JP2007110822A - Periodic magnetic field generator, manufacturing method therefor, and linear motor using this periodic magnetic field generator - Google Patents
Periodic magnetic field generator, manufacturing method therefor, and linear motor using this periodic magnetic field generator Download PDFInfo
- Publication number
- JP2007110822A JP2007110822A JP2005298290A JP2005298290A JP2007110822A JP 2007110822 A JP2007110822 A JP 2007110822A JP 2005298290 A JP2005298290 A JP 2005298290A JP 2005298290 A JP2005298290 A JP 2005298290A JP 2007110822 A JP2007110822 A JP 2007110822A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- pole permanent
- magnetic pole
- field generator
- back yoke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Linear Motors (AREA)
Abstract
Description
本発明は、ハルバッハ磁石配列を有する周期磁界発生装置とその製造方法およびこれを用いたリニアモータに関する。 The present invention relates to a periodic magnetic field generator having a Halbach magnet arrangement, a manufacturing method thereof, and a linear motor using the same.
従来、ハルバッハ磁石配列を有する周期磁界発生装置として、磁極毎に磁石を配置し隣接する磁石の磁化方向を異ならせるように配置したものが提案されている(例えば、特許文献1参照)。
この磁界発生装置は、磁石の磁化方向を180度異なるように配置した周期磁界発生装置と比べ、発生磁界が大きい、発生磁界が正弦波分布となる、などの特長を有することから、例えばリニアモータに適用した場合、推力向上や推力リプルの低減という利点がある。
図5は、従来のハルバッハタイプの周期磁界発生装置を示す模式図である。図5において、101は永久磁石、102は磁化方向、103はバックヨークであり、バックヨーク103の反対側(図の上側)の面に、正弦波またはそれに近似した磁束密度波形を有する周期的な磁界を発生する。このハルバッハ磁石配列を有する周期磁界発生装置は、主磁極だけからなる周期磁界発生装置と比べ、より高く正弦波に近い周期的な磁界を発生させることができる。
Conventionally, as a periodic magnetic field generating device having a Halbach magnet arrangement, there has been proposed one in which a magnet is arranged for each magnetic pole so that the magnetization directions of adjacent magnets are different (see, for example, Patent Document 1).
This magnetic field generator has features such as a large generated magnetic field and a sinusoidal distribution of the generated magnetic field compared to a periodic magnetic field generator arranged so that the magnetization directions of the magnets are different by 180 degrees. When applied to, there is an advantage that thrust is improved and thrust ripple is reduced.
FIG. 5 is a schematic diagram showing a conventional Halbach type periodic magnetic field generator. In FIG. 5, 101 is a permanent magnet, 102 is a magnetization direction, 103 is a back yoke, and has a periodic sine wave or a magnetic flux density waveform similar to the sine wave on the surface opposite to the back yoke 103 (upper side in the figure). Generate a magnetic field. The periodic magnetic field generator having this Halbach magnet arrangement can generate a periodic magnetic field that is higher and close to a sine wave as compared with a periodic magnetic field generator composed of only the main magnetic pole.
また、従来の他の例として、永久磁石を固定するヨークが凹凸部を有するハルバッハ磁石配列を備えた周期磁界発生装置もある(例えば、特許文献2)。
図6は、従来の他の例を示す模式図である。図6において、104はサイドヨークであり、他の符号は前述の周期磁界発生装置のものと同じである。バックヨーク103の反対側の面(図のY方向に垂直な面)に、正弦波またはそれに近似した磁束密度波形を有する周期的な磁界を発生する。ヨークの凹凸部(特許文献2の記載ではヨークの段差と表記)は、サイドヨーク104に存在しており、永久磁石の厚み毎に設けられ、永久磁石の位置決め精度が高く、容易となる。
FIG. 6 is a schematic diagram showing another conventional example. In FIG. 6,
ところが、従来のハルバッハ磁石配列を有する周期磁界発生装置は、平板状のバックヨークに永久磁石を固定するため、発生する磁界の磁極の位置精度は、永久磁石の加工精度および固定精度に左右され、超精密加工機などに適用できるだけの高精度な周期磁界発生装置を得ることはきわめて困難であった。
また、従来の他のハルバッハ磁石配列を有する周期磁界発生装置は、精度を高めるためにヨークに凹凸部(段差)を設けたものもでは、その効果は位置決め精度の向上だけに留まっていた。
However, since the conventional periodic magnetic field generator having the Halbach magnet arrangement fixes the permanent magnet to the flat back yoke, the positional accuracy of the magnetic pole of the generated magnetic field depends on the processing accuracy and fixing accuracy of the permanent magnet, It has been extremely difficult to obtain a highly accurate periodic magnetic field generator that can be applied to ultraprecision machines.
In addition, in the conventional periodic magnetic field generator having other Halbach magnet arrangements, in which the yoke is provided with a concavo-convex portion (step), the effect is limited only to the improvement of the positioning accuracy.
本発明はこのような問題点を鑑みてなされたものであり、主磁極永久磁石に挟まれた副磁極永久磁石を2個以上とし、副磁極永久磁石の磁界発生方向の高さが主磁極永久磁石の高さよりも低くし、バックヨークに凹凸部を設け、バックヨークの凹部に主磁極永久磁石を、凸部に副磁極永久磁石を配置することにより、発生磁界の磁極の位置精度が高く、永久磁石の耐減磁力に優れ、発生磁界が高く、軽量化を可能にした周期磁界発生装置、および高精度な周期磁界発生装置を容易に製造できる方法を提供することを目的とする。 The present invention has been made in view of such problems, and there are two or more sub magnetic pole permanent magnets sandwiched between main magnetic pole permanent magnets, and the height of the magnetic field generation direction of the sub magnetic pole permanent magnet is the main magnetic pole permanent magnet. The position accuracy of the magnetic pole of the generated magnetic field is high by making it lower than the height of the magnet, providing a concave and convex portion on the back yoke, placing the main magnetic pole permanent magnet in the concave portion of the back yoke and the sub magnetic pole permanent magnet in the convex portion, An object of the present invention is to provide a periodic magnetic field generator that has excellent demagnetization resistance of a permanent magnet, has a high generated magnetic field, and can be reduced in weight, and a method that can easily manufacture a highly accurate periodic magnetic field generator.
上記問題を解決するため、本発明は、次のように構成したものである。
請求項1記載の発明は、発生磁界方向に磁化された複数の主磁極永久磁石と、前記主磁極永久磁石の間に配置される副磁極永久磁石と、前記永久磁石を固定するバックヨークとを有するハルバッハ磁石配列を備えた周期磁界発生装置において、前記バックヨークに凹凸部を設け、その凹部に主磁極永久磁石を、凸部に副磁極永久磁石をそれぞれ配置し、前記副磁極永久磁石を少なくとも2個配置し、前記副磁極永久磁石の磁界発生方向の高さを前記主磁極永久磁石の高さよりも低くしたものである。
請求項2記載の発明は、前記バックヨークの材質を磁性体としたものである。
請求項3記載の発明は、前記バックヨークの材質を軟磁性体とし、その凸部を非磁性体で置き換えたものである。
請求項4記載の発明は、前記バックヨークの材質を非磁性体としたものである。
請求項5記載の発明は、バックヨークを形成するヨーク形成工程と、前記バックヨークに発生磁界方向に磁化された複数の主磁極永久磁石を固定する主磁極組立工程と、前記主磁極永久磁石の間に前記発生磁界方向とは異なる方向の副磁極永久磁石を固定する副磁極組立工程とからなる周期磁界発生装置の製造方法において、前記前工程は前記バックヨークの一方の面に凹凸部を設ける工程を含み、前記主磁極組立工程は前記バックヨークの凹部に前記主磁極永久磁石を固定するものであり、前記副磁極組立工程は前記バックヨークの凸部に前記副磁極永久磁石を少なくとも2個固定するものである。
請求項6記載の発明は、前記永久磁石の固定は、機械的および/または化学的手段により行うものである。
請求項7記載の発明は、請求項1から請求項4のいずれかの周期磁界発生装置を用いてされることを特徴とするリニアモータ構成したものである。
In order to solve the above problems, the present invention is configured as follows.
The invention according to
According to a second aspect of the present invention, the back yoke is made of a magnetic material.
According to a third aspect of the present invention, the back yoke is made of a soft magnetic material, and the convex portion is replaced with a non-magnetic material.
According to a fourth aspect of the present invention, the back yoke is made of a nonmagnetic material.
According to a fifth aspect of the present invention, there is provided a yoke forming step of forming a back yoke, a main magnetic pole assembly step of fixing a plurality of main magnetic pole permanent magnets magnetized in the generated magnetic field direction to the back yoke, and the main magnetic pole permanent magnet In the manufacturing method of the periodic magnetic field generating device comprising the sub magnetic pole assembly step of fixing the sub magnetic pole permanent magnet in the direction different from the direction of the generated magnetic field therebetween, the pre-process includes providing an uneven portion on one surface of the back yoke The main magnetic pole assembling step fixes the main magnetic pole permanent magnet to the concave portion of the back yoke, and the auxiliary magnetic pole assembling step includes at least two auxiliary magnetic pole permanent magnets at the convex portion of the back yoke. It is to be fixed.
According to a sixth aspect of the present invention, the permanent magnet is fixed by mechanical and / or chemical means.
A seventh aspect of the invention is a linear motor configured by using the periodic magnetic field generator of any one of the first to fourth aspects.
請求項1記載の発明によると、発生磁界の磁極の位置精度が高くすることができ、永久磁石の耐減磁力に優れ、発生磁界が高く、軽量化を可能にできる。
請求項2記載の発明によると、バックヨークに安価で加工が容易な材質を選択することができ、バックヨークを磁路の一部として利用できるので、発生磁界をさらに高めることができる。
請求項3記載の発明によると、バックヨークの磁性体の部分を磁路の一部として利用ができ、凸部を非磁性体とすることで磁束のショートカットをなくすことにより、発生磁界を高めることができる。
請求項4記載の発明によると、バックヨークに軽量な材質を選択することができ、重量あたりの発生磁界を大幅に高めることができる。
請求項5、6記載の発明によると、機械加工が容易で位置精度を容易に高くすることができるバックヨークの凹凸部を利用して磁石の位置決めができるので、高精度な周期磁界発生装置が簡便かつ安価に製造することができる。
請求項7記載の発明によると、高精度、高推力でかつ安価なリニアモータを得ることができる。
According to the first aspect of the present invention, the position accuracy of the magnetic pole of the generated magnetic field can be increased, the permanent magnet has excellent demagnetization resistance, the generated magnetic field is high, and the weight can be reduced.
According to the second aspect of the present invention, an inexpensive and easy-to-process material can be selected for the back yoke, and the back yoke can be used as a part of the magnetic path, so that the generated magnetic field can be further increased.
According to the invention of claim 3, the magnetic part of the back yoke can be used as a part of the magnetic path, and the magnetic field generated is increased by eliminating the magnetic flux shortcut by making the convex part nonmagnetic. Can do.
According to the fourth aspect of the present invention, a lightweight material can be selected for the back yoke, and the generated magnetic field per weight can be greatly increased.
According to the fifth and sixth aspects of the invention, since the magnet can be positioned by using the concave and convex portions of the back yoke that can be easily machined and the positional accuracy can be easily increased, a highly accurate periodic magnetic field generator is provided. It can be produced simply and inexpensively.
According to the seventh aspect of the invention, it is possible to obtain a linear motor with high accuracy, high thrust, and low cost.
以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の実施例1を示す周期磁界発生装置の断面図である。図において、1は主磁極永久磁石、2は副磁極永久磁石、3は磁化方向、4はバックヨークである。バックヨーク4は凹部4aと凸部4bとを有している。
FIG. 1 is a cross-sectional view of a periodic magnetic field
本発明が特許文献1と異なる部分は、副磁極永久磁石の高さを主磁極永久磁石の高さよりも低くし、バックヨークに凹凸部を設け、バックヨークの凹部に主磁極永久磁石を配置し、主磁極永久磁石の間のバックヨークの凸部に2個以上の副磁極永久磁石を配置する部分である。また、本発明が特許文献2と異なる部分は、凹凸部を設けているヨークがサイドヨーク(特許文献2のヨークまたは磁石固定ヨーク)ではなく磁界発生面の反対側に配置しているバックヨークである部分である。すなわち、図1に示したように、バックヨーク4の凹部に高さの高い主磁極永久磁石1を、凸部に高さの低い副磁極永久磁石2を主磁極永久磁石の間に2個配置したものである。
The difference between the present invention and
主磁極永久磁石1および副磁極永久磁石2は、Nd−Fe−B系磁石を用いた。その磁気特性は残留磁束密度=1.20[T]、保磁力=2,100[kA/m]である。主磁極永久磁石1の高さは、副磁極永久磁石2の高さより高く形成した。バックヨーク4は、材質として軟磁性体である純鉄を用い切削加工により凹部4aと凸部4bとを形成した。
The main magnetic pole
つぎに、本発明の周期磁界発生装置の製造方法について、図2を用いて説明する。
(1)まず、図2(a)に示したように、凹凸部を有するバックヨーク4を準備した。
(2)続いて、図2(b)に示したように、着磁を施した高さの高い主磁極永久磁石1を、バックヨーク4の凹部4aに配置し、接着剤を用いて固定した。
(3)さらに、図2(c)に示したように、高さの低い副磁極永久磁石2を、主磁極永久磁石1の間のバックヨーク4の凸部4bに配置し固定することにより、周期磁界発生装置を作製した。ここで、隣接した副磁極永久磁石2の磁化方向は60度異なるようにした。
このようにして作製した周期磁界発生装置の発生磁界を測定した。その結果、発生磁界は0.49[T]と従来の周期磁界発生装置よりも高く、その磁極の位置精度も従来のものより高かった。従来技術では磁極の位置精度を確保するために、組立治具を必要としたが、本発明では組立治具を必要とせずに高精度で組立てができた。
Next, a method for manufacturing the periodic magnetic field generator of the present invention will be described with reference to FIG.
(1) First, as shown in FIG. 2A, a back yoke 4 having an uneven portion was prepared.
(2) Subsequently, as shown in FIG. 2B, the magnetized main magnetic pole
(3) Further, as shown in FIG. 2 (c), by placing the sub-magnetic pole
The generated magnetic field of the periodic magnetic field generator thus manufactured was measured. As a result, the generated magnetic field was 0.49 [T] higher than that of the conventional periodic magnetic field generator, and the magnetic pole position accuracy was also higher than that of the conventional one. In the prior art, an assembling jig is required to ensure the positional accuracy of the magnetic pole, but in the present invention, assembling can be performed with high accuracy without the need for an assembling jig.
この結果は、つぎのように解釈できる。すなわち、主磁極永久磁石の間に2個の副磁極永久磁石を配置することにより、隣接する永久磁石の磁化方向の違いは60度と小さくなり、磁気回路中の磁束の流れがスムーズとなるため、隣接する永久磁石間で生じていた磁束の漏れが少なくなり、発生磁界を高めることができた。また、磁束の漏れが小さくなったことから、副磁極永久磁石の発生磁界方向と反対側のバックヨーク側を非磁性材質としなくても良くなった。 This result can be interpreted as follows. That is, by disposing two sub-pole permanent magnets between the main pole permanent magnets, the difference in magnetization direction between adjacent permanent magnets is as small as 60 degrees, and the flow of magnetic flux in the magnetic circuit becomes smooth. The leakage of magnetic flux generated between adjacent permanent magnets was reduced, and the generated magnetic field could be increased. Further, since the leakage of magnetic flux is reduced, the back yoke side opposite to the direction of the magnetic field generated by the sub-pole permanent magnet need not be made of a nonmagnetic material.
なお、本実施例では、主磁極永久磁石の間の副磁極永久磁石の数が2個の例を説明したが、その数が増えるほど磁気回路中の磁束の流れはスムーズとなり、その改善効果は大きくなるので、2個に限定されるものではない。
また、永久磁石としてNd−Fe−B系磁石を用いたが、これに限らず、他の希土類磁石、フェライト磁石、鋳造磁石、ボンド磁石などが使用可能であり、永久磁石の種類に限定されない。
また、バックヨークの材質として純鉄を例に説明したが、磁束の大部分は永久磁石内を通るのでバックヨークの磁路としての役割は大きくないため、求められる磁気特性は高い必要はなく、軟磁性体であればその種類に限定されることはない。
In this embodiment, an example in which the number of sub-pole permanent magnets between the main pole permanent magnets is two has been described. However, as the number increases, the flow of magnetic flux in the magnetic circuit becomes smoother. Since it becomes large, it is not limited to two.
Moreover, although the Nd-Fe-B type magnet was used as the permanent magnet, the present invention is not limited to this, and other rare earth magnets, ferrite magnets, cast magnets, bonded magnets, and the like can be used, and the type of permanent magnet is not limited.
In addition, although pure iron was described as an example of the material of the back yoke, since most of the magnetic flux passes through the permanent magnet, the role as the magnetic path of the back yoke is not great, so the required magnetic characteristics do not need to be high, If it is a soft magnetic body, it will not be limited to the kind.
従来の技術では、平板状のバックヨークに永久磁石を配置していたため、発生磁界の磁極位置の精度を確保するために永久磁石の加工精度を高めたり、永久磁石を配置・固定するための特殊な治具が必要であり、その製造方法は複雑かつ費用のかかるものであった。 In the conventional technology, permanent magnets are arranged on the flat back yoke, so that the processing accuracy of the permanent magnets can be increased to ensure the accuracy of the magnetic pole position of the generated magnetic field, and special magnets can be used to place and fix the permanent magnets. And a manufacturing method thereof is complicated and expensive.
なお、本実施例では、最初に主磁極永久磁石を配置・固定してから副磁極永久磁石を配置・固定したり、副磁極永久磁石を1個づつ配置・固定させた例を説明したが、本発明は永久磁石の配置・固定の順番に関わらず有効であり、例えば、2個の副磁極永久磁石をあらかじめ固定しておいた後、主磁極永久磁石の間のバックヨークの凸部に配置・固定しても良い。
また、本実施例では、永久磁石を固定する方法として接着剤を用いたが、本発明は固定する手段はどのようなものでも有効であり、たとえば、ねじ止めによる機械的な方法でも良い。
In the present embodiment, the example in which the main magnetic pole permanent magnet is first arranged and fixed and then the sub magnetic pole permanent magnet is arranged and fixed, or the sub magnetic pole permanent magnet is arranged and fixed one by one. The present invention is effective regardless of the order in which permanent magnets are arranged and fixed. For example, after two secondary magnetic pole permanent magnets are fixed in advance, they are arranged on the convex portion of the back yoke between the main magnetic pole permanent magnets.・ It may be fixed.
In this embodiment, an adhesive is used as a method for fixing the permanent magnet. However, any means for fixing may be used in the present invention. For example, a mechanical method by screwing may be used.
図2は、本発明の実施例2を示す周期磁界発生装置の断面図である。ここで、5は非磁性バックヨークである。
非磁性バックヨーク5に非磁性材質のカーボンファイバーコンポジット体を用い、他は実施例1と同様の構成の周期磁界発生装置を作製した。
このようにして作製した周期磁界発生装置の発生磁界を測定した。その結果、その発生磁界は、0.47[T]と多少低いが十分に高い発生磁界が得られた。また、磁極の位置精度は実施例1と同等であった。
以上の結果は、実施例1と同様に、主磁極永久磁石の間の副磁極永久磁石の数を2個以上としたことによって、磁束の漏れが小さくなり、バックヨークの磁路としての役割が小さくなったためと解釈できる。
FIG. 2 is a cross-sectional view of a periodic magnetic field
A non-magnetic carbon fiber composite was used for the
The generated magnetic field of the periodic magnetic field generator thus manufactured was measured. As a result, the generated magnetic field was as low as 0.47 [T], but a sufficiently high generated magnetic field was obtained. Moreover, the positional accuracy of the magnetic poles was the same as in Example 1.
As in the first embodiment, the above results show that the number of sub magnetic pole permanent magnets between the main magnetic pole permanent magnets is two or more, thereby reducing the leakage of magnetic flux and serving as a magnetic path for the back yoke. This can be interpreted as being smaller.
なお、本実施例では、非磁性バックヨークの材質としてカーボンファイバーコンポジット体を例に説明したが、磁気特性を全く要求しないため、その強度と重量に配慮すれば、その材質に限定されることはない。 In this embodiment, the carbon fiber composite body is described as an example of the material of the non-magnetic back yoke. However, since no magnetic properties are required, the material can be limited to that material in consideration of its strength and weight. Absent.
図3は、本発明の実施例3を示す周期磁界発生装置の断面図である。ここで、6は非磁性体である。
材質を純鉄とし、凸部に樹脂からなる非磁性体6を配置したバックヨーク4を用意し、その他は実施例1と同様の構成とした周期磁界発生装置を作製した。
FIG. 3 is a cross-sectional view of a periodic magnetic field generator showing Embodiment 3 of the present invention. Here, 6 is a non-magnetic material.
A back yoke 4 made of pure iron and having a nonmagnetic material 6 made of resin on the convex portion was prepared, and a periodic magnetic field generator having the same configuration as in Example 1 was prepared.
このようにして作製した周期磁界発生装置の発生磁界を測定した。その結果、発生磁界は、0.51[T]と十分に高い発生磁界と磁極の位置精度が得られた。
以上の結果は、永久磁石間の磁束の漏れによる磁束のショートカットを非磁性体6で抑制し、磁気回路としてのバックヨークの役割を軟磁性体の部分で担ったことによって、高い発生磁界が得られたと解釈できる。
The generated magnetic field of the periodic magnetic field generator thus manufactured was measured. As a result, the generated magnetic field was sufficiently high as 0.51 [T], and the magnetic pole position accuracy was obtained.
The above results show that the magnetic flux shortcut due to the magnetic flux leakage between the permanent magnets is suppressed by the non-magnetic material 6, and the back yoke as a magnetic circuit plays the role of the soft magnetic material, thereby obtaining a high generated magnetic field. Can be interpreted.
なお、本実施例では、バックヨークの材質として純鉄を、非磁性体として樹脂を用いた例を示したが、いずれも軟磁性体と非磁性体であればその材質に限定されるものではない。 In this example, pure iron was used as the material for the back yoke, and resin was used as the non-magnetic material. However, the material is not limited to that material as long as it is a soft magnetic material and a non-magnetic material. Absent.
本発明の周期磁界発生装置は、発生磁界が高くかつ高精度であり、軽量にもでき、簡便かつ安価に製造できることから、リニアモータに代表される特に高精度が要求される機器に適用できる。 The periodic magnetic field generator of the present invention has a high generated magnetic field, is highly accurate, can be lightweight, and can be manufactured easily and inexpensively. Therefore, the periodic magnetic field generator can be applied to devices that require particularly high accuracy, such as a linear motor.
1 主磁極永久磁石
2 副磁極永久磁石
3 磁化方向
4 バックヨーク
4a 凹部
4b 凸部
5 非磁性バックヨーク
6 非磁性体
101 永久磁石
102 磁化方向
103 バックヨーク
104 サイドヨーク
DESCRIPTION OF
Claims (7)
前記バックヨークに凹凸部を設け、その凹部に主磁極永久磁石を、凸部に副磁極永久磁石をそれぞれ配置し、
前記副磁極永久磁石を少なくとも2個配置し、前記副磁極永久磁石の磁界発生方向の高さを前記主磁極永久磁石の高さよりも低くしたことを特徴とする周期磁界発生装置。 Period provided with a Halbach magnet array having a plurality of main magnetic pole permanent magnets magnetized in the direction of the generated magnetic field, a sub magnetic pole permanent magnet disposed between the main magnetic pole permanent magnets, and a back yoke for fixing the permanent magnet In the magnetic field generator,
An uneven portion is provided in the back yoke, a main magnetic pole permanent magnet is disposed in the concave portion, and a sub magnetic pole permanent magnet is disposed in the convex portion, respectively.
A periodic magnetic field generator comprising: at least two sub magnetic pole permanent magnets, wherein a height of the sub magnetic pole permanent magnet in a magnetic field generating direction is lower than a height of the main magnetic pole permanent magnet.
前記ヨーク形成工程は前記バックヨークの一方の面に凹凸部を設ける工程を含み、
前記主磁極組立工程は前記バックヨークの凹部に前記主磁極永久磁石を固定するものであり、
前記副磁極組立工程は前記バックヨークの凸部に前記副磁極永久磁石を少なくとも2個固定するものであることを特徴とする周期磁界発生装置の製造方法。 A yoke forming step for forming a back yoke, a main magnetic pole assembly step for fixing a plurality of main magnetic pole permanent magnets magnetized in the generated magnetic field direction to the back yoke, and the generated magnetic field direction between the main magnetic pole permanent magnets In the manufacturing method of the periodic magnetic field generator comprising the sub magnetic pole assembly process for fixing the sub magnetic pole permanent magnets in different directions,
The yoke forming step includes a step of providing an uneven portion on one surface of the back yoke,
The main magnetic pole assembly step is to fix the main magnetic pole permanent magnet to the concave portion of the back yoke,
The method of manufacturing a periodic magnetic field generator, wherein the sub magnetic pole assembly step includes fixing at least two of the sub magnetic pole permanent magnets to the convex portion of the back yoke.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005298290A JP4811785B2 (en) | 2005-10-13 | 2005-10-13 | Periodic magnetic field generator and linear motor using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005298290A JP4811785B2 (en) | 2005-10-13 | 2005-10-13 | Periodic magnetic field generator and linear motor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007110822A true JP2007110822A (en) | 2007-04-26 |
JP4811785B2 JP4811785B2 (en) | 2011-11-09 |
Family
ID=38036232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005298290A Expired - Fee Related JP4811785B2 (en) | 2005-10-13 | 2005-10-13 | Periodic magnetic field generator and linear motor using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4811785B2 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008278709A (en) * | 2007-05-07 | 2008-11-13 | Jtekt Corp | Linear actuator |
JP2008306836A (en) * | 2007-06-07 | 2008-12-18 | Jtekt Corp | Linear actuator |
JP2009106037A (en) * | 2007-10-22 | 2009-05-14 | Hitachi Metals Ltd | Magnetic field generator |
JP2009284740A (en) * | 2008-05-26 | 2009-12-03 | Mitsubishi Electric Corp | Linear motor |
WO2010027740A1 (en) * | 2008-09-03 | 2010-03-11 | Bose Corporation | Linear motor with patterned magnet arrays |
JP2010114980A (en) * | 2008-11-05 | 2010-05-20 | Mitsubishi Heavy Ind Ltd | Linear actuator |
JP2010130871A (en) * | 2008-12-01 | 2010-06-10 | Mitsubishi Electric Corp | Linear motor |
GB2470054A (en) * | 2009-05-07 | 2010-11-10 | Pll Ltd | Magnetising assembly |
WO2012048664A1 (en) * | 2010-10-14 | 2012-04-19 | Liu Zhongchen | Permanent magnet motor with outer spiral rotor and wheel-rail vehicle road system with permanent magnet suspension |
US8446054B2 (en) | 2009-07-17 | 2013-05-21 | Kabushiki Kaisha Yaskawa Denki | Periodic magnetic field generation device, and linear motor and rotary motor using the same |
WO2015072328A1 (en) * | 2013-11-12 | 2015-05-21 | 日立金属株式会社 | Magnetic-field generation device and linear motor |
CN105305769A (en) * | 2015-11-04 | 2016-02-03 | 河南理工大学 | Slotted salient pole permanent magnet array and linear motor |
US20160093428A1 (en) * | 2014-09-25 | 2016-03-31 | Panasonic Intellectual Property Management Co., Ltd. | Periodic magnetic field generator and actuator equipped with same |
JP2016156631A (en) * | 2015-02-23 | 2016-09-01 | 本田技研工業株式会社 | Position detection device |
JP2016163366A (en) * | 2015-02-26 | 2016-09-05 | 日立金属株式会社 | Assembly method of magnetic field generating device and magnetic field generating device |
KR20180031817A (en) * | 2008-09-23 | 2018-03-28 | 에어로바이론먼트, 인크. | Flux concentrator for ironless motor |
CN109861416A (en) * | 2018-11-13 | 2019-06-07 | 南方电机科技有限公司 | A kind of magnetic-conductance portion, motor and automation equipment |
JP2019517762A (en) * | 2016-06-09 | 2019-06-24 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus and device manufacturing method |
KR20210006424A (en) * | 2018-05-09 | 2021-01-18 | 오토 복 헬스케어 프로덕츠 게엠베하 | Calibration aid |
CN113481766A (en) * | 2021-07-08 | 2021-10-08 | 西南交通大学 | Linear Halbach array permanent magnet track |
WO2023279945A1 (en) * | 2021-07-09 | 2023-01-12 | 北京华卓精科科技股份有限公司 | Lorentz motor, magnetic field optimization method and photolithography apparatus |
WO2023182381A1 (en) * | 2022-03-24 | 2023-09-28 | 株式会社デンソー | Vernier motor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118844010A (en) * | 2022-03-04 | 2024-10-25 | 尼得科株式会社 | Rotor and rotating electrical machine |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0992498A (en) * | 1995-09-26 | 1997-04-04 | Shin Etsu Chem Co Ltd | Magnetic circuit for inserted light source device |
JPH1094202A (en) * | 1996-09-13 | 1998-04-10 | Matsushita Electric Ind Co Ltd | Permanent magnet motor and rotor magnetizing device |
JPH11308793A (en) * | 1998-04-24 | 1999-11-05 | Matsushita Electric Ind Co Ltd | Outer rotor type permanent magnet motor |
JP2000197287A (en) * | 1998-12-28 | 2000-07-14 | Kusatsu Denki Kk | Motor and its manufacture |
JP2005045984A (en) * | 2003-07-25 | 2005-02-17 | Yaskawa Electric Corp | Rotor for permanent magnet synchronous motor |
JP2006246570A (en) * | 2005-03-01 | 2006-09-14 | Canon Inc | Linear motor and exposure device using linear motor |
JP2006320109A (en) * | 2005-05-12 | 2006-11-24 | Asmo Co Ltd | Rotating electric machine and manufacturing method thereof |
JP2007019127A (en) * | 2005-07-06 | 2007-01-25 | Yaskawa Electric Corp | Periodic magnetic field generator and linear motor using the same |
-
2005
- 2005-10-13 JP JP2005298290A patent/JP4811785B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0992498A (en) * | 1995-09-26 | 1997-04-04 | Shin Etsu Chem Co Ltd | Magnetic circuit for inserted light source device |
JPH1094202A (en) * | 1996-09-13 | 1998-04-10 | Matsushita Electric Ind Co Ltd | Permanent magnet motor and rotor magnetizing device |
JPH11308793A (en) * | 1998-04-24 | 1999-11-05 | Matsushita Electric Ind Co Ltd | Outer rotor type permanent magnet motor |
JP2000197287A (en) * | 1998-12-28 | 2000-07-14 | Kusatsu Denki Kk | Motor and its manufacture |
JP2005045984A (en) * | 2003-07-25 | 2005-02-17 | Yaskawa Electric Corp | Rotor for permanent magnet synchronous motor |
JP2006246570A (en) * | 2005-03-01 | 2006-09-14 | Canon Inc | Linear motor and exposure device using linear motor |
JP2006320109A (en) * | 2005-05-12 | 2006-11-24 | Asmo Co Ltd | Rotating electric machine and manufacturing method thereof |
JP2007019127A (en) * | 2005-07-06 | 2007-01-25 | Yaskawa Electric Corp | Periodic magnetic field generator and linear motor using the same |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008278709A (en) * | 2007-05-07 | 2008-11-13 | Jtekt Corp | Linear actuator |
JP2008306836A (en) * | 2007-06-07 | 2008-12-18 | Jtekt Corp | Linear actuator |
JP2009106037A (en) * | 2007-10-22 | 2009-05-14 | Hitachi Metals Ltd | Magnetic field generator |
JP2009284740A (en) * | 2008-05-26 | 2009-12-03 | Mitsubishi Electric Corp | Linear motor |
US7965010B2 (en) * | 2008-09-03 | 2011-06-21 | Bose Corporation | Linear motor with patterned magnet arrays |
WO2010027740A1 (en) * | 2008-09-03 | 2010-03-11 | Bose Corporation | Linear motor with patterned magnet arrays |
KR101841755B1 (en) | 2008-09-23 | 2018-05-04 | 에어로바이론먼트, 인크. | Flux concentrator for ironless motor |
KR20190122917A (en) * | 2008-09-23 | 2019-10-30 | 에어로바이론먼트, 인크. | Flux concentrator for ironless motor |
KR20180031817A (en) * | 2008-09-23 | 2018-03-28 | 에어로바이론먼트, 인크. | Flux concentrator for ironless motor |
KR102039110B1 (en) | 2008-09-23 | 2019-10-31 | 에어로바이론먼트, 인크. | Flux concentrator for ironless motor |
KR102177922B1 (en) | 2008-09-23 | 2020-11-12 | 에어로바이론먼트, 인크. | Flux concentrator for ironless motor |
JP2010114980A (en) * | 2008-11-05 | 2010-05-20 | Mitsubishi Heavy Ind Ltd | Linear actuator |
US8723375B2 (en) | 2008-11-05 | 2014-05-13 | Mitsubishi Heavy Industries, Ltd. | Linear actuator |
JP2010130871A (en) * | 2008-12-01 | 2010-06-10 | Mitsubishi Electric Corp | Linear motor |
GB2470054A (en) * | 2009-05-07 | 2010-11-10 | Pll Ltd | Magnetising assembly |
US8487610B2 (en) | 2009-05-07 | 2013-07-16 | Pii Limited | Magnetising assembly |
GB2470054B (en) * | 2009-05-07 | 2013-08-07 | Pii Ltd | Magnetising assembly |
US8446054B2 (en) | 2009-07-17 | 2013-05-21 | Kabushiki Kaisha Yaskawa Denki | Periodic magnetic field generation device, and linear motor and rotary motor using the same |
CN103181068A (en) * | 2010-10-14 | 2013-06-26 | 刘忠臣 | Permanent magnet motor with outer spiral rotor and wheel-rail vehicle road system with permanent magnet suspension |
WO2012048664A1 (en) * | 2010-10-14 | 2012-04-19 | Liu Zhongchen | Permanent magnet motor with outer spiral rotor and wheel-rail vehicle road system with permanent magnet suspension |
WO2015072328A1 (en) * | 2013-11-12 | 2015-05-21 | 日立金属株式会社 | Magnetic-field generation device and linear motor |
US20160093428A1 (en) * | 2014-09-25 | 2016-03-31 | Panasonic Intellectual Property Management Co., Ltd. | Periodic magnetic field generator and actuator equipped with same |
US9941778B2 (en) * | 2014-09-25 | 2018-04-10 | Panasonic Intellectual Property Management Co., Ltd. | Periodic magnetic field generator and actuator equipped with same |
JP2016156631A (en) * | 2015-02-23 | 2016-09-01 | 本田技研工業株式会社 | Position detection device |
JP2016163366A (en) * | 2015-02-26 | 2016-09-05 | 日立金属株式会社 | Assembly method of magnetic field generating device and magnetic field generating device |
CN105305769A (en) * | 2015-11-04 | 2016-02-03 | 河南理工大学 | Slotted salient pole permanent magnet array and linear motor |
JP2019517762A (en) * | 2016-06-09 | 2019-06-24 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus and device manufacturing method |
US10955759B2 (en) | 2016-06-09 | 2021-03-23 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
KR20210006424A (en) * | 2018-05-09 | 2021-01-18 | 오토 복 헬스케어 프로덕츠 게엠베하 | Calibration aid |
JP2021522514A (en) * | 2018-05-09 | 2021-08-30 | オットー・ボック・ヘルスケア・プロダクツ・ゲーエムベーハー | Orthopedic aids |
KR102523542B1 (en) * | 2018-05-09 | 2023-04-19 | 오토 복 헬스케어 프로덕츠 게엠베하 | orthodontic aid |
CN109861416A (en) * | 2018-11-13 | 2019-06-07 | 南方电机科技有限公司 | A kind of magnetic-conductance portion, motor and automation equipment |
WO2020098626A1 (en) * | 2018-11-13 | 2020-05-22 | 南方电机科技有限公司 | Magnetic conductive component, motor and automation equipment |
CN113481766A (en) * | 2021-07-08 | 2021-10-08 | 西南交通大学 | Linear Halbach array permanent magnet track |
WO2023279945A1 (en) * | 2021-07-09 | 2023-01-12 | 北京华卓精科科技股份有限公司 | Lorentz motor, magnetic field optimization method and photolithography apparatus |
WO2023182381A1 (en) * | 2022-03-24 | 2023-09-28 | 株式会社デンソー | Vernier motor |
Also Published As
Publication number | Publication date |
---|---|
JP4811785B2 (en) | 2011-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4811785B2 (en) | Periodic magnetic field generator and linear motor using the same | |
JP5108236B2 (en) | Rotor for motor | |
JP5294762B2 (en) | Linear motor | |
JP2006222131A (en) | Permanent magnet body | |
JP2010130818A (en) | Method for manufacturing field element | |
JP2018061436A (en) | Magnetization method and magnetization device | |
JP2007019127A (en) | Periodic magnetic field generator and linear motor using the same | |
JP2010106908A (en) | Magnetic bearing | |
Sato | Thrust ripple reduction in ultrahigh-acceleration moving-permanent-magnet linear synchronous motor | |
KR20010013771A (en) | Magnetic field generating device for mri | |
US20120161551A1 (en) | Reluctance motor | |
JP2016029880A (en) | Magnet unit and method of manufacturing magnet unit | |
JP6065568B2 (en) | Magnetizer | |
JP2001112228A (en) | Movable magnet type linear actuator | |
JP5589507B2 (en) | Mover and stator of linear drive unit | |
JP2649437B2 (en) | Magnetic field generator for MRI | |
JP2013106417A (en) | Rotor and motor | |
KR100763277B1 (en) | Arranging Structure of Magnets for Linear Voice Coil Motor and Camera Module Having the Same | |
JP5553247B2 (en) | Linear slider | |
JPH10174419A (en) | Pulse motor | |
JP6947340B1 (en) | Field magnet and motor with field magnet | |
JP2005245045A (en) | Permanent magnet type field generator for torque converter | |
JP7576642B2 (en) | Magnetizing device | |
JP2004065714A (en) | Magnetic field generating device for magnetic resonance imaging | |
US11784520B2 (en) | Rotor structure of synchronous motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110801 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110814 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |