Nothing Special   »   [go: up one dir, main page]

JP2007000803A - Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid - Google Patents

Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid Download PDF

Info

Publication number
JP2007000803A
JP2007000803A JP2005185294A JP2005185294A JP2007000803A JP 2007000803 A JP2007000803 A JP 2007000803A JP 2005185294 A JP2005185294 A JP 2005185294A JP 2005185294 A JP2005185294 A JP 2005185294A JP 2007000803 A JP2007000803 A JP 2007000803A
Authority
JP
Japan
Prior art keywords
catalyst
average particle
carboxylic acid
parts
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005185294A
Other languages
Japanese (ja)
Other versions
JP4863436B2 (en
Inventor
Takuro Watanabe
拓朗 渡邉
Masahide Kondo
正英 近藤
Masanori Nitta
正範 新田
Hiroyuki Naito
啓幸 内藤
Toru Kuroda
徹 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2005185294A priority Critical patent/JP4863436B2/en
Publication of JP2007000803A publication Critical patent/JP2007000803A/en
Application granted granted Critical
Publication of JP4863436B2 publication Critical patent/JP4863436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which is used for catalytically oxidizing a reactive raw material of a vapor phase by molecular oxygen to produce an objective substance in high yield and has high mechanical strength and to provide a method for manufacturing the catalyst and a method for producing unsaturated aldehyde and unsaturated carboxylic acid. <P>SOLUTION: The catalyst to be used for catalytically oxidizing propylene, isobutylene, tertiary butyl alcohol or methyl tertiary butyl ether of a vapor phase by molecular oxygen to synthesize unsaturated aldehyde and unsaturated carboxylic acid contains a catalyst component containing molybdenum and bismuth and a scaly inorganic substance having 10 μm to 2 mm average particle size and the average thickness of 0.005-0.3 times of the average particle size. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プロピレン、イソブチレン、第三級ブチルアルコール(以下、略して「TBA」ともいう。)またはメチル第三級ブチルエーテル(以下、略して「MTBE」ともいう。)を分子状酸素で気相接触酸化して不飽和アルデヒドおよび不飽和カルボン酸を合成する際に使用する触媒(以下、単に「触媒」ともいう。)、その触媒の製造方法、並びに不飽和アルデヒドおよび不飽和カルボン酸の製造方法に関する。   In the present invention, propylene, isobutylene, tertiary butyl alcohol (hereinafter also abbreviated as “TBA”) or methyl tertiary butyl ether (hereinafter also abbreviated as “MTBE”) is vapor-phased with molecular oxygen. Catalyst used for synthesizing unsaturated aldehyde and unsaturated carboxylic acid by catalytic oxidation (hereinafter also simply referred to as "catalyst"), method for producing the catalyst, and method for producing unsaturated aldehyde and unsaturated carboxylic acid About.

プロピレン、イソブチレン、TBAまたはMTBE(以下、これらをまとめて「反応原料」ともいう。)を分子状酸素で気相接触酸化して不飽和アルデヒドおよび不飽和カルボン酸(以下、両者をまとめて「目的物」ともいう。)を製造するための触媒として、モリブデンおよびビスマスを含む複合酸化物触媒が知られている。例えば、特許文献1には、リング状に成形したモリブデンおよびビスマスを含む触媒に無機質繊維を含有させたものが開示されている。また無機質繊維としては、50μm〜1.5mmの平均繊維長、2μm〜20μmの平均直径を有する、ガラス繊維、アルミナ繊維およびシリカ繊維から選ばれる少なくとも1種が使用できることも開示されている。
特開2002−273229号公報
Propylene, isobutylene, TBA or MTBE (hereinafter collectively referred to as “reaction raw materials”) are vapor-phase catalytically oxidized with molecular oxygen to produce unsaturated aldehydes and unsaturated carboxylic acids (hereinafter collectively referred to as “objectives”). As a catalyst for producing a product, a composite oxide catalyst containing molybdenum and bismuth is known. For example, Patent Document 1 discloses a catalyst containing molybdenum and bismuth molded into a ring shape and containing inorganic fibers. It is also disclosed that as the inorganic fiber, at least one selected from glass fiber, alumina fiber and silica fiber having an average fiber length of 50 μm to 1.5 mm and an average diameter of 2 μm to 20 μm can be used.
JP 2002-273229 A

しかしながら、この方法で得られる触媒は目的物の収率が必ずしも十分ではなく、また機械的強度が必ずしも十分ではないので、工業的見地からさらなる改良が望まれている。   However, the catalyst obtained by this method does not necessarily have a sufficient yield of the target product, and the mechanical strength is not always sufficient. Therefore, further improvement is desired from an industrial point of view.

本発明は、反応原料を分子状酸素で気相接触酸化して目的物を高収率で製造でき、また機械的強度の高い触媒、その触媒の製造方法、並びに不飽和アルデヒドおよび不飽和カルボン酸の製造方法を提供することを目的とする。   The present invention provides a catalyst having a high mechanical strength, a catalyst having a high mechanical strength, a method for producing the catalyst, an unsaturated aldehyde, and an unsaturated carboxylic acid. It aims at providing the manufacturing method of.

すなわち、本発明は、プロピレン、イソブチレン、TBAまたはMTBEを分子状酸素で気相接触酸化して不飽和アルデヒドおよび不飽和カルボン酸を合成するための触媒であって、モリブデンおよびビスマスを含む触媒成分と、平均粒径が10μm〜2mmかつ平均厚さが平均粒径の0.005〜0.3倍の鱗片状無機物とを含有する触媒である。   That is, the present invention relates to a catalyst for synthesizing an unsaturated aldehyde and an unsaturated carboxylic acid by vapor-phase catalytic oxidation of propylene, isobutylene, TBA or MTBE with molecular oxygen and comprising a catalyst component containing molybdenum and bismuth. The catalyst contains a flaky inorganic substance having an average particle diameter of 10 μm to 2 mm and an average thickness of 0.005 to 0.3 times the average particle diameter.

また本発明は、触媒原料を含む溶液またはスラリーを乾燥し、次いで焼成して得られた焼成物と、平均粒径が10μm〜2mmかつ平均厚さが平均粒径の0.005〜0.3倍の鱗片状無機物を混合し、成形する工程を含む前記の触媒の製造方法である。   The present invention also provides a fired product obtained by drying and then firing a solution or slurry containing a catalyst raw material, and an average particle diameter of 10 μm to 2 mm and an average thickness of 0.005 to 0.3 of an average particle diameter. It is the manufacturing method of the said catalyst including the process which mixes and shape | molds a double scale-like inorganic substance.

さらに本発明は、前記の触媒の存在下で、プロピレン、イソブチレン、TBAまたはMTBEを分子状酸素を用いて気相接触酸化する不飽和アルデヒドおよび不飽和カルボン酸の製造方法である。   Furthermore, the present invention is a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid in which propylene, isobutylene, TBA or MTBE is vapor-phase catalytically oxidized using molecular oxygen in the presence of the catalyst.

本発明によれば、反応原料を分子状酸素で気相接触酸化して目的物を高収率で製造でき、また機械的強度の高い触媒、その触媒の製造方法、並びに不飽和アルデヒドおよび不飽和カルボン酸の製造方法を提供することができる。   According to the present invention, a target material can be produced in a high yield by vapor-phase catalytic oxidation of a reaction raw material with molecular oxygen, and a catalyst having high mechanical strength, a method for producing the catalyst, and an unsaturated aldehyde and unsaturated compound A method for producing a carboxylic acid can be provided.

本発明の触媒は、プロピレン、イソブチレン、TBAまたはMTBEを分子状酸素で気相接触酸化して目的物を合成するための触媒であって、モリブデンおよびビスマスを含む触媒成分と、特定の鱗片状無機物とを含有するものである。触媒成分には、モリブデンおよびビスマスの他に、例えば、鉄、ケイ素、コバルト、ニッケル、クロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタル、亜鉛、リン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン、チタン、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、タリウム等を含んでいてもよい。   The catalyst of the present invention is a catalyst for synthesizing a target product by vapor-phase catalytic oxidation of propylene, isobutylene, TBA or MTBE with molecular oxygen, comprising a catalyst component containing molybdenum and bismuth and a specific scale-like inorganic substance It contains. In addition to molybdenum and bismuth, the catalyst components include, for example, iron, silicon, cobalt, nickel, chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum, zinc, phosphorus, boron, sulfur, Selenium, tellurium, cerium, tungsten, antimony, titanium, lithium, sodium, potassium, rubidium, cesium, thallium and the like may be contained.

モリブデンおよびビスマスを含む触媒成分としては、次の式(1)の組成のものが好ましい。
MoBiFeSi (1)
(式(1)において、Mo、Bi、Fe、SiおよびOはそれぞれモリブデン、ビスマス、鉄、ケイ素および酸素を、A元素はコバルトおよびニッケルからなる群より選ばれた少なくとも1種の元素を、X元素はクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタルおよび亜鉛からなる群より選ばれた少なくとも1種の元素を、Y元素はリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモンおよびチタンからなる群より選ばれた少なくとも1種の元素を、Z元素はリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素をそれぞれ示す。a、b、c、d、e、f、g、hおよびiは各元素の原子比率を表し、a=12のときb=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2、h=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
As a catalyst component containing molybdenum and bismuth, those having the composition of the following formula (1) are preferable.
Mo a Bi b Fe c A d X e Y f Z g Si h O i (1)
(In the formula (1), Mo, Bi, Fe, Si and O are molybdenum, bismuth, iron, silicon and oxygen, respectively, and the A element is at least one element selected from the group consisting of cobalt and nickel. The element is at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc, and the Y element is phosphorus, boron, sulfur, selenium, tellurium, At least one element selected from the group consisting of cerium, tungsten, antimony and titanium, and Z element represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium, respectively. A, b, c, d, e, f, g, h and i represent the atomic ratio of each element, and a = 2 when b = 0.01-3, c = 0.01-5, d = 1-12, e = 0-8, f = 0-5, g = 0.001-2, h = 0-20. And i is an atomic ratio of oxygen necessary to satisfy the valence of each component.)

式(1)の組成では、モリブデン、ビスマス、鉄、A元素、Z元素および酸素は必須元素であり、X元素、Y元素およびケイ素は任意元素である。bは0.05〜2が好ましい。cは0.05〜4が好ましい。dは2〜10が好ましい。gは0.01〜1.5が好ましい。後述する触媒成分の原料(以下、「触媒原料」ともいう。)の配合比を調整することで、目的とする触媒における各元素の原子比率(aおよびb〜h)を上記範囲で任意に設定することができる。触媒成分(触媒から鱗片状無機物等の添加物を除いたもの)の酸素以外の組成は、例えば触媒をアンモニア水に溶解したものをICP発光分析法と原子吸光分析法で分析することができる。   In the composition of the formula (1), molybdenum, bismuth, iron, A element, Z element and oxygen are essential elements, and X element, Y element and silicon are optional elements. b is preferably 0.05-2. c is preferably 0.05-4. d is preferably 2 to 10. g is preferably 0.01 to 1.5. The atomic ratio (a and b to h) of each element in the target catalyst is arbitrarily set within the above range by adjusting the blending ratio of the raw materials for the catalyst components described below (hereinafter also referred to as “catalyst raw materials”). can do. The composition other than oxygen of the catalyst component (excluding additives such as scale-like inorganic substances from the catalyst) can be analyzed, for example, by dissolving the catalyst in aqueous ammonia by ICP emission spectrometry and atomic absorption spectrometry.

本発明において鱗片状無機物(以下、「鱗片物」ともいう。)とは、フレーク形状または薄片形状等とも呼ばれるいわゆる鱗片形状の無機物を意味する。鱗片物は、平均粒径が10μm〜2mmの範囲にあり、かつ平均厚さが平均粒径の0.005〜0.3倍の範囲にあるものである。鱗片物の平均粒径は30μm〜1mmの範囲が好ましく、70μm〜500μmの範囲がより好ましい。また鱗片物の平均厚さは平均粒径の0.007〜0.2倍の範囲が好ましく、平均粒径の0.01〜0.1倍の範囲がより好ましい。平均粒径はレーザー回折法によって体積基準で測定したものであり、平均厚さは無作為に抽出した鱗片物50枚を電子顕微鏡で観察して測定したものである。   In the present invention, the scale-like inorganic substance (hereinafter also referred to as “scale-like substance”) means a so-called scale-like inorganic substance called a flake shape or a flake shape. Scales have an average particle size in the range of 10 μm to 2 mm and an average thickness in the range of 0.005 to 0.3 times the average particle size. The average particle size of the scales is preferably in the range of 30 μm to 1 mm, more preferably in the range of 70 μm to 500 μm. The average thickness of the scales is preferably in the range of 0.007 to 0.2 times the average particle size, and more preferably in the range of 0.01 to 0.1 times the average particle size. The average particle diameter was measured on a volume basis by a laser diffraction method, and the average thickness was measured by observing 50 randomly extracted scales with an electron microscope.

鱗片物の平均粒径は製造した触媒中のものであり、平均粒径が10μm〜2mmの鱗片物を用いて触媒を製造することが好ましいが、触媒の製造過程で鱗片物が平均粒径10μm〜2mmに細粒化する場合は平均粒径が2mmを超える鱗片物を用いて触媒を製造することもできる。後者の方法としては、例えば、触媒成分、触媒成分の前駆体、触媒原料等と鱗片物とを混合した後、強く攪拌して、鱗片物を切断する方法が挙げられる。しかし、後者の場合、触媒中に鱗片物が均一に分散しないことがあるので、前者の方法が好ましい。   The average particle size of the scales is that in the produced catalyst, and it is preferable to produce the catalyst using scales having an average particle size of 10 μm to 2 mm, but the scales have an average particle size of 10 μm in the process of producing the catalyst. In the case of refining to ˜2 mm, the catalyst can be produced using scales having an average particle diameter exceeding 2 mm. Examples of the latter method include a method in which a scale component is cut by mixing a catalyst component, a precursor of the catalyst component, a catalyst raw material, and the like, and then vigorously stirring. However, in the latter case, the former method is preferred because the scales may not be uniformly dispersed in the catalyst.

鱗片物の成分は無機質であれば特に限定されないが、例えば、ガラス、アルミナ、シリカ、セラミック、カーボン等が挙げられ、なかでも目的物の収率の面でガラス、アルミナ、シリカが好ましく、特にガラスが好ましい。   The component of the scale is not particularly limited as long as it is inorganic, and examples thereof include glass, alumina, silica, ceramic, carbon, etc. Among them, glass, alumina, and silica are preferable in terms of the yield of the target product, and particularly glass. Is preferred.

鱗片物の種類は、1種類でも2種類以上を適宜組み合わせて使用してもよい。2種類以上の鱗片物の組み合わせとしては、例えば、異なる種類の鱗片物の組み合わせ、同じ種類で平均粒径や厚さの異なる鱗片物の組み合わせ、同じ種類でガラス組成等の組成の異なる鱗片物の組み合わせ、異なる成分の鱗片物の組み合わせ等が挙げられる。   One type of scaly object may be used, or two or more types may be used in appropriate combination. Examples of combinations of two or more types of scales include combinations of scales of different types, combinations of scales of the same type with different average particle sizes and thicknesses, and types of scales having different compositions such as glass composition. Combinations, combinations of scales of different components, and the like can be mentioned.

触媒に含まれる鱗片物の量は、触媒成分100質量部に対して0.1〜15質量部、好ましくは1〜10質量部、より好ましくは3〜8質量部である。鱗片物の量は多いほど機械的強度が向上する傾向があり、少ないほど反応器に充填できる触媒成分の量を増やすことができる。   The amount of scales contained in the catalyst is 0.1 to 15 parts by mass, preferably 1 to 10 parts by mass, and more preferably 3 to 8 parts by mass with respect to 100 parts by mass of the catalyst component. The greater the amount of scales, the more the mechanical strength tends to improve, and the smaller the amount, the greater the amount of catalyst component that can be charged into the reactor.

本発明の触媒は鱗片物を添加する点を除けば、公知の不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の調製に一般に用いられている方法に準じて製造することができる。   The catalyst of this invention can be manufactured according to the method generally used for preparation of the catalyst for manufacture of a well-known unsaturated aldehyde and unsaturated carboxylic acid except the point which adds a scale thing.

例えば、触媒原料の溶液またはスラリー(以下、「触媒原料液」ともいう。)を乾燥および/または焼成して得られた触媒成分またはその前駆体に鱗片物を混合して得られた混合物を成形する方法、触媒原料液に鱗片物を添加したものを乾燥して得られた触媒成分の前駆体を成形した後に焼成する方法、触媒原料液に鱗片物を添加したものを乾燥し、焼成して得られた触媒成分を成形する方法等が挙げられる。ここで触媒成分とは焼成物であり、触媒成分の前駆体とはモリブデンおよびビスマスを含む触媒原料液の乾燥物等である。   For example, a mixture obtained by mixing a catalyst component obtained by drying and / or calcining a catalyst raw material solution or slurry (hereinafter also referred to as “catalyst raw material liquid”) or a precursor thereof and molding a mixture is formed. A method of baking after the catalyst component precursor obtained by drying a catalyst material solution obtained by adding a scale material to a catalyst raw material solution, and drying and baking a catalyst material solution obtained by adding a scale material Examples include a method of molding the obtained catalyst component. Here, the catalyst component is a fired product, and the precursor of the catalyst component is a dried product of a catalyst raw material liquid containing molybdenum and bismuth.

触媒原料液を調製する方法は特に限定されず、成分の著しい偏在を伴わない限り、従来からよく知られている沈殿法、酸化物混合法等の種々の方法を用いることができる。触媒原料液の調製に用いる触媒原料としては、各元素の酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、アンモニウム塩、ハロゲン化物、有機酸塩、アルカリ金属塩等を使用することができる。例えば、モリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン等が挙げられる。触媒成分の原料は各元素に対して1種を用いても2種以上を組み合わせて用いてもよい。触媒原料液を調製する際に触媒原料と混合する液体としては、水、アルコール、ケトン、炭化水素等の有機溶媒が挙げられるが、取り扱い性の点で水が好ましい。すなわち、触媒原料液としては、水溶液または水性スラリーが好ましい。   The method for preparing the catalyst raw material liquid is not particularly limited, and various methods such as a well-known precipitation method and oxide mixing method can be used as long as the components are not significantly unevenly distributed. As the catalyst raw material used for the preparation of the catalyst raw material liquid, oxides, sulfates, nitrates, carbonates, hydroxides, ammonium salts, halides, organic acid salts, alkali metal salts, and the like of each element can be used. . For example, examples of the molybdenum raw material include ammonium paramolybdate and molybdenum trioxide. The raw material of the catalyst component may be used alone or in combination of two or more for each element. Examples of the liquid mixed with the catalyst raw material when preparing the catalyst raw material liquid include organic solvents such as water, alcohols, ketones, and hydrocarbons, but water is preferable from the viewpoint of handleability. That is, the catalyst raw material liquid is preferably an aqueous solution or an aqueous slurry.

触媒原料液を乾燥する方法は特に限定されず、例えば、スプレー乾燥機を用いて乾燥する方法、スラリードライヤーを用いて乾燥する方法、ドラムドライヤーを用いて乾燥する方法、蒸発乾固する方法等が適用できる。これらの中では、乾燥と同時に粒子が得られること、得られる粒子の形状が整った球形であることから、スプレー乾燥機を用いて乾燥球状粒子を得ることが好ましい。乾燥条件は乾燥方法により異なるが、スプレー乾燥機を用いる場合、入口温度は100〜500℃が好ましく、出口温度は100℃以上が好ましく、より好ましくは105〜200℃である。   The method for drying the catalyst raw material liquid is not particularly limited, and examples thereof include a method of drying using a spray dryer, a method of drying using a slurry dryer, a method of drying using a drum dryer, and a method of evaporating to dryness. Applicable. Among these, it is preferable to obtain dry spherical particles using a spray dryer because particles can be obtained simultaneously with drying, and the obtained particles have a spherical shape. Although the drying conditions vary depending on the drying method, when a spray dryer is used, the inlet temperature is preferably 100 to 500 ° C, and the outlet temperature is preferably 100 ° C or higher, more preferably 105 to 200 ° C.

このようにして得られた乾燥物は、触媒原料等に由来する硝酸等の塩を含んでいることがあり、乾燥物を成形した後に焼成すると塩の分解により成形品の強度が低下する恐れがある。このため、成形前に焼成して焼成しておくことが好ましい。焼成条件は特に限定されず、公知の焼成条件を適用することができる。焼成は、酸素、空気、窒素、窒素酸化物等の存在下、200〜600℃の温度範囲で行うことが好ましく、焼成時間は目的とする触媒によって適宜選択される。   The dried product thus obtained may contain a salt such as nitric acid derived from the catalyst raw material, etc., and if the dried product is molded and then baked, the strength of the molded product may decrease due to decomposition of the salt. is there. For this reason, it is preferable to fire and form before forming. The firing conditions are not particularly limited, and known firing conditions can be applied. Calcination is preferably performed in the temperature range of 200 to 600 ° C. in the presence of oxygen, air, nitrogen, nitrogen oxides, etc., and the calcination time is appropriately selected depending on the target catalyst.

触媒成分またはその前駆体と鱗片物とを混合する方法は特に限定されないが、例えば、双腕式ニーダー、リボンミキサー、ヘンシェルミキサー等を使用する方法が挙げられ、中でも双腕式ニーダー、リボンミキサーを使用することが好ましい。   The method of mixing the catalyst component or its precursor and the scale is not particularly limited, and examples thereof include a method using a double-arm kneader, a ribbon mixer, a Henschel mixer, etc., among which a double-arm kneader and a ribbon mixer are used. It is preferable to use it.

鱗片物の添加方法は特に限定されず、完成触媒中に鱗片物が分散されて含有されるようにし得るものであれば、いずれの方法も用いることができる。また鱗片物は一括して添加してもよいが、例えば、一部を触媒原料液に添加し、残りを焼成して得られた触媒成分に添加する方法のように分割して添加してもよい。   The method for adding the scales is not particularly limited, and any method can be used as long as the scales can be dispersed and contained in the finished catalyst. In addition, scales may be added all at once, but for example, a part may be added to the catalyst raw material liquid and the remainder added to the catalyst component obtained by calcination. Good.

成形方法は特に限定されず、例えば、公知の押出成形、打錠成型、担持成形、転動造粒等の方法が挙げられる。中でも触媒の生産性が高いという理由で打錠成型方法、押出成形方法が好ましい。成形品の形状は特に限定されず、例えば、球状、円柱状、リング状(円筒状)、星型状等の形状が挙げられ、中でも機械的強度の高い球状、円柱状、リング状が好ましい。リング形状の場合は、外径が3〜10mm、長さが外径の0.5〜2倍、内径が外径の0.1〜0.7倍である縦軸方向の貫通孔を有するものが好ましい。成形の際には、成形助剤として一般的に用いられているポリビニルアルコール、ステアリン酸、硝酸アンモニウム、グラファイト、水、アルコール等を必要に応じて使用することができる。   The molding method is not particularly limited, and examples thereof include known methods such as extrusion molding, tableting molding, support molding, and rolling granulation. Of these, the tableting molding method and the extrusion molding method are preferred because of the high productivity of the catalyst. The shape of the molded product is not particularly limited, and examples thereof include a spherical shape, a cylindrical shape, a ring shape (cylindrical shape), and a star shape. Among them, a spherical shape, a cylindrical shape, and a ring shape with high mechanical strength are preferable. In the case of a ring shape, it has a through-hole in the vertical direction whose outer diameter is 3 to 10 mm, whose length is 0.5 to 2 times the outer diameter, and whose inner diameter is 0.1 to 0.7 times the outer diameter Is preferred. At the time of molding, polyvinyl alcohol, stearic acid, ammonium nitrate, graphite, water, alcohol and the like generally used as a molding aid can be used as necessary.

得られた成形品は焼成することが好ましいが、成形前に焼成している場合は省略してもよい。省略した場合はこの成形品が触媒であり、焼成した場合はその焼成品が触媒である。焼成方法は特に限定されず、公知の処理方法および条件を適用することができる。焼成の条件は、用いる原料化合物、触媒成分の組成、調製法等によって異なるが、空気等の酸素含有ガス流通下または不活性ガス流通下で、200〜600℃、0.5時間以上が好ましい。ここで、不活性ガスとは、触媒の反応活性を低下させない気体のことをいい、具体的には、窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。焼成処理は加熱装置を用いて行ってもよいが、成形品を反応器に充填してその中で行ってもよい。   The obtained molded product is preferably fired, but may be omitted if it is fired before molding. When omitted, this molded product is a catalyst, and when fired, the fired product is a catalyst. The firing method is not particularly limited, and known treatment methods and conditions can be applied. The firing conditions vary depending on the raw material compound used, the composition of the catalyst components, the preparation method, and the like, but are preferably 200 to 600 ° C. and 0.5 hours or longer under the flow of an oxygen-containing gas such as air or an inert gas. Here, the inert gas refers to a gas that does not decrease the reaction activity of the catalyst, and specifically includes nitrogen, carbon dioxide, helium, argon, and the like. The baking treatment may be performed using a heating device, or may be performed in a reactor after filling a molded product.

次に、本発明の不飽和アルデヒドおよび不飽和カルボン酸の製造方法について説明する。本発明の目的物の製造方法は、本発明の触媒の存在下で、反応原料を分子状酸素で気相接触酸化して目的物を製造するものである。ここで、不飽和アルデヒドおよび不飽和カルボン酸とは、具体的には、反応原料がプロピレンの場合にはアクロレインおよびアクリル酸を指し、それ以外の反応原料の場合にはメタクロレインおよびメタクリル酸を指す。   Next, the manufacturing method of the unsaturated aldehyde and unsaturated carboxylic acid of this invention is demonstrated. In the method for producing the target product of the present invention, the target product is manufactured by vapor-phase catalytic oxidation of the reaction raw material with molecular oxygen in the presence of the catalyst of the present invention. Here, the unsaturated aldehyde and the unsaturated carboxylic acid specifically refer to acrolein and acrylic acid when the reaction raw material is propylene, and refer to methacrolein and methacrylic acid when the other reaction raw material is used. .

気相接触酸化反応は、固定床で行うことが好ましい。その場合の触媒層は、特に限定されず、触媒のみの無希釈層でも、不活性担体を含んだ希釈層でもよく、単一層でも異なる2種類以上の層を含む複数層であってもよい。反応には、反応原料と分子状酸素とを含む原料ガスを用いる。   The gas phase catalytic oxidation reaction is preferably performed in a fixed bed. The catalyst layer in that case is not particularly limited, and may be an undiluted layer containing only the catalyst, a diluted layer containing an inert carrier, or a single layer or a plurality of layers containing two or more different layers. In the reaction, a raw material gas containing a reaction raw material and molecular oxygen is used.

原料ガス中の反応原料の濃度は特に限定されないが、1〜20容量%が好ましい。反応原料は一種を用いても、二種以上を組み合わせて用いてもよい。   Although the density | concentration of the reaction raw material in raw material gas is not specifically limited, 1-20 volume% is preferable. The reaction raw materials may be used singly or in combination of two or more.

分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化し
た空気等も用いることができる。原料ガス中の反応原料と酸素のモル比(容量比)は1:0.5〜1:3の範囲が好ましい。
Although it is economical to use air as the molecular oxygen source, air or the like enriched with pure oxygen can also be used if necessary. The molar ratio (volume ratio) of the reaction raw material and oxygen in the raw material gas is preferably in the range of 1: 0.5 to 1: 3.

原料ガスは反応原料と分子状酸素以外に水を含んでいることが好ましい。原料ガス中の水の濃度は、1〜45容量%が好ましい。また、原料ガスは窒素、二酸化炭素等の不活性ガスで希釈して用いることが好ましい。   The source gas preferably contains water in addition to the reaction source and molecular oxygen. The concentration of water in the raw material gas is preferably 1 to 45% by volume. The source gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide.

反応圧力は大気圧から数100kPaまでが好ましい。反応温度は200〜450℃が好ましく、250〜400℃がより好ましい。接触時間は1.5〜15秒が好ましく、2〜10秒がより好ましい。   The reaction pressure is preferably from atmospheric pressure to several hundred kPa. The reaction temperature is preferably 200 to 450 ° C, more preferably 250 to 400 ° C. The contact time is preferably 1.5 to 15 seconds, and more preferably 2 to 10 seconds.

以下、実施例及び比較例により本発明を具体的に説明する。実施例及び比較例中の「部」は質量部であり、原料ガスおよび反応ガスは、ガスクロマトグラフィーにより分析した。また、触媒組成は触媒原料の仕込み量から求めた。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In the examples and comparative examples, “part” is part by mass, and the raw material gas and the reaction gas were analyzed by gas chromatography. Moreover, the catalyst composition was calculated | required from the preparation amount of the catalyst raw material.

実施例および比較例のプロピレンまたはイソブチレンの反応率(以下、単に「反応率」ともいう。)、生成する不飽和アルデヒドまたは不飽和カルボン酸の選択率、生成する不飽和アルデヒドおよび不飽和カルボン酸の合計収率(以下、単に「合計収率」ともいう。)は次式により算出した。
反応率(%)=A/B×100
不飽和アルデヒドの選択率(%)=C/A×100
不飽和カルボン酸の選択率(%)=D/A×100
収率(%)=(C+D)/B×100
ここで、Aは反応したプロピレンまたはイソブチレンのモル数、Bは供給したプロピレンまたはイソブチレンのモル数、Cは生成した不飽和アルデヒドのモル数、Dは生成した不飽和カルボン酸のモル数である。
The reaction rate of propylene or isobutylene in Examples and Comparative Examples (hereinafter, also simply referred to as “reaction rate”), the selectivity of the unsaturated aldehyde or unsaturated carboxylic acid to be produced, the unsaturated aldehyde and unsaturated carboxylic acid to be produced The total yield (hereinafter simply referred to as “total yield”) was calculated by the following formula.
Reaction rate (%) = A / B × 100
Selectivity of unsaturated aldehyde (%) = C / A × 100
Selectivity of unsaturated carboxylic acid (%) = D / A × 100
Yield (%) = (C + D) / B × 100
Where A is the number of moles of propylene or isobutylene reacted, B is the number of moles of propylene or isobutylene supplied, C is the number of moles of unsaturated aldehyde formed, and D is the number of moles of unsaturated carboxylic acid formed.

機械的強度の指標である落下粉化率は、長手方向が鉛直になるように設置され、下側開口部がステンレス製の板で閉止された内径2.75cm、長さ6mのステンレス製円筒の上側開口部から触媒100gを落下させて円筒内に充填し、下側開口部を開いて回収した触媒のうち、目開き1mmのふるいを通過しないものの質量がXgであったとすると、落下粉化率は次のように算出される。落下粉化率は小さいほど機械的強度が高く、大きいほど機械的強度が低い。
落下粉化率(%)={(100−X)/100}×100
The falling powder rate, which is an indicator of mechanical strength, is a stainless steel cylinder with an inner diameter of 2.75 cm and a length of 6 m, which is installed so that its longitudinal direction is vertical and the lower opening is closed with a stainless steel plate. If 100 g of the catalyst is dropped from the upper opening and filled into the cylinder, and the mass of the catalyst collected by opening the lower opening and not passing through the 1 mm sieve is Xg, the falling powder rate Is calculated as follows. The smaller the falling powder rate, the higher the mechanical strength, and the higher the falling powder rate, the lower the mechanical strength.
Falling powder rate (%) = {(100−X) / 100} × 100

(実施例1)
純水1000部に、パラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム6.2部、硝酸セシウム23.0部、三酸化アンチモン27.4部および三酸化ビスマス33.0部を加え、加熱攪拌した(A液)。別に純水1000部に、硝酸第二鉄209.8部、硝酸ニッケル75.5部、硝酸コバルト460.2部、硝酸鉛31.3部および85%リン酸5.6部を順次加え、溶解した(B液)。A液にB液を加えて水性スラリーとした後、この水性スラリーをスプレー乾燥機によって平均粒径60μmの乾燥球状粒子とした。この乾燥球状粒子を300℃で1時間、510℃で3時間焼成して焼成物とした。
Example 1
To 1000 parts of pure water, 500 parts of ammonium paramolybdate, 6.2 parts of ammonium paratungstate, 23.0 parts of cesium nitrate, 27.4 parts of antimony trioxide and 33.0 parts of bismuth trioxide were added and heated and stirred. (Liquid A). Separately, add 209.8 parts of ferric nitrate, 75.5 parts of nickel nitrate, 460.2 parts of cobalt nitrate, 31.3 parts of lead nitrate, and 5.6 parts of 85% phosphoric acid to 1000 parts of pure water and dissolve. (Liquid B). After liquid B was added to liquid A to form an aqueous slurry, this aqueous slurry was formed into dry spherical particles having an average particle diameter of 60 μm by a spray dryer. The dried spherical particles were fired at 300 ° C. for 1 hour and at 510 ° C. for 3 hours to obtain a fired product.

得られた焼成物500部に対して、ヒドロキシプロピルメチルセルロース15部およびカードラン10部を加え、乾式混合した。ここに温度が5℃の純水190部に平均粒径140μm、平均厚さ5μmの鱗片状ガラス25部を均一に混合したスラリーを、1.8L/min.の速度で混合し、混練り機で粘土状になるまで混合(混練り)した後、ピストン式押出し成形機を用いて成形し、外径5mm、内径2mm、平均長さ5mmのリング状の成形体を得た。   To 500 parts of the obtained fired product, 15 parts of hydroxypropylmethylcellulose and 10 parts of curdlan were added and dry mixed. A slurry in which 190 parts of pure water having a temperature of 5 ° C. and 25 parts of glass flakes having an average particle diameter of 140 μm and an average thickness of 5 μm were uniformly mixed was added at 1.8 L / min. After mixing (kneading) with a kneader until it becomes a clay, it is molded using a piston-type extrusion molding machine, and formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and an average length of 5 mm. Got the body.

次いで、得られた成形体を熱風乾燥機によって110℃で乾燥して成形体の乾燥品を得た。この成形体の乾燥品を400℃で3時間再度焼成して触媒を製造した。この触媒の鱗片状ガラスと酸素を除く組成(以下同じ)はMo120.1Bi0.6Fe2.2Sb0.8Ni1.1Co6.7Pb0.40.2Cs0.5であり、落下粉化率は0.3%であった。 Subsequently, the obtained molded object was dried at 110 degreeC with the hot air dryer, and the dried product of the molded object was obtained. A dried product of this molded body was calcined again at 400 ° C. for 3 hours to produce a catalyst. The composition of the catalyst excluding the glass flakes and oxygen (hereinafter the same) is Mo 12 W 0.1 Bi 0.6 Fe 2.2 Sb 0.8 Ni 1.1 Co 6.7 Pb 0.4 P 0.2 Cs was 0.5 , and the fall powdering rate was 0.3%.

この触媒をステンレス製反応管に充填し、イソブチレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%の原料ガスを用い、大気圧下、接触時間3.6秒、反応温度340℃で反応させた。その結果、イソブチレンの反応率98.0%、メタクロレインの選択率89.9%、メタクリル酸の選択率4.1%、合計収率91.2%であった。   This catalyst was filled in a stainless steel reaction tube, and a raw material gas of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor and 73% by volume of nitrogen was used. At atmospheric pressure, a contact time of 3.6 seconds, a reaction temperature of 340 The reaction was carried out at ° C. As a result, the reaction rate of isobutylene was 98.0%, the selectivity of methacrolein was 89.9%, the selectivity of methacrylic acid was 4.1%, and the total yield was 91.2%.

(実施例2)
平均粒径140μm、平均厚さ5μmの鱗片状ガラスに代えて、平均粒径50μm、平均厚さ4μmの鱗片状ガラスを使用した以外は、実施例1と同様にして触媒を製造し、反応を行った。その結果を表1に示した。
(Example 2)
A catalyst was produced in the same manner as in Example 1 except that a scaly glass having an average particle size of 50 μm and an average thickness of 4 μm was used in place of the scaly glass having an average particle size of 140 μm and an average thickness of 5 μm. went. The results are shown in Table 1.

(実施例3)
平均粒径140μm、平均厚さ5μmの鱗片状ガラスに代えて、平均粒径1mm、平均厚さ7μmの鱗片状ガラスを使用した以外は実施例1と同様にして触媒を製造し、反応を行った。その結果を表1に示した。
(Example 3)
A catalyst was produced and reacted in the same manner as in Example 1 except that scaly glass having an average particle diameter of 1 mm and an average thickness of 7 μm was used in place of the scaly glass having an average particle diameter of 140 μm and an average thickness of 5 μm. It was. The results are shown in Table 1.

(実施例4)
鱗片状ガラスの配合量を50部に変更した以外は実施例1と同様にして触媒を製造し、反応を行った。その結果を表1に示した。
Example 4
A catalyst was produced and reacted in the same manner as in Example 1 except that the amount of scale-like glass was changed to 50 parts. The results are shown in Table 1.

(実施例5)
鱗片状ガラスに代えて、平均粒径140μm、平均厚さ5μmの鱗片状シリカを使用した以外は実施例1と同様にして触媒を製造し、反応を行った。その結果を表1に示した。
(Example 5)
A catalyst was produced and reacted in the same manner as in Example 1 except that scaly silica having an average particle size of 140 μm and an average thickness of 5 μm was used in place of the scaly glass. The results are shown in Table 1.

(比較例1)
鱗片状ガラス25部に代えて、平均繊維径10μm、平均繊維長500μmのガラス繊維10部を使用した以外は実施例1と同様にして触媒を製造し、反応を行った。その結果を表1に示した。実施例1〜5に比べて収率と触媒の強度が低下した。
(Comparative Example 1)
A catalyst was produced and reacted in the same manner as in Example 1 except that 10 parts of glass fibers having an average fiber diameter of 10 μm and an average fiber length of 500 μm were used instead of 25 parts of the glass flakes. The results are shown in Table 1. Compared with Examples 1-5, the yield and the intensity | strength of the catalyst fell.

(比較例2)
鱗片状ガラス25部を混合しなかった点以外は実施例1と同様にして触媒を製造し、反応を行った。その結果を表1に示した。実施例1〜5に比べて収率と触媒の強度が低下した。
(Comparative Example 2)
A catalyst was produced and reacted in the same manner as in Example 1 except that 25 parts of the glass flakes were not mixed. The results are shown in Table 1. Compared with Examples 1-5, the yield and the intensity | strength of the catalyst fell.

Figure 2007000803
Figure 2007000803

(実施例6)
純水1000部にパラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム6.2部、硝酸カリウム1.4部、三酸化アンチモン30.9部および三酸化ビスマス49.5部を加え加熱攪拌した(A液)。別に純水1000部に硝酸第二鉄114.4部、硝酸コバルト288.5部および硝酸亜鉛42.1部を順次加え溶解した(B液)。A液にB液を加えて水性スラリーとした後、この水性スラリーをスプレー乾燥機によって平均粒径60μmの乾燥球状粒子とした。この乾燥球状粒子を300℃で1時間焼成して焼成物とした。
(Example 6)
To 500 parts of pure water, 500 parts of ammonium paramolybdate, 6.2 parts of ammonium paratungstate, 1.4 parts of potassium nitrate, 30.9 parts of antimony trioxide and 49.5 parts of bismuth trioxide were added and heated and stirred (Liquid A). ). Separately, 114.4 parts of ferric nitrate, 288.5 parts of cobalt nitrate and 42.1 parts of zinc nitrate were sequentially added and dissolved in 1000 parts of pure water (solution B). After liquid B was added to liquid A to form an aqueous slurry, this aqueous slurry was formed into dry spherical particles having an average particle diameter of 60 μm by a spray dryer. The dried spherical particles were fired at 300 ° C. for 1 hour to obtain a fired product.

得られた焼成物500部に対して、ヒドロキシプロピルメチルセルロース15部およびカードラン10部を加え、乾式混合した。ここに温度が5℃の純水190部に平均粒径140μm、平均厚さ5μmの鱗片状ガラス25部を均一に混合したスラリーを、1.8L/min.の速度で混合し、混練り機で粘土状になるまで混合(混練り)した後、ピストン式押出し成形機を用いて成形し、外径5mm、内径2mm、平均長さ5mmのリング状の成形体を得た。   To 500 parts of the obtained fired product, 15 parts of hydroxypropylmethylcellulose and 10 parts of curdlan were added and dry mixed. A slurry in which 190 parts of pure water having a temperature of 5 ° C. and 25 parts of glass flakes having an average particle diameter of 140 μm and an average thickness of 5 μm were uniformly mixed was added at 1.8 L / min. After mixing (kneading) with a kneader until it becomes a clay, it is molded using a piston-type extrusion molding machine, and formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and an average length of 5 mm. Got the body.

次いで、得られた成形体を熱風乾燥機によって110℃で乾燥して成形体の乾燥品を得た。この成形体を510℃で3時間再度焼成して触媒を製造した。この触媒の組成はMo120.1Bi0.9Fe1.2Sb0.9Co4.2Zn0.60.06であり、落下粉化率は0.3%であった。 Subsequently, the obtained molded object was dried at 110 degreeC with the hot air dryer, and the dried product of the molded object was obtained. This molded body was calcined again at 510 ° C. for 3 hours to produce a catalyst. The composition of this catalyst was Mo 12 W 0.1 Bi 0.9 Fe 1.2 Sb 0.9 Co 4.2 Zn 0.6 K 0.06 , and the fall powdering rate was 0.3%. .

この触媒をステンレス製反応管に充填し、プロピレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%の原料ガスを用い、大気圧下、接触時間3.6秒、反応温度310℃で反応させた。その結果、プロピレンの反応率99.0%、アクロレインの選択率91.1%、アクリル酸の選択率6.5%、合計収率96.6%であった。   This catalyst is packed in a stainless steel reaction tube, and using 5% by volume of propylene, 12% by volume of oxygen, 10% by volume of steam and 73% by volume of nitrogen, under atmospheric pressure, contact time of 3.6 seconds, reaction temperature of 310 The reaction was carried out at ° C. As a result, the reaction rate of propylene was 99.0%, the selectivity of acrolein was 91.1%, the selectivity of acrylic acid was 6.5%, and the total yield was 96.6%.

(実施例7)
鱗片状ガラスを純水に混合せず、焼成物500部と乾式混合し、ここに温度が5℃である純水190部を1.8L/min.の速度で混合し、混練り機で粘土状物質になるまで混合した以外は実施例6と同様にして触媒を製造し、反応を行った。その結果を表2に示した。
(Example 7)
The scaly glass was not mixed with pure water, but dry-mixed with 500 parts of the fired product, and 190 parts of pure water having a temperature of 5 ° C. was added to 1.8 L / min. A catalyst was produced and reacted in the same manner as in Example 6 except that the mixture was mixed at a speed of 5 k and mixed with a kneader until it became a clay-like substance. The results are shown in Table 2.

(実施例8)
触媒形状を外径5mm、平均長さ5mmの円柱形状に変えた以外は実施例6と同様にして触媒を製造し、反応を行った。その結果を表2に示した。
(Example 8)
A catalyst was produced and reacted in the same manner as in Example 6 except that the catalyst shape was changed to a cylindrical shape having an outer diameter of 5 mm and an average length of 5 mm. The results are shown in Table 2.

(比較例3)
鱗片状ガラス25部に代えて、平均繊維径10μm、平均繊維長500μmのガラス繊維10部を使用した以外は、実施例6と同様にして触媒を製造し、反応を行った。その結果を表2に示した。実施例6〜8に比べて収率と触媒の強度が低下した。
(Comparative Example 3)
A catalyst was produced and reacted in the same manner as in Example 6 except that 10 parts of glass fibers having an average fiber diameter of 10 μm and an average fiber length of 500 μm were used instead of 25 parts of the glass flakes. The results are shown in Table 2. Compared with Examples 6-8, the yield and the intensity | strength of the catalyst fell.

(比較例4)
鱗片状ガラスを混合しなかった点以外は実施例6と同様にして触媒を製造し、反応を行った。その結果を表2に示した。実施例6〜8に比べて収率と触媒の強度が低下した。
(Comparative Example 4)
A catalyst was produced and reacted in the same manner as in Example 6 except that the scaly glass was not mixed. The results are shown in Table 2. Compared with Examples 6-8, the yield and the intensity | strength of the catalyst fell.

Figure 2007000803
Figure 2007000803

Claims (3)

プロピレン、イソブチレン、第三級ブチルアルコールまたはメチル第三級ブチルエーテルを分子状酸素で気相接触酸化して不飽和アルデヒドおよび不飽和カルボン酸を合成するための触媒であって、モリブデンおよびビスマスを含む触媒成分と、平均粒径が10μm〜2mmかつ平均厚さが平均粒径の0.005〜0.3倍の鱗片状無機物とを含有する触媒。   Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid by vapor phase catalytic oxidation of propylene, isobutylene, tertiary butyl alcohol or methyl tertiary butyl ether with molecular oxygen, comprising molybdenum and bismuth A catalyst containing a component and a flaky inorganic substance having an average particle diameter of 10 μm to 2 mm and an average thickness of 0.005 to 0.3 times the average particle diameter. 触媒原料を含む溶液またはスラリーを乾燥し、次いで焼成して得られた焼成物と、平均粒径が10μm〜2mmかつ平均厚さが平均粒径の0.005〜0.3倍の鱗片状無機物を混合し、成形する工程を含む請求項1記載の触媒の製造方法。   A fired product obtained by drying and then firing a solution or slurry containing a catalyst raw material, and a scaly inorganic material having an average particle size of 10 μm to 2 mm and an average thickness of 0.005 to 0.3 times the average particle size The method for producing a catalyst according to claim 1, comprising the steps of mixing and forming the catalyst. 請求項1記載の触媒の存在下で、プロピレン、イソブチレン、第三級ブチルアルコールまたはメチル第三級ブチルエーテルを分子状酸素で気相接触酸化する不飽和アルデヒドおよび不飽和カルボン酸の製造方法。   A process for producing an unsaturated aldehyde and an unsaturated carboxylic acid, wherein propylene, isobutylene, tertiary butyl alcohol or methyl tertiary butyl ether is vapor-phase catalytically oxidized with molecular oxygen in the presence of the catalyst according to claim 1.
JP2005185294A 2005-06-24 2005-06-24 Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids Active JP4863436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005185294A JP4863436B2 (en) 2005-06-24 2005-06-24 Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005185294A JP4863436B2 (en) 2005-06-24 2005-06-24 Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids

Publications (2)

Publication Number Publication Date
JP2007000803A true JP2007000803A (en) 2007-01-11
JP4863436B2 JP4863436B2 (en) 2012-01-25

Family

ID=37686880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005185294A Active JP4863436B2 (en) 2005-06-24 2005-06-24 Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids

Country Status (1)

Country Link
JP (1) JP4863436B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526765A (en) * 2007-01-19 2010-08-05 エバーヌ・テクノロジー・リミテッド・ライアビリティ・カンパニー Selective oxidation of alkanes and / or alkenes to beneficial oxygenates
JP2010264358A (en) * 2009-05-13 2010-11-25 Mitsubishi Rayon Co Ltd Catalyst and method of producing unsaturated aldehyde and/or unsaturated carboxylic acid
WO2014175113A1 (en) 2013-04-25 2014-10-30 日本化薬株式会社 Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using catalyst
US9789457B2 (en) 2013-03-22 2017-10-17 The Chemours Company Fc, Llc Treatment of tailing streams
KR20210137210A (en) 2019-03-28 2021-11-17 미쯔비시 케미컬 주식회사 Catalyst molded article, and method for producing unsaturated aldehydes and unsaturated carboxylic acids using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183947A (en) * 1987-01-27 1988-07-29 Daicel Chem Ind Ltd Styrenic resin composition
JPH05170990A (en) * 1991-12-26 1993-07-09 Mitsubishi Kasei Corp Resin composition
JPH0725635A (en) * 1993-07-09 1995-01-27 Nippon Glass Fiber Co Ltd Flake-like glass having antimicrobial property
JPH1111927A (en) * 1997-06-20 1999-01-19 Doukai Kagaku Kogyo Kk Composite particle with silica matrix, its production and compounded cosmetic material
JP2001163613A (en) * 1999-12-10 2001-06-19 Dokai Chemical Industries Co Ltd Flaky silica particle, curable composition, hardened body formed therefrom and manufacturing method thereof
JP2002273229A (en) * 2001-03-21 2002-09-24 Nippon Shokubai Co Ltd Catalyst for manufacturing unsaturated aldehyde and unsaturated carboxylic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183947A (en) * 1987-01-27 1988-07-29 Daicel Chem Ind Ltd Styrenic resin composition
JPH05170990A (en) * 1991-12-26 1993-07-09 Mitsubishi Kasei Corp Resin composition
JPH0725635A (en) * 1993-07-09 1995-01-27 Nippon Glass Fiber Co Ltd Flake-like glass having antimicrobial property
JPH1111927A (en) * 1997-06-20 1999-01-19 Doukai Kagaku Kogyo Kk Composite particle with silica matrix, its production and compounded cosmetic material
JP2001163613A (en) * 1999-12-10 2001-06-19 Dokai Chemical Industries Co Ltd Flaky silica particle, curable composition, hardened body formed therefrom and manufacturing method thereof
JP2002273229A (en) * 2001-03-21 2002-09-24 Nippon Shokubai Co Ltd Catalyst for manufacturing unsaturated aldehyde and unsaturated carboxylic acid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526765A (en) * 2007-01-19 2010-08-05 エバーヌ・テクノロジー・リミテッド・ライアビリティ・カンパニー Selective oxidation of alkanes and / or alkenes to beneficial oxygenates
JP2010264358A (en) * 2009-05-13 2010-11-25 Mitsubishi Rayon Co Ltd Catalyst and method of producing unsaturated aldehyde and/or unsaturated carboxylic acid
US9789457B2 (en) 2013-03-22 2017-10-17 The Chemours Company Fc, Llc Treatment of tailing streams
WO2014175113A1 (en) 2013-04-25 2014-10-30 日本化薬株式会社 Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using catalyst
KR20160002815A (en) 2013-04-25 2016-01-08 닛뽄 가야쿠 가부시키가이샤 Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using catalyst
US9393553B2 (en) 2013-04-25 2016-07-19 Nippon Kayaku Kabushiki Kaisha Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing the catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst
KR20210137210A (en) 2019-03-28 2021-11-17 미쯔비시 케미컬 주식회사 Catalyst molded article, and method for producing unsaturated aldehydes and unsaturated carboxylic acids using the same

Also Published As

Publication number Publication date
JP4863436B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
JP2008155126A (en) Method for producing metal component-containing catalyst
JP2007283265A (en) Method of manufacturing catalyst for producing methacrylic acid
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2008284416A (en) Method for manufacturing metal oxide catalyst
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP3790080B2 (en) Catalyst for synthesizing methacrolein and methacrylic acid, and method for producing methacrolein and methacrylic acid
JP4809692B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP2005066476A (en) Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid
JP5090796B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP7024194B2 (en) A method for producing a composite metal oxide catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and a method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same.
JP2004268027A (en) Method of producing methacrylic acid production catalyst
JP2011115681A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP4745766B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2010207803A (en) Compound oxide catalyst
JP5070089B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same
JP4947756B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2008149263A (en) Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron
JP2004130261A (en) Method of manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP2005230720A (en) Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same
JP5394457B2 (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP5842378B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP5149138B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4863436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250