JP2007183194A - Probing apparatus - Google Patents
Probing apparatus Download PDFInfo
- Publication number
- JP2007183194A JP2007183194A JP2006002178A JP2006002178A JP2007183194A JP 2007183194 A JP2007183194 A JP 2007183194A JP 2006002178 A JP2006002178 A JP 2006002178A JP 2006002178 A JP2006002178 A JP 2006002178A JP 2007183194 A JP2007183194 A JP 2007183194A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- card
- stage
- base
- inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring Leads Or Probes (AREA)
- Tests Of Electronic Circuits (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
本発明は、半導体集積回路(IC)のような平板状の被検査体を検査するプロービング装置に関する。 The present invention relates to a probing apparatus for inspecting a flat inspection object such as a semiconductor integrated circuit (IC).
複数の集積回路が形成された半導体ウエーハのような平板状の被検査体は、各集積回路が仕様書通りの機能を有するか否かの通電試験(検査)をされる。この種の通電試験は、一般に、被検査体の電極に個々に対応された複数のプローブを有するプローブカードを用いるプロービング装置(検査装置)を用いて行われる。各プローブは、対応する電極に押圧される先端すなわち針先を有する。 A flat test object such as a semiconductor wafer on which a plurality of integrated circuits are formed is subjected to an energization test (inspection) as to whether or not each integrated circuit has a function according to the specification. This type of energization test is generally performed using a probing apparatus (inspection apparatus) that uses a probe card having a plurality of probes individually corresponding to the electrodes of the object to be inspected. Each probe has a tip or needle tip that is pressed against a corresponding electrode.
プロービング装置は、一般に、プローブカード及び被検査体をそれらの相対的位置関係が許容範囲内となるように取り付けるために、位置決めピンやストッパのような位置決め部材、及び検査ステージのような位置決め機構等を備えている。検査ステージは、被検査体を受けるチャックトップのような載置台(受け台)を備えており、また載置台ひいてはこれに受けられた被検査体を、XYZの3方向に移動させると共に、Z方向に伸びるθ軸線の周りに角度的に回転させる。 Generally, a probing device is used to mount a probe card and an object to be inspected so that their relative positional relationship is within an allowable range, a positioning member such as a positioning pin or a stopper, and a positioning mechanism such as an inspection stage. It has. The inspection stage is provided with a mounting table (a receiving table) such as a chuck top that receives an object to be inspected. In addition, the inspection table and the object to be inspected received on the mounting table are moved in three directions of XYZ, and in the Z direction. Is rotated angularly about the θ axis extending to
これに対し、プローブカードは、仮想的な基準面からの針先の高さ位置(すなわち、Z座標位置)が許容範囲内となると共に、被検査体と平行なXY面内における針先の二次元位置(すなわち、XY座標位置)が仮想的な基準二次元位置(すなわち、対応する電極の二次元位置)に対し許容範囲内となるように、プローブカードの製造時に被検査体の見本や設計図等の位置基準を用いて針先の位置を調整される。 On the other hand, in the probe card, the height position of the needle tip from the virtual reference plane (that is, the Z coordinate position) is within the allowable range, and the two needle tips in the XY plane parallel to the object to be inspected are used. Samples and design of the object to be inspected when manufacturing the probe card so that the dimensional position (that is, the XY coordinate position) is within the allowable range with respect to the virtual reference two-dimensional position (that is, the two-dimensional position of the corresponding electrode). The position of the needle tip is adjusted using a position reference such as a figure.
上記位置基準は、プローブカードがプロービング装置に装着された状態において、プロービング装置に配置された被検査体自体の面やその複数の電極により形成される仮想面等の基板面及びその基板面における各電極の二次元位置に対応する面や二次元位置を備える。 The above-mentioned position reference is based on the substrate surface such as the virtual surface formed by the surface of the inspected object itself and the plurality of electrodes arranged in the probing device and the substrate surface in a state where the probe card is mounted on the probing device. A surface and a two-dimensional position corresponding to the two-dimensional position of the electrode are provided.
上記のことから、プローブカード及び被検査体がプロービング装置に取り付けられた状態において、プローブカード自体の面やその複数の針先により形成される仮想面等のプローブ面と、被検査体自体の面やその電極により形成される面等の基板面とは平行になり、また全てのプローブの針先が対応する電極に接触可能となる。 From the above, in the state where the probe card and the object to be inspected are attached to the probing device, the surface of the probe card itself, the probe surface such as a virtual surface formed by the plurality of needle tips, and the surface of the object to be inspected And the surface of the substrate such as the surface formed by the electrodes are parallel to each other, and the probe tips of all the probes can contact the corresponding electrodes.
しかし、そのようなプロービング装置及びプローブカードであっても、プロービング装置に配置された被検査体の電極に対する針先の位置が製造時における位置調整終了後の針先の位置と同じになる状態に、プローブカードをプロービング装置に取り付けることは難しい。 However, even in such a probing device and a probe card, the position of the needle tip with respect to the electrode of the object to be inspected arranged in the probing device is the same as the position of the needle tip after position adjustment at the time of manufacture. It is difficult to attach the probe card to the probing device.
このため従来では、プローブカードをプロービング装置に取り付けた状態において、プローブカード側のプローブ面がプロービング装置に配置された被検査体側の基板面に対し傾斜していることが多い。 For this reason, conventionally, in a state where the probe card is attached to the probing apparatus, the probe surface on the probe card side is often inclined with respect to the substrate surface on the inspection object side arranged in the probing apparatus.
プローブカードがそのような傾斜状態にプロービング装置に取り付けられると、プロービング装置に配置された実際の被検査体の電極に対する針先の三次元位置(Z位置(高さ位置)及びXY位置(二次元位置))が製造時における位置調整終了後の針先の位置と同じにならない。その結果、針先が電極に正確に接触しないプローブが生じ、正確な試験が行われない。 When the probe card is attached to the probing device in such an inclined state, the three-dimensional position (Z position (height position) and XY position (two-dimensional) of the needle tip with respect to the electrode of the actual inspection object arranged in the probing device) The position)) is not the same as the position of the needle tip after position adjustment at the time of manufacture. As a result, a probe is generated in which the needle tip does not accurately contact the electrode, and an accurate test is not performed.
上記の課題を解決する位置合わせ技術の1つとして、プローブカードをプロービング装置に取り付けた後に、プロービング装置に対する、任意な4つのプローブの針先の三次元位置と、プロービング装置に配置された被検査体の4つの電極の三次元位置とを決定し、決定したそれらの三次元位置を用いて被検査体をプローブカードに対して変位させるものがある(特許文献1)。 As one of the alignment techniques for solving the above-mentioned problems, after attaching the probe card to the probing device, the three-dimensional positions of the needle tips of any four probes with respect to the probing device, and the test object arranged on the probing device There are some which determine the three-dimensional positions of the four electrodes of the body and displace the object to be inspected with respect to the probe card using the determined three-dimensional positions (Patent Document 1).
上記従来技術は、被検査体を受けるチャックトップのような載置台(受け台)を、これをXYZの3方向に移動させる検査ステージに、球継手を用いて取り付けたプロービング装置を用いている。 The prior art uses a probing apparatus in which a mounting table (a receiving table) such as a chuck top that receives an object to be inspected is attached to an inspection stage that moves the mounting table in three directions of XYZ using a ball joint.
そのようなプロービング装置を用いる上記従来技術は、4つの針先により形成されるプローブ面と、それらに個々に対応する4つの電極により形成される基板面とを求め、プローブ面と基板面とが平行になるように被検査体とプローブカードとを球継手の球面に沿って相対的に変位させ、その後それら4つのプローブの針先が対応する電極に正確に接触するように被検査体とプローブカードとを相対的に二次元的に移動させる。 The above-described conventional technique using such a probing apparatus obtains a probe surface formed by four needle tips and a substrate surface formed by four electrodes corresponding to each of them, and the probe surface and the substrate surface are The object to be inspected and the probe card are relatively displaced along the spherical surface of the ball joint so as to be parallel, and then the object to be inspected and the probe are brought into contact with the corresponding electrodes accurately. Move the card relatively two-dimensionally.
しかし、上記の従来技術では、被検査体を受けるチャックトップのような載置台を検査ステージとプローブカードとに対し所定の基準点の周りに変位させて、被検査体を検査ステージとプローブカードとに対し傾斜させることにより、プローブカードと被検査体との平行度を調整する。 However, in the above-described conventional technology, a mounting table such as a chuck top that receives an object to be inspected is displaced around a predetermined reference point with respect to the inspection stage and the probe card, and the object to be inspected is placed between the inspection stage and the probe card. , The parallelism between the probe card and the object to be inspected is adjusted.
このため、プローブ面と基板面とが平行になっても、それらプローブ面及び基板面が検査ステージのXY面に対し傾斜してしまう。また、プローブ面に垂直な軸線と、基板面に垂直な軸線とが一致しても、一致したそれら軸線が検査ステージのZ軸線に対し傾斜してしまう。 For this reason, even if the probe surface and the substrate surface are parallel, the probe surface and the substrate surface are inclined with respect to the XY plane of the inspection stage. Even if the axis perpendicular to the probe surface coincides with the axis perpendicular to the substrate surface, the coincident axes are inclined with respect to the Z axis of the inspection stage.
上記のことから、上記の従来技術では、載置台ひいては被検査体を検査ステージにより移動させるたびに、針先と電極との相対的位置関係がずれてしまう。このため、載置台及び被検査体を移動させるたびに、電極に対する針先の位置を合わせる位置合わせ作業を行わなければならず、そのような位置合わせ作業が繁雑になる。 From the above, in the above-described prior art, the relative positional relationship between the needle tip and the electrode is shifted each time the mounting table, and thus the object to be inspected, is moved by the inspection stage. For this reason, every time the mounting table and the object to be inspected are moved, an alignment operation for aligning the position of the needle tip with respect to the electrode must be performed, and such an alignment operation becomes complicated.
特に、1つの半導体ウエーハに形成された多数の集積回路を試験するためのプローブカードのように10000本又はそれ以上のプローブを備えたプローブカードを用いるプロービング装置においては、針先の位置合わせ作業に多大の時間と労力を要する。 In particular, in a probing apparatus using a probe card having 10,000 or more probes such as a probe card for testing a large number of integrated circuits formed on one semiconductor wafer, it is necessary to perform a needle tip alignment operation. It takes a lot of time and effort.
本発明の目的は、プローブカードと被検査体との平行度を調整しても、それらの面が検査ステージのXY面に対し傾斜しないようにすることにある。 An object of the present invention is to prevent the surfaces of the probe card and the object to be inspected from being inclined with respect to the XY plane of the inspection stage even if the parallelism between the probe card and the object to be inspected is adjusted.
本発明に係るプロービング装置は、複数の電極を有する平板状の被検査体を受ける検査ステージであって受けた被検査体をこれと平行の面内の互いに交差するX方向及びY方向並びに該両方向に交差するZ方向の少なくとも3方向に移動させる検査ステージと、該検査ステージから前記Z方向に間隔をおいたカード台と、複数のプローブを有するプローブカードであって前記プローブの針先が前記検査ステージの側に向くように前記カード台に支持されたプローブカードと、前記検査ステージに受けられた被検査体と前記プローブカードとの平行度の調整のために前記プローブカードを前記検査ステージに対し変位させる変位機構とを含む。 The probing apparatus according to the present invention is an inspection stage that receives a flat inspection object having a plurality of electrodes, and the received inspection object intersects with each other in the X and Y directions in a plane parallel to the inspection object, and both directions. An inspection stage that moves in at least three directions in the Z direction intersecting with each other, a card base spaced from the inspection stage in the Z direction, and a probe card having a plurality of probes, the probe tip of the probe being the inspection A probe card supported by the card base so as to face the stage, and the probe card with respect to the inspection stage in order to adjust the parallelism between the inspection object received by the inspection stage and the probe card. And a displacement mechanism for displacing.
被検査体は、これの基板面が検査ステージのXY面と平行となり、基板面に垂直な軸線が検査ステージのZ軸線と平行になる状態に、検査ステージに配置される。被検査体とプローブカードとの平行度の調整は、プローブカードを支持するカード台を変位機構により検査ステージに対し変位させることにより行われる。 The object to be inspected is arranged on the inspection stage such that the substrate surface thereof is parallel to the XY plane of the inspection stage and the axis perpendicular to the substrate surface is parallel to the Z axis of the inspection stage. Adjustment of the parallelism between the object to be inspected and the probe card is performed by displacing a card base supporting the probe card with respect to the inspection stage by a displacement mechanism.
これにより、カード台ひいてはプローブカードを検査ステージ引いては被検査体に対し傾斜させて、プローブ面を基板面と平行にすると、それらプローブ面は検査ステージのXY面と平行になる。その結果、プローブ面に垂直な軸線は、これが基板面に対し垂直になるから、載置台ひいては被検査体を三次元的に移動させる検査ステージのZ軸線と平行になる。このため、本発明によれば、位置調整が容易になる。 As a result, when the card stand and the probe card are pulled to the inspection stage and tilted with respect to the object to be inspected, and the probe surface is made parallel to the substrate surface, the probe surfaces become parallel to the XY plane of the inspection stage. As a result, since the axis perpendicular to the probe surface is perpendicular to the substrate surface, the axis is parallel to the Z axis of the inspection stage for moving the mounting table and the object to be inspected three-dimensionally. For this reason, according to this invention, position adjustment becomes easy.
プローブ装置は、さらに、検査ステージを支持するステージ台を含み、前記変位機構は、前記カード台を前記ステージ台に支持させるべく前記ステージ台及び前記カード台を連結する少なくとも3つの連結機構であって前記検査ステージに受けられた被検査体と前記プローブカードとの平行度の調整のために前記カード台を前記ステージ台に対し共同して変位させる連結機構を含むことができる。 The probe apparatus further includes a stage base that supports an inspection stage, and the displacement mechanism is at least three connection mechanisms that connect the stage base and the card base to support the card base on the stage base. A connection mechanism for jointly displacing the card base with respect to the stage base may be included to adjust the parallelism between the object to be inspected received by the inspection stage and the probe card.
前記連結機構の1つは、一端部において前記ステージ台に変位不能に連結されかつ他端部において前記カード台に前記Z方向に伸びる状態に及び変位可能に連結された固定支柱であり、また残りの連結機構は、一端部において前記ステージ台及び前記カード台のいずれか一方に前記Z方向に伸びる状態に及び変位可能に連結された可動体と、前記可動体を前記Z方向に移動させる駆動機構であって前記ステージ台及び前記カード台の他方に配置された駆動機構とを備えていてもよい。 One of the coupling mechanisms is a fixed column that is connected to the stage base in an undisplaceable manner at one end and is movably connected to the card base in the Z direction at the other end. The connecting mechanism includes a movable body that is movably connected to one of the stage base and the card base at one end so as to extend in the Z direction, and a drive mechanism that moves the movable body in the Z direction. And a drive mechanism disposed on the other of the stage base and the card base.
プロービング装置は、さらに、前記検査ステージに受けられた被検査体の電極を撮影するように前記カード台に配置された上カメラと、前記プローブの針先を撮影するように前記検査ステージに配置された下カメラとを含むことができる。 The probing device is further disposed on the inspection stage so as to photograph the probe tip of the probe and the upper camera disposed on the card base so as to photograph the electrode of the object received by the inspection stage. Can be included.
前記変位機構は、前記プローブカードを前記Z方向における位置を調整可能に前記カード台に取り付ける複数のねじ部材を含むことができる。 The displacement mechanism may include a plurality of screw members that attach the probe card to the card base so that the position in the Z direction can be adjusted.
[用語について] [Terminology]
本発明において、基板面とは、被検査体自体の面、又はその被検査体に設けられた複数の電極により形成される仮想的な面をいい、プローブ面とは、後に説明する配線基板やプローブ基板の面、又はプローブカードに設けられた複数のプローブの針先により形成される仮想的な面をいう。 In the present invention, the substrate surface refers to the surface of the inspection object itself or a virtual surface formed by a plurality of electrodes provided on the inspection object, and the probe surface refers to a wiring substrate or It refers to the surface of the probe substrate or a virtual surface formed by the probe tips of a plurality of probes provided on the probe card.
また本発明においては、図1において、左右方向をX方向又は左右方向、紙面に垂直の方向を前後方向又はY方向、上下方向をZ方向又は上下方向という。しかし、それらの方向は、検査すべき被検査体をプロービング装置に配置する姿勢により、異なる。 In the present invention, in FIG. 1, the left-right direction is referred to as X direction or left-right direction, the direction perpendicular to the paper surface is referred to as front-rear direction or Y direction, and the up-down direction is referred to as Z direction or up-down direction. However, these directions differ depending on the posture in which the object to be inspected is arranged in the probing apparatus.
したがって、上記の方向は、実際のプロービング装置に応じて、X方向及びY方向が、水平面、水平面に対し傾斜する傾斜面、及び水平面に垂直の垂直面のいずれかの面内となるように決定してもよいし、それらの面の組み合わせとなるように決定してもよい。 Therefore, the above direction is determined according to the actual probing apparatus so that the X direction and the Y direction are in any one of a horizontal plane, an inclined plane inclined with respect to the horizontal plane, and a vertical plane perpendicular to the horizontal plane. Alternatively, it may be determined to be a combination of these surfaces.
[実施例] [Example]
図1及び図2を参照するに、検査装置すなわちプロービング装置10は、平板状の被検査体12の通電試験に用いられる。
Referring to FIGS. 1 and 2, an inspection device, that is, a
[被検査体] [Inspection object]
被検査体12は、図3に示すように、矩形をした多数の集積回路(IC)のチップ領域(被検査領域)14をマトリクス状に有する円板状の半導体ウエーハであり、また複数の電極16を各ICチップ領域14に一列に有する。Y方向に隣り合うICチップ領域14の電極16は、一列に整列されている。X方向及びY方向に隣り合うICチップ領域14は、スクライブライン18により区画されている。
As shown in FIG. 3, the device under
以下、説明を簡略化しかつ理解を容易にするために、プロービング装置10は、被検査体12の全てのICチップ領域14を同時に一回で試験する場合について説明する。しかし、プロービング装置10は、被検査体12の全てのICチップ領域14を複数回に分けて試験するものであってもよい。
Hereinafter, in order to simplify the description and facilitate understanding, the
各電極16は、以下の説明では、矩形の平面形状を有するパッド電極とする。しかし、各電極16は、円形、楕円形等、他の平面形状を有していてもよい。また、各電極16は、必ずしも板状の電極である必要はなく、半球状のバンプ電極のような他の凸状の形状を有するものであってもよい。
In the following description, each
[プロービング装置] [Probing device]
再び図1及び図2を参照するに、プロービング装置10は、被検査体12を真空的に吸着するチャックトップのような受け台20を備える検査ステージ22と、検査ステージ22を支持する板状のステージ台24と、ステージ台からこれの上方に間隔をおいた板状のカード台26と、カード台26をステージ台24に支持させるべくステージ台24及びカード台26を連結する3つの連結機構28a,28b,28cと、カード台26に受け台20と対向する状態に配置されたプローブカード(PC)30と、検査ステージ22にX方向及びY方向に移動可能に配置された下カメラ32と、カード台26に配置された上カメラ34とを含む。
Referring to FIGS. 1 and 2 again, the probing
受け台20は、リング状又は円板状の形状を有しており、また被検査体12を水平に受ける平面円形の吸着面(図示の例では、上面)を有しており、さらに被検査体12を解除可能に吸着するための複数の吸着溝を吸着面に有している。吸着溝は図示しない真空装置に連結されている。
The
検査ステージ22は、いずれも図示しないが、受け台20の他に、受け台20をX,Y及びZの3方向に三次元的に移動させる三次元駆動機構と、受け台20をZ方向に伸びるθ軸線の周りに角度的に回転させるθ駆動機構とを備えている。これらの駆動機構は、プロービング装置10の筐体(図示せず)内に配置されたステージ台24に設置されている。
Although the
ステージ台24は、プロービング装置10の筐体(図示せず)内に水平に配置されている。検査ステージ22は、その三次元駆動機構及びθ駆動機構のいずれか一方が他方を支持する状態に、三次元駆動機構及びθ駆動機構のいずれか一方においてステージ台24に配置されている。受け台20は、三次元駆動機構及びθ駆動機構の他方に支持されている。
The
カード台26は、連結機構28a,28b,28cによりステージ台24に支持された板状の支持部材36と、支持部材36にこれをZ方向に貫通する状態に支持されたリング状のカードホルダ38とを含む。
The
支持部材36は、これを上下に貫通する円形の穴40を中央に有していると共に、穴40の上部の周縁を円形に伸びる上向きの段部42を穴40の周りに有している。
The
カードホルダ38は、フランジ状の上部外周縁部が半径方向外側に伸びて支持部材36の上向き段部42に受けられ、中間部が上部外周縁部の内側から下方向に伸びて穴40に嵌合され、フランジ状の下部内周縁部が中間部の下端から半径方向内側に伸びてプローブカード30を受けるように、Z字状の断面形状を有する部材でリング状に形成されている。
The
カードホルダ38は、これの上部外周縁部を厚さ方向に貫通して支持部材36に螺合された複数の取り付けねじ及び複数の位置決めピン(いずれも図示せず)により、カード台26に取り付けられている。
The
プローブカード30は、被検査体12の電極16に個々に対応された複数のプローブ44をプローブ基板46の下面に取り付け、プローブ基板46を円形の平面形状を有する配線基板48の下面に取り付けている。
In the
各プローブ44は、プローブ基板46に設けられた配線を介して配線基板48に備えられた配線に電気的に接続されており、さらに配線基板48の配線により配線基板48に備えられたテスターランド50に電気的に接続されている。各テスターランド50は、被検査体12に対す電気信号の受け渡しをするテスター(図8参照)に電気的に接続される。
Each
プローブカード30は、プローブ44の針先が検査ステージ22の側に向くように、配線基板48の下面外周部において複数の取り付けねじ及び位置決めピン(いずれも図示せず)により、カードホルダ38に取り付けられている。
The
プローブ44は、それらの針先(すなわち、先端)が対応する電極16の配列状態と同じ配列状態になるように、プローブ基板46に配置されている。このため、同じICチップ領域14の電極16に対応されたプローブ44の針先は一列に整列されており、またY方向に隣り合うICチップ領域14の電極16に対応されたプローブ44の針先も一列に整列されている。
The
1つの連結機構28aは、一端部においてブラケット52によりステージ台24及びカード台26のいずれか一方にZ方向に伸びる状態に及び変位不能に連結され、かつ他端部において球継手54によりステージ台24及びカード台26の他方に変位可能に連結された固定支柱である。
One connecting
残りの連結機構28b,28cは、一端部において球継手56によりステージ台24及びカード台26のいずれか一方にZ方向に伸びる状態に及び変位可能に連結された可動体58と、ステージ台24に配置されて可動体58をZ方向に変位させる駆動機構60とを備える。
The remaining connecting
図示の例では、連結機構28a,28b,28cは、いずれも、球継手54又は56によりカード台26に連結されている。
In the illustrated example, all of the
可動体58はボールねじであり、駆動機構60は可動体58と螺合する雌ねじ部を回転軸部に有する中空モータである。このため、連結機構28a,28b,28cは、駆動機構60の正転及び逆転により可動体58をZ方向に移動させて、カード台26をステージ台24ひいては検査ステージ22に対し変位させ、それによりカード台26をステージ台24及び検査ステージ22に対し傾斜させる変位機構として作用する。
The
下上のカメラ32及び34は、自動焦点合わせの機能を備えたビデオカメラである。
The lower
下カメラ32は、プローブ44の針先を撮像するように、上向きに検査ステージ22に設置されており、また検査ステージ22によりX方向及びY方向に二次元的に移動されてプローブ30の針先を撮像する。
The
上カメラ34は、検査ステージ22に配置された被検査体12の電極16を撮像するように、下向きにカード台26の下面に取り付けられている。上カメラ34は、受け台20が検査ステージ22によりX方向及びY方向に二次元的に移動されることにより、被検査体12の電極16を撮像する。上カメラ34をプローブカード30又はカードホルダ24に取り付けてもよい。
The
検査ステージ22による下カメラ32の移動面は、針先のためにプロービング装置10に設定された仮想的な第1の基準面として作用する。検査ステージ22による受け台20の移動にともなう上カメラ34の仮想的な(見かけ上の)移動面は、電極16のためにプロービング装置10に設定された仮想的な第2の基準面として作用する。
The moving surface of the
下カメラ32の出力信号は、プロービング装置10を制御するプローバの制御部62(図8参照)において、第1の基準面からの針先の高さ位置である針先高さ位置を求めると共に、それらいくつかの針高さ位置から、プロービング装置10に取り付けられた状態におけるプローブカード30のプローブ面を求めることに用いられる。
The output signal of the
上カメラ34の出力信号は、プローバの制御部62において、第2の基準面からの電極16の高さ位置である電極高さ位置を求めると共に、それらいくつかの電極高さ位置から、プロービング装置10の配置された状態における被検査体12の電極面を基板面として求めることに用いられる。
An output signal of the
プローブカード30は、図4(A)及び(B)に示すように、各プローブ44の針先44aが対応する電極16の設定位置16aに接触し、その状態で針先44aが電極16に接触され、さらにZ方向への所定量のオーバードライブODがプローブ44に作用して、針先44aが電極16に対してX,Y面内で所定量だけ滑るように、製造される。
In the
設定位置16aは、針先44aが接触すべき目標位置であり、プローブ44にオーバードライブが作用したときの電極16に対する針先44aの滑り量を考慮して設定されている。
The
しかし、各針先44aが対応する電極16の設定位置16aに正確に接触するように、プローブカード30を製造することは難しい。このため、対応する電極16への各針先44aの接触位置について、許容範囲64が定められている。もちろん、上記のオーバードライブ(OD)量や滑り量にも、許容範囲が定められている。
However, it is difficult to manufacture the
上記のことから、プローブカード30は、製造時に、プローブ面が基板面と平行になると共に、各プローブ44の針先44aが許容範囲64内となるように、被検査体12の見本のような位置基準66(図5参照)を用いて針先位置を調整される。図6は、理解を容易にするために、多くの電極16及び多くの針先44aを省略して示している。
From the above, the
上記のように針先位置を調整されたプローブカード30は、プロービング装置10に取り付けられ、その状態で対応する電極16に対する針先44aの位置が許容範囲64内となるように、調整される。
The
前記したように、プローブカード30はカードホルダ38に複数のねじ部材及び位置合わせピンにより取り付けられており、カードホルダ38はカード台26に複数のねじ部材及び位置合わせピンにより取り付けられている。
As described above, the
上記の結果、プローブカード30は、これに予め定められた方向(例えば、針先44aの整列方向)がプロービング装置10に予め定められた方向と一致し、かつ各針先44aの二次元位置がプロービング装置10に予め定められた二次元位置と一致するように、プロービング装置10に対しプリアライメントをされている。
As a result of the above, the
しかし、上記のようにプリアライメントをされたとしても、プローブカード30のプローブ面がプロービング装置10に配置された被検査体12の基板面と平行であるとは限らないし、電極16の設定位置16aに対する各針先44aの位置が許容範囲64内にあるとは限らない。
However, even if pre-alignment is performed as described above, the probe surface of the
このため、後に説明する位置合わせが行われる。 For this reason, alignment described later is performed.
図1,図6及び図7に示すように、プロービング装置10は、また、それぞれが検査ステージ22とプローブカード30との間隔を測定する複数の測定器70を含む。それらの測定器70は、検査ステージ22及びプローブカード30のいずれか一方にX方向及びY方向に間隔をおいて配置されている。各測定器70は、レーザ光線72を用いるレーザ測長器とすることができる。
As shown in FIGS. 1, 6, and 7, the probing
これに対し、検査ステージ22及びプローブカード30の他方には、レーザ光線72を受けるターゲット74が各測定器70による照射箇所に配置されている。各ターゲット74は、反射鏡とすることができる。
On the other hand, on the other side of the
図示の例では、三角形の頂点に位置する3つの測定器70がレーザ光線の出射口及び反射光の入射口を上方に向けた状態に、載置台20の周りに間隔をおいて検査ステージ22に配置されており、またターゲット74がプローブ基板46の下面に下向きに取り付けられている。
In the illustrated example, the three
図6において、二点鎖線の領域71は、プローブ44の配置領域を示す。また、図7において、二点鎖線の領域73はICチップ領域14の形成領域を示す。
In FIG. 6, a two-dot
図8に示すように、プローブカード30は、また、配線基板48に配置された記憶装置76を備えている。記憶装置76は、プローブ44に関する情報を含むプローブカード情報を記憶している。
As shown in FIG. 8, the
図示の例では、記憶装置76は、情報の書き込み及び読み出しのための複数の端子を備えたICメモリである。このため、配線基板48は記憶装置76の端子に接続された複数の配線78を有している。
In the illustrated example, the
カードホルダ38は、これに配置されたプローブカード30の配線78に一端において電気的に接触する複数の第1のコンタクトピン80を下部外周縁部に有すると共に、第1のコンタクトピン80の他端に一端において電気的に接続された複数の第2のコンタクトピンを上部外周縁部に有する。
The
カードホルダ38は、さらに、それぞれが複数の配線を有する第1及び第2の接続基板84及び86をそれぞれ下部外周縁部の下面及び上部外周縁部の上面に有すると共に、複数の接続ピン88を中間部に有する。
The
第1の接続基板84の各配線は、第1のコンタクトピン80の他端と接続ピン88の一端とに一対一の形に電気的に接触されている。第2の接続基板86の各配線は、接続ピン88の他端と第2のコンタクトピン82の一端とに一対一の形に電気的に接触されている。
Each wiring of the
支持部材36は、さらに、それぞれが第2のコンタクトピン82の他端に電気的に接触された複数の配線を有する第3の接続基板90を上向き段部42に有している。第3の接続基板90の各配線は、支持部材36に設けられた配線94及び配線94に電気的に接続されたケーブル96によりプローバの制御部62に電気的に接続されている。
The
[位置合わせ方法] [Alignment method]
次に、図1から図10を参照して、プローブ44の針先44aと被検査体12の電極16との位置合わせをする位置合わせ方法の一実施例について説明する。図10においては、用語「プローブカード」を記号「PC」として示す。
Next, an example of an alignment method for aligning the
[プローブ情報の決定] [Determining probe information]
プローブカード30がプロービング装置10の取り付けられる前、特に製造時に、基準データを決定するための以下のステップが予め実行される。
Before the
1:上記のように位置基準66(図5参照)を用いて針先位置を調整した後の全プローブ44の平面座標(針先の二次元位置)、高さ座標(針先の高さ位置)及び接触抵抗値を測定する(図10におけるステップ100)。
1: The plane coordinates (two-dimensional positions of the needle tips) and height coordinates (the height positions of the needle tips) of all the
2:次いで、設定位置16aに位置する少なくとも3つのプローブを、針先二次元位置を決定するための第1の基準プローブP1,P2,P3(図5参照)と選定して、それら第1の基準プローブP1,P2,P3の針先二次元位置を針先二次元基準位置として決定する(図10におけるステップ101)。
2: Next, at least three probes located at the
3:次いで、高さ位置が揃っている少なくとも3つのプローブを、針先高さ基準位置を決定するための第2の基準プローブP4,P5,P6(図9参照)を選定して、それら第2の基準プローブP4,P5,P6の針先高さ位置を針先高さ基準位置として決定する(図10におけるステップ101)。 3: Next, select at least three probes having the same height position by selecting second reference probes P4, P5, and P6 (see FIG. 9) for determining the needle tip height reference position. The needle tip height positions of the two reference probes P4, P5, P6 are determined as the needle tip height reference position (step 101 in FIG. 10).
上記の針先高さ基準位置から、第2の基準プローブP4,P5,P6の針先44aにより形成される仮想面を基準プローブ面として得ることができる。
From the needle tip height reference position, a virtual surface formed by the
4:次いで、プローブカード30に対する最適なオーバードライブ量(許容範囲)を選定して、選定したオーバードライブ量を最適なオーバードライブ量(OD量)として決定する(図10におけるステップ101)。
4: Next, the optimum overdrive amount (allowable range) for the
5:その後、プローブカード30に関する各種の情報を記憶装置76に保存する(図10におけるステップ102)。
5: Thereafter, various types of information regarding the
それらの情報は、第1の基準プローブP1,P2,P3の針先二次元位置、第2の基準プローブP4,P5,P6の針先高さ位置、最適なオーバードライブ量(OD量)及びプローブに関する情報を含む他のプローブカード情報を含む。 Such information includes the two-dimensional position of the tip of the first reference probes P1, P2, P3, the height of the tip of the second reference probes P4, P5, P6, the optimum overdrive amount (OD amount) and the probe. Other probe card information including information about.
針先二次元位置及び針先高さ位置は、それぞれ、針先二次元基準位置及び針先高さ基準位置として、基準プローブの番号と共に基準プローブ毎に記憶装置76に書き込まれる。
The needle tip two-dimensional position and the needle tip height position are written in the
最適なオーバードライブ量(OD量)と、プローブに関する情報を含む他のプローブカード情報とは、記憶装置76に書き込まれる。針先二次元基準位置、針先高さ基準位置及びプローブ番号は、後にプローブ情報として用いられる。
The optimal overdrive amount (OD amount) and other probe card information including information related to the probe are written in the
針先二次元基準位置は、プローブカード30に予め設定されている仮想的なXYZの三次元座標系における針先のX,Y座標位置として決定される。そのような針先二次元基準位置は、その基準プローブP1,P2,P3に対応する電極のXY座標位置であってもよいし、プローブ番号によりXY座標位置が特定される場合はそのプローブ番号自体であってもよい。
The needle tip two-dimensional reference position is determined as the X and Y coordinate positions of the needle tip in a virtual XYZ three-dimensional coordinate system preset in the
針先高さ基準位置は、三次元座標系におけるZ座標値(例えば、位置基準66の面のような基準面からの高さ位置)として決定される。位置基準66は、被検査体12及びプローブカード30がプロービング装置10に配置されたときの、プローブカード30に対する被検査体の仮想的な位置とすることができる。
The needle tip height reference position is determined as a Z coordinate value (for example, a height position from a reference surface such as the surface of the position reference 66) in the three-dimensional coordinate system. The
針先二次元基準位置及び針先高さ基準位置は、これらを新たに決定する代わりに、位置基準66を用いる針先位置の調整の際に各針先44aの針先二次元位置及び針先高さ位置を決定し、そのときの対応する値を針先二次元基準位置及び針先高さ基準位置として用いてもよい。
The needle tip two-dimensional reference position and the needle tip height reference position are determined in place of newly determining the needle tip two-dimensional position and the needle tip of each
プローブカード30が多数のプローブ44を備えている場合、針先位置の調整時に、針先44aが位置基準66の仮想的な対応する電極16の設定位置16aに位置する複数のプローブや、同じ針先高さを有する複数のプローブが存在することが多い。
When the
そこで、針先二次元基準位置を得るための第1の基準プローブP1,P2,P3は、図4及び図5に示すように、針先44aが位置基準66の仮想的な対応する電極16の設定位置16aに位置しかつ互いに大きく間隔をおいた少なくとも3つのプローブとすることができる。そのようなプローブが存在しないときは、針先44aが仮想的な設定位置16aに近くかつ互いに大きく間隔をおいたプローブとすることができる。
Therefore, the first reference probes P1, P2, and P3 for obtaining the needle tip two-dimensional reference position are arranged such that the
また、針先高さ基準位置を得るための第2の基準プローブP4,P5,P6は、図9に示すように、同じ又はほぼ同じ針先高さ位置(例えば、最も大きい又は小さい高さ位置)を有しかつ互いに大きく間隔をおいた少なくとも3つのプローブとすることができる。そのようなプローブが存在しないときは、針先高さ位置が互いに最も近くかつ互いに大きく間隔をおいた複数のプローブとすることができる。 Further, the second reference probes P4, P5, and P6 for obtaining the needle tip height reference position are the same or substantially the same needle tip height position (for example, the largest or smallest height position as shown in FIG. 9). ) And at least three probes spaced apart from each other. When such a probe does not exist, a plurality of probes whose needle tip height positions are closest to each other and greatly spaced from each other can be obtained.
上記のことから、第1の基準プローブP1,P2,P3の少なくとも1つは、第2の基準プローブP4,P5,P6の少なくとも1つと同じであってもよい。 From the above, at least one of the first reference probes P1, P2, P3 may be the same as at least one of the second reference probes P4, P5, P6.
図5及び図9は、第1及び第2の基準プローブP1からP6を決定するプロセスを容易に理解することができるように、電極16、プローブ44、及びその長さ寸法の差を拡大して示していると共に、多くのプローブ44を省略している。
5 and 9 expand the difference in the
[プローブカードの取り付け及びプローブ情報の入力] [Installation of probe card and input of probe information]
各種の情報が記憶装置76に記憶されると、プローブカード30がプロービング装置10に上記したように位置決めピンやストッパ等を利用して正確に取り付けられ(図10におけるステップ103)、ステップ102で記憶された針先二次元基準位置及び針先高さ基準位置がプロービング装置10の制御部62に読み出される(図10におけるステップ104)。
When various kinds of information are stored in the
[原点位置出し(二次元座標合わせ)] [Origin position (two-dimensional coordinate alignment)]
上記ステップ103及び104の後、被検査体12の隣り合うICチップ領域14を区画するスクライブライン18やICパターンと、これらを撮影する上カメラ34とを利用して、プロービング装置10に対する被検査体12の原点位置出し(すなわち、二次元座標合わせ)が行われる(図10におけるステップ105)。
After the
上記原点位置出しは、被検査体12のXY座標をプロービング装置10に設定された仮想的なXY座標と一致させるステップであり、以下のように実行することができる。プロービング装置10の三次元座標は、制御部62(図8参照)にソフトウエアとして設定されている。
The origin position determination is a step of matching the XY coordinates of the
先ず、被検査体12を上カメラ34で撮影しつつ、受け台20ひいては被検査体12を検査ステージ22によりプロービング装置10のXY座標内で二次元的に移動させて、そのときの上カメラ34の出力信号を画像信号として制御部62に一時的に格納する。
First, while photographing the
次いで、格納した画像信号を用いて、撮影されたスクライブライン18(図3参照)とプロービング装置10のXY座標との位置ずれ及び角度ずれを制御部62において求める。
Next, using the stored image signal, the
次いで、求めた位置ずれ及び角度ずれを修正するように、検査ステージ22の駆動装置をプロービング装置10の制御装置により制御させて、受け台20を検査ステージ22によりプロービング装置10のXY座標内で二次元的に移動させると共に、θ軸線の周りに角度的に回転させる。
Next, the driving device of the
上記の代わりに、プロービング装置10の制御部62に設定された座標自体をソフト的に変更することにより、前記位置ずれ及び角度ずれを修正してもよい。
Instead of the above, the positional deviation and the angular deviation may be corrected by changing the coordinates set in the
上記原点位置出しすなわち二次元座標合わせにより、被検査体12のXY座標はプロービング装置10のXY座標に合わされる。
By locating the origin, that is, two-dimensional coordinate matching, the XY coordinates of the
[針先高さ位置の確認及び平行度調整並びに針先二次元位置の確認及び調整] [Confirmation of needle tip height position and parallelism adjustment and confirmation and adjustment of needle tip two-dimensional position]
上記原点位置出しの後、平行度調整並びに針先二次元位置の確認及び調整が行われる(図10におけるステップ106)。
After the origin position is determined, parallelism adjustment and confirmation and adjustment of the needle tip two-dimensional position are performed (
上記針先高さ位置の確認は、プローブカード30の各プローブ44の針先44aを下カメラ32で撮影しつつ、下カメラ32を検査ステージ22によりプロービング装置10のXY座標内で二次元的に移動させ、そのときの下カメラ32の出力信号を制御部62(図8参照)に一時的に格納することにより行われる。
The needle tip height position is confirmed in a two-dimensional manner within the XY coordinates of the probing
針先高さ位置の具体的な値は、針先44aを下カメラ32で撮影したときの下カメラ32の焦点位置とすることができる。
The specific value of the needle tip height position can be the focal position of the
上記平行度調整は、制御部62において、第2の基準プローブP4,P5,P6の針先高さ位置により形成される仮想面(プローブ面)と、先に格納された針先高さ基準位置により形成される仮想面(基準プローブ面)とを求め、求めたプローブ面と基準プローブ面との角度θ1(図9参照)が零になるように、プローブカード30と被検査体12との平行度を調整することにより、行われる。
The parallelism adjustment is performed in the
第2の基準プローブP4,P5,P6は、入力されたプローブ番号から特定することができる。上記の平行度調整により、針先高さ位置により形成されるプローブ面と針先高さ基準位置により形成される基準プローブ面とが平行にされる。 The second reference probes P4, P5 and P6 can be identified from the input probe number. By adjusting the parallelism, the probe surface formed by the needle tip height position and the reference probe surface formed by the needle tip height reference position are made parallel.
上記のような平行度調整は、制御部62において、プローブ面及び基準プローブ面を求めると共に、求めたプローブ面及び基準プローブ面の傾斜角度θ1を求め、次いで求めた傾斜角度θ1が零になるように、プローブカード30を傾斜させることにより行うことができる。
In the parallelism adjustment as described above, the
プローブカード30の傾斜は、図1における変位機構28b,28cの中空モータ60を正転又は逆転させて、カード台26を受け台20に対し傾斜させることにより行うことができる。
The
上記平行度の調整により、プローブカード30のプローブ面は、被検査体12の基板面と平行にされる。これは、同じ又はほぼ同じ針先高さ位置を有するプローブ44を平行度調整のための基準プローブP4,P5,P6と決定したことによる。
By adjusting the parallelism, the probe surface of the
上記平行度調整のために、プローブ面及び基準プローブ面を求めることなく、単に、基準プローブP4,P5,P6の針先高さ位置が対応する針先高さ基準位置に一致するように、プローブカード30を傾斜させてもよい。
In order to adjust the parallelism, without obtaining the probe surface and the reference probe surface, the probe is simply set so that the needle tip height positions of the reference probes P4, P5, P6 coincide with the corresponding needle tip height reference position. The
上記針先二次元位置の確認は、プローブカード30の各プローブ44の針先を下カメラ32で撮影しつつ、受け台20ひいては下カメラ32を検査ステージ22によりプロービング装置10のXY座標内で二次元的に移動させ、下カメラ32が第1の基準プローブP1,P2,P3の針先を撮影したときのときの下カメラ32の座標位置をプロービング装置10の制御部62に一時的に格納することにより行われる。
The confirmation of the two-dimensional position of the probe tip is performed by photographing the probe tip of each
第1の基準プローブP1,P2,P3は、それらのプローブ番号により特定することができる。下カメラ32の座標位置は、例えば、下カメラ32が第1の基準プローブP1,P2,P3の針先を撮影したときのときの検査ステージ22の座標位置から得ることができる。上記針先二次元位置の確認は、針先高さ位置の確認ステップ106と平行して行ってもよい。
The first reference probes P1, P2, P3 can be specified by their probe numbers. The coordinate position of the
二次元位置の調整は、格納した基準プローブP1,P2,P3の針先二次元位置が先に格納された針先二次元基準位置に一致するように、受け台20、ひいては被検査体12を検査ステージ22によりプローブカード30に対しXY座標内で二次元的に移動させることにより行われる。
The adjustment of the two-dimensional position is performed by moving the
上記二次元位置の調整により、基準プローブP1,P2,P3の針先44aは、対応する電極16の中心に位置決められる。その結果、他のプローブ44の針先も、対応する電極16に対し許容範囲内に位置決められる。
By adjusting the two-dimensional position, the
上記の理由は、針先位置の調整により全てのプローブ44の針先が対応する電極16に対し許容範囲64内に位置決められていることと、針先44a(図6参照)が対応する電極16の設定位置16a又はほぼ設定位置16aに位置するプローブを基準プローブP1,P2,P3と決定したことによる。
The reason for this is that the needle tips of all the
次いで、受け台20とプローブ基板46との間の距離が測定される(図10におけるステップ107)。
Next, the distance between the
この測定は、レーザ光線72を測定器70からこれに対応するターゲット74に向けて指向させ、ターゲット74からの反射光を測定器70で受光することにより、行われる。測定された各距離は、制御部62に一時的に格納される。
This measurement is performed by directing the
次いで、被検査体12の通電試験(測定)が行われる(図10におけるステップ108)。
Next, an energization test (measurement) of the device under
通電試験は、受け台20ひいては被検査体12を検査ステージ22により上昇させて、被検査体12の電極16をプローブ44の針先に接触させた状態で、被検査体12に通電し、そのときの被検査体12から出力される電気信号をテスターに受けて、テスターにおいて被検査体12の正否を判定する、という通常の方法で行われる。
In the energization test, the
上記の通電試験の間、必要に応じて、針先高さの補正(高さ補正)と平行度の調整(平行補正)を行ってもよい(図10におけるステップ109)。
During the above-described energization test, needle tip height correction (height correction) and parallelism adjustment (parallel correction) may be performed as necessary (
上記の平行度補正は、受け台20とプローブ基板46との間の距離を各測定器70により測定し、そのときの値と制御部62に先に格納した値とを制御部62において比較し、両者が一致するように、変位機構28b,28cによりプローブカード30を被検査体12に対し傾斜させることにより行われる。
In the above-described parallelism correction, the distance between the
通電試験が終了すると、被検査体12の交換が行われる(図10におけるステップ110)。被検査体12の交換の際、プローブの洗浄を行ってもよい。
When the energization test ends, the device under
次いで、測定器70による受け台20とプローブ基板46との間の距離の測定と、針先高さの補正(高さ補正)と平行度の調整(平行補正)を行ってもよい(図10におけるステップ111)。このステップ111は、ステップ109と同じ手法により行われる。
Next, measurement of the distance between the
その後、ステップ109から111のステップが被検査体毎に繰り返される(図10におけるステップ112)。
Thereafter, steps 109 to 111 are repeated for each object to be inspected (
全ての検査が終了すると、ブロービング装置のデータ、コンタクト回数、洗浄回数、平行度調整用データ等が制御部62に保存され(図10におけるステップ113)、プローブカード(PC)30が取り外される(図10におけるステップ114)。
When all the inspections are completed, the data of the blowing device, the number of times of contact, the number of times of cleaning, the data for adjusting the parallelism, etc. are stored in the control unit 62 (step 113 in FIG. 10), and the probe card (PC) 30 is removed (
上記ステップ100から114により、同じ種類の複数の被検査体12の通電試験が終了する。
Through the
[変形例] [Modification]
プローブ面と基準プローブ面との平行度の調整を、基準プローブP4,P5,P6の針先高さ位置と針先高さ基準位置とを用いて行う代わりに、基準プローブP4,P5,P6の針先高さ位置とこれらに対応する電極の高さ位置とを用いて行なってもよい。 Instead of adjusting the parallelism between the probe surface and the reference probe surface using the needle tip height position and the needle tip height reference position of the reference probes P4, P5, and P6, the reference probes P4, P5, and P6 are adjusted. You may carry out using a needle tip height position and the height position of the electrode corresponding to these.
この場合、例えば、上カメラ34により被検査体12を電極16を撮影しつつ、第2の基準プローブに対応する電極16の高さ位置を求め、求めた電極高さ位置からの針先高さ位置が同じになるように、例えば、電極高さ位置により形成される仮想的な基板面と、第2の基準プローブの針先高さ位置により形成されるプローブ面とが平行になるように、プローブカード30を変位させればよい。
In this case, for example, the height position of the
同様に、第1の基準プローブの針先の二次元位置の調整を、基準プローブP1,P2,P3の針先二次元位置と針先二次元基準位置とを用いて行う代わりに、基準プローブP1,P2,P4の針先二次元位置と、これらに対応する電極の二次元位置とを用いて行なってもよい。 Similarly, instead of performing the adjustment of the two-dimensional position of the needle tip of the first reference probe using the needle tip two-dimensional position and the needle tip two-dimensional reference position of the reference probes P1, P2, P3, the reference probe P1 , P2 and P4, and the two-dimensional positions of the corresponding electrodes.
この場合、例えば、被検査体12の電極16をステップ105のようにして上カメラ34で撮影しつつ、第2の基準プローブに対応する電極16の二次元位置すなわち電極二次元位置を求め、第2の基準プローブの針先二次元位置が求めた電極二次元位置と一致するように、被検査体12を検査ステージ22により変位させればよい。
In this case, for example, the two-dimensional position of the
図11に示すように、測定器70をプローブカード30に取り付け、ターゲット74を検査ステージ22に取り付けてもよい。
As shown in FIG. 11, the measuring
図12に示すように、記憶装置76に記憶したデータを2つの赤外線通信装置120,122を用いて行ってもよい。
As shown in FIG. 12, the data stored in the
一方の赤外線通信装置120は、プローブカード30に配置されて配線124により記憶装置76の端子に接続される。他方の赤外線通信装置122は、カード台26の支持部材36に配置されて配線126及びケーブル128により制御部62に接続される。
One
カードホルダ38は、第1の赤外線通信装置120から送信される赤外線が通過することを許す空間123を有し、支持部材36は、一方の赤外線通信装置120から送信された赤外線が他方第2の赤外線装置122に入射することを許す空間を有する。
The
上記の代わりに、図13に示すように、記憶装置76は、記憶されている情報を電磁波を用いて読み取り可能のデータキャリアを含むことができる。この場合、記憶装置76内の情報の授受は高周波130を用いて行われる。
Instead of the above, as shown in FIG. 13, the
また、図14に示すように、記憶装置76は、フレキシブルディスク、磁気カード、CD、ICカード等のリムーバブルメモリとすることができる。この場合、記憶装置76の配置場所132がプローブカード30の配線基板48に設けられ、記憶装置76は、人手によりプローブカード30から制御部62に又はその逆に移される。
As shown in FIG. 14, the
図15に示すように、プロービング装置10に予め設定された基準面に対するプローブカード30、特にプローブ面の平行度は、プローブカード30の配線基板48のねじ穴に螺合されてカードホルダ38の下部内周縁部に当接する複数の調整ねじ134、カードホルダ38の上部外周縁部のねじ穴に螺合されてカード台26の段部42に当接する複数の調整ねじ(図示せず)等、他の部材により調整してもよい。
As shown in FIG. 15, the parallelism of the
上記平行度の調整は、プローブカード30(又は、カードホルダ38)をカードホルダ38(又は、支持部材36)に取り付ける取り付けねじ(図示せず)を緩めた状態で、カードホルダ24(又は、支持部材36)への調整ねじ134のねじ込み量を調整した後、取り付けねじを締め付けることにより、行うことができる。
The parallelism is adjusted by loosening a mounting screw (not shown) for attaching the probe card 30 (or the card holder 38) to the card holder 38 (or the support member 36), and the card holder 24 (or support). After adjusting the screwing amount of the adjusting
上記の平行度調整は、前記した取り付けねじ及び調整ねじ134を操作することにより、実行することができる。このため、少なくともカード台26及び調整ねじ134は、プロービング装置10に対するプローブカード30の傾斜角度を調整する変位機構として作用する。
The parallelism adjustment can be performed by operating the mounting screw and the adjusting
しかし、プロービング装置10に対するプローブカード30の傾斜角度を、調整する角度調整ステージを介して、カード台26に取り付け、この角度調整ステージを電動機で駆動させることにより、プローブカード30を傾斜させてプロービング装置10に対するプローブカード30の傾斜角度を調整するようにしてもよい。
However, the inclination angle of the
本発明は、上記実施例に限定されず、その趣旨を逸脱しない限り、種々変更することができる。 The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.
10 プロービング装置
12 被検査体
14 チップ領域(被検査領域)
16 電極
16a 電極の設定位置
20 受け台
22 検査ステージ
24 ステージ台
26 カード台
28a,28b,28c 変位機構
30 プローブカード
32 下カメラ
34 上カメラ
36 支持部材
38 カードホルダ
40 穴
42 段部
44 プローブ
44a 針先
46 プローブ基板
48 配線基板
50 テスターランド
52 制御部
54,56 球継手
58 ボールねじ
60 中空モータ
64 許容範囲
66 位置基準
70 測定器
74 ターゲット
76 記憶装置
78 配線
80,82コンタクトピン
84,86,90 接続基板
88 接続ピン
94,124,126 配線
96,128, ケーブル
120,122 赤外線通信装置
134 調整ねじ
10
16
64
Claims (6)
該検査ステージから前記Z方向に間隔をおいたカード台と、
複数のプローブを有するプローブカードであって前記プローブの針先が前記検査ステージの側に向くように前記カード台に支持されたプローブカードと、
前記検査ステージに受けられた被検査体と前記プローブカードとの平行度の調整のために前記プローブカードを前記検査ステージに対し変位させる変位機構とを含む、プロービング装置。 An inspection stage for receiving a flat inspection object having a plurality of electrodes, and at least three of the X and Y directions intersecting each other in a plane parallel to the inspection object, and the Z direction intersecting both the directions. An inspection stage that moves in the direction,
A card stand spaced from the inspection stage in the Z direction;
A probe card having a plurality of probes, and a probe card supported by the card base such that the probe tip is directed toward the inspection stage;
A probing apparatus comprising: a displacement mechanism for displacing the probe card with respect to the inspection stage in order to adjust parallelism between the inspection object received by the inspection stage and the probe card.
前記変位機構は、前記カード台を前記ステージ台に支持させるべく前記ステージ台及び前記カード台を連結する少なくとも3つの連結機構であって前記検査ステージに受けられた被検査体と前記プローブカードとの平行度の調整のために前記カード台を前記ステージ台に対し共同して変位させる連結機構を含む、請求項1に記載のプロービング装置。 In addition, a stage base for supporting the inspection stage,
The displacement mechanism is at least three connection mechanisms for connecting the stage base and the card base so that the card base is supported by the stage base, and includes an inspection object received by the inspection stage and the probe card. The probing apparatus according to claim 1, further comprising a coupling mechanism that jointly displaces the card base with respect to the stage base for adjusting parallelism.
残りの連結機構は前記Z方向における前記ステージ台及び前記カード台の間隔を変更可能である、請求項2に記載のプロービング装置。 One of the coupling mechanisms cannot change the interval between the stage base and the card base in the Z direction,
The probing apparatus according to claim 2, wherein the remaining connecting mechanism is capable of changing an interval between the stage base and the card base in the Z direction.
残りの連結機構は、一端部において前記ステージ台及び前記カード台のいずれか一方に前記Z方向に伸びる状態に及び変位可能に連結された可動体と、前記可動体を前記Z方向に移動させる駆動機構であって前記ステージ台及び前記カード台の他方に配置された駆動機構とを備える、請求項2に記載のプロービング装置。 One of the coupling mechanisms is a fixed column that is connected to the stage base in an undisplaceable manner at one end and is connected to the card base in the Z direction so as to be displaceable at the other end.
The remaining coupling mechanism includes a movable body that is movably coupled to one of the stage base and the card base at one end so as to extend in the Z direction, and a drive that moves the movable body in the Z direction. The probing device according to claim 2, comprising a mechanism and a drive mechanism disposed on the other of the stage base and the card base.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006002178A JP2007183194A (en) | 2006-01-10 | 2006-01-10 | Probing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006002178A JP2007183194A (en) | 2006-01-10 | 2006-01-10 | Probing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007183194A true JP2007183194A (en) | 2007-07-19 |
Family
ID=38339416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006002178A Pending JP2007183194A (en) | 2006-01-10 | 2006-01-10 | Probing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007183194A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102298079A (en) * | 2010-06-25 | 2011-12-28 | 东京毅力科创株式会社 | Parallel adjusting mechanism and inspecting device of probe card |
US8299812B2 (en) | 2008-12-24 | 2012-10-30 | Kabushiki Kaisha Nihon Micronics | Probe card |
JP5370370B2 (en) * | 2008-12-26 | 2013-12-18 | 富士通セミコンダクター株式会社 | PROBER, TEST DEVICE, AND SEMICONDUCTOR CHIP INSPECTION METHOD |
US8680880B2 (en) | 2008-12-26 | 2014-03-25 | Kabushiki Kaisha Nihon Micronics | Method and apparatus for testing integrated circuit |
KR20200050563A (en) * | 2018-11-02 | 2020-05-12 | 세메스 주식회사 | Card holde and probe station including the same |
JP2022028607A (en) * | 2020-08-03 | 2022-02-16 | 致茂電子股▲分▼有限公司 | Wafer inspection system and wafer inspection equipment thereof |
KR20220029944A (en) * | 2020-09-02 | 2022-03-10 | (주)티에스이 | Probe card and apparatus for aligning thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05136249A (en) * | 1991-04-30 | 1993-06-01 | Fujitsu Ltd | Wafer automatic alignment device |
JPH07231018A (en) * | 1993-08-25 | 1995-08-29 | Tokyo Electron Ltd | Probe apparatus |
JPH09330960A (en) * | 1996-06-08 | 1997-12-22 | Tokyo Electron Ltd | Inspection device |
JP2000067953A (en) * | 1994-11-15 | 2000-03-03 | Formfactor Inc | Probe card assembly and kit, and method for using them |
JP2004265895A (en) * | 2003-01-20 | 2004-09-24 | Tokyo Electron Ltd | Probe device equipped with optical precision distance meters and method of inspecting probe |
-
2006
- 2006-01-10 JP JP2006002178A patent/JP2007183194A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05136249A (en) * | 1991-04-30 | 1993-06-01 | Fujitsu Ltd | Wafer automatic alignment device |
JPH07231018A (en) * | 1993-08-25 | 1995-08-29 | Tokyo Electron Ltd | Probe apparatus |
JP2000067953A (en) * | 1994-11-15 | 2000-03-03 | Formfactor Inc | Probe card assembly and kit, and method for using them |
JPH09330960A (en) * | 1996-06-08 | 1997-12-22 | Tokyo Electron Ltd | Inspection device |
JP2004265895A (en) * | 2003-01-20 | 2004-09-24 | Tokyo Electron Ltd | Probe device equipped with optical precision distance meters and method of inspecting probe |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8299812B2 (en) | 2008-12-24 | 2012-10-30 | Kabushiki Kaisha Nihon Micronics | Probe card |
JP5370370B2 (en) * | 2008-12-26 | 2013-12-18 | 富士通セミコンダクター株式会社 | PROBER, TEST DEVICE, AND SEMICONDUCTOR CHIP INSPECTION METHOD |
US8680880B2 (en) | 2008-12-26 | 2014-03-25 | Kabushiki Kaisha Nihon Micronics | Method and apparatus for testing integrated circuit |
CN102298079A (en) * | 2010-06-25 | 2011-12-28 | 东京毅力科创株式会社 | Parallel adjusting mechanism and inspecting device of probe card |
KR101256306B1 (en) * | 2010-06-25 | 2013-04-18 | 도쿄엘렉트론가부시키가이샤 | Parallelism adjusting mechanism of probe card and inspection apparatus |
KR20200050563A (en) * | 2018-11-02 | 2020-05-12 | 세메스 주식회사 | Card holde and probe station including the same |
KR102673906B1 (en) | 2018-11-02 | 2024-06-10 | 세메스 주식회사 | Card holde and probe station including the same |
JP2022028607A (en) * | 2020-08-03 | 2022-02-16 | 致茂電子股▲分▼有限公司 | Wafer inspection system and wafer inspection equipment thereof |
JP7313401B2 (en) | 2020-08-03 | 2023-07-24 | 致茂電子股▲分▼有限公司 | Wafer inspection system and its wafer inspection equipment |
KR20220029944A (en) * | 2020-09-02 | 2022-03-10 | (주)티에스이 | Probe card and apparatus for aligning thereof |
KR102386462B1 (en) | 2020-09-02 | 2022-04-15 | (주)티에스이 | Probe card and apparatus for aligning thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007183193A (en) | Probing apparatus | |
KR100260116B1 (en) | Probing device setting a probe card parallel | |
US4934064A (en) | Alignment method in a wafer prober | |
KR100296646B1 (en) | Probe system and probe method | |
US7719297B2 (en) | Probe apparatus and method for measuring electrical characteristics of chips and storage medium therefor | |
US9322849B2 (en) | Methods and systems for cleaning needles of a probe card | |
JPH03209737A (en) | Probe equipment | |
JP2007183194A (en) | Probing apparatus | |
US5416592A (en) | Probe apparatus for measuring electrical characteristics of objects | |
US20160161553A1 (en) | Probe apparatus and probe method | |
JP5530261B2 (en) | Current test method for test object | |
CN114441942A (en) | Flying probe testing method, system, equipment and storage medium for PCB | |
JP2007010671A (en) | Method and system for electrically inspecting test subject, and manufacturing method of contactor used in inspection | |
JP4652699B2 (en) | Substrate inspection device, position adjustment method | |
JP4965101B2 (en) | Method for aligning the probe tip and the electrode of the object to be inspected | |
JP5432551B2 (en) | PROBE METHOD AND PROBE DEVICE | |
JP2986142B2 (en) | Probe method | |
JP2009277773A (en) | Probing device | |
US20190187180A1 (en) | Prober | |
JP3193958B2 (en) | Probe apparatus and probe method | |
JPH0194631A (en) | Wafer prober | |
JP5004454B2 (en) | Prober and rotation / movement control method in prober | |
JP3202577B2 (en) | Probe method | |
JP2979277B2 (en) | Probe method | |
US20240319229A1 (en) | Wafer testing apparatus and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100427 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110517 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110927 |