Nothing Special   »   [go: up one dir, main page]

JP2007033676A - 偏光変換光学素子、光変調モジュール及び投射型画像表示装置 - Google Patents

偏光変換光学素子、光変調モジュール及び投射型画像表示装置 Download PDF

Info

Publication number
JP2007033676A
JP2007033676A JP2005214737A JP2005214737A JP2007033676A JP 2007033676 A JP2007033676 A JP 2007033676A JP 2005214737 A JP2005214737 A JP 2005214737A JP 2005214737 A JP2005214737 A JP 2005214737A JP 2007033676 A JP2007033676 A JP 2007033676A
Authority
JP
Japan
Prior art keywords
polarization
optical system
polarized light
light
conversion optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005214737A
Other languages
English (en)
Inventor
Shigeaki Imai
重明 今井
Koji Masuda
浩二 増田
Yasushi Yamada
泰史 山田
Manabu Seo
学 瀬尾
Daisei Minegishi
大生 峯岸
Takayoshi Nakatani
任良 中谷
Tsutomu Hashiguchi
強 橋口
Izumi Ito
泉 伊藤
Shinji Sato
新治 佐藤
Hidenobu Kishi
秀信 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005214737A priority Critical patent/JP2007033676A/ja
Publication of JP2007033676A publication Critical patent/JP2007033676A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】経時において性能劣化が小さく、且つ低コストな偏光変換光学系を実現する。
【解決手段】本発明では、2つの直交する偏光成分を分離する偏光分離手段1と、偏光状態を変化させる偏光変化手段2と、を少なくとも有し、入射光の偏光状態によらず射出光の偏光状態を一方向に揃えることが可能な偏光変換光学系において、前記偏光分離手段1と前記偏光変化手段2のうちの少なくとも一方は、使用する波長よりも短いピッチの微細凹凸構造を有することを特徴としており、偏光分離手段1と偏光変化手段2の少なくともどちらか一方は波長以下の微細凹凸構造を用いて実現しているため、ナノインプリンティングやフォトリソグラフィー等の手段により安価に大量に作製できるだけでなく、経時での性能の安定性を向上させることができる。
【選択図】図1

Description

本発明は、ランダム偏光の光源からの光の偏光方向を揃える偏光変換光学素子と、該偏光変換光学素子を用いた光変調モジュール、及び、該光変調モジュールを用いた投射型画像表示装置に関する。
プロジェクタ等の従来の投射型画像表示装置では、光源として高圧水銀ランプやメタルハライドランプなどの放電ランプを用い、光源からの光は液晶等のライトバルブに導かれ、ライトバルブで変調された光が投射レンズによりスクリーン上に投射される。このとき、液晶に入射される光は、単一の方向に振動する直線偏光である必要があるが、放電ランプからの光はランダム偏光であるため、液晶で利用される光は、放電ランプからの光の1/2以下になり、光利用効率が悪くなってしまう。従って、光源からの光の偏光方向を一方向に揃える「偏光変換光学系」が必要である。従来では、そのような偏光変換光学系として、特許文献1(特開2002−23106号公報)や特許文献2(特開2002−244211号公報)に開示されるような、偏光ビームスプリッタと位相差板を組み合わせた偏光変換光学系が用いられている。その代表的構造例を図14に示す。
図14では、図示しない放電ランプからの光は図示しないリフレクタにより略平行光に変換され、マイクロレンズアレイ201,202により集光された光は偏光ビームスプリッタ203に入射し、偏光ビームスプリッタ203を透過した光をλ/2板(位相差板)204により偏光方向を90°回転させて図示しない重畳レンズに入射させ、偏光ビームスプリッタ203により反射された光は、ミラー205により光路が90°折り曲げられて図示しない重畳レンズに入射する。重畳レンズに入射した光は図示しない液晶等のライトバルブ上で重ね合わせられ、偏光方向の揃った直線偏光の光で液晶等のライトバルブを均一に照射する。
特開2002−23106号公報 特開2002−244211号公報 Mool C.Gupta and S.T.Peng, "Diffraction characteristics of surface-relief gratings", Appl.Opt., Vol.32, No.16(1993)
上記、図14における偏光変換光学系において、偏光ビームスプリッタ203は、通常、多数の屈折率の異なる光学膜を基板上に多数積層した多層膜構造により実現される。この多層膜構造を用いた偏光ビームスプリッタは、工数が多い、真空での蒸着が必要である等の理由により、高価になってしまう。さらに、プロジェクタの内部は非常に高温であり、前記偏光変換光学系は高温環境で使用されることになるため、マイクロクラック等の発生により経時で性能が劣化してしまう等の問題点がある。また、偏光分離機能を高めるためには、更に多数の光学膜を必要とすることから、高性能化と低コスト化の両立が難しい。さらに、各層の膜厚の制御が難しく、所望の偏光分離機能を実現するのが難しいといった問題がある。
また、上記のλ/2板(位相差板)204は、高分子を用いて実現されることが多いが、高分子を用いた位相差板も、上記の偏光ビームスプリッタと同様、熱に弱いという欠点があるため、経時で性能が劣化してしまう。
本発明は上記事情に鑑みなされたものであり、その目的は、経時において性能劣化が小さく、且つ低コストな偏光変換光学系と、その偏光変換光学系を用いた光変調モジュール、及び、該光変調モジュールを用いた投射型画像表示装置を提供することにある。
上記目的を達成するため、本発明では以下のような技術的手段を採っている。
本発明の第1の手段は、2つの直交する偏光成分を分離する偏光分離手段と、偏光状態を変化させる偏光変化手段と、を少なくとも有し、入射光の偏光状態によらず射出光の偏光状態を一方向に揃えることが可能な偏光変換光学系において、前記偏光分離手段と前記偏光変化手段のうちの少なくとも一方は、使用する波長よりも短いピッチの微細凹凸構造を有することを特徴とする(請求項1)。
本発明の第2の手段は、第1の手段の偏光変換光学系において、反射手段と位相変化手段を有し、前記偏光分離手段は、2つの直交する直線偏光のうち、一方の直線偏光成分を反射し、他方の直線偏光成分を透過するように構成し、該反射された直線偏光成分を前記反射手段にて反射させるとともに、前記位相変化手段を通過させることを特徴とする(請求項2)。
また、本発明の第3の手段は、第1の手段の偏光変換光学系において、反射手段と位相変化手段を有し、前記偏光分離手段は、2つの直交する直線偏光のうち、一方の直線偏光成分を反射し、他方の直線偏光成分を透過するように構成し、該透過された直線偏光成分を前記反射手段にて反射させるとともに、前記位相変化手段を通過させることを特徴とする(請求項3)。
本発明の第4の手段は、第1乃至第3のいずれか一つの手段の偏光変換光学系において、少なくとも前記偏光分離手段と前記偏光変化手段は、互いに平行になるように構成することを特徴とする(請求項4)。
また、本発明の第5の手段は、第1乃至第4のいずれか一つの手段の偏光変換光学系において、前記偏光分離手段と前記偏光変化手段は、単一の光学素子上に集積されていることを特徴とする(請求項5)。
さらに本発明の第6の手段は、第1乃至第5のいずれか一つの手段の偏光変換光学系において、単一の光学素子の同一の面を複数の領域に分割し、前記分割された領域のそれぞれに、前記偏光分離手段と前記偏光変化手段を形成することを特徴とする(請求項6)。
本発明の第7の手段は、第2乃至第6のいずれか一つの手段の偏光変換光学系において、前記反射手段と前記偏光変化手段は、単一の光学素子上に集積化されていることを特徴とする(請求項7)。
また、本発明の第8の手段は、第2乃至第7のいずれか一つの手段の偏光変換光学系において、前記反射手段と前記偏光分離手段と前記偏光変化手段は、単一の光学素子上に集積化されていることを特徴とする(請求項8)。
本発明の第9の手段は、第1の手段の偏光変換光学系において、前記偏光分離手段は、2つの直交する直線偏光のうち、一方の直線偏光成分を屈曲させて透過し、他方の直線偏光成分をそのまま透過するように、2つの直交する直線偏光の進行方向を分離するように構成し、前記分離した直線偏光の一方の成分は、偏光変化手段を透過させて偏光方向を90°回転させ、前記分離した直線偏光の他方の成分は、光路偏向手段によりもう一度屈曲させるとともに、前記偏光変化手段を透過した直線偏光成分と前記光路偏向手段を透過した直線偏光成分の進行方向を、略平行になるように構成することを特徴とする(請求項9)。
本発明の第10の手段は、第9の手段の偏光変換光学系において、前記光路偏向手段は、使用する波長よりも短いピッチの微細凹凸構造を有することを特徴とする(請求項10)。
また、本発明の第11の手段は、第9または第10の手段の偏光変換光学系において、前記偏光変化手段と前記光路偏向手段は、単一の光学素子上に集積されていることを特徴とする(請求項11)。
本発明の第12の手段は、光変調モジュールであり、光源と、第1乃至第11のいずれか一つの手段の偏光変換光学系と、前記光源の強度分布を変調する光変調手段と、を有することを特徴とする(請求項12)。
また、本発明の第13の手段は、第12の手段の光変調モジュールにおいて、前記光源は発光ダイオード(LED)であることを特徴とする(請求項13)。
さらに本発明の第14の手段は、第12または第13の手段の光変調モジュールにおいて、前記光源はLEDアレイとし、前記LEDアレイの1つのLEDに対応して、第1乃至第11のいずれか一つの手段の偏光変換光学系を設けることを特徴とする(請求項14)。
本発明の第15の手段は、投射型画像表示装置であり、第12乃至第14のいずれか一つの手段の光変調モジュールと、該光変調モジュールの強度分布を像面に投影する投影レンズと、を有することを特徴とする(請求項15)。
本発明の第1〜3の手段の偏光変換光学系においては、偏光分離手段と偏光変化手段の少なくともどちらか一方は波長以下の微細凹凸構造を用いて実現しているため、ナノインプリンティングやフォトリソグラフィー等の手段により安価に大量に作製できるだけでなく、経時での性能の安定性を向上させることができる。
本発明の第4の手段の偏光変換光学系においては、偏光分離手段と偏光変化手段が平行になるように構成しているため、偏光変換光学系の小型化が実現できる。
また、本発明の第5、第6の手段の偏光変換光学系においては、偏光分離手段と偏光変化手段を集積化していることから、経時での相対的な位置変動の低減による高安定化とアライメント工程の省略や部品点数削減等による低コスト化を実現することができる。
本発明の第7の手段の偏光変換光学系においては、反射手段と偏光変化手段を集積化していることから、経時での相対的な位置変動の低減による高安定化とアライメント工程の省略や部品点数削減等による低コスト化を実現することができる。
また、本発明の第8の手段の偏光変換光学系においては、反射手段と偏光変化手段と偏光分離機能を集積化していることから、経時での相対的な位置変動の低減による高安定化とアライメント工程の省略や部品点数削減等による低コスト化を実現することができる。
本発明の第9、第10の手段の偏光変換光学系においては、偏光分離手段と偏光変化手段の少なくともどちらか一方は波長以下の微細構造を用いて実現しているため、ナノインプリンティングやフォトリソグラフィー等の手段により安価に大量に作製できるだけでなく、経時での性能の安定性を向上させることができる。
また、本発明の第11の手段の偏光変換光学系においては、偏光変化手段と偏光分離手段を集積化していることから、経時での相対的な位置変動の低減による高安定化とアライメント工程の省略や部品点数削減等による低コスト化を実現することができる。
本発明の第12の手段の光変調モジュールにおいては、経時における性能が安定しており、且つ低コストな偏光変換光学系を用いることより、高安定且つ低コストな光変調モジュールを実現することができる。
また、本発明の第13、第14の手段の光変調モジュールにおいては、光源としてLEDを用いることにより、低消費電力である光変調モジュールを実現することができる。
本発明の第15の手段の投射型画像表示装置においては、高安定且つ低コストな光変調モジュールを用いることから、高安定且つ低コストな投射型画像表示装置を実現することができる。
以下、本発明に係る偏光変換光学系と、それを用いた光変調モジュール、及び該光変調モジュールを用いた投射型画像表示装置の実施例を、図面を参照して詳細に説明する。
[実施例1(第1、第2の手段の実施例)]
本発明の第1の実施例として、偏光変換光学系の一実施例を図1に示す。図1(a)の偏光変換光学系は、偏光分離手段1と、偏光変化手段2と、反射手段3により構成されており、具体的には、偏光分離手段1は反射型の偏光ビームスプリッタ、偏光変化手段2は位相差板、反射手段3はミラーで構成されている。図1(a)において、本実施例の偏光変換光学系では、偏光分離手段(偏光ビームスプリッタ)1と位相変化手段(位相差板)2と反射手段(ミラー)3を略平行に配置しており、入射光を偏光分離手段(偏光ビームスプリッタ)1に対して斜めから入射させている。
次に、図1に示す偏光変換光学系の動作原理を説明する。図1(a)において、ランダム偏光である入射光は、まず、反射型の偏光ビームスプリッタ1で、2つの直線偏光(S偏光とP偏光)に分離される。図1(a)では、偏光分離手段1は、S偏光を反射し、P偏光を透過させるような偏光ビームスプリッタとしているが、P偏光を反射し、S偏光を透過する偏光ビームスプリッタでも良い。偏光ビームスプリッタ1により反射された光は位相差板2に入射し、位相差板2により偏光状態が変化させられた後、ミラー3による反射により、再度位相差板2で偏光状態が変化させられた後、再度偏光ビームスプリッタ1に入射させる。ここで、位相差板2が入射光に対して往復でλ/2波長板(片側でλ/4波長板)として機能するように位相差板2を設計しておけば、最初に偏光ビームスプリッタ1を透過した光の偏光方向と、位相差板2を透過した光の偏光方向が一致するため、図1(a)のような光学系は、光源からの光の偏光方向を一方向に揃える「偏光変換光学系」として機能させることができる。
なお、図1のように、偏光ビームスプリッタ1、位相差板2、ミラー3は平行になるように配置するのが最も良いが、必ずしも平行にする必要はなく、偏光変換光学系が大型化してしまうというデメリットはあるが、同等の機能を実現することが可能である。
ここで、図1(a)のような偏光変換光学系では、入射光がミラーにより遮光されないように、レンズ等を用いて入射光の発散角を制御するのが良い。その様子を図1(b)に示す。図1(b)では入射光がレンズ4により収束光束に変換されるように描いてあるが、ミラー3により遮光されなければ、収束光束である必要はなく、平行光束でも発散光束でも良い。
反射型の偏光ビームスプリッタ1としては、ワイヤーグリッド型の偏光ビームスプリッタを用いるのがよい。図2にそのワイヤーグリッド型の偏光ビームスプリッタの代表的な構造を示す。図2では、透明基板1a上に、アルミニウム等の金属1bが形成された(埋め込まれた)微小グリッド構造を形成している。この微小グリッド構造を波長オーダー以下の構造とすることで、反射型偏光ビームスプリッタとして機能させることが可能であり、微小グリッド構造の細線方向に平行な偏光は反射し、直交する方向の偏光は透過する。
また、反射型偏光ビームスプリッタとして機能する別の構成例として、非特許文献1(Mool C.Gupta and S.T.Peng, “Diffraction characteristics of surface-relief gratings”, Appl.Opt., Vol.32, No.16(1993))に記載のように、波長以下の微細凹凸構造を用いて一方の偏光を反射し、他方の光を透過させるようにしても良い。
上記の2種類の偏光ビームスプリッタにおける共通点は、波長以下の微細凹凸構造を用いているという点である。上記のような構造は、例えば図2に示すようなワイヤーグリッド型の偏光ビームスプリッタであればフォトリソグラフィー技術を利用して作製することができ、また、前述の非特許文献1に記載の反射型の偏光ビームスプリッタであれば、ナノインプリンティング技術等を用いて作製することができ、どちらも安価に大量に作製できる。さらには、上記の2種類の偏光ビームスプリッタは、どちらも素子自体の構造により偏光ビームスプリッタ機能を実現していることから、高温環境での使用時においても、経時での性能劣化が非常に少なく、安定性がよい。従って、本実施例の構成を用いることで、低コストで経時においても性能が非常に安定している偏光変換光学系を実現することができる。
次に、図3に波長以下の微細凹凸構造を用いて位相差板2を構成した例を示す。基板2a上に波長以下の微細凹凸構造2bを形成して図3のような構成を実現すると、偏光方向に応じて強い複屈折性が生じる。従って、微細凹凸構造2bの周期や深さ、フィルファクター(微細凹凸構造の凸の領域と凹の領域の比)を制御することで任意の位相遅れ量を実現することができるため、任意の波長板を得ることができる。
図1おいては、位相差板2を2度通過する実施例を示しており、偏光ビームスプリッタ1を透過した光に対して、最初に偏光ビームスプリッタ1を透過してから、再度偏光ビームスプリッタ1に入射するまでに、往復でλ/2の位相変化をもたらすような位相差板2を設計している。また、ミラー3で反射する前後のどちらか1度だけ通過するような光学系を実現しても良いが、位相差板2は2度通過させる方が良い。何故なら、位相差板2を2度通過させることで、1度の通過ではλ/4板として機能すればよく、1回の位相差板1を通過することによる位相変化量を低減できるため、上記の微細凹凸構造2bのアスペクト比(微細凹凸構造2bのピッチと深さの比)を小さくすることができ、作製が容易になる。
上記の位相差板2を波長以下の微細凹凸構造2bを用いて実現するメリットとして、上記の偏光ビームスプリッタ1と同様、素子自体の構造により位相変化を実現するため、高温環境での使用時においても、経時での性能劣化が非常に少なく、安定性が良いということが挙げられる。
[実施例2(第1、第3の手段の実施例)]
本発明の第2の実施例として、偏光変換光学系の別の実施例を図4に示す。図4(a)では、ランダム偏光である入射光は、まず偏光分離手段である反射型の偏光ビームスプリッタ1により一方の直線偏光成分の光は透過し、もう一方の直線偏光の成分は反射させる。図4(a)では、S偏光の光は反射し、P偏光の光は透過させる偏光ビームスプリッタを用いているが、P偏光の光を反射し、S偏光の光を透過させる偏光ビームスプリッタを用いても良い。偏光ビームスプリッタ1を透過した光は、ミラー3により反射され再度偏光ビームスプリッタ1を通った後、位相差板2を通過して偏光状態が変化させられる。このとき、位相差板2をλ/2板として設計しておけば、ランダム偏光の光の偏光方向を一方向に揃えることができる「偏光変換光学系」が得られる。
図4(a)において、偏光ビームスプリッタ1に入射する前に位相差板2を通過した光はうまく偏光変換されないため、入射光は図4(b)に示すようにレンズ4等を用いて入射光の発散角を制御して、偏光ビームスプリッタ1のみに入射するように構成するのがよい。図4(b)では、レンズ4で収束光束に変換したように描いているが、必ずしも収束光束である必要はなく、偏光ビームスプリッタ1のみに入射するのであれば、平行光束でも発散光束でも良い。
なお、図4のように、偏光ビームスプリッタ1、位相差板2、ミラー3は平行になるように配置するのが最も良いが、必ずしも平行にする必要はなく、偏光変換光学系が大型化してしまうというデメリットはあるが、同等の機能を実現することが可能である。
[実施例3(第4、第5の手段の実施例)]
以上の第1の実施例または第2の実施例において、偏光ビームスプリッタ等の偏光分離手段1と、位相差板等の偏光変化手段2は、平行になるように構成するのが良い(第4の手段)。そうすることで、偏光変換光学系の小型化を実現することができる。
また、第1、第2の実施例において、偏光分離手段(偏光ビームスプリッタ)1と偏光変化手段(位相差板)2は、単一の光学素子上に集積化して形成するのがよく、そうすることで、経時での相対的な位置変動等による性能劣化がなく、経時での安定性を更に向上させることができるだけでなく、集積して形成することにより、アライメント工程等の省略や部品点数削減等による低コスト化を実現することができる。
図5に、波長以下の微細凹凸構造を用いて偏光ビームスプリッタ及び位相差板を構成し、単一の光学素子上に集積化した例を示す。図5(a)は、単一の基板10の一方の面(入射面側)に波長以下の微細凹凸構造を用いて構成した偏光ビームスプリッタ11を形成し、他方の面(出射面側)に波長以下の微細凹凸構造を用いて構成した位相差板12を形成した光学素子13の例であり、図5(b)は、単一の基板20の一方の面に、波長以下の微細凹凸構造を用いて実現した偏光ビームスプリッタ21と、波長以下の微細凹凸構造を用いて実現した位相差板22を重ね合わせて形成した光学素子23の例を示す。なお、図5(a),(b)に示す光学素子13,23を用いた偏光変換光学系の動作原理は、図1と同様であるので、ここでは説明を省略する。
[実施例4(第6の手段の実施例)]
本発明の第4の実施例として、図6に、偏光変換光学系の偏光分離手段(偏光ビームスプリッタ)と偏光変化手段(位相差板)を、単一の光学素子上に集積化して形成する別の実施例を示す。
図6(a),(b)では、単一の光学素子33(または34)の基板30の同一の面を複数の領域に分割し、前記分割された領域のそれぞれに、前記偏光分離手段(偏光ビームスプリッタ)31と偏光変化手段(位相差板)32を形成している。ここで、図6(a)は、直線偏光の方向が揃った光が、偏光変換光学系を透過した方向に得られるものであり、動作原理は、図1と同様である。図6(b)は、直線偏光の方向が揃った光が、偏光変換光学系を反射した方向に得られるものであり、図4と同様の動作原理である。図6(a),(b)ともに、単一の基板30の一方の面に、偏光ビームスプリッタ31として機能する波長以下の微細凹凸構造と、位相差板32として機能する波長以下の微細凹凸構造を、領域を分割して形成している。
[実施例5(第7の手段の実施例)]
本発明の第5の実施例として、図7に、偏光変換光学系のミラーと波長以下の微細凹凸構造を用いた位相差板を集積化した光学素子の例を示す。同一の基板にミラーと位相差板を集積化することにより、経時での相対的な位置変動等による性能劣化がなく、経時での安定性を更に向上させることができるだけでなく、集積して形成することにより、アライメント工程等の省略や部品点数削減等による低コスト化を実現することができる。
さらに、この光学素子を用いた偏光変換光学系では、微細凹凸構造の位相差板を2度通過することになるので、微細凹凸構造のアスペクト比を低減することができ、作製が容易になり、低コスト化を実現することができる。
図7(a−1)は、前記の微細凹凸構造を用いた位相差板42を形成した基板41の背面に金属を形成しミラー43として作用させた光学素子40の例であり、図7(a−2)は、この光学素子40を用いた偏光変換光学系の構成例を示している。この偏光変換光学系の動作原理は図1と同様であるので、ここでは説明を省略する。
また、図7(b−1)は、基板51上に形成した微細凹凸構造の上に金属を形成し、ミラー53として作用させた光学素子50の例であり、図7(b−2)は、この光学素子50を用いた偏光変換光学系の構成例を示している。この偏光変換光学系の動作原理は図1と同様であるので、ここでは説明を省略する。
また、上記の例では、反射手段としてミラーを用いた例を示したが、反射手段として全反射を利用しても良い。
[実施例6(第8の手段の実施例)]
本発明の第6の実施例として、図8(a),(b)に、偏光ビームスプリッタ61と位相差板62とミラー63を同一の光学素子64,65上に集積化した例を示す。このように、使用する全ての光学部品を単一の光学素子上に集積化することで、経時での相対的な位置変動等による性能劣化を大幅に低減でき、経時での安定性を更に向上させることができるだけでなく、集積して形成することにより、アライメント工程等の省略や部品点数削減等による低コスト化を実現することができる。
図8(a)は、図6(a)と同様に同一の基板(またはスペーサ等)60に偏光ビームスプリッタ61と位相差板62を形成した構成の光学素子64に更にミラー63を集積化した図である。この光学素子64を用いた偏光変換光学系の動作原理は図1と同様であるので、ここでは説明を省略する。
また、図8(b)は、図6(b)と同様に同一の基板(またはスペーサ等)60に偏光ビームスプリッタ61と位相差板62を形成した構成の光学素子65に更にミラー63を集積化した図である。この光学素子65を用いた偏光変換光学系の動作原理は図4と同様であるので、ここでは説明を省略する。
[実施例7(第9〜11の手段の実施例)]
本発明の第7の実施例として、図9に、偏光変換光学系の別の実施例を示す。まず、偏光変換光学系の動作原理について図9(a)を用いて説明する。図示しない光源からのランダム偏光の光は、偏光分離手段71により2つの直交する直線偏光成分の進行方向を分離し(図では、P偏光はそのまま真っ直ぐ進み、S偏光は光路が折り曲げられて進むように図示している)、分離された直線偏光成分のうち、折り曲げられた偏光成分は光路偏向手段73により折り曲げられて進む。つまり、図9(a)における偏光分離手段71は透過型の偏光ビームスプリッタである。一方、偏光分離手段71を真っ直ぐ透過した直線偏光成分は位相差板(λ/2板)72を透過することにより、偏光方向が90°回転させられる。このとき、位相差板72を透過した直線偏光成分と、光路偏向手段73により折り曲げられた直線偏光成分の進行方向は、略平行になるようにするのが良い。
ここで、透過型の偏光ビームスプリッタ71、位相差板72、光路偏向手段73は、波長以下の微細凹凸構造を用いて構成するのがよく、そうすることで、プロジェクタ装置内部のような高温環境で使用時においても、経時での性能劣化が非常に少なく、安定性がよい。
波長以下の微細凹凸構造を用いて透過型の偏光ビームスプリッタを構成した例を図9(b)に示す。次に動作原理を説明する。図9(b)では、波長以下のピッチで微細凹凸構造形成しており、且つ場所により凸部の幅が異なり、また凸部の高さは使用波長に対して2πとなるように設定しておく。そのような構造の偏光ビームスプリッタに図のように(1) と(2) の2種類の直線偏光を入射させると、溝に平行な直線偏光((2) の直線偏光)に対しては溝の高さが2πなので、溝がないように感じるため、そのまま透過する。溝に垂直な直線偏光((1) の直線偏光)を入射すると、凸部の幅が場所により異なり、図9(b)の場合では、紙面左側の方が屈折率が高く感じられ、右の方では屈折率が低く感じられる。従って、図9(b)は図9(c)のように、プリズムと等価になり、図9(b)のように、一方の直線偏光はそのまま透過するが、他方の直線偏光は屈曲して透過する。なお、上記の現象は、微細凹凸構造のピッチが波長以下になったときに現れる現象である。
ここで、偏光分離手段以外に入射する光は偏光が変換されないため、図9(d)に示すように、偏光変換光学系に入射させる光は、レンズ75等により発散角を制御して偏光分離手段にのみ入射させる必要がある。図9(a)や図9(d)では、偏光分離手段71以外に入射する光を遮光板74で遮光している実施例を示しているが、図9(d)のように、レンズ75等を用いて偏光分離手段71にのみ光を入射させる場合は、この遮光板74は必ずしも必要ではない。
なお、波長以下の微細凹凸構造を用いて構成した光路偏向素子73については、図9(b)と同様の構成にすることで実現できる。
ここで、図9(a)に示すように、位相差板72と光路偏向手段73はともに波長以下の微細凹凸構造を用いて構成し、且つ単一の基板上に集積化した光学素子として形成するのがよい。単一の光学素子上に位相差板72と光路偏向手段73を集積化することで、位相差板72と光路偏光手段73を一括して作製することができるため、低コスト化を実現することができるだけでなく、経時においても位相差板72と光路偏向手段73の相対的位置変動を大きく低減できるため、経時における性能安定化を実現することができる。
[実施例8(第12〜14の手段の実施例)]
本発明の第8の実施例として、図10に本発明の偏光変換光学系を用いて構成した光変調モジュールの実施例を示す。図10(a)は、光源として高圧水銀ランプやメタルハライドランプなどの放電ランプ81を用いて、本発明の偏光変換光学系85により偏光方向を単一の方向の直線偏光に変換した例であり、図10(b)は、光源として発光ダイオード(LED)91を用いて、LED91からの光を偏光変換光学系93に入射させて偏光方向を単一の方向の直線偏光に変換した例であり、図10(c)は、光源として、複数のLED91を配列したLEDアレイ98を用いて、各LED91に対して1つの偏光変換光学系93を設けた例である。
まず、図10(a)の光変調モジュールについて説明する。放電ランプ81から放出されたランダム偏光の光束はリフレクタ82により略平行光に変換された後、レンズアレイ83,84により複数の光束に分割され、分割された光束は、偏光変換光学系85により偏光方向が単一の方向の直線偏光に変換される。単一の方向の直線偏光である分割光束は、重畳レンズ86により液晶パネル88上で重畳されて均一に照明される。ここで、フィールドレンズ87は、分割光束を略平行光として液晶パネル88上に入射させる役割を担っている。
次に図10(b)の光変調モジュールについては、LED91から放出されたランダム偏光の光束は、レンズ92によって収束光束に変換され、偏光変換光学系93により単一の直線偏光に変換された後、レンズアレイ94により複数の光束に分割され、重畳レンズ95により液晶パネル97上で重畳されて、液晶パネル97を均一に照明する。ここで、フィールドレンズ87は、分割光束を略平行光として液晶パネル88上に入射させる役割を担っている。
図10(b)において、LED91からの光をレンズ92により収束光束に変換しているのは、LED91からの光束が偏光変換光学系93に入射したときに、ミラー3等により遮光されずに確実に偏光ビームスプリッタ31に入射させるためであり、必ずしもレンズ92を用いる必要はなく、発光点近くに偏光変換光学系93を配置すれば、レンズを用いなくても、遮光等による光量ロスなく偏光変換が可能である。
次に図10(c)の光変調モジュールについては、LEDアレイ98の各LED91から放出されたランダム偏光の光束は偏光変換光学系93により単一の直線偏光に変換された後、レンズアレイ94により複数の光束に分割され、重畳レンズ95により液晶パネル97上で重畳され、液晶パネル97を均一に照明する。ここで、フィールドレンズ87は、分割光束を略平行光として液晶パネル88上に入射させる役割を担っている。
図10(c)の光変調モジュールでは、複数のLED91に対して同様の構成にすることで、液晶パネル97上での照明光の強度を増大させることができる。
前述のように、図14に示した従来の偏光変換光学系では、通常、多層膜構造により構成した偏光ビームスプリッタ203が用いられており、高価になってしまうばかりでなく、熱に弱いため、高温環境で使用されることにより発生するマイクロクラック等が原因で、経時で性能が劣化してしまうという問題点がある。また、偏光分離機能を高めるためには、更に多数の光学膜を必要とすることから、高性能化と低コスト化の両立が難しいということや、各層の膜厚の制御が難しく、所望の偏光分離機能を実現するのが難しいといった問題もある。
また、図14において用いられているλ/2板(位相差板)204は、高分子を用いて実現されることが多いが、高分子を用いた位相差板も、上記の偏光ビームスプリッタと同様、熱に弱いという欠点があるため、経時で性能が劣化してしまうという問題点がある。
これに対して本発明の偏光変換光学系では、前述の実施例1〜7で説明したように、多層膜構造を用いずに波長以下の微細凹凸構造のみで偏光ビームスプリッタとしての機能を実現しており、図2のワイヤーグリッド型の偏光ビームスプリッタであればフォトリソグラフィー技術等を用いて作製でき、非特許文献1に記載の偏光ビームスプリッタであればナノインプリンティング技術等を用いて作製でき、どちらも安価に作製することができる。さらには、上記の2種類の偏光ビームスプリッタは、どちらも微細凹凸構造により偏光ビームスプリッタ機能を実現していることから、高温環境での使用時においても、経時での性能劣化が非常に少なく、安定性がよい。従って、本発明の偏光変換光学系を用いることで、低コストで且つ経時での性能安定性が良い光変調モジュールを実現することができる。
また、上記の図10(b)、(c)のように、LED91やLEDアレイ98を光源として用いた光変調モジュールは、LEDの電力−光変換効率が高いため、低消費電力に非常に有利である。また、LEDは非常に薄いため、小型化にも有利である。しかし、LEDからの光はランダム偏光であるため、光の有効利用のためには偏光変換光学系93が必要である。そこで本発明の偏光変換光学系を用いることで、低消費電力である光変調モジュールを実現することができる。
[実施例9(第15の手段の実施例)]
本発明の第9の実施例として、図11〜13に、本発明の偏光変換光学系を用いた光変調モジュールと投影光学系で構成した投射型画像表示装置(例えば液晶プロジェクタ)の構成例を示す。
まず、図11を用いて構成、動作について説明する。この液晶プロジェクタは、実施例8で説明したような構成の光変調モジュールと、該光変調モジュールの強度分布を像面に投影する投影レンズ等からなる投影光学系とを有しており、光源101(ここではLEDアレイとする)から出たランダム偏光の光は、本発明の偏光変換光学系102によって単一の直線偏光に変換される。この際、レンズ等によってLEDの発散角を制御し、偏光変換光学系102での光量ロスがないようにしている。その後、レンズアレイ103により複数の光束に分割される。複数の光束は重畳レンズ104によって液晶パネル112R,112G,112B上で重畳される。各液晶パネル112R,112G,112Bの前にはフィールドレンズ(図示しない)を配置し、液晶パネルが略平行光で照明されるようにしている。
光源101では1つの基板上に赤(R)、緑(G)、青(B)の3色のLEDアレイが同時に搭載されており、各LEDに対応してレンズ及び偏光変換光学系102を設けている。このように構成することで、光源部が小型になり、プロジェクタ全体の小型化が実現できる。重畳レンズ104を透過した光は、色光分離光学系により各色ごとに分解される。まず重畳レンズ104を透過した光は、ダイクロイックミラー105により、赤色成分は透過し、その他の成分は反射される。ダイクロイックミラー105を透過した赤色成分は、ミラー111で反射されて赤用の液晶パネル112Rに照射される。ダイクロイックミラー105により反射された赤色光成分以外の光は、ダイクロイックミラー106により緑色成分は反射し、青色成分は透過する。このダイクロイックミラー106により反射された緑色成分は緑用の液晶パネル112Gに照射される。ダイクロイックミラー106を透過した青色成分は、レンズ107,109やミラー108,110を介して青用の液晶パネル112Bに照射される。
上記のようにして、R,G,Bの各色は、それぞれ対応した液晶パネル112R,112G,112Bに導かれる。そして、液晶パネル112R,112G,112Bにより各色ごとに変調された後、合成プリズム114で合成され、投影レンズ等からなる投影光学系113により図示しないスクリーン上に投影される。
図11の例は、所謂「3板式」と言われている液晶プロジェクタの構成例であり、R,G,Bそれぞれに対応した液晶パネル112R,112G,112Bを有している。
一方、図12はR,G,BそれぞれのLEDアレイ101R,101G,101B及び偏光変換光学系102R,102G,102Bと、1枚の液晶パネル112で構成し、R,G,Bを時分割で順次切り替え、それに同期させて液晶パネル112をスイッチングする、所謂「フィールドシーケンシャル方式」を用いて構成した液晶プロジェクタの例である。光源としてLEDを用いることのメリットの1つとして、LEDは高速にON/OFFを切り替えることができるため、フィールドシーケンシャル方式を用いることができ、液晶パネル112をR,G,Bで共通化することができ、小型化及び低コスト化を実現することができ。
また、図12では、R,G,BのLEDアレイ101R,101G,101Bを別々の基板としたが、図13の構成例のように、一つのLEDアレイ101上にR,G,Bの3色のLEDを搭載する方が望ましい。図13のようにすることで、さらなる小型化、低コスト化が実現できるので、最も好適である。
なお、図11〜13の液晶プロジェクタでは、図1に示すような透過型の偏光変換光学系を用いて構成したが、図4に示すような反射型の偏光変換光学系を用いて構成することもできる。
本発明の一実施例を示す図であって、偏光変換光学系の構成・動作の説明図である。 本発明の偏光変換光学系に用いられる偏光分離手段の一例を示す図であって、ワイヤーグリッド型の偏光ビームスプリッタの概略斜視図である。 本発明の偏光変換光学系に用いられる位相差板の一例を示す図であって、波長以下の微細凹凸構造を用いて構成した位相差板の概略斜視図である。 本発明の別の実施例を示す図であって、偏光変換光学系の構成・動作の説明図である。 本発明の偏光変換光学系に用いられる光学素子の一例を示す図であって、偏光分離手段と偏光変化手段を基板上に集積化した光学素子の構成、動作の説明図である。 本発明の偏光変換光学系に用いられる光学素子の別の例を示す図であって、偏光分離手段と偏光変化手段を基板の同一面上に集積化した光学素子の構成、動作の説明図である。 本発明の偏光変換光学系に用いられる光学素子の別の例を示す図であって、偏光変化手段とミラーを基板上に集積化した光学素子の構成、動作の説明図である。 本発明の偏光変換光学系に用いられる光学素子の別の例を示す図であって、偏光分離手段と偏光変化手段とミラーを基板上に集積化した光学素子の構成例を示す図である。 本発明のさらに別の実施例を示す図であって、偏光変換光学系の構成・動作の説明図である。 本発明の偏光変換光学系を用いて構成した光変調モジュールの構成例を示す図である。 本発明の偏光変換光学系を用いて構成した投射型画像表示装置(液晶プロジェクタ)の一例を示す概略構成図である。 本発明の偏光変換光学系を用いて構成した投射型画像表示装置(液晶プロジェクタ)の別の例を示す概略構成図である。 本発明の偏光変換光学系を用いて構成した投射型画像表示装置(液晶プロジェクタ)のさらに別の例を示す概略構成図である。 従来の偏光変換光学系の一例を示す図である。
符号の説明
1,11,21,31,61,71:偏光分離手段(偏光ビームスプリッタ)
2,12,22,32,42,52,62,72:偏光変化手段(位相差板)
3,43,53,63:ミラー
4,75:レンズ
73:光路偏向手段
81:放電ランプ
82:リフレクタ
83,84,94,103:レンズアレイ
85,93,102:偏光変換光学系
86,95,104:重畳レンズ
87,96:フィールドレンズ
88,97,112:液晶パネル
91:発光ダイオード(LED)
98:LEDアレイ
113:投影光学系(投影レンズ等)

Claims (15)

  1. 2つの直交する偏光成分を分離する偏光分離手段と、偏光状態を変化させる偏光変化手段と、を少なくとも有し、入射光の偏光状態によらず射出光の偏光状態を一方向に揃えることが可能な偏光変換光学系において、
    前記偏光分離手段と前記偏光変化手段のうちの少なくとも一方は、使用する波長よりも短いピッチの微細凹凸構造を有することを特徴とする偏光変換光学系。
  2. 請求項1に記載の偏光変換光学系において、
    反射手段と位相変化手段を有し、前記偏光分離手段は、2つの直交する直線偏光のうち、一方の直線偏光成分を反射し、他方の直線偏光成分を透過するように構成し、該反射された直線偏光成分を前記反射手段にて反射させるとともに、前記位相変化手段を通過させることを特徴とする偏光変換光学系。
  3. 請求項1に記載の偏光変換光学系において、
    反射手段と位相変化手段を有し、前記偏光分離手段は、2つの直交する直線偏光のうち、一方の直線偏光成分を反射し、他方の直線偏光成分を透過するように構成し、該透過された直線偏光成分を前記反射手段にて反射させるとともに、前記位相変化手段を通過させることを特徴とする偏光変換光学系。
  4. 請求項1乃至3のいずれか一つに記載の偏光変換光学系において、
    少なくとも前記偏光分離手段と前記偏光変化手段は、互いに平行になるように構成することを特徴とする偏光変換光学系。
  5. 請求項1乃至4のいずれか一つに記載の偏光変換光学系において、
    前記偏光分離手段と前記偏光変化手段は、単一の光学素子上に集積されていることを特徴とする偏光変換光学系。
  6. 請求項1乃至5のいずれか一つに記載の偏光変換光学系において、
    単一の光学素子の同一の面を複数の領域に分割し、前記分割された領域のそれぞれに、前記偏光分離手段と前記偏光変化手段を形成することを特徴とする偏光変換光学系。
  7. 請求項2乃至6のいずれか一つに記載の偏光変換光学系において、
    前記反射手段と前記偏光変化手段は、単一の光学素子上に集積化されていることを特徴とする偏光変換光学系。
  8. 請求項2乃至7のいずれか一つに記載の偏光変換光学系において、
    前記反射手段と前記偏光分離手段と前記偏光変化手段は、単一の光学素子上に集積化されていることを特徴とする偏光変換光学系。
  9. 請求項1に記載の偏光変換光学系において、
    前記偏光分離手段は、2つの直交する直線偏光のうち、一方の直線偏光成分を屈曲させて透過し、他方の直線偏光成分をそのまま透過するように、2つの直交する直線偏光の進行方向を分離するように構成し、前記分離した直線偏光の一方の成分は、偏光変化手段を透過させて偏光方向を90°回転させ、前記分離した直線偏光の他方の成分は、光路偏向手段によりもう一度屈曲させるとともに、前記偏光変化手段を透過した直線偏光成分と前記光路偏向手段を透過した直線偏光成分の進行方向を、略平行になるように構成することを特徴とする偏光変換光学系。
  10. 請求項9に記載の偏光変換光学系において、
    前記光路偏向手段は、使用する波長よりも短いピッチの微細凹凸構造を有することを特徴とする偏光変換光学系。
  11. 請求項9または10に記載の偏光変換光学系において、
    前記偏光変化手段と前記光路偏向手段は、単一の光学素子上に集積されていることを特徴とする偏光変換光学系。
  12. 光源と、請求項1乃至11のいずれか一つに記載の偏光変換光学系と、前記光源の強度分布を変調する光変調手段と、を有することを特徴とする光変調モジュール。
  13. 請求項12に記載の光変調モジュールにおいて、
    前記光源は発光ダイオード(LED)であることを特徴とする光変調モジュール。
  14. 請求項12または13に記載の光変調モジュールにおいて、
    前記光源はLEDアレイとし、前記LEDアレイの1つのLEDに対応して、請求項1乃至11のいずれか一つに記載の偏光変換光学系を設けることを特徴とする光変調モジュール。
  15. 請求項12乃至14のいずれか一つに記載の光変調モジュールと、該光変調モジュールの強度分布を像面に投影する投影レンズと、を有することを特徴とする投射型画像表示装置。
JP2005214737A 2005-07-25 2005-07-25 偏光変換光学素子、光変調モジュール及び投射型画像表示装置 Pending JP2007033676A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214737A JP2007033676A (ja) 2005-07-25 2005-07-25 偏光変換光学素子、光変調モジュール及び投射型画像表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214737A JP2007033676A (ja) 2005-07-25 2005-07-25 偏光変換光学素子、光変調モジュール及び投射型画像表示装置

Publications (1)

Publication Number Publication Date
JP2007033676A true JP2007033676A (ja) 2007-02-08

Family

ID=37793045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214737A Pending JP2007033676A (ja) 2005-07-25 2005-07-25 偏光変換光学素子、光変調モジュール及び投射型画像表示装置

Country Status (1)

Country Link
JP (1) JP2007033676A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009157370A (ja) * 2007-12-05 2009-07-16 Ricoh Opt Ind Co Ltd 偏光変換光学系および偏光変換光学系アレイおよび光源装置
JPWO2008084856A1 (ja) * 2007-01-12 2010-05-06 東レ株式会社 偏光板およびこれを用いた液晶表示装置
JP2010210824A (ja) * 2009-03-09 2010-09-24 Seiko Epson Corp 光学素子及び照明装置
KR101113030B1 (ko) * 2004-06-03 2012-03-14 몰레큘러 임프린츠 인코퍼레이티드 나노 스케일의 제조 과정 중에 기판의 치수를 변화시키기위한 장치, 시스템 및 방법
JP2015225263A (ja) * 2014-05-29 2015-12-14 三菱電機株式会社 光合波器および光合波器の製造方法
JP2018013764A (ja) * 2016-07-12 2018-01-25 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107505A (ja) * 1991-04-09 1993-04-30 Canon Inc 板状偏光素子、該素子を備える偏光変換ユニツト、および該ユニツトを備える画像投影装置
JP2001042129A (ja) * 1999-07-21 2001-02-16 Samsung Electronics Co Ltd 光投射形ディスプレイ装置の偏光変換素子
JP2001343512A (ja) * 2000-05-31 2001-12-14 Canon Inc 回折光学素子及びそれを有する光学系
JP2002244211A (ja) * 2001-02-22 2002-08-30 Ricoh Co Ltd 画像投射装置
JP2004070299A (ja) * 2002-06-10 2004-03-04 Matsushita Electric Ind Co Ltd 偏光変換素子およびその製造方法
JP2005128241A (ja) * 2003-10-23 2005-05-19 Enplas Corp 偏光変換素子
JP2006227361A (ja) * 2005-02-18 2006-08-31 Seiko Epson Corp 偏光変換光学素子、照明装置及びプロジェクタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107505A (ja) * 1991-04-09 1993-04-30 Canon Inc 板状偏光素子、該素子を備える偏光変換ユニツト、および該ユニツトを備える画像投影装置
JP2001042129A (ja) * 1999-07-21 2001-02-16 Samsung Electronics Co Ltd 光投射形ディスプレイ装置の偏光変換素子
JP2001343512A (ja) * 2000-05-31 2001-12-14 Canon Inc 回折光学素子及びそれを有する光学系
JP2002244211A (ja) * 2001-02-22 2002-08-30 Ricoh Co Ltd 画像投射装置
JP2004070299A (ja) * 2002-06-10 2004-03-04 Matsushita Electric Ind Co Ltd 偏光変換素子およびその製造方法
JP2005128241A (ja) * 2003-10-23 2005-05-19 Enplas Corp 偏光変換素子
JP2006227361A (ja) * 2005-02-18 2006-08-31 Seiko Epson Corp 偏光変換光学素子、照明装置及びプロジェクタ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113030B1 (ko) * 2004-06-03 2012-03-14 몰레큘러 임프린츠 인코퍼레이티드 나노 스케일의 제조 과정 중에 기판의 치수를 변화시키기위한 장치, 시스템 및 방법
JPWO2008084856A1 (ja) * 2007-01-12 2010-05-06 東レ株式会社 偏光板およびこれを用いた液晶表示装置
JP2009157370A (ja) * 2007-12-05 2009-07-16 Ricoh Opt Ind Co Ltd 偏光変換光学系および偏光変換光学系アレイおよび光源装置
JP2010210824A (ja) * 2009-03-09 2010-09-24 Seiko Epson Corp 光学素子及び照明装置
JP2015225263A (ja) * 2014-05-29 2015-12-14 三菱電機株式会社 光合波器および光合波器の製造方法
JP2018013764A (ja) * 2016-07-12 2018-01-25 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置

Similar Documents

Publication Publication Date Title
JP7482351B2 (ja) 光源装置および投写型映像表示装置
EP1170959A2 (en) Illumination optical system and projector comprising the same
US20060098283A1 (en) Polarization beam splitter and liquid crystal projector apparatus
US9347626B2 (en) Illumination device including uniformization optical member including a plurality of unit cells and display unit including the illumination device
JP2012509511A (ja) 色合成器
JP2009058594A (ja) 照明装置および画像表示装置
JP5355961B2 (ja) 投写型映像表示装置
JP2012509506A (ja) 偏光変換を行う色合成器
US20200319541A1 (en) Light source device and projection display apparatus
JP7070620B2 (ja) 光源装置およびプロジェクター
WO1998019211A1 (fr) Ecran de projection et son systeme d'eclairage optique
JP3692653B2 (ja) 投写型表示装置
JP3871940B2 (ja) 照明装置および表示装置
US8469523B2 (en) Illumination apparatus and projector having the same
JP2011123405A (ja) 照明装置およびプロジェクター
JP2007033676A (ja) 偏光変換光学素子、光変調モジュール及び投射型画像表示装置
US8827457B2 (en) Projector
KR100541178B1 (ko) 편광 조명 장치 및 투사형 표시 장치
US8057044B2 (en) Projection display device
WO2011033627A1 (ja) 照明装置とそれを用いた投射型表示装置
JPH08220475A (ja) 偏光照明装置およびそれを用いた投写型表示装置
JP2005326575A (ja) 偏光回転素子、偏光変換素子、照明装置及び画像表示装置
JP2008076481A (ja) プロジェクタ
WO2022092009A1 (ja) 光源装置および投写型表示装置
JP2005165137A (ja) 照明光学系および画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920