply valve and connected to the low-temperature liquefied gas storage tank, and a blow pipe branched from the liquid supply pipe upstream of the liquid supply valve The discharge side pressure of the low temperature liquefied gas pump is a pressure in the pipe from the low temperature liquefied gas pump to the liquid feed valve, and the set value of the differential pressure is the low temperature liquefied gas pump It is calculated from the head of the gas pump and the density of the low-temperature liquefied gas.
本発明の低温液化ガスポンプの起動方法によれば、低温液化ガスポンプを起動してもバイパス弁やブロー弁を開いた状態にしているので、ポンプ起動時にポンプ内等に残留したガスや、ポンプの起動に伴って発生した気化ガスをバイパス管やブロー管から低温液化ガスに同伴させて排出することができる。これらのガスが排出されてポンプの吐出側圧力、あるいは、ポンプの吸入側と吐出側との差圧が所定圧力になってからバイパス弁やブロー弁を閉じて送液を開始することにより、ポンプ吐出圧力はスムーズに上昇し、安定した起動と運転とが可能となる。また、キャビテーションのような不安定な状態が続いてポンプに大きなダメージを与えることがなく、さらに、低温液化ガスの放出量を最小限に抑えることができるので、低温液化ガスの損失を削減することができる。 According to the start method of the low temperature liquefied gas pump of the present invention, the bypass valve and the blow valve are kept open even when the low temperature liquefied gas pump is started. The vaporized gas generated along with this can be discharged from the bypass pipe or blow pipe along with the low-temperature liquefied gas. When these gases are discharged and the discharge side pressure of the pump or the differential pressure between the suction side and the discharge side of the pump reaches a predetermined pressure, the bypass valve and the blow valve are closed, and liquid feeding is started. The discharge pressure rises smoothly, and stable start-up and operation are possible. In addition, unstable conditions such as cavitation do not continue to cause significant damage to the pump, and the amount of low-temperature liquefied gas released can be minimized, reducing low-temperature liquefied gas loss. Can do.
図1は本発明の低温液化ガスポンプの起動方法を実施するための低温液化ガス移送装置の一形態例を示す系統図である。 FIG. 1 is a system diagram showing an example of a low temperature liquefied gas transfer device for carrying out the starting method of the low temperature liquefied gas pump of the present invention.
この低温液化ガス移送装置は、複数の低温液化ガス貯槽11,11内に貯留した低温液化ガスを、低温液化ガスポンプ12により所定圧力に昇圧してタンクローリー等の送液先に移送するものであって、各低温液化ガス貯槽11には、出口弁13Vを有する底部の出口管13と、手動弁14V、加圧蒸発器14E及び圧力設定弁14Pを有し、槽下部と槽上部とを接続する圧力調整経路14と、圧力設定弁15Pを有する頂部の放圧経路15とがそれぞれ設けられている。なお、各低温液化ガス貯槽に設けられる低温液化ガス導入管の図示は省略する。
The low-temperature liquefied gas transfer device is configured to increase the low-temperature liquefied gas stored in the plurality of low-temperature liquefied
低温液化ガスポンプ12には、ポンプ吸入側から各低温液化ガス貯槽11の前記出口管13に吸入弁16Vを介して接続する吸入管16と、ポンプ吐出側からタンクローリー等の送液先に送液弁17Vを介して接続する送液管17とが設けられている。この送液管17の送液弁17Vより上流側からは、ブロー弁18Vを有するブロー管18と、各低温液化ガス貯槽11の上部にバイパス弁19Vを介して接続するバイパス管19とが分岐している。
The low-temperature
このように形成した低温液化ガス移送装置で送液先に低温液化ガスを送液する際には、低温液化ガスポンプ12を起動する前に、一方の低温液化ガス貯槽11の出口弁13V、吸入弁16V及びバイパス弁19Vをそれぞれ開き、低温液化ガス貯槽11内の低温液化ガスを、出口管13、吸入管16、低温液化ガスポンプ12、送液管17及びバイパス管19に流通させる。このとき、低温液化ガスポンプ12、各管路13,16,17,19等を冷却することによって気化したガスは、バイパス管19を通って同じ低温液化ガス貯槽11に戻る。予冷終了前にブロー弁18Vを開いてブロー管18にガスを流通させることにより、気化ガスは低温液化ガスの流れに伴われて放液溜20に流入し、排気口20aから大気に放出される。なお、低温液化ガスが貴重なガスの場合には、放液溜20の二次側に再液化器を設置して低温液化ガス貯槽11へ回収することもできる。また、予冷の最初からブロー弁18Vを開いておいてもよく、予冷方法については特に限定されるものではない。
When the low-temperature liquefied gas transfer device formed in this way supplies low-temperature liquefied gas to the liquid destination, before starting the low-temperature liquefied
次に、ブロー弁18Vからのガスの放出量がほとんどない状態になったら、バイパス弁19Vを閉じ、ブロー弁18Vをあらかじめ設定された弁開度として低温液化ガスポンプ12を起動する。これにより、吸入管16から吸入された低温液化ガスは、低温液化ガスポンプ12によりある程度昇圧され、送液管17からブロー管18を経て放液溜20に流入する状態となる。このとき、ポンプ内や配管内に残留ガスがあったり、気化ガスが発生したとしても、ポンプ吐出側が放液溜20を介して圧力が解放された状態になっているので、残留ガス等は低温液化ガスの流れに伴われて放液溜20に流入して放出される。なお、ブロー弁18VのCV値を適切に選定すれば、ポンプ起動時にブロー弁18Vの弁開度を設定する必要はない。
Next, when there is almost no amount of gas released from the blow valve 18V, the bypass valve 19V is closed, and the low temperature liquefied
そして、低温液化ガスポンプ12や各管路内からガスが排出されると、ポンプ吐出側の吐出管17内の圧力は所定の圧力で安定する。この吐出管17内の圧力があらかじめ設定した圧力に達すると、送液管17の送液弁17Vより上流側に設けた圧力スイッチ21が作動してブロー弁18Vを閉じ、送液弁17Vを開いて送液管17から送液先への低温液化ガスの移送が始まる。なお、図ではポンプ吐出側の圧力スイッチ21を送液管17から取り出しているが、バイパス管19のバイパス弁19Vの上流側であってもよい。また、ブロー管18の取付位置は、送液管17からバイパス管19が分岐する位置と送液弁17Vとの間でもよく、バイパス管19のバイパス弁19Vの上流側でもよい。
When the gas is discharged from the low-temperature liquefied
なお、バイパス管19のバイパス弁19Vは閉じ状態のままでもよく、ブロー弁18Vと同じように開閉させるようにしてもよい。さらに、ブロー弁18Vは、送液管17の圧力を監視して所定圧力となったときに手動で閉じるようにしてもよい。また、前述のブロー弁18Vの開閉に代えてバイパス弁19Vを開閉するようにしてもよい。
Note that the bypass valve 19V of the
図2は第2形態例を示す系統図であって、送液管17に設けた前記圧力スイッチ21に代えて、低温液化ガスポンプ12の吸入側圧力と吐出側圧力との差圧によって作動する差圧スイッチ22を設けた例を示している。なお、前記第1形態例の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。
FIG. 2 is a system diagram showing a second embodiment, and instead of the
本形態例では、前記同様にして低温液化ガスポンプ12を起動した後、系内からガスが排出されて吐出側の圧力が上昇したことを、ポンプの吸入側圧力と吐出側圧力との差圧によって判断し、該差圧があらかじめ設定された圧力となったときに差圧スイッチ22が作動し、前記同様にブロー弁18Vを閉じて送液弁17Vを開くことにより送液を開始するように形成している。さらに、本形態例に示すように、低温液化ガスポンプ12の前後の差圧によって送液開始を判断することにより、低温液化ガス貯槽11内の圧力が大きく変動する場合でも、送液の開始を常に最適な時点で行うことができ、低温液化ガスの放出量を増加させることがない。
In this embodiment, after starting the low-temperature liquefied
この理由を図3乃至図5を参照して説明する。なお、ポンプの性能曲線は、通常、流体が非圧縮性流体で、かつ、粘性による影響が無視できる場合は、流体の種類に関係なく、図4に示すように、横軸を流量Q、縦軸をポンプヘッド(揚程)Hとして1本のカーブで表示できるが、図3では、便宜上、縦軸を吐出側の圧力Pとして表示している。 The reason for this will be described with reference to FIGS. Note that the performance curve of the pump is generally such that when the fluid is an incompressible fluid and the influence of viscosity is negligible, the horizontal axis represents the flow rate Q and the vertical axis, as shown in FIG. 4, regardless of the type of fluid. Although the axis can be displayed as a single curve with the pump head (head) H as the axis, in FIG. 3, the vertical axis is displayed as the pressure P on the discharge side for convenience.
例えば、低温液化ガス貯槽11の内圧が0.2MPaのとき、ポンプ吸入側の圧力P1は、略低温液化ガス貯槽11の内圧と等しく、低温液化ガスポンプ12を運転することによってポンプ吐出側は圧力P2となる。このときのポンプ吐出側の圧力P2とポンプ吸入側の圧力P1の差を差圧ΔPとする。仮に、低温液化ガス貯槽11の内圧が0.3MPaに増加したとすると、ポンプ吸入側は圧力P1'となり、低温液化ガスポンプ12の運転でポンプ吐出側は圧力P2'となる。このときのポンプ吐出側圧力とポンプ吸入側圧力との差圧をΔP'とする。ポンプの性能曲線からポンプの体積流量Qが変わらず、密度変化がほとんど無視できるならば、ポンプの揚程は同じであるから、ΔP=ΔP'となるため、低温液化ガス貯槽11の内圧が増加してもポンプの吸入側圧力と吐出側圧力との差圧は変わらないが、ポンプ吐出側圧力は上昇する。
For example, when the internal pressure of the low-temperature liquefied
このため、ブロー弁18Vを閉じるための判定基準として、ポンプ吐出側圧力で作動する圧力スイッチ21を利用した場合は、低温液化ガス貯槽11の内圧によって適切な作動時期が異なることになる。例えば、図3において圧力スイッチをP2に等しい圧力に設定してあるとすれば、ポンプの吸入圧力が0.3MPaから昇圧を開始しポンプ吐出圧力がP2に到達した時、すなわち、圧力スイッチ21が作動してブロー弁18Vを閉じて送液を開始したときには、まだポンプ内等に残留したガスやポンプの起動に伴って発生した気化ガスが確実に排出されていないために脈動が発生あるいは継続する可能性がある。一方、低温液化ガス貯槽11の内圧が低下してポンプの吸入圧力が0.2MPa未満からの昇圧でポンプ吐出圧力がP2に達しない場合は、圧力スイッチが作動せずに貴重な低温液化ガスを無駄に放出することになる。ポンプ吸入側圧力とポンプ吐出側圧力との差圧で作動する差圧スイッチ22を利用すれば、低温液化ガスポンプ12の昇圧をより的確に察知できるので、最適な時期に送液を開始することができ、貴重な低温液化ガスの放出量を増加させることがなく、同時に、安定したポンプの起動と運転とが可能となる。
For this reason, when the
さらに、ポンプ吸入側圧力とポンプ吐出側圧力との差圧を設定する際に、低温液化ガスの種類に応じて設定すべき差圧を選定した方が、安定した状態で送液を開始できるとともに、より低温液化ガスの放出量を低減することができる。ポンプのポンプヘッド(揚程)をH、流体の密度をρとすると、このポンプの吸入側と吐出側との差圧ΔPは、H=ΔP/ρで求めることができるので、液体アルゴン(Ar)、液体酸素(O2)及び液体窒素(N2)における各体積流量Qと、ポンプの吸入側と吐出側との差圧ΔPとの関係を求めると、図5に示すようになる。低温液化ガスのポンプ吸入側での密度ρは、この低温液化ガスの種類とポンプ吸入側の圧力及び温度条件によって決まるので、あらかじめこの値をシーケンサ等のプログラムに入力し、実測の差圧ΔPが、この密度ρと性能曲線から得られる既知の揚程Hとの関係から求めた値に近似したときにブロー弁18Vを閉じるようにプログラムすることができる。 Furthermore, when setting the differential pressure between the pump suction side pressure and the pump discharge side pressure, selecting the differential pressure to be set according to the type of low-temperature liquefied gas can start liquid feeding in a stable state. The amount of low-temperature liquefied gas released can be reduced. When the pump head (head) of the pump is H and the density of the fluid is ρ, the differential pressure ΔP between the suction side and the discharge side of the pump can be obtained by H = ΔP / ρ, so that liquid argon (Ar) FIG. 5 shows the relationship between the volume flow rate Q of liquid oxygen (O 2 ) and liquid nitrogen (N 2 ) and the differential pressure ΔP between the suction side and the discharge side of the pump. The density ρ on the pump suction side of the low-temperature liquefied gas is determined by the type of the low-temperature liquefied gas and the pressure and temperature conditions on the pump suction side. The blow valve 18V can be programmed to close when approximate to a value determined from the relationship between the density ρ and the known lift H obtained from the performance curve.
例えば、ポンプの流体が液体窒素の場合、ポンプの吸入圧力P1が0.2MPaGで飽和とすると、そのときのエンタルピh1は22.1kJ/kg、液密度ρ1は755.5kg/m3である。次に、差圧ΔPが1.0MPa(吐出圧力P2=1.2MPaG)になるように吐出圧力を調整した場合、揚程Hは135.0mとなる。このときの流量Qを、ポンプ効率を50%とすると、動力ロス(Lloss)は理論動力と略同じとなるので、動力ロスによるエンタルピの増加Δhは、Lloss/(ρ1・Q)=ρ1・Q・H/101.97/(ρ1・Q)=135/101.97=1.3kJ/kgで、吐出側のエンタルピh2は23.4kJ/kgとなり、このときの液密度ρ2は757.3kg/m3で、吸入側の液密度ρ1との違いは0.2%と僅かである。 For example, when the pump fluid is liquid nitrogen and the pump suction pressure P1 is saturated at 0.2 MPaG, the enthalpy h1 at that time is 22.1 kJ / kg and the liquid density ρ1 is 755.5 kg / m 3 . Next, when the discharge pressure is adjusted so that the differential pressure ΔP is 1.0 MPa (discharge pressure P2 = 1.2 MPaG), the head H is 135.0 m. If the flow rate Q at this time is 50% and the pump efficiency is 50%, the power loss (Lloss) is substantially the same as the theoretical power, so the enthalpy increase Δh due to the power loss is Lloss / (ρ1 · Q) = ρ1 · Q・ H / 101.97 / (ρ1 · Q) = 135 / 10.97 = 1.3 kJ / kg, the enthalpy h2 on the discharge side is 23.4 kJ / kg, and the liquid density ρ2 at this time is 757.3 kg / kg At m 3 , the difference from the liquid density ρ1 on the suction side is as small as 0.2%.
したがって、余計な熱侵入がない場合は、ポンプ吸入側の圧力と液密度とからポンプが定格回転したときの差圧ΔPを予測することができるので、圧力や温度による密度変化や気液混合による影響を受けやすい低温液化ガスを移液するポンプの起動を安定させる方法として、低温液化ガスの密度ρと性能曲線から得られるポンプヘッドHとから求めた差圧ΔPを設定値として選定し、測定した差圧がその値に到達したことを判定してブロー弁18Vを閉じるように設定することが好ましい。 Therefore, if there is no extra heat intrusion, the differential pressure ΔP when the pump rotates at the rated speed can be predicted from the pressure and liquid density on the pump suction side. As a method to stabilize the start-up of the pump that transfers the low-temperature liquefied gas that is easily affected, the differential pressure ΔP obtained from the density ρ of the low-temperature liquefied gas and the pump head H obtained from the performance curve is selected as the set value and measured. It is preferable to set so that the blow valve 18V is closed by determining that the differential pressure has reached that value.
なお、その他の熱侵入があって吐出側流体が飽和に近づくと、吐出側の液密度が小さくなり、例えば吐出圧力P2=1.2MPaGで飽和の状態にあるときの液密度ρ2'は636.7kg/m3で、ρ2より20%近くも小さい。このポンプの揚程Hは流体の密度に関係なく135m(=一定)であるため、余計な熱侵入があれば吐出圧が1.2MPaGまで上昇せず、差圧ΔPの予測値に到達しない。このように検知することで、ブロー弁18Vを閉じるタイミングをより正確に調整でき、低温液化ガス貯槽11内の液面低下に伴う吸入圧力低下によるキャビテーション発生のようなケースにおいても、より適切にポンプを停止させることが可能になる。さらに、ポンプの回転数データをインプットすれば、起動途中における状態でも同様の確認が可能になる。
When the discharge side fluid approaches saturation due to other heat intrusion, the discharge side liquid density decreases. For example, the liquid density ρ2 ′ when the discharge pressure P2 = 1.2 MPaG is saturated is 636. 7 kg / m 3 , nearly 20% smaller than ρ2. Since the pump head H is 135 m (= constant) regardless of the density of the fluid, the discharge pressure does not increase to 1.2 MPaG and the predicted value of the differential pressure ΔP is not reached if there is excessive heat penetration. By detecting in this way, the timing for closing the blow valve 18V can be adjusted more accurately, and even in a case where cavitation occurs due to a decrease in suction pressure accompanying a decrease in the liquid level in the low temperature liquefied
11…低温液化ガス貯槽、12…低温液化ガスポンプ、13…出口管、13V…出口弁、14…圧力調整経路、14E…加圧蒸発器、14P…圧力設定弁、14V…手動弁、15…放圧経路、15P…圧力設定弁、16…吸入管、16V…吸入弁、17…送液管、17V…送液弁、18…ブロー管、18V…ブロー弁、19…バイパス管、19V…バイパス弁、20…放液溜、20a…排気口、21…圧力スイッチ、22…差圧スイッチ
DESCRIPTION OF
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006253707A JP2008075705A (en) | 2006-09-20 | 2006-09-20 | Method of starting low temperature liquefied gas pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006253707A JP2008075705A (en) | 2006-09-20 | 2006-09-20 | Method of starting low temperature liquefied gas pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008075705A true JP2008075705A (en) | 2008-04-03 |
Family
ID=39348001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006253707A Pending JP2008075705A (en) | 2006-09-20 | 2006-09-20 | Method of starting low temperature liquefied gas pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008075705A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013013914A2 (en) | 2011-07-25 | 2013-01-31 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Low-temperature material transfer apparatus and low-temperature liquefied gas supply system using the low-temperature material transfer apparatus |
KR20150006063A (en) * | 2012-09-26 | 2015-01-15 | 미츠비시 쥬고교 가부시키가이샤 | Fuel gas supply and purge system for diesel engine |
JP2015078719A (en) * | 2013-10-15 | 2015-04-23 | トヨタ自動車株式会社 | Device and method for supplying low-temperature liquefied gas |
KR101537279B1 (en) * | 2014-01-06 | 2015-07-16 | 대우조선해양 주식회사 | Fuel Supply System And Method For Ship Engines |
WO2018212415A1 (en) * | 2017-05-15 | 2018-11-22 | 김성훈 | Dual fuel direct-spray apparatus |
KR102196129B1 (en) | 2019-12-27 | 2020-12-29 | 김성훈 | Direct injection apparatus of bi-fuel having dual injector |
CN113820098A (en) * | 2021-08-31 | 2021-12-21 | 北京宇航系统工程研究所 | Liquid nitrogen cavitation test verification system and bubble generation process observation method |
CN114242512A (en) * | 2022-02-16 | 2022-03-25 | 贵州电网有限责任公司 | Safe automatic exhaust device for main transformer gas relay |
WO2024106991A1 (en) * | 2022-11-16 | 2024-05-23 | 에이치디한국조선해양 주식회사 | System for supplying liquefied gas within ship |
-
2006
- 2006-09-20 JP JP2006253707A patent/JP2008075705A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013013914A2 (en) | 2011-07-25 | 2013-01-31 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Low-temperature material transfer apparatus and low-temperature liquefied gas supply system using the low-temperature material transfer apparatus |
JP2013024376A (en) * | 2011-07-25 | 2013-02-04 | Air Liquide Japan Ltd | Transfer device of low temperature material, and low temperature liquefied gas supply system using the same |
WO2013013914A3 (en) * | 2011-07-25 | 2013-05-30 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Low-temperature material transfer apparatus and low-temperature liquefied gas supply system using the low-temperature material transfer apparatus |
KR101639934B1 (en) | 2012-09-26 | 2016-07-14 | 미츠비시 쥬고교 가부시키가이샤 | Fuel gas supply and purge system for diesel engine |
KR20150006063A (en) * | 2012-09-26 | 2015-01-15 | 미츠비시 쥬고교 가부시키가이샤 | Fuel gas supply and purge system for diesel engine |
JP2015078719A (en) * | 2013-10-15 | 2015-04-23 | トヨタ自動車株式会社 | Device and method for supplying low-temperature liquefied gas |
KR101537279B1 (en) * | 2014-01-06 | 2015-07-16 | 대우조선해양 주식회사 | Fuel Supply System And Method For Ship Engines |
WO2018212415A1 (en) * | 2017-05-15 | 2018-11-22 | 김성훈 | Dual fuel direct-spray apparatus |
KR101938259B1 (en) | 2017-05-15 | 2019-01-14 | 김성훈 | Direct injection apparatus of bi-fuel |
KR102196129B1 (en) | 2019-12-27 | 2020-12-29 | 김성훈 | Direct injection apparatus of bi-fuel having dual injector |
CN113820098A (en) * | 2021-08-31 | 2021-12-21 | 北京宇航系统工程研究所 | Liquid nitrogen cavitation test verification system and bubble generation process observation method |
CN113820098B (en) * | 2021-08-31 | 2024-03-15 | 北京宇航系统工程研究所 | Liquid nitrogen cavitation test verification system and bubble generation process observation method |
CN114242512A (en) * | 2022-02-16 | 2022-03-25 | 贵州电网有限责任公司 | Safe automatic exhaust device for main transformer gas relay |
CN114242512B (en) * | 2022-02-16 | 2024-04-16 | 贵州电网有限责任公司 | A safe automatic exhaust device for main gas relay that becomes |
WO2024106991A1 (en) * | 2022-11-16 | 2024-05-23 | 에이치디한국조선해양 주식회사 | System for supplying liquefied gas within ship |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008075705A (en) | Method of starting low temperature liquefied gas pump | |
JP6600247B2 (en) | Ship | |
JP2019014335A (en) | Ship | |
JP2006168719A (en) | Gaseous fuel feeder to energy generating unit for vessel for liquefied gas transportation | |
WO2014099863A1 (en) | System and apparatus for creating a liquid carbon dioxide fracturing fluid | |
WO2019050003A1 (en) | Ship | |
EP1959217A2 (en) | Apparatus and method for reliquefying boil-off gas capable of operating with variable refrigeration load | |
JP2008309195A (en) | Device and method for re-liquefying bog generated in lng storage tank | |
KR101826685B1 (en) | Vaporization Reducing System and Method of Liquid Cargo | |
KR101710997B1 (en) | Loading device for lng | |
JP5236932B2 (en) | Low temperature liquefied gas supply method and apparatus | |
JP7020848B2 (en) | Liquefied gas supply device | |
KR101788744B1 (en) | Vaporization type unloading apparatus and method for low temperature liquefied gas carriage ship | |
JP5077881B2 (en) | Facility for receiving liquefied natural gas | |
JP5997122B2 (en) | Low temperature liquefied gas supply device and method | |
JP7228983B2 (en) | A BOG recondenser and LNG supply system comprising the same. | |
KR101686910B1 (en) | High Pressure Pump Pressurizing System and Method for LNG Regasification System | |
US12092093B2 (en) | Apparatus and method for cryogenic pump cooldown | |
KR101251638B1 (en) | Installation for supplying gaseous fuel | |
KR20200051695A (en) | Ship | |
JP4125704B2 (en) | Fluid supply device | |
JP4240589B2 (en) | Method of starting operation of low-temperature gas turbocompressor | |
WO2019049789A1 (en) | Ship | |
JP2010196823A (en) | Low temperature liquefied gas delivery device | |
JP5033597B2 (en) | Low temperature liquefied gas supply apparatus and method |