Nothing Special   »   [go: up one dir, main page]

JP2006222131A - Permanent magnet body - Google Patents

Permanent magnet body Download PDF

Info

Publication number
JP2006222131A
JP2006222131A JP2005031785A JP2005031785A JP2006222131A JP 2006222131 A JP2006222131 A JP 2006222131A JP 2005031785 A JP2005031785 A JP 2005031785A JP 2005031785 A JP2005031785 A JP 2005031785A JP 2006222131 A JP2006222131 A JP 2006222131A
Authority
JP
Japan
Prior art keywords
permanent magnet
main surface
magnet body
magnetic
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005031785A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Natsumeda
充俊 棗田
Hirobumi Takabayashi
博文 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP2005031785A priority Critical patent/JP2006222131A/en
Publication of JP2006222131A publication Critical patent/JP2006222131A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet body having the large maximum value of surface magnetic flux density on a main surface. <P>SOLUTION: The permanent magnet body 10 includes a plurality of permanent magnet pieces 12. The permanent magnet pieces 12 each have a polar anisotropic performance, and the magnetization direction thereof is a direction in which the magnetization is bent from a main surface 12a side toward a main surface 12b side and returns to the main surface 12a side, and a direction in which the magnetization is bent from the main surface 12b side to the main surface 12a side and returns to the main surface 12b side. The permanent magnet body 10 is constituted by arranging the plurality of permanent magnetic pieces 12 so that the same poles may oppose each other and coupling them, and an N-pole or an S-pole is formed on a portion where the adjacent permanent magnets 12 contact on the main surfaces 10a and 10b of the permanent magnet body 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は永久磁石体に関し、より特定的には、2以上の偶数個の磁極が周方向に並ぶように主面に形成される環状の永久磁石体に関する。   The present invention relates to a permanent magnet body, and more particularly to an annular permanent magnet body formed on a main surface so that two or more even number of magnetic poles are arranged in a circumferential direction.

従来、たとえば特許文献1に開示されているように、アキシャルギャップ型モータには、複数の磁極が周方向に並ぶように主面に形成される環状の永久磁石体が用いられることが知られている。たとえば図10(a)および(b)に示す永久磁石体1では、磁化方向が軸方向(矢印B方向)に平行な永久磁石片2が周方向(矢印A方向)に複数配置され、複数のN極とS極とが矢印A方向に交互に並ぶように主面1a,1bに形成される。このような永久磁石体1が用いられるアキシャルギャップ型モータは、主面1aおよび1bの少なくともいずれか一方に対向するように配置されるコイルに磁束L{図10(b)参照}が作用することによって動作する。このような永久磁石体1は、アキシャルギャップ型モータの他にも磁気センサ等の多くの機器に用いられている。
特開平8−214527
Conventionally, as disclosed in Patent Document 1, for example, an axial gap motor is known to use an annular permanent magnet body formed on a main surface so that a plurality of magnetic poles are arranged in the circumferential direction. Yes. For example, in the permanent magnet body 1 shown in FIGS. 10A and 10B, a plurality of permanent magnet pieces 2 whose magnetization directions are parallel to the axial direction (arrow B direction) are arranged in the circumferential direction (arrow A direction). N poles and S poles are formed on main surfaces 1a and 1b so that they are alternately arranged in the direction of arrow A. In the axial gap type motor using such a permanent magnet body 1, a magnetic flux L {see FIG. 10 (b)} acts on a coil arranged to face at least one of the main surfaces 1a and 1b. Works by. Such a permanent magnet body 1 is used in many devices such as a magnetic sensor in addition to an axial gap type motor.
JP-A-8-214527

しかし、近年、永久磁石体が用いられる機器の小型化や高出力化のために、主面上における表面磁束密度の最大値が大きな永久磁石体が求められており、永久磁石体1ではその要求に十分に応えることが困難であった。
それゆえに、この発明の主たる目的は、主面上における表面磁束密度の最大値が大きな永久磁石体を提供することである。
However, in recent years, there has been a demand for a permanent magnet body having a large maximum value of the surface magnetic flux density on the main surface in order to reduce the size and increase the output of a device using the permanent magnet body. It was difficult to fully meet the requirements.
Therefore, a main object of the present invention is to provide a permanent magnet body having a large maximum value of the surface magnetic flux density on the main surface.

上述の目的を達成するために、請求項1に記載の永久磁石体は、少なくとも一方主面に2以上の偶数個の磁極が周方向に異極が交互に並ぶように形成される環状の永久磁石体であって、磁極のうち周方向に隣り合う異極の間で極異方性を有する。   In order to achieve the above-described object, the permanent magnet body according to claim 1 is an annular permanent magnet in which an even number of two or more magnetic poles are alternately arranged in the circumferential direction on at least one main surface. It is a magnet body and has polar anisotropy between different poles adjacent to each other in the circumferential direction among the magnetic poles.

請求項2に記載の永久磁石体は、請求項1に記載の永久磁石体において、1つの環状の永久磁石によって構成されることを特徴とする。   According to a second aspect of the present invention, there is provided a permanent magnet body according to the first aspect, wherein the permanent magnet body is constituted by one annular permanent magnet.

請求項3に記載の永久磁石体は、請求項1に記載の永久磁石体において、複数の永久磁石片を周方向に配置することによって構成され、少なくとも1つの永久磁石片は隣り合う永久磁石片と同極が対向することを特徴とする。   According to a third aspect of the present invention, there is provided the permanent magnet body according to the first aspect, wherein a plurality of permanent magnet pieces are arranged in the circumferential direction, and at least one permanent magnet piece is an adjacent permanent magnet piece. The same poles are opposite to each other.

請求項4に記載の永久磁石体は、2以上の偶数個の磁極が周方向に異極が交互に並ぶように一方主面に形成される環状の永久磁石体であって、磁化方向が軸方向に平行な第1永久磁石片、ならびに磁化方向が径方向および軸方向に直交する第2永久磁石片を備え、第1永久磁石片と第2永久磁石片とが周方向に交互に配置され、第2永久磁石片を挟んで隣り合う第1永久磁石片は異極が対向しかつ第1永久磁石片を挟んで隣り合う第2永久磁石片は同極が対向する。   The permanent magnet body according to claim 4 is an annular permanent magnet body formed on one main surface so that two or more even number of magnetic poles are alternately arranged in the circumferential direction, and the magnetization direction is an axis. A first permanent magnet piece parallel to the direction and a second permanent magnet piece whose magnetization direction is perpendicular to the radial direction and the axial direction, and the first permanent magnet pieces and the second permanent magnet pieces are alternately arranged in the circumferential direction. The first permanent magnet pieces adjacent to each other with the second permanent magnet piece sandwiched are opposite to each other, and the second permanent magnet pieces adjacent to each other across the first permanent magnet piece are opposite to each other.

請求項5に記載の永久磁石体は、請求項4に記載の永久磁石体を互いの他方主面が対向しかつ互いの第1永久磁石片同士が軸方向に同極を対向させて並ぶように2つ配置することによって構成される。   The permanent magnet body according to claim 5 is arranged such that the other main surfaces of the permanent magnet body according to claim 4 face each other and the first permanent magnet pieces face each other with the same poles facing each other in the axial direction. It is configured by arranging two in the.

請求項6に記載の永久磁石体は、請求項5に記載の永久磁石体において、請求項4に記載の永久磁石体の間に磁性体が配置されることを特徴とする。   A permanent magnet body according to a sixth aspect is the permanent magnet body according to the fifth aspect, wherein a magnetic body is disposed between the permanent magnet bodies according to the fourth aspect.

請求項7に記載の永久磁石体は、2以上の偶数個の磁極が周方向に異極が交互に並ぶように主面に形成される環状の永久磁石体であって、磁化方向が径方向および軸方向に直交する永久磁石片、ならびに磁性体を備え、永久磁石片と磁性体とが周方向に交互に配置され、磁性体を挟んで隣り合う永久磁石片は同極が対向する。   The permanent magnet body according to claim 7 is an annular permanent magnet body formed on the main surface so that even numbers of two or more magnetic poles are alternately arranged in the circumferential direction, and the magnetization direction is a radial direction. And permanent magnet pieces orthogonal to the axial direction, and a magnetic body, the permanent magnet pieces and the magnetic body are alternately arranged in the circumferential direction, and the permanent magnet pieces adjacent to each other across the magnetic body face each other with the same polarity.

なお、「周方向」、「軸方向」および「径方向」は、それぞれ永久磁石体の周方向、軸方向および径方向である。   The “circumferential direction”, “axial direction”, and “radial direction” are the circumferential direction, axial direction, and radial direction of the permanent magnet body, respectively.

請求項1に記載の永久磁石体では、2以上の偶数個の磁極のうち周方向に隣り合う異極の間(N極とS極との間)で極異方性を有することによって、主面の磁極(N極)により多くの磁束を集中させることができる。したがって、従来技術の永久磁石体よりも主面上における表面磁束密度の最大値を大きくできる。   In the permanent magnet body according to claim 1, by having polar anisotropy between different poles adjacent in the circumferential direction (between N pole and S pole) among two or more even number of magnetic poles, More magnetic flux can be concentrated on the magnetic pole (N pole) on the surface. Therefore, the maximum value of the surface magnetic flux density on the main surface can be increased as compared with the conventional permanent magnet body.

永久磁石体は、請求項2に記載するように1つの環状の永久磁石によって構成してもよく、また、請求項3に記載するように複数の永久磁石片を環状に配置することによって構成してもよい。   The permanent magnet body may be constituted by one annular permanent magnet as described in claim 2, and may be constituted by arranging a plurality of permanent magnet pieces in an annular shape as described in claim 3. May be.

請求項4に記載の永久磁石体では、第2永久磁石片を挟んで隣り合う第1永久磁石片において、一方の第1永久磁石片の一方主面にN極が形成され、他方の第1永久磁石片の一方主面にS極が形成される。これによって、第2永久磁石片を挟んで隣り合う第1永久磁石片において、一方の第1永久磁石片の磁極(N極)に磁束を集中させ、該磁極からの磁束を他方の第1永久磁石片の磁極(S極)に効率よく収束させることができる。つまり、永久磁石体の他方主面上に発生する磁束(漏洩磁束)を減少させることにより、一方主面に形成された磁極に磁束を集中させることができる。したがって、従来技術の永久磁石体よりも一方主面上における表面磁束密度の最大値を大きくできる。   In the permanent magnet body according to claim 4, in the first permanent magnet pieces adjacent to each other with the second permanent magnet piece interposed therebetween, an N pole is formed on one main surface of one of the first permanent magnet pieces, and the other first permanent magnet piece. An S pole is formed on one main surface of the permanent magnet piece. Thus, in the first permanent magnet pieces adjacent to each other with the second permanent magnet piece interposed therebetween, the magnetic flux is concentrated on the magnetic pole (N pole) of one first permanent magnet piece, and the magnetic flux from the magnetic pole is concentrated on the other first permanent magnet piece. It can be efficiently converged on the magnetic pole (S pole) of the magnet piece. That is, by reducing the magnetic flux (leakage magnetic flux) generated on the other main surface of the permanent magnet body, the magnetic flux can be concentrated on the magnetic pole formed on the one main surface. Therefore, the maximum value of the surface magnetic flux density on the one main surface can be made larger than that of the conventional permanent magnet body.

請求項5に記載するように、請求項4に記載の永久磁石体を互いの他方主面が対向しかつ互いの第1永久磁石片同士が軸方向に同極を対向させて並ぶように2つ配置することによって永久磁石体を構成してもよい。これにより永久磁石体の両主面において高い表面磁束密度を得ることができる。   According to a fifth aspect of the present invention, the permanent magnet bodies according to the fourth aspect of the present invention are arranged so that the other principal surfaces of the permanent magnet bodies are opposed to each other and the first permanent magnet pieces are aligned with the same poles facing each other in the axial direction. Permanent magnet bodies may be configured by arranging two. Thereby, a high surface magnetic flux density can be obtained on both main surfaces of the permanent magnet body.

請求項4に記載の永久磁石体を軸方向に2つ配置する場合、請求項6に記載するように、2つの永久磁石体の間に磁性体を配置することによって、反発を抑えることができ、組み立て作業を容易にすることができる。   When two permanent magnet bodies according to claim 4 are arranged in the axial direction, repulsion can be suppressed by arranging a magnetic body between the two permanent magnet bodies as described in claim 6. The assembly work can be facilitated.

請求項7に記載の永久磁石体では、磁性体が磁極片として機能し、永久磁石片を挟んで隣り合う磁性体において、一方の磁性体の主面に磁束を集中させ、該磁性体の主面からの磁束を他方の磁性体の主面に効率よく収束させることができる。したがって、従来技術の永久磁石体よりも主面上における表面磁束密度の最大値を大きくできる。   In the permanent magnet body according to claim 7, the magnetic body functions as a magnetic pole piece, and in the adjacent magnetic body with the permanent magnet piece interposed therebetween, the magnetic flux is concentrated on the main surface of one of the magnetic bodies, and the main body of the magnetic body is The magnetic flux from the surface can be efficiently converged on the main surface of the other magnetic body. Therefore, the maximum value of the surface magnetic flux density on the main surface can be increased as compared with the conventional permanent magnet body.

この発明によれば、主面上における表面磁束密度の最大値が大きな永久磁石体を得ることができる。   According to the present invention, it is possible to obtain a permanent magnet body having a large maximum surface magnetic flux density on the main surface.

以下、図面を参照して、この発明の実施の形態について説明する。
図1(a)および(b)を参照して、この発明の一実施形態の永久磁石体10は、複数(ここでは8つ)の永久磁石片12を含み、8つの永久磁石片12を周方向(矢印A方向)に配置し連結することによって環状に構成される。
Embodiments of the present invention will be described below with reference to the drawings.
1 (a) and 1 (b), a permanent magnet body 10 according to an embodiment of the present invention includes a plurality (eight in this case) of permanent magnet pieces 12 and surrounds the eight permanent magnet pieces 12. By arranging and connecting in the direction (arrow A direction), it is configured in an annular shape.

図2をも参照して、横断面略扇形状の永久磁石片12は、主面12a,12bと、隣り合う永久磁石片12に対向する対向面12c,12dとを有する。永久磁石片12としては、たとえば希土類焼結磁石が用いられる。   Referring also to FIG. 2, permanent magnet piece 12 having a substantially sectoral cross section has main surfaces 12 a and 12 b and opposed surfaces 12 c and 12 d facing adjacent permanent magnet pieces 12. As the permanent magnet piece 12, for example, a rare earth sintered magnet is used.

永久磁石片12の磁化方向は、主面12aと対向面12cとの角部から主面12b側に湾曲して主面12aと対向面12dとの角部へと延びる方向、および主面12bと対向面12cとの角部から主面12a側に湾曲して主面12bと対向面12dとの角部へと延びる方向である。したがって、図2において永久磁石片12内に示すように、主面12aと対向面12dとの角部近傍には磁極(N極)が形成され、主面12aと対向面12cとの角部近傍には磁極(S極)が形成される。同様に、主面12bと対向面12dとの角部近傍には磁極(N極)が形成され、主面12bと対向面12cとの角部近傍には磁極(S極)が形成される。   The magnetization direction of the permanent magnet piece 12 is a direction that curves from the corner portion of the main surface 12a and the opposing surface 12c toward the main surface 12b side and extends to the corner portion of the main surface 12a and the opposing surface 12d, and the main surface 12b. This is a direction that curves from the corner of the opposing surface 12c to the main surface 12a and extends to the corner of the main surface 12b and the opposing surface 12d. Therefore, as shown in the permanent magnet piece 12 in FIG. 2, a magnetic pole (N pole) is formed in the vicinity of the corner between the main surface 12a and the facing surface 12d, and in the vicinity of the corner between the main surface 12a and the facing surface 12c. Is formed with a magnetic pole (S pole). Similarly, a magnetic pole (N pole) is formed in the vicinity of the corner between the main surface 12b and the opposing surface 12d, and a magnetic pole (S pole) is formed in the vicinity of the corner between the main surface 12b and the opposing surface 12c.

このような永久磁石片12は、たとえば粉末プレス装置を用いて作製される。具体的には、図3に示すように、まず、粉末プレス装置の上パンチ50a、下パンチ50bおよびダイス52の間のキャビティに希土類合金粉末を充填する。そして、磁性体からなる上パンチ50a内外および下パンチ50b内外にそれぞれ設けられる配向コイル54によって同じ強度の配向磁場を印加しながら、上パンチ50aおよび下パンチ50bで希土類合金粉末をプレス成形する。これによって主面12a側のN極とS極との間で極異方性を有しかつ主面12b側のN極とS極との間で極異方性を有する永久磁石片12が作製される。   Such a permanent magnet piece 12 is produced using, for example, a powder press apparatus. Specifically, as shown in FIG. 3, first, a rare earth alloy powder is filled in the cavity between the upper punch 50a, the lower punch 50b, and the die 52 of the powder press apparatus. Then, the rare earth alloy powder is press-molded by the upper punch 50a and the lower punch 50b while applying an orientation magnetic field having the same strength by the orientation coils 54 provided inside and outside the upper punch 50a and inside and outside the lower punch 50b. Thus, a permanent magnet piece 12 having polar anisotropy between the N pole and S pole on the main surface 12a side and having a polar anisotropy between the N pole and S pole on the main surface 12b side is produced. Is done.

図1に戻って、永久磁石体10は8つの永久磁石片12を同極が対向するように連結することによって構成され、永久磁石体10の主面10aおよび10bには隣り合う永久磁石片12が接する部分に磁極(N極あるいはS極)が形成される。したがって、永久磁石体10の主面10aおよび10bには磁極が矢印A方向に交互に8つ並び、永久磁石体10は隣り合う磁極の間で極異方性を有する。   Returning to FIG. 1, the permanent magnet body 10 is configured by connecting eight permanent magnet pieces 12 so that the same poles face each other, and the permanent magnet pieces 12 adjacent to the main surfaces 10 a and 10 b of the permanent magnet body 10. A magnetic pole (N-pole or S-pole) is formed at the portion where the contacts. Therefore, eight magnetic poles are alternately arranged in the direction of arrow A on the main surfaces 10a and 10b of the permanent magnet body 10, and the permanent magnet body 10 has polar anisotropy between adjacent magnetic poles.

このような永久磁石体10では、図1(b)に示すように、主面10aおよび10bの磁極(N極)により多くの磁束Lを集中させることができ、従来技術の永久磁石体よりも主面10aおよび10b上における表面磁束密度の最大値を大きくできる。このような永久磁石体10をアキシャルギャップ型モータのロータに用いる場合、コイルに鎖交する磁束が増加するので、モータのトルクを増加させるあるいはモータを小型に構成することができる。   In such a permanent magnet body 10, as shown in FIG. 1 (b), more magnetic flux L can be concentrated on the magnetic poles (N poles) of the main surfaces 10a and 10b. The maximum value of the surface magnetic flux density on main surfaces 10a and 10b can be increased. When such a permanent magnet body 10 is used for the rotor of an axial gap type motor, the magnetic flux linked to the coil increases, so that the torque of the motor can be increased or the motor can be made compact.

なお、上述の実施形態では各永久磁石片12を隣り合う永久磁石片12と同極が対向するように配置する場合について説明したが、少なくとも1つの永久磁石片12を隣り合う永久磁石片12と同極が対向するように配置すればよい。   In addition, although the above-mentioned embodiment demonstrated the case where each permanent magnet piece 12 was arrange | positioned so that the same pole might oppose the adjacent permanent magnet piece 12, at least 1 permanent magnet piece 12 and the adjacent permanent magnet piece 12 and What is necessary is just to arrange | position so that the same pole may oppose.

また、上述の実施形態では磁化方向が2方向の永久磁石片12を用いる場合について説明したが、磁化方向が一方主面側から他方主面側に湾曲して一方主面側に戻る方向のみの永久磁石片を用いて永久磁石体を構成してもよい。この場合、永久磁石体の一方主面のみに磁極が形成される。磁化方向が一方主面側から他方主面側に湾曲して一方主面側に戻る方向のみの永久磁石片は、たとえば、上パンチ50aあるいは下パンチ50bに代えてコイルを有さない非磁性体のパンチを用い、上方側あるいは下方側のいずれか一方からのみ配向磁場を印加することによって作製される(図3参照)。   Moreover, although the above-mentioned embodiment demonstrated the case where the permanent magnet piece 12 with two magnetization directions was used, only the direction where the magnetization direction curves from one main surface side to the other main surface side and returns to the one main surface side. You may comprise a permanent magnet body using a permanent magnet piece. In this case, the magnetic pole is formed only on one main surface of the permanent magnet body. The permanent magnet piece whose magnetization direction is curved from one main surface side to the other main surface side and returns to the one main surface side is, for example, a non-magnetic material having no coil in place of the upper punch 50a or the lower punch 50b. This punch is used to apply an orientation magnetic field only from either the upper side or the lower side (see FIG. 3).

また、上述の実施形態では複数の永久磁石片12を用いて永久磁石体10を構成する場合について説明したが、2以上の偶数個の磁極が周方向に異極が交互に並ぶように主面に形成され、極異方性を有する1つの環状の永久磁石を用いて永久磁石体を構成するようにしてもよい。   Moreover, although the above-mentioned embodiment demonstrated the case where the permanent magnet body 10 was comprised using the several permanent magnet piece 12, it is a main surface so that two or more even-numbered magnetic poles may arrange a different pole in the circumferential direction alternately. The permanent magnet body may be configured by using one annular permanent magnet having polar anisotropy.

ついで、この発明の他の実施形態の永久磁石体100について説明する。
図4(a)および(b)を参照して、永久磁石体100は、複数(ここでは8つ)の永久磁石片102および永久磁石片102と同数の永久磁石片104を含む。永久磁石片102および104は、横断面略扇形状に形成される希土類焼結磁石である。永久磁石体100は、永久磁石片102と104とを矢印A方向に交互に配置し連結することによって環状に構成される。
Next, a permanent magnet body 100 according to another embodiment of the present invention will be described.
Referring to FIGS. 4A and 4B, permanent magnet body 100 includes a plurality (here, eight) of permanent magnet pieces 102 and the same number of permanent magnet pieces 104 as permanent magnet pieces 102. Permanent magnet pieces 102 and 104 are rare earth sintered magnets having a substantially fan-shaped cross section. The permanent magnet body 100 is formed in an annular shape by alternately arranging and connecting the permanent magnet pieces 102 and 104 in the direction of arrow A.

図5をも参照して、永久磁石片102の磁化方向は軸方向(矢印B方向)に平行な方向であり、永久磁石片104の磁化方向は径方向(矢印C方向)および矢印B方向に直交する方向である。この実施形態では、永久磁石片102が第1永久磁石片に相当し、永久磁石片104が第2永久磁石片に相当する。   Referring also to FIG. 5, the magnetization direction of permanent magnet piece 102 is parallel to the axial direction (arrow B direction), and the magnetization direction of permanent magnet piece 104 is radial (arrow C direction) and arrow B direction. The directions are orthogonal. In this embodiment, the permanent magnet piece 102 corresponds to a first permanent magnet piece, and the permanent magnet piece 104 corresponds to a second permanent magnet piece.

図5において永久磁石片102内に示すように、永久磁石片104を挟んで隣り合う永久磁石片102は、異極すなわち互いのN極とS極とが対向するように配置される。また、図5において永久磁石片104内に示すように、永久磁石片102を挟んで隣り合う永久磁石片104は、同極すなわち互いのN極とN極とが対向するあるいはS極とS極とが対向するように配置される。これによって、2つの永久磁石片104のN極で挟まれる永久磁石片102の一方主面102aにはN極が形成され、2つの永久磁石片104のS極で挟まれる永久磁石片102の一方主面102aにはS極が形成される。したがって、永久磁石体100の一方主面100aにはN極とS極とが矢印A方向に交互に4つずつ並ぶ。   As shown in the permanent magnet piece 102 in FIG. 5, the permanent magnet pieces 102 that are adjacent to each other with the permanent magnet piece 104 interposed therebetween are arranged so that the opposite poles, that is, the N and S poles face each other. Further, as shown in the permanent magnet piece 104 in FIG. 5, the permanent magnet pieces 104 adjacent to each other with the permanent magnet piece 102 are in the same polarity, that is, the N pole and the N pole face each other, or the S pole and the S pole. Are arranged so as to face each other. Thus, an N pole is formed on one main surface 102 a of the permanent magnet piece 102 sandwiched between the N poles of the two permanent magnet pieces 104, and one of the permanent magnet pieces 102 sandwiched between the S poles of the two permanent magnet pieces 104. An S pole is formed on the main surface 102a. Therefore, four N-poles and four S-poles are alternately arranged in the direction of arrow A on one main surface 100a of permanent magnet body 100.

このような永久磁石体100では、図4(b)に示すように、永久磁石片104を挟んで隣り合う永久磁石片102において、一方の永久磁石片102の一方主面102aの磁極(N極)に磁束Lを集中させ、該磁極(N極)からの磁束Lを他方の永久磁石片102の一方主面102aの磁極(S極)に効率よく収束させることができる。つまり、他方主面100b上の永久磁石片102の磁極(N極)から発生する磁束が、基本的に他方主面100b上に発生することなく、永久磁石片104に吸引され、永久磁石片104を介して隣り合う永久磁石片102に導かれ、また、永久磁石片104から発生する磁束も隣接する該永久磁石片102によって、他方主面100b上に発生することなく、一方主面100aに誘引されるため、永久磁石体100では、他方主面100b上に発生する磁束(漏洩磁束)を減少させることができ、一方主面100a上に形成された磁極に磁束を集中させることができる。したがって、従来技術の永久磁石体よりも一方主面100a上における表面磁束密度の最大値を大きくできる。   In such a permanent magnet body 100, as shown in FIG. 4B, in the permanent magnet pieces 102 adjacent to each other with the permanent magnet pieces 104 interposed therebetween, the magnetic poles (N poles) on one main surface 102a of one permanent magnet piece 102 are arranged. ) And the magnetic flux L from the magnetic pole (N pole) can be efficiently converged on the magnetic pole (S pole) of the one main surface 102a of the other permanent magnet piece 102. That is, the magnetic flux generated from the magnetic pole (N pole) of the permanent magnet piece 102 on the other main surface 100b is attracted to the permanent magnet piece 104 without being basically generated on the other main surface 100b, and the permanent magnet piece 104. The magnetic flux generated from the permanent magnet piece 104 is attracted to the one main surface 100a without being generated on the other main surface 100b by the adjacent permanent magnet piece 102. Therefore, in the permanent magnet body 100, the magnetic flux (leakage magnetic flux) generated on the other main surface 100b can be reduced, and the magnetic flux can be concentrated on the magnetic pole formed on the one main surface 100a. Therefore, the maximum value of the surface magnetic flux density on the one main surface 100a can be made larger than that of the conventional permanent magnet body.

また、永久磁石体100では、永久磁石片102と104との大きさの比率、言い換えれば、一方主面100aの面積に対する永久磁石片102の一方主面102aの面積の比率を変更することによって、用途に応じた表面磁束密度分布に変更できる。   Further, in the permanent magnet body 100, by changing the ratio of the size of the permanent magnet pieces 102 and 104, in other words, the ratio of the area of the one main surface 102a of the permanent magnet piece 102 to the area of the one main surface 100a, The surface magnetic flux density distribution can be changed according to the application.

ついで、この発明のその他の実施形態の永久磁石体200について説明する。
図6(a)および(b)を参照して、永久磁石体200は、上述の永久磁石体100を2つ含み、2つの永久磁石体100を矢印B方向に配置し連結することによって構成される。
Next, a permanent magnet body 200 according to another embodiment of the present invention will be described.
6 (a) and 6 (b), permanent magnet body 200 includes two permanent magnet bodies 100 described above, and is configured by arranging and connecting two permanent magnet bodies 100 in the direction of arrow B. The

詳しくは、永久磁石体200は、2つの永久磁石体100を互いの他方主面100b{図4(a)および(b)参照}が対向するように上下反対に配置しかつ互いの永久磁石片102同士および永久磁石片104同士がそれぞれ矢印B方向に並ぶように配置することによって構成される。永久磁石体200において、矢印B方向に並ぶ永久磁石片102は同極が対向する。   Specifically, in the permanent magnet body 200, the two permanent magnet bodies 100 are arranged upside down so that the other main surface 100b {see FIGS. 4 (a) and (b)} faces each other, and each permanent magnet piece. 102 and permanent magnet pieces 104 are arranged so as to be aligned in the direction of arrow B, respectively. In the permanent magnet body 200, the same poles of the permanent magnet pieces 102 arranged in the direction of arrow B are opposed to each other.

このような永久磁石体200では、一方主面上および他方主面上における表面磁束密度の最大値を大きくできる。永久磁石体200の一方主面および他方主面は、いずれも永久磁石体100の一方主面100aに相当することはいうまでもない。   In such a permanent magnet body 200, the maximum value of the surface magnetic flux density on one main surface and the other main surface can be increased. It goes without saying that the one main surface and the other main surface of the permanent magnet body 200 correspond to the one main surface 100 a of the permanent magnet body 100.

2つの永久磁石体100を矢印B方向に連結する場合、図7に示す永久磁石体200aのように、2つの永久磁石体100の間に磁性体からなる中空円板状の介挿部材202を配置してもよい。このように介挿部材202を2つの永久磁石体100の間に配置することによって、永久磁石体100間の反発を抑えることができ、組み立て作業が容易になる。   When two permanent magnet bodies 100 are connected in the direction of arrow B, a hollow disc-shaped insertion member 202 made of a magnetic body is interposed between the two permanent magnet bodies 100 as in the permanent magnet body 200a shown in FIG. You may arrange. By disposing the insertion member 202 between the two permanent magnet bodies 100 in this way, repulsion between the permanent magnet bodies 100 can be suppressed, and the assembling work is facilitated.

ついで、この発明のその他の実施形態の永久磁石体300について説明する。
図8(a)および(b)を参照して、永久磁石体300は、複数(ここでは8つ)の永久磁石片302および永久磁石片302と同数の磁性材304を含む。永久磁石片302は、横断面略扇形状に形成される希土類焼結磁石である。また、磁性材304は、横断面略扇形状に形成される磁性体であり、たとえば圧粉鉄や珪素鋼等からなる。永久磁石体300は、永久磁石片302と磁性材304とを矢印A方向に交互に配置し連結することによって環状に構成される。
Next, a permanent magnet body 300 according to another embodiment of the present invention will be described.
Referring to FIGS. 8A and 8B, permanent magnet body 300 includes a plurality (here, eight) of permanent magnet pieces 302 and the same number of magnetic materials 304 as permanent magnet pieces 302. The permanent magnet piece 302 is a rare earth sintered magnet formed in a substantially sectoral cross section. The magnetic material 304 is a magnetic body having a substantially sectoral cross section, and is made of, for example, powdered iron or silicon steel. The permanent magnet body 300 is configured in an annular shape by alternately arranging and connecting the permanent magnet pieces 302 and the magnetic material 304 in the direction of arrow A.

永久磁石片302の磁化方向は、矢印C方向および矢印B方向に直交する方向である。永久磁石体300において、磁性材304を挟んで隣り合う永久磁石片302は、同極が対向するように配置される。したがって、永久磁石体300の主面300aには、8つのN極と8つのS極とがそれぞれ磁性材304の主面304aを同極で挟むように矢印A方向に並ぶ。主面300bにおいても同様に、N極とS極とがそれぞれ磁性材304の主面304bを同極で挟むように矢印A方向に並ぶ。   The magnetization direction of the permanent magnet piece 302 is a direction orthogonal to the arrow C direction and the arrow B direction. In the permanent magnet body 300, the adjacent permanent magnet pieces 302 with the magnetic material 304 interposed therebetween are arranged so that the same poles face each other. Therefore, on the main surface 300a of the permanent magnet body 300, eight N poles and eight S poles are arranged in the direction of arrow A so that the main surface 304a of the magnetic material 304 is sandwiched between the same poles. Similarly, in the main surface 300b, the N pole and the S pole are arranged in the direction of the arrow A so that the main surface 304b of the magnetic material 304 is sandwiched between the same poles.

このような永久磁石体300では、磁性材304が磁極片として機能する。これによって、図8(b)に示すように、永久磁石片302を挟んで隣り合う磁性材304において、一方の磁性材304の主面304aに磁束Lを集中させ、該磁性材304からの磁束Lを他方の磁性材304の主面304aに効率よく収束させることができる。隣り合う磁性材304の主面304bの間においても同様である。したがって、従来技術の永久磁石体よりも主面300aおよび300b上における表面磁束密度の最大値を大きくできる。   In such a permanent magnet body 300, the magnetic material 304 functions as a pole piece. As a result, as shown in FIG. 8B, in the magnetic material 304 adjacent to the permanent magnet piece 302, the magnetic flux L is concentrated on the main surface 304a of one magnetic material 304, and the magnetic flux from the magnetic material 304 is concentrated. L can be efficiently converged on the main surface 304a of the other magnetic material 304. The same applies between the main surfaces 304b of the adjacent magnetic members 304. Therefore, the maximum value of the surface magnetic flux density on the main surfaces 300a and 300b can be made larger than that of the permanent magnet body of the prior art.

また、永久磁石体300では、永久磁石片302と磁性材304との大きさの比率、言い換えれば、主面300a(300b)の面積に対する磁性材304の主面304a(304b)の面積の比率を変更することによって、用途に応じた表面磁束密度分布に変更できる。   Further, in the permanent magnet body 300, the ratio of the size of the permanent magnet piece 302 and the magnetic material 304, in other words, the ratio of the area of the main surface 304a (304b) of the magnetic material 304 to the area of the main surface 300a (300b). By changing, it can be changed to the surface magnetic flux density distribution according to the application.

なお、永久磁石片12,102,104および302に用いられる永久磁石は希土類焼結磁石に限定されない。たとえば、希土類焼結磁石に代えて希土類ボンド磁石を永久磁石片12,102,104および302として用いてもよい。また、希土類系磁石の他にも、永久磁石片12,102,104および302としてアルニコ系磁石やフェライト系磁石等の任意の永久磁石を選択できる。   The permanent magnets used for the permanent magnet pieces 12, 102, 104 and 302 are not limited to rare earth sintered magnets. For example, a rare earth bonded magnet may be used as the permanent magnet pieces 12, 102, 104, and 302 instead of the rare earth sintered magnet. Besides the rare earth magnets, any permanent magnets such as alnico magnets and ferrite magnets can be selected as the permanent magnet pieces 12, 102, 104 and 302.

ついで、この発明の永久磁石体10,200および300と、図10(a)および(b)に示す従来技術の永久磁石体1との表面磁束密度分布の比較例について説明する。ここでは、各永久磁石体の形状および寸法を統一しかつ各永久磁石体に用いられる永久磁石片の材質を統一して表面磁束密度の測定を行った際の比較例について説明する。   Next, a comparative example of the surface magnetic flux density distribution between the permanent magnet bodies 10, 200 and 300 of the present invention and the conventional permanent magnet body 1 shown in FIGS. 10 (a) and 10 (b) will be described. Here, a comparative example when measuring the surface magnetic flux density by unifying the shape and size of each permanent magnet body and unifying the material of the permanent magnet piece used for each permanent magnet body will be described.

図9を参照して、実線で示す波形W1は、永久磁石体10の主面10aの点X1間を結ぶライン上0.5mmの高さにおける表面磁束密度分布である{図1(a)参照}。一点鎖線で示す波形W2は、永久磁石体200の一方主面(永久磁石体100の一方主面100a)の点X2間を結ぶライン上0.5mmの高さにおける表面磁束密度分布である{図6(a)参照}。二点鎖線で示す波形W3は、永久磁石体300の主面300aの点X3間を結ぶライン上0.5mmの高さにおける表面磁束密度分布である{図8(a)参照}。破線で示す波形W4は、永久磁石体1の主面1aの点X4間を結ぶライン上0.5mmの高さにおける表面磁束密度分布である{図10(a)参照}。   Referring to FIG. 9, a waveform W1 indicated by a solid line is a surface magnetic flux density distribution at a height of 0.5 mm on a line connecting the points X1 of the main surface 10a of the permanent magnet body 10 {see FIG. 1 (a). }. A waveform W2 indicated by a one-dot chain line is a surface magnetic flux density distribution at a height of 0.5 mm on a line connecting the points X2 of one main surface of the permanent magnet body 200 (one main surface 100a of the permanent magnet body 100) {FIG. See 6 (a)}. A waveform W3 indicated by a two-dot chain line is a surface magnetic flux density distribution at a height of 0.5 mm on a line connecting the points X3 of the main surface 300a of the permanent magnet body 300 {see FIG. 8A}. A waveform W4 indicated by a broken line is a surface magnetic flux density distribution at a height of 0.5 mm on a line connecting the points X4 of the main surface 1a of the permanent magnet body 1 {see FIG. 10 (a)}.

波形W1〜W4から、永久磁石体10,200および300の主面上における表面磁束密度の最大値はいずれも永久磁石体1の主面1a上における表面磁束密度の最大値よりも大きくなることがわかる。永久磁石体10では、極異方性を有する永久磁石片12を同極が対向するように配置することによって、点X1間を結ぶラインの中央(N極)上で表面磁束密度が最大になり、特に表面磁束密度の最大値が大きくなっているのがわかる。   From the waveforms W1 to W4, the maximum value of the surface magnetic flux density on the main surface of each of the permanent magnet bodies 10, 200 and 300 may be larger than the maximum value of the surface magnetic flux density on the main surface 1a of the permanent magnet body 1. Recognize. In the permanent magnet body 10, the surface magnetic flux density is maximized on the center (N pole) of the line connecting the points X1 by arranging the permanent magnet pieces 12 having polar anisotropy so that the same poles face each other. In particular, it can be seen that the maximum value of the surface magnetic flux density is increased.

このような永久磁石体10,200および300は、アキシャルギャップ型モータや磁気センサ等に好適に用いられる。永久磁石体10では、極異方性を有する永久磁石片12を同極が対向するように配置することによって、表面磁束密度分布が正弦波状の波形となるので、永久磁石体10をアキシャルギャップ型モータに用いる場合にトルクリップルを低減させることができる。   Such permanent magnet bodies 10, 200 and 300 are suitably used for axial gap motors, magnetic sensors, and the like. In the permanent magnet body 10, since the surface magnetic flux density distribution becomes a sinusoidal waveform by disposing the permanent magnet pieces 12 having polar anisotropy so that the same poles face each other, the permanent magnet body 10 is formed into an axial gap type. When used in a motor, torque ripple can be reduced.

この発明の一実施形態の永久磁石体を示し、(a)は斜視図解図であり、(b)は側面図解図である。The permanent magnet body of one Embodiment of this invention is shown, (a) is a perspective view solution figure, (b) is a side view solution figure. 図1の永久磁石体に用いられる永久磁石片を示す斜視図解図である。It is a perspective view solution figure which shows the permanent magnet piece used for the permanent magnet body of FIG. 図2の永久磁石片の作製態様を示す図解図である。It is an illustration figure which shows the preparation aspect of the permanent magnet piece of FIG. この発明の他の実施形態の永久磁石体を示し、(a)は斜視図解図であり、(b)は側面図解図である。The permanent magnet body of other embodiment of this invention is shown, (a) is a perspective view solution figure, (b) is a side view solution figure. 図4の永久磁石体の一部を示す斜視図解図である。It is a perspective view solution figure which shows a part of permanent magnet body of FIG. この発明のその他の実施形態の永久磁石体を示し、(a)は斜視図解図であり、(b)は側面図解図である。The permanent magnet body of other embodiment of this invention is shown, (a) is a perspective view solution figure, (b) is a side view solution figure. この発明のその他の実施形態の永久磁石体を示す斜視図解図である。It is a perspective view solution figure which shows the permanent magnet body of other embodiment of this invention. この発明のその他の実施形態の永久磁石体を示し、(a)は斜視図解図であり、(b)は側面図解図である。The permanent magnet body of other embodiment of this invention is shown, (a) is a perspective view solution figure, (b) is a side view solution figure. この発明の永久磁石体と従来技術の永久磁石体との表面磁束密度分布の比較例を示す図解図である。It is an illustration figure which shows the comparative example of the surface magnetic flux density distribution of the permanent magnet body of this invention, and the permanent magnet body of a prior art. 従来技術の永久磁石体を示し、(a)は斜視図解図であり、(b)は側面図解図である。The permanent magnet body of a prior art is shown, (a) is a perspective view solution figure, (b) is a side view solution figure.

符号の説明Explanation of symbols

10,100,200,200a,300 永久磁石体
10a,10b,12a,12b,300a,300b,304a,304b 主面
12,102,104,302 永久磁石片
100a,102a 一方主面
100b 他方主面
202 介挿部材
304 磁性材
10, 100, 200, 200a, 300 Permanent magnet body 10a, 10b, 12a, 12b, 300a, 300b, 304a, 304b Main surface 12, 102, 104, 302 Permanent magnet piece 100a, 102a One main surface 100b The other main surface 202 Insertion member 304 Magnetic material

Claims (7)

少なくとも一方主面に2以上の偶数個の磁極が周方向に異極が交互に並ぶように形成される環状の永久磁石体であって、
前記磁極のうち周方向に隣り合う異極の間で極異方性を有する、永久磁石体。
An annular permanent magnet body formed such that at least one of the main surfaces has an even number of two or more magnetic poles alternately arranged with different polarities in the circumferential direction,
A permanent magnet body having polar anisotropy between different poles adjacent in the circumferential direction among the magnetic poles.
1つの環状の永久磁石によって構成される、請求項1に記載の永久磁石体。   The permanent magnet body according to claim 1, wherein the permanent magnet body is constituted by one annular permanent magnet. 複数の永久磁石片を周方向に配置することによって構成され、少なくとも1つの前記永久磁石片は隣り合う前記永久磁石片と同極が対向する、請求項1に記載の永久磁石体。   The permanent magnet body according to claim 1, wherein the permanent magnet body is configured by arranging a plurality of permanent magnet pieces in a circumferential direction, and at least one of the permanent magnet pieces has the same polarity as that of the adjacent permanent magnet piece. 2以上の偶数個の磁極が周方向に異極が交互に並ぶように一方主面に形成される環状の永久磁石体であって、
磁化方向が軸方向に平行な第1永久磁石片、ならびに
磁化方向が径方向および軸方向に直交する第2永久磁石片を備え、
前記第1永久磁石片と前記第2永久磁石片とが周方向に交互に配置され、前記第2永久磁石片を挟んで隣り合う前記第1永久磁石片は異極が対向しかつ前記第1永久磁石片を挟んで隣り合う前記第2永久磁石片は同極が対向する、永久磁石体。
An annular permanent magnet body formed on one main surface so that two or more even number of magnetic poles are alternately arranged in different directions in the circumferential direction,
A first permanent magnet piece whose magnetization direction is parallel to the axial direction, and a second permanent magnet piece whose magnetization direction is perpendicular to the radial direction and the axial direction,
The first permanent magnet pieces and the second permanent magnet pieces are alternately arranged in the circumferential direction, and the first permanent magnet pieces adjacent to each other across the second permanent magnet pieces have opposite polarities and the first permanent magnet pieces are opposed to each other. A permanent magnet body in which the second permanent magnet pieces adjacent to each other across the permanent magnet pieces have the same polarity.
請求項4に記載の永久磁石体を互いの他方主面が対向しかつ互いの前記第1永久磁石片同士が軸方向に同極を対向させて並ぶように2つ配置することによって構成される、永久磁石体。   5. The permanent magnet body according to claim 4 is configured by arranging two permanent magnet bodies so that the other main surfaces thereof face each other and the first permanent magnet pieces of each other are aligned with the same poles facing each other in the axial direction. , Permanent magnet body. 請求項4に記載の永久磁石体の間に磁性体が配置される、請求項5に記載の永久磁石体。   The permanent magnet body according to claim 5, wherein a magnetic body is disposed between the permanent magnet bodies according to claim 4. 2以上の偶数個の磁極が周方向に異極が交互に並ぶように主面に形成される環状の永久磁石体であって、
磁化方向が径方向および軸方向に直交する永久磁石片、ならびに
磁性体を備え、
前記永久磁石片と前記磁性体とが周方向に交互に配置され、前記磁性体を挟んで隣り合う前記永久磁石片は同極が対向する、永久磁石体。
An annular permanent magnet body formed on the main surface so that two or more even number of magnetic poles are alternately arranged in different directions in the circumferential direction,
A permanent magnet piece whose magnetization direction is perpendicular to the radial direction and the axial direction, and a magnetic body,
A permanent magnet body in which the permanent magnet pieces and the magnetic body are alternately arranged in the circumferential direction, and the permanent magnet pieces adjacent to each other with the magnetic body sandwiched therebetween have the same polarity.
JP2005031785A 2005-02-08 2005-02-08 Permanent magnet body Pending JP2006222131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005031785A JP2006222131A (en) 2005-02-08 2005-02-08 Permanent magnet body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005031785A JP2006222131A (en) 2005-02-08 2005-02-08 Permanent magnet body

Publications (1)

Publication Number Publication Date
JP2006222131A true JP2006222131A (en) 2006-08-24

Family

ID=36984258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031785A Pending JP2006222131A (en) 2005-02-08 2005-02-08 Permanent magnet body

Country Status (1)

Country Link
JP (1) JP2006222131A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104278A (en) * 2006-10-18 2008-05-01 Honda Motor Co Ltd Motor
JP2008161018A (en) * 2006-12-26 2008-07-10 Honda Motor Co Ltd Axial gap motor
JP2008161038A (en) * 2006-12-01 2008-07-10 Honda Motor Co Ltd Axial-gap electric motor
JP2008172884A (en) * 2007-01-10 2008-07-24 Honda Motor Co Ltd Axial gap type motor and motor-driven power steering device
WO2008129902A1 (en) * 2007-04-17 2008-10-30 Honda Motor Co., Ltd. Axial gap motor
JP2008271641A (en) * 2007-04-17 2008-11-06 Honda Motor Co Ltd Axial gap motor
JP2008271642A (en) * 2007-04-17 2008-11-06 Honda Motor Co Ltd Axial gap motor
WO2009001675A1 (en) * 2007-06-26 2008-12-31 Honda Motor Co., Ltd. Axial gap type motor
WO2009028266A1 (en) * 2007-08-29 2009-03-05 Honda Motor Co., Ltd. Axial gap type motor
WO2009044799A1 (en) * 2007-10-04 2009-04-09 Honda Motor Co., Ltd. Axial gap motor
JP2009095086A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Axial gap motor
US20100141075A1 (en) * 2006-12-06 2010-06-10 Honda Motor Co., Ltd Axial gap motor
US7906883B2 (en) 2008-06-02 2011-03-15 Honda Motor Co., Ltd. Axial gap motor
US7919897B2 (en) 2008-10-09 2011-04-05 Honda Motor Co., Ltd. Axial gap type motor
US7977843B2 (en) 2007-10-04 2011-07-12 Honda Motor Co., Ltd. Axial gap type motor
US8030816B2 (en) 2006-06-06 2011-10-04 Honda Motor Co., Ltd. Motor and motor control device
US8049389B2 (en) 2008-06-02 2011-11-01 Honda Motor Co., Ltd. Axial gap motor
JP2012130086A (en) * 2010-12-13 2012-07-05 Hitachi Ltd Axial gap type rotary electric machine
JP2012138141A (en) * 2010-12-24 2012-07-19 Nichia Chem Ind Ltd Field unit, permanent magnet constituting the same, and method for manufacturing field unit
JP2014150254A (en) * 2013-01-30 2014-08-21 Arnold Magnetic Technologies Ag Contoured field magnet
CN105321651A (en) * 2015-10-16 2016-02-10 宁波鑫丰磁业有限公司 halbach array permanent magnet axial ring formed in one time
CN106104973A (en) * 2014-03-18 2016-11-09 三菱电机株式会社 The rotor of permanent magnet-type motor
WO2017022044A1 (en) * 2015-08-03 2017-02-09 株式会社日立産機システム Power transmission device
KR20170132215A (en) 2015-03-24 2017-12-01 닛토덴코 가부시키가이샤 Sintered body for forming rare-earth magnet, and rare-earth sintered magnet
CN109391056A (en) * 2017-08-07 2019-02-26 三菱重工业株式会社 The manufacturing method of axial gap electric motor and rotor
JP2020178416A (en) * 2019-04-16 2020-10-29 日本製鉄株式会社 Rotary electric machine
US10867729B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
WO2021090844A1 (en) * 2019-11-08 2021-05-14 株式会社デンソー Dynamo-electric machine
US20220149683A1 (en) * 2020-10-30 2022-05-12 Seiko Epson Corporation Rotary motor and manufacturing method for rotor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486609U (en) * 1977-12-02 1979-06-19
JPS6276327U (en) * 1985-10-31 1987-05-15
JPH01253905A (en) * 1988-04-02 1989-10-11 Tdk Corp Multiple-pole magnetizing permanent magnet
JPH10289800A (en) * 1997-04-14 1998-10-27 Shin Etsu Chem Co Ltd Inserted light source and magnetizing method for magnet therefor
JP2001076925A (en) * 1999-08-31 2001-03-23 Hitachi Metals Ltd Permanent magnet having flat plate multipolar anisotropy and actuator
JP2004015906A (en) * 2002-06-06 2004-01-15 Yaskawa Electric Corp Permanent magnet motor
JP2004363606A (en) * 2003-06-02 2004-12-24 Asml Holding Nv Control method of reticle masking blade system and reticle masking blade, and levitation device of reticle masking blade

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486609U (en) * 1977-12-02 1979-06-19
JPS6276327U (en) * 1985-10-31 1987-05-15
JPH01253905A (en) * 1988-04-02 1989-10-11 Tdk Corp Multiple-pole magnetizing permanent magnet
JPH10289800A (en) * 1997-04-14 1998-10-27 Shin Etsu Chem Co Ltd Inserted light source and magnetizing method for magnet therefor
JP2001076925A (en) * 1999-08-31 2001-03-23 Hitachi Metals Ltd Permanent magnet having flat plate multipolar anisotropy and actuator
JP2004015906A (en) * 2002-06-06 2004-01-15 Yaskawa Electric Corp Permanent magnet motor
JP2004363606A (en) * 2003-06-02 2004-12-24 Asml Holding Nv Control method of reticle masking blade system and reticle masking blade, and levitation device of reticle masking blade

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030816B2 (en) 2006-06-06 2011-10-04 Honda Motor Co., Ltd. Motor and motor control device
JP2008104278A (en) * 2006-10-18 2008-05-01 Honda Motor Co Ltd Motor
JP2008161038A (en) * 2006-12-01 2008-07-10 Honda Motor Co Ltd Axial-gap electric motor
US20100141075A1 (en) * 2006-12-06 2010-06-10 Honda Motor Co., Ltd Axial gap motor
JP2008161018A (en) * 2006-12-26 2008-07-10 Honda Motor Co Ltd Axial gap motor
US7679260B2 (en) 2006-12-26 2010-03-16 Honda Motor Co., Ltd. Axial gap motor
JP2008172884A (en) * 2007-01-10 2008-07-24 Honda Motor Co Ltd Axial gap type motor and motor-driven power steering device
WO2008129902A1 (en) * 2007-04-17 2008-10-30 Honda Motor Co., Ltd. Axial gap motor
JP2008271641A (en) * 2007-04-17 2008-11-06 Honda Motor Co Ltd Axial gap motor
JP2008271642A (en) * 2007-04-17 2008-11-06 Honda Motor Co Ltd Axial gap motor
JP2008271640A (en) * 2007-04-17 2008-11-06 Honda Motor Co Ltd Axial gap motor
US8035266B2 (en) 2007-04-17 2011-10-11 Honda Motor Co., Ltd. Axial gap motor
WO2009001675A1 (en) * 2007-06-26 2008-12-31 Honda Motor Co., Ltd. Axial gap type motor
JP4707696B2 (en) * 2007-06-26 2011-06-22 本田技研工業株式会社 Axial gap type motor
US8283829B2 (en) 2007-06-26 2012-10-09 Honda Motor Co., Ltd. Axial gap motor
JP2009011023A (en) * 2007-06-26 2009-01-15 Honda Motor Co Ltd Axial gap motor
US8053942B2 (en) 2007-08-29 2011-11-08 Honda Motor Co., Ltd. Axial gap motor
JP2009060678A (en) * 2007-08-29 2009-03-19 Honda Motor Co Ltd Axial gap motor
WO2009028266A1 (en) * 2007-08-29 2009-03-05 Honda Motor Co., Ltd. Axial gap type motor
JP2009095087A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Axial gap motor
JP2009095086A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Axial gap motor
WO2009044799A1 (en) * 2007-10-04 2009-04-09 Honda Motor Co., Ltd. Axial gap motor
US7977843B2 (en) 2007-10-04 2011-07-12 Honda Motor Co., Ltd. Axial gap type motor
US8040008B2 (en) 2007-10-04 2011-10-18 Honda Motor Co., Ltd. Axial gap motor
US8049389B2 (en) 2008-06-02 2011-11-01 Honda Motor Co., Ltd. Axial gap motor
US7906883B2 (en) 2008-06-02 2011-03-15 Honda Motor Co., Ltd. Axial gap motor
US7919897B2 (en) 2008-10-09 2011-04-05 Honda Motor Co., Ltd. Axial gap type motor
JP2012130086A (en) * 2010-12-13 2012-07-05 Hitachi Ltd Axial gap type rotary electric machine
JP2012138141A (en) * 2010-12-24 2012-07-19 Nichia Chem Ind Ltd Field unit, permanent magnet constituting the same, and method for manufacturing field unit
US10600539B2 (en) 2013-01-30 2020-03-24 Magnetic Technologies AG Contoured-field magnets
JP2014150254A (en) * 2013-01-30 2014-08-21 Arnold Magnetic Technologies Ag Contoured field magnet
CN106104973A (en) * 2014-03-18 2016-11-09 三菱电机株式会社 The rotor of permanent magnet-type motor
US9812912B2 (en) 2014-03-18 2017-11-07 Mitsubishi Electric Corporation Rotor for permanent magnet motor having a magnetic pole portion and a field portion
CN106104973B (en) * 2014-03-18 2018-01-05 三菱电机株式会社 The rotor of permanent magnet-type motor
KR20170132215A (en) 2015-03-24 2017-12-01 닛토덴코 가부시키가이샤 Sintered body for forming rare-earth magnet, and rare-earth sintered magnet
US10867729B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
WO2017022044A1 (en) * 2015-08-03 2017-02-09 株式会社日立産機システム Power transmission device
CN105321651A (en) * 2015-10-16 2016-02-10 宁波鑫丰磁业有限公司 halbach array permanent magnet axial ring formed in one time
JP2019033578A (en) * 2017-08-07 2019-02-28 三菱重工業株式会社 Axial gap motor and rotor manufacturing method
CN109391056B (en) * 2017-08-07 2020-12-11 三菱重工业株式会社 Axial gap motor and method for manufacturing rotor
CN109391056A (en) * 2017-08-07 2019-02-26 三菱重工业株式会社 The manufacturing method of axial gap electric motor and rotor
US11075555B2 (en) 2017-08-07 2021-07-27 Mitsubishi Heavy Industries, Ltd. Axial gap motor and method for manufacturing rotor
JP2020178416A (en) * 2019-04-16 2020-10-29 日本製鉄株式会社 Rotary electric machine
JP7163856B2 (en) 2019-04-16 2022-11-01 日本製鉄株式会社 Rotating electric machine
WO2021090844A1 (en) * 2019-11-08 2021-05-14 株式会社デンソー Dynamo-electric machine
JP2021078243A (en) * 2019-11-08 2021-05-20 株式会社デンソー Rotary electric machine
CN114631246A (en) * 2019-11-08 2022-06-14 株式会社电装 Rotating electrical machine
US20220149683A1 (en) * 2020-10-30 2022-05-12 Seiko Epson Corporation Rotary motor and manufacturing method for rotor

Similar Documents

Publication Publication Date Title
JP2006222131A (en) Permanent magnet body
JP7173119B2 (en) permanent magnet piece
JP5074350B2 (en) Magnetic bearing
JP2007110822A (en) Periodic magnetic field generator, manufacturing method therefor, and linear motor using this periodic magnetic field generator
CN101438486A (en) Rotor-stator structure for electrodynamic machines
TW201004102A (en) Integrated rotor pole pieces
JP6065568B2 (en) Magnetizer
JP3470689B2 (en) Linear actuator
JP4855747B2 (en) Permanent magnet type reluctance rotating electric machine
US6980072B2 (en) Linear actuator, and pump and compressor devices using the actuator
JPH08130862A (en) Moving magnet linear actuator
JP2005051929A (en) Motor
JP2009261167A (en) Permanent magnet rotor
JP4898692B2 (en) Rotor-stator structure for electrical machines
JP6767675B2 (en) A magnetic field generating member and a motor including the magnetic field generating member
JP4238588B2 (en) Motor, motor rotor and composite anisotropic magnet
JP2004248363A (en) Claw pole motor
JP2008022664A (en) Magnetic field element and rotating electric machine
JP4551684B2 (en) Cylinder type linear motor
JP7073711B2 (en) Permanent magnet pieces, permanent magnet assemblies and permanent magnet application equipment
JP2006166634A (en) Rotor structure for axial gap type dynamo-electric machine
JP7429441B2 (en) Magnet array units and electromagnetic devices
JPH07277664A (en) Lifting device
JP7117838B2 (en) vibration generator
JP2004343999A (en) Generator with rotation plate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824