Nothing Special   »   [go: up one dir, main page]

JP2007185576A - Apparatus for dissolving gas and apparatus for preparing water wherein gas is dissolved - Google Patents

Apparatus for dissolving gas and apparatus for preparing water wherein gas is dissolved Download PDF

Info

Publication number
JP2007185576A
JP2007185576A JP2006004367A JP2006004367A JP2007185576A JP 2007185576 A JP2007185576 A JP 2007185576A JP 2006004367 A JP2006004367 A JP 2006004367A JP 2006004367 A JP2006004367 A JP 2006004367A JP 2007185576 A JP2007185576 A JP 2007185576A
Authority
JP
Japan
Prior art keywords
gas
liquid
path
water
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006004367A
Other languages
Japanese (ja)
Inventor
Masataka Oshima
正敬 大島
Yasuhiro Funato
泰宏 船戸
Kazuyoshi Sakota
一好 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGOYA OSHIMA KIKAI KK
Nagoya Oshima Machinery Co Ltd
Original Assignee
NAGOYA OSHIMA KIKAI KK
Nagoya Oshima Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGOYA OSHIMA KIKAI KK, Nagoya Oshima Machinery Co Ltd filed Critical NAGOYA OSHIMA KIKAI KK
Priority to JP2006004367A priority Critical patent/JP2007185576A/en
Publication of JP2007185576A publication Critical patent/JP2007185576A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for dissolving a gas into a liquid capable of increasing gas solubility without using a separate and additional equipment. <P>SOLUTION: The apparatus capable of dissolving a large amount of gas into a liquid comprises a spiral flow formation zone 5 disposed in the upstream of a cylindrical casing 4, a gas-liquid reaction zone 6 disposed in the down stream of the cylindrical casing 4, and an ultrasonic generator 3 disposed on the cylindrical casing 4 for irradiating the gas and liquid in the spiral flow formation zone 5 or in the liquid-gas reaction zone 6 with an ultrasonic wave, whereby a large amount of gas can be dissolved into a liquid by virtue of a combination of the mixing action and ultrasonic action. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水、海水、各種飲料(飲料水、コーヒー飲料、果実飲料(ジュース)、お茶、清涼飲料)などの液体に、空気、酸素、オゾン、炭酸ガス、窒素、塩素、水素、アルゴンなどの気体(ガス)を溶解させるガス溶解装置およびガス溶解水生成装置に関する。   In the present invention, liquids such as water, seawater, various beverages (drinking water, coffee beverages, fruit beverages (juice), tea, soft drinks), air, oxygen, ozone, carbon dioxide, nitrogen, chlorine, hydrogen, argon, etc. The present invention relates to a gas dissolving device and a gas-dissolved water generating device for dissolving the gas (gas).

従来、液体にガスを溶解させる技術として、ガス気泡を液体中に放散させる技術が知られていたが、大きな気泡径のガスは浮力が大きくて、液体(液相)中を急速上昇して表面で破裂し気相へ放散してしまうため、液体中のガス溶解度が低かった。   Conventionally, as a technique for dissolving gas in a liquid, a technique for diffusing gas bubbles into the liquid has been known. However, a gas with a large bubble diameter has a large buoyancy and rapidly rises in the liquid (liquid phase). Ruptured and diffused into the gas phase, so the gas solubility in the liquid was low.

この改善策として、ガス溶解装置として、特開平10−66850号公報(特許文献1)の請求項3に記載された、円筒ケーシングと;二つの半楕円形翼盤をその弦側側縁を円筒ケーシングの軸芯に対して対称的に交差させて向き合わせ、交差部よりも上流側の翼盤相互の弦側側縁間を、前記円筒ケーシングの横断面をほぼ二等分する三角形の仕切板で閉塞するとともに、前記翼盤の円弧側縁を前記円筒ケーシング内周壁に結合した変流ガイドベインと;半球状の頭部と逆截頭円錐台形の脚部を有し、半球状頭部を円筒ケーシングの軸芯方向に向けて逆截頭円錐台形脚部と前記変流ガイドベインの下流側の円筒ケーシングの内周壁に放射状に固設した複数の撹拌体と;から構成されている気液混合装置が開発されていた。
しかしながら、この気液混合装置では、目視可能な細粒気泡から液体に溶解した目視不可能な微細気泡が混在生成され、実用稼働の製造装置では、処理槽内の液体中に無数の細粒気泡が浮遊して液体中をゆっくり上昇(浮遊上昇)し、細粒気泡混合水としては十分であったとしても、溶解度は見た目より低く、用途によっては、ガス溶解水としては不十分な溶解度であった。
As an improvement measure, as a gas dissolving device, a cylindrical casing described in claim 3 of Japanese Patent Laid-Open No. 10-66850 (Patent Document 1); two semi-elliptical blades with a cylindrical side edge on a cylindrical side A triangular partition plate that is symmetrically crossed with respect to the axial center of the casing and faces the chord side edges of the blades upstream of the crossing portion to bisect the transverse section of the cylindrical casing. A current guide vane in which the arc side edge of the blade is coupled to the inner peripheral wall of the cylindrical casing; and a hemispherical head and a reverse truncated frustoconical leg, A gas-liquid comprising: a reverse truncated-conical truncated-conical leg toward the axial direction of the cylindrical casing; and a plurality of stirring bodies radially fixed to the inner peripheral wall of the cylindrical casing on the downstream side of the current-transforming guide vane. A mixing device was developed.
However, in this gas-liquid mixing device, invisible fine bubbles dissolved in the liquid are mixedly generated from the visible fine bubbles, and in a practically operating manufacturing device, countless fine bubbles are contained in the liquid in the processing tank. Floats slowly in the liquid (floating rise), and even if it is sufficient as fine-grained mixed water, the solubility is lower than it looks, and depending on the application, the solubility is insufficient as gas-dissolved water. It was.

そこで、ガス溶解水生成装置として、特開平10−66850号公報(特許文献1)の請求項2に記載された、ガス溶解処理槽に原水を連続供給する原水供給系路と、この処理槽から処理水を連続吐水させる処理水吐水系路と、この処理槽から排出させた水に、気液混合装置を介してガスを混合させた後、この処理槽に戻す循環系路を設けるとともに、これら原水供給系路、処理水吐水系路、循環系路の一つまたは二つ以上に流量調節自在の流量制御手段を設け、この流量制御手段により、原水供給系路と処理水吐水系路の流量を略同量にするとともに、原水供給系路または処理水吐水系路と前記循環系路の流量比を調節して処理槽内の処理水のガス溶解度を調節することができるようにした連続通水式ガス溶解装置が開発された。
しかしながら、この連続通水式ガス溶解装置で、ガス溶解度を上昇させたり、調節できる様になったが、ガス溶解装置(気液混合装置)による根本的な溶解度上昇の技術でなく、高い溶解度とするためには、循環比率、循環時間を上昇させたり、ポンプ能力を増強せねばならず、溶解効率が悪かった。
Therefore, as a gas-dissolved water generating device, a raw water supply path for continuously supplying raw water to a gas-dissolving treatment tank described in claim 2 of JP-A-10-66850 (Patent Document 1), A treated water discharge system for continuously discharging treated water, and a circulation system for returning gas to the treatment tank after mixing gas into the water discharged from the treatment tank via a gas-liquid mixing device, and these One or more of the raw water supply system, the treated water discharge system, and the circulation system are provided with flow control means capable of adjusting the flow rate, and the flow control means allows the flow rates of the raw water supply system and the treated water discharge system to be adjusted. And the flow rate of the raw water supply system or the treated water discharge system and the circulation system can be adjusted to adjust the gas solubility of the treated water in the treatment tank. A water-type gas dissolver has been developed.
However, with this continuous water-flow type gas dissolving device, the gas solubility can be increased or adjusted, but this is not a fundamental technology for increasing the solubility with a gas dissolving device (gas-liquid mixing device). In order to achieve this, the circulation ratio and the circulation time must be increased, and the pumping capacity must be increased, resulting in poor dissolution efficiency.

特開平10−66850号公報Japanese Patent Laid-Open No. 10-66850

解決しようとする問題点は、ガス溶解度を上昇させる点である。   The problem to be solved is to increase the gas solubility.

本発明は、上記従来技術に基づく、ガス溶解度に限界が存在したり、溶解度上昇に別途機器を必要とした課題に鑑み、円筒ケーシングの上下流部に螺旋流形成部および気液反応部を夫々設け、螺旋流形成部または気液反応部内部の気液に超音波を照射する超音波照射体を円筒ケーシングに設けることによって、混合作用と超音波作用の併用で液体に大量の気体を溶解する様にして、上記課題を解決する。   The present invention is based on the above prior art, and in view of the problem that gas solubility is limited or a separate device is required for increasing the solubility, a spiral flow forming portion and a gas-liquid reaction portion are respectively provided in the upstream and downstream portions of the cylindrical casing. A large amount of gas is dissolved in the liquid by combining the mixing action and the ultrasonic action by providing an ultrasonic irradiator in the cylindrical casing that irradiates the liquid and gas inside the spiral flow forming part or gas-liquid reaction part with ultrasonic waves. In this way, the above problem is solved.

要するに本発明は、円筒ケーシングの上下流部に螺旋流形成部および気液反応部を夫々設け、螺旋流形成部または気液反応部内部の気液に超音波を照射する超音波照射体を円筒ケーシングに設けたので、螺旋流形成部および気液反応部による剪断・攪拌・衝突などによる混合作用と超音波による粒子の振動・圧力変化作用の併用により、気液接触を多様化して溶解度を上昇することが出来る。   In short, the present invention provides a spiral flow forming portion and a gas-liquid reaction portion in the upstream and downstream portions of a cylindrical casing, respectively, and an ultrasonic irradiator that irradiates the gas-liquid inside the spiral flow formation portion or the gas-liquid reaction portion with a cylinder. Because it is provided in the casing, the gas-liquid contact is diversified and the solubility is increased by combining the mixing action by shearing, stirring, collision, etc. by the spiral flow forming part and the gas-liquid reaction part and the action of vibration and pressure change of the particles by ultrasonic waves. I can do it.

請求項2に係る発明によれば、ガス溶解水を大容量の貯溜槽に一時貯溜して、吐出先の他系路の流量増減に容易に対応することが出来たり、貯溜槽で安定化、均等化処理などを行うことが出来る。   According to the invention according to claim 2, gas dissolved water can be temporarily stored in a large-capacity storage tank, and can easily cope with an increase or decrease in the flow rate of the other system of the discharge destination, or can be stabilized by the storage tank. Equalization processing can be performed.

請求項3に係る発明によれば、貯溜槽のガス溶解水に溶解再処理を行って、溶解度の更なる上昇を図ることが出来る等その実用的効果甚だ大である。   According to the third aspect of the present invention, the practical effect such as the ability to further increase the solubility by dissolving and reprocessing the gas dissolved water in the storage tank is significant.

以下、本発明の一実施形態を図面に基づいて説明する。
図1に示す様に、本発明に係る気体を液体に高濃度で溶解するガス溶解装置1は、連続通水式の気液混合装置(スタティックミキサー)2の所要位置に超音波照射体3を設けたものである。
基本構成としては、図1、2に示す様に、混合気液が連続通水される円筒ケーシング4の上下流部に剪断、攪拌、衝突、乱流などで気液混合する螺旋流形成部5および気液反応部6を設け、螺旋流形成部5または気液反応部6内部の気液に超音波を照射・作用させる超音波照射体3を円筒ケーシング4に設けたガス溶解装置1である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a gas dissolving device 1 for dissolving a gas according to the present invention in a liquid at a high concentration has an ultrasonic irradiation body 3 at a required position of a continuous water flow type gas-liquid mixing device (static mixer) 2. It is provided.
As a basic configuration, as shown in FIGS. 1 and 2, a spiral flow forming section 5 that mixes gas and liquid by shearing, stirring, collision, turbulent flow or the like in the upstream and downstream portions of the cylindrical casing 4 through which the mixed gas and liquid are continuously passed. And gas-liquid reaction unit 6, and gas dissolver 1 in which ultrasonic casing 3 is provided in cylindrical casing 4 to irradiate and act on the gas-liquid in spiral flow forming unit 5 or gas-liquid reaction unit 6. .

以下、具体例を説明する。
図1に示す様に、連続通水系路7は、溶媒となる水、清涼飲料などの液体(原水)を供給する液体供給系路8に、溶質となる酸素、オゾンなどの気体を供給する気体供給系路9を接続すると共に、中途部にポンプ10を中間接続して成り、ポンプ10より下流側で連続通水系路7にガス溶解装置1を設けている。
かかる構成により、液体と気体がポンプ10等で混合・圧送され、混合気液がガス溶解装置1の円筒ケーシング4内に流入し、気液混合装置2および超音波照射体3の作用で、ガス溶解水が生成される。
Specific examples will be described below.
As shown in FIG. 1, the continuous water passage system 7 is a gas that supplies a gas such as oxygen or ozone as a solute to a liquid supply system path 8 that supplies liquid (raw water) such as water or soft drink as a solvent. A supply system 9 is connected, and a pump 10 is connected in the middle, and a gas dissolving device 1 is provided in the continuous water system 7 on the downstream side of the pump 10.
With this configuration, the liquid and gas are mixed and pumped by the pump 10 or the like, and the gas / liquid mixture flows into the cylindrical casing 4 of the gas dissolving apparatus 1, and the gas / liquid mixing apparatus 2 and the ultrasonic irradiator 3 act to gas. Dissolved water is produced.

尚、気液混合はポンプ10内の攪拌羽根で液体と気体を細粒化して行っているが、1次的な気液混合は別方式でも良く、例えば、密閉容器内に混流させた液体と気体を圧入して加圧溶解させても良い。
又、1次的な気液混合をポンプ10や密閉容器で行うに際して、液体供給系路8に気体供給系路9を接続し気液混合を行っているが、ポンプ10や密閉容器に気体を直接供給する様にしても良く、或いは、ポンプ10とガス溶解装置1の間や、ガス溶解装置1の直前や、ガス溶解装置1の螺旋流形成部5に気体を供給しても良い。
即ち、流通方向に圧力付与された混合気液がガス溶解装置1の円筒ケーシング4内に連続通水される形態であれば、1次的な気液混合の方式は問わない。
The gas-liquid mixing is performed by finely dividing the liquid and gas with the stirring blades in the pump 10, but the primary gas-liquid mixing may be performed by another method, for example, the liquid mixed in the sealed container Gas may be injected and dissolved under pressure.
In addition, when primary gas-liquid mixing is performed with the pump 10 or the sealed container, the gas supply system path 9 is connected to the liquid supply system path 8 to perform gas-liquid mixing. The gas may be supplied directly, or the gas may be supplied between the pump 10 and the gas dissolving device 1, immediately before the gas dissolving device 1, or to the spiral flow forming unit 5 of the gas dissolving device 1.
That is, the primary gas-liquid mixing method is not limited as long as the gas-liquid mixture applied with pressure in the flow direction is continuously passed through the cylindrical casing 4 of the gas dissolving apparatus 1.

図2は螺旋流形成部5および超音波照射体3を非断面としたガス溶解装置1の断面図であり、出入口11、12を開口した円筒ケーシング4内部の上流部に螺旋流形成部5を内装すると共に、円筒ケーシング4内部の下流部に気液反応部6を内装し、螺旋流形成部5の下流端直後で気液反応部6の上流部の位置で円筒ケーシング4の外側に超音波照射体3を設けている。
尚、超音波照射体3の円筒ケーシング4への取付位置は、円筒ケーシング4内部を流通する混合気液に超音波を照射、作用させる位置であれば良く、例えば、螺旋流形成部5に照射する位置や、気液反応部6の中間位置、或いは、両者に照射する位置でも良く、又超音波照射体3は気液混合装置2の円筒ケーシング4の外側に取付けて内部の混合気液に間接的に照射しているが、円筒ケーシング4に取付孔を開設すると共に、該取付孔に超音波照射体3の照射部3aを取付けて混合気液に超音波を直接照射しても良い。
又、円筒ケーシング4の上下流端の外側に、連続通水系路7の配管その他に接触用のフランジ13、13a を設けている。
FIG. 2 is a cross-sectional view of the gas dissolving device 1 in which the spiral flow forming portion 5 and the ultrasonic irradiator 3 are not cross-sectioned. The spiral flow forming portion 5 is provided in the upstream portion inside the cylindrical casing 4 with the entrances 11 and 12 opened. The gas-liquid reaction unit 6 is installed in the downstream portion inside the cylindrical casing 4 and the ultrasonic wave is generated outside the cylindrical casing 4 immediately after the downstream end of the spiral flow forming unit 5 and at the upstream portion of the gas-liquid reaction unit 6. An irradiation body 3 is provided.
Note that the position where the ultrasonic irradiator 3 is attached to the cylindrical casing 4 may be any position that irradiates and acts on the gas-liquid mixture flowing inside the cylindrical casing 4. The ultrasonic irradiation body 3 may be attached to the outside of the cylindrical casing 4 of the gas-liquid mixing device 2 so as to be used as an internal gas-liquid mixture. Although indirectly irradiating, an attachment hole may be opened in the cylindrical casing 4, and the irradiation portion 3a of the ultrasonic irradiator 3 may be attached to the attachment hole to directly irradiate the mixture gas with ultrasonic waves.
Further, outside the upstream and downstream ends of the cylindrical casing 4, contact flanges 13 and 13 a are provided in addition to the piping of the continuous water passage system 7.

次に、ガス溶解装置1の気液混合装置2に設けた螺旋流形成部5と気液反応部6の具体例の一例を説明する。
円筒ケーシング4の上流部に設けた螺旋流形成部5は、2枚の半楕円形板の翼盤14、14a を上下流方向に傾斜配置して成り、翼盤14、14a の弦側側縁15、15a を円筒ケーシング4の軸心に対して対称的に交差対向させると共に、翼盤14、14a の円弧側側縁16、16a を円筒ケーシング4の内周壁に接合させている。
又、2枚の翼盤14、14a の交差部の上流側で弦側側縁15、15a の間を、円筒ケーシング4の横断面を略2等分する略三角形板の仕切盤17で閉鎖している。
更に、2枚の翼盤14、14a と仕切盤17を一体化するために、円筒ケーシング4の軸心方向に丸棒の連結体18を配置すると共に、翼盤14、14a と仕切盤17の所要箇所を切り欠いて、連結体18に翼盤14、14a と仕切盤17を結合している。
Next, an example of a specific example of the spiral flow forming unit 5 and the gas-liquid reaction unit 6 provided in the gas-liquid mixing device 2 of the gas dissolving device 1 will be described.
The spiral flow forming portion 5 provided at the upstream portion of the cylindrical casing 4 is formed by arranging two semi-elliptical blades 14 and 14a inclined in the upstream and downstream directions, and the chord side edge of the blades 14 and 14a. 15 and 15 a are symmetrically crossed and opposed to the axis of the cylindrical casing 4, and the arcuate side edges 16 and 16 a of the blades 14 and 14 a are joined to the inner peripheral wall of the cylindrical casing 4.
Also, between the chord side edges 15 and 15a at the upstream side of the intersection of the two blades 14 and 14a, the cylindrical casing 4 has a substantially triangular plate divider 17 that bisects the transverse section. ing.
Further, in order to integrate the two blades 14 and 14a and the partition plate 17, a round bar connecting body 18 is arranged in the axial direction of the cylindrical casing 4, and the blade plates 14 and 14a and the partition plate 17 are arranged. The blades 14 and 14a and the divider 17 are connected to the connecting body 18 by cutting out the required portions.

円筒ケーシング4の下流部に設けた気液反応部6は、下流側に向けて徐々に内径が縮小するテーパー壁19、内径が一定の水平壁20および徐々に内径が拡大するテーパー壁21から成る段丘部22と、該段丘部22の水平壁20から円筒ケーシング4の軸心方向に立設した多数の突起23、23a …から構成している。
突起23、23a …は後方傾斜状で、円周方向で90度毎に、且つ、隣接同志は上下に振り分け、全体的には、円筒ケーシング4の内部に螺旋状で90度毎に突起23、23a …を立設している。
The gas-liquid reaction part 6 provided in the downstream part of the cylindrical casing 4 includes a tapered wall 19 whose inner diameter gradually decreases toward the downstream side, a horizontal wall 20 having a constant inner diameter, and a taper wall 21 whose inner diameter gradually increases. It comprises a terrace portion 22 and a number of protrusions 23, 23a... Standing upright from the horizontal wall 20 of the terrace portion 22 in the axial direction of the cylindrical casing 4.
The protrusions 23, 23a are inclined rearwardly, every 90 degrees in the circumferential direction, and adjacent comrades are divided up and down. Overall, the protrusions 23 are formed in a spiral shape every 90 degrees inside the cylindrical casing 4. 23a… is erected.

螺旋流形成部5と気液反応部6を有する気液混合装置2により、円筒ケーシング4の入口11から圧送流入した混合気液は、螺旋流形成部5の仕切盤17で2分割に分流されると共に、翼盤14、14a に沿って流動して螺旋流となって螺旋流形成部5を通過する。
螺旋流形成部5の通過時には、連結体18を含む翼盤14、14a と仕切盤17で流動形態が分断や方向変換で、混合気液に大きな剪断応力、乱流、攪拌作用などが発生する。
又、螺旋流形成部5の通過による螺旋流により、気液成分のうち、比較的に質量の大きい液体成分は慣性力で半径外側方向に移動し、比較的に質量の小さい気体成分は半径内側方向に移動し、この移動作用でも攪拌作用等が発生する。
The gas / liquid mixing device 2 having the spiral flow forming section 5 and the gas / liquid reaction section 6 splits the mixed gas / liquid fed from the inlet 11 of the cylindrical casing 4 into two parts by the partition 17 of the spiral flow forming section 5. At the same time, it flows along the blades 14 and 14a to form a spiral flow and passes through the spiral flow forming portion 5.
When passing through the spiral flow forming section 5, the flow form is divided or changed in direction by the blades 14, 14 a including the connecting body 18 and the partition plate 17, and large shear stress, turbulent flow, stirring action, etc. are generated in the gas-liquid mixture .
Further, due to the spiral flow caused by the passage of the spiral flow forming portion 5, the liquid component having a relatively large mass among the gas-liquid components moves radially outward by the inertial force, and the gas component having a relatively small mass moves to the inside of the radius. This movement action also causes a stirring action and the like.

そして、気液混合装置2における上流部の螺旋流形成部5を通過した螺旋流の混合気液が下流部の気液反応部6に流入すると、螺旋流は段丘部22のテーパー壁19で円筒ケーシング4の軸心方向に移動し、段丘部22の水平壁20では多数の突起23、23a …に衝突し、剪断応力、攪拌作用等が発生する。
螺旋流形成部5と気液反応部6の通過時に発生する剪断応力、攪拌作用、衝突・乱流等により、気体と液体は細粒や微細な粒子、粒子郡となって、大量の粒子などは複雑な混合作用を受けて気体と液体が接触し、気体粒子の一部は液体に溶解すると共に、一部は細粒や微細の気泡となり、略同時に、後述する超音波による作用を粒子等は受ける。
Then, when the mixed gas / liquid in the spiral flow that has passed through the upstream spiral flow forming section 5 in the gas / liquid mixing apparatus 2 flows into the downstream gas / liquid reaction section 6, the spiral flow is cylindrical at the tapered wall 19 of the terrace 22. It moves in the axial direction of the casing 4 and collides with a number of protrusions 23, 23a... On the horizontal wall 20 of the terrace 22 to generate shear stress, stirring action and the like.
Due to shear stress, stirring action, collision and turbulent flow generated when passing through the spiral flow forming part 5 and the gas-liquid reaction part 6, the gas and liquid become fine particles, fine particles, particle groups, and so on. Receives a complex mixing action, the gas and liquid come into contact, and some of the gas particles dissolve in the liquid, and some of them become fine particles and fine bubbles. Will receive.

尚、気液混合装置2に設けた螺旋流形成部5は、翼盤14、14a 、仕切盤17および連結体18で構成しているが、円筒ケーシング4の入口11から流入した混合気液を螺旋流として気液反応部6へ流動させるものであれば、螺旋流形成部5の具体的構成を問わず、各種のものが使用可能である。
又、気液混合装置2に設けた気液反応部6は、段丘部22および突起23、23a …で構成しているが、細粒、微細の気液粒子の混合作用を励起させる剪断、攪拌、衝突、乱流などの発生要素は、段丘部22および突起23、23a …の他、各種のものが使用可能である。
例えば、多数の流通孔を有する蜂の巣状の抵抗流通体を間欠的に配置したり、流通孔の位相をずらして配置し、或いは、螺旋流形成部5における翼盤14、14a や仕切盤17の様な板体を流通方向と同一・傾斜・位相変化させて順次連続的に配置し、又突起23、23a …は各種異形のものとしたり、板状のものとしても良く、即ち、気液反応部6で螺旋流の混合気液を剪断、攪拌、衝突、乱流などで混合作用できれば、気液反応部6の具体的構成を問わず、各種のものが使用可能である。
The spiral flow forming section 5 provided in the gas-liquid mixing device 2 is composed of blades 14 and 14a, a partition plate 17 and a connecting body 18, but the mixed gas-liquid flowing from the inlet 11 of the cylindrical casing 4 is supplied. Various things can be used regardless of the specific structure of the spiral flow formation part 5, if it is made to flow to the gas-liquid reaction part 6 as a spiral flow.
The gas-liquid reaction part 6 provided in the gas-liquid mixing apparatus 2 is composed of a terrace part 22 and protrusions 23, 23a..., Shearing and stirring for exciting the mixing action of fine and fine gas-liquid particles. In addition to the terrace portion 22 and the protrusions 23, 23a, etc., various types of elements such as collision and turbulent flow can be used.
For example, a honeycomb-like resistance circulation body having a large number of flow holes is intermittently arranged, or the flow holes are shifted in phase, or the blades 14 and 14a and the divider 17 in the spiral flow forming portion 5 are arranged. Such plate bodies are arranged sequentially and continuously in the same direction, with the same inclination and phase change, and the projections 23, 23a may be of various shapes or plate shapes, that is, gas-liquid reaction Various components can be used regardless of the specific configuration of the gas-liquid reaction unit 6 as long as the mixed gas-liquid in the spiral flow can be mixed by shearing, stirring, collision, turbulent flow or the like in the unit 6.

次に、本発明に係るガス溶解装置の作用について説明する。
気液混合装置2に超音波照射体3を設けたガス溶解装置1による全体的な作用は、気液混合装置2の螺旋流形成部5および気液反応部6による剪断・攪拌・混合などによる部分的な溶解作用と超音波による粒子等の振動・圧力変化作用の併用により、液体への気体の溶解速度、溶解度(過飽和を含む)、溶解効率を上昇、向上させている。
超音波照射体3から照射された20〜100KHzの超音波は、円筒ケーシング4を介して、超音波照射体3の照射部3aの中央から広がりを以て円筒ケーシング4内の混合気液に到達すると共に、円筒ケーシング4の内壁面や翼盤14、14a 、突起23、23a …等で反射して各種方向に伝播する。
Next, the operation of the gas dissolving apparatus according to the present invention will be described.
The overall action of the gas dissolving device 1 in which the ultrasonic irradiation body 3 is provided in the gas-liquid mixing device 2 is due to shearing, stirring, mixing, and the like by the spiral flow forming unit 5 and the gas-liquid reaction unit 6 of the gas-liquid mixing device 2. By combining the partial dissolution action and the action of vibration and pressure change of particles by ultrasonic waves, the dissolution rate, solubility (including supersaturation) and dissolution efficiency of the gas in the liquid are increased and improved.
The ultrasonic wave of 20 to 100 KHz irradiated from the ultrasonic irradiation body 3 reaches the gas-liquid mixture in the cylindrical casing 4 by spreading from the center of the irradiation part 3a of the ultrasonic irradiation body 3 through the cylindrical casing 4. Reflected by the inner wall surface of the cylindrical casing 4, the blades 14, 14a, the projections 23, 23a, etc., and propagates in various directions.

超音波が混合気液に到達すると、液体粒子・気体粒子・気体粒子郡(気泡)が圧力変化を受けたり、粒子などが相当な速度、加速度で振動、移動したり、運動エネルギーが上昇し、或いは、気泡体積が非線形性(膨張・収縮の時間差や方向差を有する状況)の膨張・収縮を繰り返す体積振動をすることにより、大量の異種粒子間における気液界面が多様に変化する。
気液界面の変化により、気体粒子と液体粒子の衝突、接触の面積・時間を増加させたり、接触粒子を変換させて、異種粒子の接触機会が飛躍的に増大して、気体は液体に溶解する。
When the ultrasonic wave reaches the gas-liquid mixture, the liquid particles, gas particles, gas particle groups (bubbles) undergo a pressure change, particles vibrate and move at a considerable speed and acceleration, and the kinetic energy rises. Alternatively, the gas-liquid interface between a large number of different kinds of particles changes variously by performing volume vibration that repeatedly expands and contracts in a non-linear manner (a situation where the bubble volume has a time difference or direction difference between expansion and contraction).
By changing the gas-liquid interface, the collision area between gas particles and liquid particles, the contact area / time is increased, or the contact particles are converted, so that the chances of contacting different particles dramatically increase, and the gas dissolves in the liquid. To do.

従って、気液混合装置2における気体・液体の混合による溶解、および、超音波照射体3から照射された超音波で発生する気体粒子・液体粒子・気体粒子郡(気泡)の振動・圧力変化等で励起される気液界面変化による溶解、が同時発生し、液体への気体の溶解度が上昇する。   Therefore, dissolution by mixing of gas and liquid in the gas-liquid mixing device 2, vibration of gas particles, liquid particles, and gas particle groups (bubbles) generated by ultrasonic waves irradiated from the ultrasonic irradiation body 3, pressure change, etc. Dissolution by the gas-liquid interface change excited by the simultaneous generation occurs, and the solubility of the gas in the liquid increases.

本発明に係るガス溶解装置1と従来の気液混合装置2による比較テストを行ったので、以下、説明する。
従来の気液混合装置2は名古屋大島機械有限会社製のラインミキサー(型式MX−8X)で、ポンプ10は大島機械株式会社製の攪拌作用を有する混気ポンプ(型式OMC−20−6)を使用した。
本発明に係るガス溶解装置1は、従来の気液混合装置2(同一の型式MX−8X)に超音波照射体3を設けたものを使用すると共に、同一の混気ポンプ(型式OMC−20−6)を使用し、超音波照射体3は株式会社タムラ製作所製の超音波振動子(型式TBL4535D−40DB)を使用した。
テスト条件は両者共に、液体は水(水温20℃)、気体は酸素(濃度90%)で、液体流量15l/min、気体流量1.5Nl/minとし、超音波は共振周波数40KHz、出力40Wとした。
目視によるテスト結果では、従来のものでは、水中に細粒気泡が浮遊していたが、本件発明のものでは気泡が皆無で溶解度が上昇していた。
又、水温20℃における溶存酸素濃度の分析では、水温20℃における飽和溶存酸素濃度は8.84mg/lであるものが、従来のものでは36.5mg/lであるのに対して、本件発明によるものでは48.0mg/lであり、従来のものも本件発明によるものも過飽和であるが、本件発明によるものの方が更なる過飽和状態で溶解していた。
A comparative test using the gas dissolving apparatus 1 according to the present invention and the conventional gas-liquid mixing apparatus 2 will be described below.
The conventional gas-liquid mixing device 2 is a line mixer (model MX-8X) manufactured by Nagoya Oshima Machinery Co., Ltd., and the pump 10 is an air-mixing pump (model OMC-20-6) having a stirring action manufactured by Oshima Machinery Co., Ltd. used.
The gas dissolving device 1 according to the present invention uses a conventional gas-liquid mixing device 2 (same model MX-8X) provided with an ultrasonic irradiation body 3 and the same gas mixture pump (model OMC-20). -6) was used, and the ultrasonic irradiator 3 was an ultrasonic vibrator (model TBL4535D-40DB) manufactured by Tamura Corporation.
In both test conditions, the liquid is water (water temperature 20 ° C.), the gas is oxygen (concentration 90%), the liquid flow rate is 15 l / min, the gas flow rate is 1.5 Nl / min, and the ultrasonic wave has a resonance frequency of 40 KHz and an output of 40 W. did.
As a result of visual test, fine bubbles were suspended in water in the conventional one, but in the case of the present invention, there was no bubble and the solubility increased.
Further, in the analysis of the dissolved oxygen concentration at a water temperature of 20 ° C., the saturated dissolved oxygen concentration at a water temperature of 20 ° C. is 8.84 mg / l, whereas the conventional one is 36.5 mg / l. According to the present invention, it was 48.0 mg / l, and both the conventional one and the one according to the present invention were supersaturated, but the one according to the present invention was dissolved in a further supersaturated state.

次に、本発明に係るガス溶解水生成装置について説明する。
図3に示す様に、ガス溶解水生成装置24は、ガス溶解装置1を設けた連続通水系路7を流通して生成されたガス溶解水を貯溜槽25に一時貯溜して平均化、安定化、二次処理などを実施し、ガス溶解水を他系路に吐出するものである。
具体的には、大容量の貯溜槽25の上下部に、ガス溶解水を生成し流入させる溶解水流入系路26および貯溜されたガス溶解水を他系路に吐出する貯水吐水系路27を夫々設けると共に、貯溜槽25にガス溶解水の液面高さを計測し、各種バルブ、接続機器を制御する液面制御装置28を設けて、ガス溶解水生成装置24の基本構成としている。
連続通水系路7である溶解水流入系路26の下流側にガス溶解装置1を設けると共に、溶解水流入系路26の上流側を気体および液体を供給し圧送する気液供給系路29と成し、ガス溶解装置1の出口12を貯溜槽25の下部に設けた流入口30に接続している。
溶解水流入系路26の上流側の気液供給系路29の具体的構成は図1に示す連続通水系路7の上流側と同様の構成であり、気液供給系路29は、液体供給系路8に気体供給系路9を接続すると共に、中途部にポンプ10を中間接続して成り、気液供給系路29のポンプ10より下流側で溶解水流入系路26にガス溶解装置1を設けている。
又、貯水吐水系路27の基端は貯溜槽25の上部に設けた流出口31に接続すると共に、貯水吐水系路27の先端を他系路に接続している。
Next, the gas dissolved water production | generation apparatus which concerns on this invention is demonstrated.
As shown in FIG. 3, the gas-dissolved water generating device 24 temporarily stores the gas-dissolved water generated by flowing through the continuous water passage 7 provided with the gas-dissolving device 1 in a storage tank 25 and averages and stabilizes it. , Secondary treatment, etc. are performed, and the gas-dissolved water is discharged to another system.
Specifically, a dissolved water inflow system 26 for generating and flowing in gas dissolved water and a water discharge system 27 for discharging the stored gas dissolved water to other systems are formed at the upper and lower portions of the large-capacity storage tank 25. In addition to providing each, a liquid level control device 28 for measuring the level of the dissolved gas in the storage tank 25 and controlling various valves and connected devices is provided as a basic configuration of the dissolved gas generating device 24.
The gas dissolving device 1 is provided on the downstream side of the dissolved water inflow system path 26 which is the continuous water flow system path 7, and the gas / liquid supply system path 29 for supplying gas and liquid to the upstream side of the dissolved water inflow system path 26 and pumping them. The outlet 12 of the gas dissolving apparatus 1 is connected to an inlet 30 provided at the lower part of the storage tank 25.
The specific configuration of the gas-liquid supply path 29 on the upstream side of the dissolved water inflow path 26 is the same as that on the upstream side of the continuous water flow path 7 shown in FIG. The gas supply system 9 is connected to the system path 8, and the pump 10 is connected to the middle portion of the gas path 9. The gas dissolving device 1 is connected to the dissolved water inflow system path 26 downstream of the pump 10 of the gas-liquid supply system path 29. Is provided.
The base end of the water storage / discharge system 27 is connected to an outlet 31 provided in the upper part of the storage tank 25, and the tip of the water storage / discharge system 27 is connected to another system.

かかる構成により、気液供給系路29で圧送された混合気液は、溶解水流入系路26に設けたガス溶解装置1の螺旋流形成部5および気液反応部6を通過して混合作用されると共に、超音波照射体3により超音波が照射されてガス溶解水が生成され、ガス溶解水は貯溜槽25の底部から流入し、貯溜槽25の上部からオーバーフロー方式で他系路に吐出される。   With this configuration, the gas / liquid mixture pumped in the gas / liquid supply system passage 29 passes through the spiral flow forming section 5 and the gas / liquid reaction section 6 of the gas dissolving device 1 provided in the dissolved water inflow system path 26 and is mixed. At the same time, the ultrasonic irradiator 3 irradiates ultrasonic waves to generate gas-dissolved water. The gas-dissolved water flows from the bottom of the reservoir 25 and is discharged from the upper portion of the reservoir 25 to another system by the overflow method. Is done.

尚、溶解水流入系路26におけるポンプ10には圧力制御装置PS1、気液混合ポンプ圧力計PR2が備えられ、液体供給系路8には流入口バルブV1、ストレーナーS1が備えられ、気体供給系路9にはガス供給装置GG、供給ガス圧力計PR1、供給ガス流量計FM1、逆止弁CV1が備えられ、又貯水吐水系路27の中途部に処理バルブV2が備えられている。   The pump 10 in the dissolved water inflow system path 26 is provided with a pressure control device PS1 and a gas-liquid mixing pump pressure gauge PR2, and the liquid supply system path 8 is provided with an inlet valve V1 and a strainer S1. The passage 9 is provided with a gas supply device GG, a supply gas pressure gauge PR1, a supply gas flow meter FM1, and a check valve CV1, and a processing valve V2 is provided in the middle of the water storage and discharge system passage 27.

次に、他例のガス溶解水生成装置24aについて説明する。
図4に示す他例のガス溶解水生成装置24aは、図3のものに比して、溶解度を上昇させたり、使用量の多寡に対応容易としたものである。
具体的には、大容量の貯溜槽25の上下部に、ガス溶解水を生成し流入させる溶解水流入系路26、貯溜されたガス溶解水を他系路に吐出する貯水吐水系路27、ガス溶解水の一部を溶解水流入系路26に戻す貯水戻水系路32および原水を供給する液体供給系路8を夫々設けると共に、貯溜槽25に液面制御装置28を設けている。
更に、下流端が貯溜槽25に接続される溶解水流入系路26と上流端が貯溜槽25に接続される貯水戻水系路32を接続して循環系路33を設けて、第2のガス溶解水生成装置24aの基本構成としている。
Next, another example of the gas-dissolved water generator 24a will be described.
The gas-dissolved water generating device 24a of another example shown in FIG. 4 increases the solubility or easily copes with a large amount of use compared to that of FIG.
Specifically, in the upper and lower portions of the large-capacity storage tank 25, a dissolved water inflow system path 26 that generates and flows gas dissolved water, a water discharge system 27 that discharges the stored gas dissolved water to another system path, A storage water return system path 32 for returning part of the dissolved gas water to the dissolved water inflow system path 26 and a liquid supply system path 8 for supplying raw water are provided, and a liquid level control device 28 is provided in the storage tank 25.
In addition, a dissolved water inflow system path 26 whose downstream end is connected to the storage tank 25 and a storage water return system path 32 whose upstream end is connected to the storage tank 25 are connected to provide a circulation system path 33, and the second gas This is the basic configuration of the dissolved water generating device 24a.

連続通水系路7である溶解水流入系路26の下流側にガス溶解装置1を設けると共に、ガス溶解装置1の出口12を貯溜槽25の下部に設けた流入口30に接続し、溶解水流入系路26の上流側を気体および液体を供給し圧送する気液供給系路29と成し、貯溜槽25の下部に設けた流出口34に接続した貯水吐水系路27の下流側に気液供給系路29の上流側を接続して循環系路33を構成している。
又、循環系路33の一部である気液供給系路29の中途部に混合気液を圧送するポンプ10を中間接続すると共に、循環系路33の気液供給系路29に気体供給系路9を接続し、気液供給系路29のポンプ10より下流側で溶解水流入系路26にガス溶解装置1を設け、又貯溜槽25の上部に設けた流入口35に液体供給系路8を接続している。
尚、新規供給される液体(原水)の液体供給系路8は貯溜槽25に接続したが、気体供給系路9と同様に循環系路33に接続しても良い。
又、貯水吐水系路27の基端は貯溜槽25の下部に設けた流出口31に接続すると共に、貯水吐水系路27の先端を他系路に接続し、中途部にポンプ36を配置している。
The gas dissolving device 1 is provided on the downstream side of the dissolved water inflow route 26 which is the continuous water flow route 7, and the outlet 12 of the gas dissolving device 1 is connected to the inlet 30 provided at the lower part of the storage tank 25 to The upstream side of the inflow system path 26 is formed with a gas-liquid supply system path 29 for supplying and pumping gas and liquid, and the downstream side of the water discharge system path 27 connected to the outlet 34 provided in the lower part of the storage tank 25. A circulation system path 33 is configured by connecting the upstream side of the liquid supply system path 29.
In addition, a pump 10 for pumping the gas-liquid mixture is connected to the middle of the gas-liquid supply path 29 that is a part of the circulation path 33, and the gas supply system 29 is connected to the gas-liquid supply path 29 of the circulation path 33. The gas dissolving device 1 is provided in the dissolved water inflow system 26 on the downstream side of the pump 10 of the gas-liquid supply system 29, and the liquid supply system is connected to the inlet 35 provided in the upper part of the storage tank 25. 8 is connected.
Although the liquid supply system path 8 for newly supplied liquid (raw water) is connected to the storage tank 25, it may be connected to the circulation system path 33 in the same manner as the gas supply system path 9.
In addition, the proximal end of the water storage / discharge system 27 is connected to an outlet 31 provided at the lower part of the storage tank 25, the tip of the water discharge / discharge system 27 is connected to another system, and a pump 36 is disposed in the middle. ing.

かかる構成により、貯溜槽25に貯溜されたガス溶解水(液体供給系路8で新規供給された液体(原水)とガス溶解水の混合水(以下、単に混合水と称する))の一部は、貯水戻水系路32から循環系路33に流通し、気体供給系路9から供給された新たな気体と混合流通すると共に、ポンプ10により溶解水流入系路26に圧送される。
溶解水流入系路26に圧送された混合気液(混合水と気体の混合気液)がガス溶解装置1の螺旋流形成部5および気液反応部6を通過して混合作用されると共に、超音波照射体3により超音波が照射されてガス溶解水(貯水吐水系路27から流通する混合水よりガス溶解度が高いガス溶解水)が生成され、ガス溶解水は貯溜槽25の下部から流入する。
又、貯溜槽25ではガス溶解水が貯溜されると共に、液体供給系路8から原水が供給されて混合し、貯溜槽25の下部から混合水の一部は貯水戻水系路32、循環系路33に流通すると共に、混合水の一部はポンプ36を有した貯水吐水系路27で他系路に吐出される。
With this configuration, part of the gas-dissolved water (liquid (raw water) newly supplied in the liquid supply system 8 and mixed water of gas-dissolved water (hereinafter simply referred to as “mixed water”)) stored in the storage tank 25 is Then, it flows from the stored water return system path 32 to the circulation system path 33, mixes and flows with the new gas supplied from the gas supply system path 9, and is pumped to the dissolved water inflow system path 26 by the pump 10.
The mixed gas / liquid (mixed water / gas mixed gas / liquid) pumped to the dissolved water inflow system 26 passes through the spiral flow forming section 5 and the gas / liquid reaction section 6 of the gas dissolving apparatus 1 and is mixed. Ultrasound is irradiated by the ultrasonic irradiator 3 to generate gas-dissolved water (gas-dissolved water having higher gas solubility than the mixed water flowing from the water storage and discharge system 27), and the gas-dissolved water flows from the bottom of the storage tank 25. To do.
In the storage tank 25, gas dissolved water is stored, and raw water is supplied from the liquid supply system 8 and mixed, and a part of the mixed water from the lower part of the storage tank 25 is stored in a storage water return system 32, a circulation system. A part of the mixed water is discharged to another system through a water discharge system 27 having a pump 36.

尚、ポンプ10および気体供給系路9には前例と同様に、各種器具が備えられ、液体供給系路8には流入口バルブV1が備えられ、貯水戻水系路32には循環バルブV3、ストレーナーS1が備えられ、又貯水吐水系路27の中途部にポンプ36および処理バルブV2が備えられている。   As in the previous example, the pump 10 and the gas supply line 9 are equipped with various instruments, the liquid supply line 8 is provided with an inlet valve V1, and the water return line 32 is provided with a circulation valve V3 and a strainer. S1 is provided, and a pump 36 and a processing valve V2 are provided in the middle of the water storage and discharge system 27.

尚、連続通水系路7でもある溶解水流入系路26におけるガス溶解装置1の出口12を貯溜槽25の流入口30に直結したが、ガス溶解装置1の下流側にパイプを接続して貯溜槽25に接続したり、ガス溶解装置1の全部または下流側一部を貯溜槽25内に配置しても良い。
又、図3のガス溶解水生成装置24における溶解水流入系路26は下部に、貯水吐水系路27は上部に夫々設けてオーバーフロー方式と成したり、図4のガス溶解水生成装置24における貯水吐水系路27にポンプ36を設けて流量制御しているが、これらは使い分け可能であり、又各種系路の貯溜槽25への取付位置なども適宜変更可能である。
In addition, although the outlet 12 of the gas dissolving device 1 in the dissolved water inflow route 26 which is also the continuous water flow passage 7 is directly connected to the inlet 30 of the storage tank 25, a pipe is connected to the downstream side of the gas dissolving device 1 for storage. The tank 25 may be connected, or the gas dissolving apparatus 1 may be entirely or partially disposed in the storage tank 25.
Also, the dissolved water inflow system path 26 in the gas dissolved water generating apparatus 24 in FIG. 3 is provided in the lower part, and the water storage and discharging system path 27 is provided in the upper part, respectively, to form an overflow system, or in the gas dissolved water generating apparatus 24 in FIG. Although the flow rate is controlled by providing a pump 36 in the water storage / discharge system 27, these can be used properly, and the mounting position of the various systems on the storage tank 25 can be changed as appropriate.

本発明に係るガス溶解装置を使用した基本的なシステム構成例を示す図である。It is a figure which shows the basic system structural example using the gas dissolving apparatus which concerns on this invention. 本発明に係るガス溶解装置の断面図(一部は非断面)である。It is sectional drawing (a part is non-cross section) of the gas dissolving apparatus which concerns on this invention. 本発明に係るガス溶解水生成装置の構成を示す模式図である。It is a mimetic diagram showing the composition of the gas dissolution water generating device concerning the present invention. 他のガス溶解水生成装置の構成を示す模式図である。It is a schematic diagram which shows the structure of another gas dissolved water production | generation apparatus.

符号の説明Explanation of symbols

1 ガス溶解装置
2 気液混合装置
3 超音波照射体
4 円筒ケーシング
5 螺旋流形成部
6 気液反応部
7 連続通水系路
8 液体供給系路
9 気体供給系路
10 ポンプ
24、24a ガス溶解水生成装置
25 貯溜槽
26 溶解水流入系路
27 貯水吐水系路
29 気液供給系路
32 貯水戻水系路
33 循環系路
DESCRIPTION OF SYMBOLS 1 Gas dissolution apparatus 2 Gas-liquid mixing apparatus 3 Ultrasonic irradiation body 4 Cylindrical casing 5 Spiral flow formation part 6 Gas-liquid reaction part 7 Continuous water flow system 8 Liquid supply system path 9 Gas supply system path
10 Pump
24, 24a Gas dissolved water generator
25 Reservoir
26 Dissolved water inflow system
27 Reservoir system
29 Gas-liquid supply system
32 Reservoir return route
33 Circulation system

Claims (3)

円筒ケーシングの上下流部に螺旋流形成部および気液反応部を夫々設け、螺旋流形成部または気液反応部内部の気液に超音波を照射する超音波照射体を円筒ケーシングに設けたことを特徴とするガス溶解装置。   A spiral flow forming part and a gas-liquid reaction part are provided in the upstream and downstream parts of the cylindrical casing, respectively, and an ultrasonic irradiator that irradiates the liquid and gas inside the spiral flow forming part or the gas-liquid reaction part is provided in the cylindrical casing. A gas dissolving apparatus characterized by the above. 貯溜槽に溶解水流入系路および貯水吐水系路を夫々設け、溶解水流入系路の下流側に請求項1記載のガス溶解装置を設けると共に、溶解水流入系路の上流側に気体および液体を供給し圧送する気液供給系路を設けたことを特徴とするガス溶解水生成装置。   The storage tank is provided with a dissolved water inflow system path and a stored water discharge system path, respectively, the gas dissolving device according to claim 1 is provided downstream of the dissolved water inflow system path, and a gas and liquid are provided upstream of the dissolved water inflow system path. A gas-dissolved water generating apparatus characterized in that a gas-liquid supply system path for supplying and pumping water is provided. 貯溜槽に溶解水流入系路、貯水戻水系路および貯水吐水系路を夫々設けると共に、溶解水流入系路と貯水戻水系路を接続して循環系路を設け、溶解水流入系路の下流側に請求項1記載のガス溶解装置を設けると共に、循環系路に気液を圧送するポンプを設け、循環系路に気体供給系路を接続すると共に、循環系路または貯溜槽に液体供給系路を設けたことを特徴とするガス溶解水生成装置。   Dissolved water inflow system, stored water return system path, and stored water discharge system path are provided in the storage tank, and a circulation system path is provided by connecting the dissolved water inflow system path and the stored water return system path, downstream of the dissolved water inflow system path. The gas dissolving device according to claim 1 is provided on the side, a pump for pumping gas and liquid is provided in the circulation path, a gas supply path is connected to the circulation path, and a liquid supply system is connected to the circulation path or storage tank. A gas-dissolved water generating apparatus characterized in that a path is provided.
JP2006004367A 2006-01-12 2006-01-12 Apparatus for dissolving gas and apparatus for preparing water wherein gas is dissolved Pending JP2007185576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004367A JP2007185576A (en) 2006-01-12 2006-01-12 Apparatus for dissolving gas and apparatus for preparing water wherein gas is dissolved

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004367A JP2007185576A (en) 2006-01-12 2006-01-12 Apparatus for dissolving gas and apparatus for preparing water wherein gas is dissolved

Publications (1)

Publication Number Publication Date
JP2007185576A true JP2007185576A (en) 2007-07-26

Family

ID=38341114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004367A Pending JP2007185576A (en) 2006-01-12 2006-01-12 Apparatus for dissolving gas and apparatus for preparing water wherein gas is dissolved

Country Status (1)

Country Link
JP (1) JP2007185576A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948813B1 (en) * 2009-09-21 2010-03-24 강형원 High-thickness oxygen melting equipment used for supersonic
WO2012023634A1 (en) * 2010-08-20 2012-02-23 株式会社 アネモス Gas-liquid contact method and gas-liquid contact apparatus
JP2013000663A (en) * 2011-06-16 2013-01-07 Hitachi Plant Services Co Ltd Soil remediation device and soil remediation method
JP2014014358A (en) * 2012-06-14 2014-01-30 Takaaki Matsumoto Oxygen-containing medium solution, cell cultivation medium, cell cultivation method, and production system for oxygen-containing medium solution
CN105032261A (en) * 2015-07-20 2015-11-11 中国石油天然气股份有限公司 Method and device for preparing nano dispersion system
WO2016155608A1 (en) * 2015-03-30 2016-10-06 上海纳诺巴伯纳米科技有限公司 Device for preparing gas solution and method for improving gas solubility in liquid
JP2017221926A (en) * 2016-06-17 2017-12-21 株式会社アスプ Generation device for gas-containing liquid, and treatment mechanism for gas-containing liquid
JP2017225959A (en) * 2016-06-24 2017-12-28 株式会社アスプ Gas-containing liquid generation device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013505120A (en) * 2009-09-21 2013-02-14 ヒョンウォン カン High-concentration oxygen dissolver using ultrasonic waves
WO2011034297A2 (en) * 2009-09-21 2011-03-24 Kang Hyung-Won High-concentration oxygen-dissolving apparatus using ultrasonic waves
WO2011034297A3 (en) * 2009-09-21 2011-07-07 Kang Hyung-Won High-concentration oxygen-dissolving apparatus using ultrasonic waves
KR100948813B1 (en) * 2009-09-21 2010-03-24 강형원 High-thickness oxygen melting equipment used for supersonic
CN102596380A (en) * 2009-09-21 2012-07-18 姜亨元 High-concentration oxygen-dissolving apparatus using ultrasonic waves
US8967596B2 (en) 2009-09-21 2015-03-03 Hyung Won Kang High-concentration oxygen-dissolving apparatus using ultrasonic waves
WO2012023634A1 (en) * 2010-08-20 2012-02-23 株式会社 アネモス Gas-liquid contact method and gas-liquid contact apparatus
JP5938346B2 (en) * 2010-08-20 2016-06-22 株式会社アネモス Gas-liquid contact method and gas-liquid contact device
JP2013000663A (en) * 2011-06-16 2013-01-07 Hitachi Plant Services Co Ltd Soil remediation device and soil remediation method
JP2014014358A (en) * 2012-06-14 2014-01-30 Takaaki Matsumoto Oxygen-containing medium solution, cell cultivation medium, cell cultivation method, and production system for oxygen-containing medium solution
WO2016155608A1 (en) * 2015-03-30 2016-10-06 上海纳诺巴伯纳米科技有限公司 Device for preparing gas solution and method for improving gas solubility in liquid
CN105032261A (en) * 2015-07-20 2015-11-11 中国石油天然气股份有限公司 Method and device for preparing nano dispersion system
JP2017221926A (en) * 2016-06-17 2017-12-21 株式会社アスプ Generation device for gas-containing liquid, and treatment mechanism for gas-containing liquid
JP2017225959A (en) * 2016-06-24 2017-12-28 株式会社アスプ Gas-containing liquid generation device

Similar Documents

Publication Publication Date Title
JP2007185576A (en) Apparatus for dissolving gas and apparatus for preparing water wherein gas is dissolved
US10596528B2 (en) Nanobubble-producing apparatus
JP5028637B2 (en) Microbubble generator
JP2007021343A (en) Microbubble generator
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
JP6214515B2 (en) Method for producing gas solution and apparatus for producing gas solution
KR101869487B1 (en) Nano bubble generator for bathtub or sink with cleaning and sterilizing function
Xie et al. Preparation of microbubbles with the generation of Dean vortices in a porous membrane
US8936392B2 (en) Hydrodynamic cavitation device
KR101385163B1 (en) Cyclone pressing tank and micro bubble generating system having the same
JP2010149041A (en) System for injecting minute foam to liquid
WO2017056323A1 (en) Device for dissolving oxygen in water and method for dissolving oxygen in water using same
JP2011183350A (en) Gas-liquid mixing apparatus
KR101190788B1 (en) Micro bubble head and apparatus for generating microbubble including the same
JP2009101263A (en) Ultra-fine bubble generator and apparatus for purification of aqueous solution
JP2009226328A (en) Gas dissolving vessel
JP2007330894A (en) Activated sludge treatment apparatus
KR101213829B1 (en) Micro-bubble generating system for purifying wastewater
JP2012091153A (en) Fine-air-bubble generator
JP2007000848A (en) Method for generating fine bubble
JP2008274394A (en) Pickling apparatus and method
JP2006326484A (en) Micro-bubbles generator
JP2008178780A (en) Microbubble generating apparatus
JPH10230150A (en) Aerator
JP4512897B2 (en) Chemical injection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A977 Report on retrieval

Effective date: 20101124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110628

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111115

Free format text: JAPANESE INTERMEDIATE CODE: A02