Nothing Special   »   [go: up one dir, main page]

JP2005058909A - Production method for catalyst for synthesizing methacrylic acid - Google Patents

Production method for catalyst for synthesizing methacrylic acid Download PDF

Info

Publication number
JP2005058909A
JP2005058909A JP2003292381A JP2003292381A JP2005058909A JP 2005058909 A JP2005058909 A JP 2005058909A JP 2003292381 A JP2003292381 A JP 2003292381A JP 2003292381 A JP2003292381 A JP 2003292381A JP 2005058909 A JP2005058909 A JP 2005058909A
Authority
JP
Japan
Prior art keywords
composition
catalyst
parts
methacrylic acid
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003292381A
Other languages
Japanese (ja)
Inventor
Tomomasa Tatsumi
奉正 辰巳
Hiroyuki Naito
啓幸 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003292381A priority Critical patent/JP2005058909A/en
Publication of JP2005058909A publication Critical patent/JP2005058909A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst synthesizing methacrylic acid by the gas-phase catalytic oxidation of mathacrolein with molecular oxygen in a high yield, to provide a method for producing the catalyst and to provide a method for producing methacrylic acid by using the catalyst. <P>SOLUTION: The production method for the catalyst for synthesizing methacrylic acid includes a process of mixing a composition (1) represented by the formula (1): Mo<SB>a</SB>P<SB>b</SB>X<SB>c</SB>Y<SB>d</SB>O<SB>e</SB>(1) and/or an aqueous slurry A containing the precursor of the composition with a composition B containing a composite oxide (2) represented by the formula (2): Mo<SB>f</SB>D<SB>g</SB>E<SB>h</SB>O<SB>i</SB>(2). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、メタクリル酸合成用触媒の製造方法、メタクリル酸合成用触媒、およびメタクロレインを分子状酸素で気相接触酸化するメタクリル酸の製造方法に関する。   The present invention relates to a method for producing a catalyst for synthesizing methacrylic acid, a catalyst for synthesizing methacrylic acid, and a method for producing methacrylic acid in which methacrolein is vapor-phase contact oxidized with molecular oxygen.

メタクロレインを気相接触酸化してメタクリル酸を合成する触媒について、少なくともモリブデンおよびリンを必須成分として含むヘテロポリ酸触媒が有効であることが広く知られている。しかしながら、従来のヘテロポリ酸触媒は、メタクリル酸の収率が充分ではないという問題がある。   As a catalyst for synthesizing methacrylic acid by gas phase catalytic oxidation of methacrolein, it is widely known that a heteropolyacid catalyst containing at least molybdenum and phosphorus as essential components is effective. However, the conventional heteropolyacid catalyst has a problem that the yield of methacrylic acid is not sufficient.

そこで、近年、メタクロレインを気相接触酸化してメタクリル酸を合成する触媒について、モリブデンおよびリンを必須成分とするヘテロポリ酸と複合酸化物を含む触媒についての提案が開示されている。例えば、特許文献1には、固体状のモリブデン、リンおよびヒ素を含むヘテロポリ酸と、固体状のモリブデン酸銅および/またはモリブデン酸銀とからなる複合酸化物を混合する触媒の製造方法が、特許文献2には、モリブデンおよびリンを含むヘテロポリ酸粉末と、モリブデンと鉄、コバルト、ニッケル等より選ばれる少なくとも一種類以上の元素とを含む多元系複合酸化物の粉末を混合する触媒の製造方法が記載されている。
特開昭59−210042号公報 特開平7−267635号公報
Thus, in recent years, proposals have been made on catalysts containing heteropolyacids and composite oxides containing molybdenum and phosphorus as essential components for catalysts that synthesize methacrylic acid by gas phase catalytic oxidation of methacrolein. For example, Patent Document 1 discloses a process for producing a catalyst in which a heteropolyacid containing solid molybdenum, phosphorus and arsenic and a composite oxide composed of solid copper molybdate and / or silver molybdate are mixed. Document 2 discloses a method for producing a catalyst in which a heteropolyacid powder containing molybdenum and phosphorus and a powder of a multicomponent composite oxide containing molybdenum and at least one element selected from iron, cobalt, nickel and the like are mixed. Has been described.
JP 59-210042 A JP-A-7-267635

しかしながら、従来の方法で製造されたメタクリル酸合成用触媒の収率は必ずしも充分ではなく、工業触媒としては更なる改良が望まれているのが現状である。   However, the yield of the catalyst for synthesizing methacrylic acid produced by the conventional method is not always sufficient, and the present situation is that further improvement is desired as an industrial catalyst.

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成する高収率な触媒、触媒の製造方法およびこの触媒を用いたメタクリル酸の製造方法を提供することを目的とする。   An object of the present invention is to provide a high yield catalyst for synthesizing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen, a method for producing the catalyst, and a method for producing methacrylic acid using the catalyst. To do.

上記課題を解決するため、鋭意検討を行った結果、本発明者らは、分子状酸素により気相接触酸化してメタクリル酸を合成する際に使用する触媒について、高い触媒活性およびメタクリル酸選択性を有する触媒の製造方法を見出すに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the catalyst used in the synthesis of methacrylic acid by gas phase catalytic oxidation with molecular oxygen has high catalytic activity and methacrylic acid selectivity. It came to discover the manufacturing method of the catalyst which has this.

すなわち本発明は、式(1)で表される組成物(1)および/またはその前駆体を含む水性スラリーAと、式(2)で表される複合酸化物(2)を含む組成物Bとを混合する工程を含むメタクリル酸合成用触媒の製造方法である。   That is, the present invention relates to an aqueous slurry A containing the composition (1) represented by the formula (1) and / or a precursor thereof, and a composition B containing the composite oxide (2) represented by the formula (2). It is a manufacturing method of the catalyst for methacrylic acid synthesis including the process of mixing.

Mo (1)
(式(1)中、Mo、PおよびOはそれぞれモリブデン、リンおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれる少なくとも1種の元素を表し、Yは鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれる少なくとも1種の元素を表す。ただし、a、b、c、dおよびeは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦6、0≦d≦3であり、eは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
Mo a P b X c Y d O e (1)
(In the formula (1), Mo, P and O represent molybdenum, phosphorus and oxygen, respectively, X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and Y represents iron, cobalt , Nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium, tantalum Represents at least one element selected from the group consisting of zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, where a, b, c, d and e represent the atomic ratio of each element, and a = 12: 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 6, 0 ≦ d ≦ 3 Ri, e is an atomic ratio of oxygen required to satisfy the atomic ratio of the respective components.)

Mo (2)
(式(2)中、MoおよびOはそれぞれモリブデンおよび酸素を表し、Dは鉄、コバルト、ニッケル、銅、クロム、亜鉛、ルテニウム、ロジウム、銀、カドミニウム、テルル、レニウム、セリウムおよびランタンからなる群より選ばれる少なくとも1種の元素を表し、Eはカリウム、ルビジウム、セシウム、タリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、マンガン、ジルコニウム、ニオブ、タンタル、タングステン、アルミニウム、ケイ素、リン、ガリウム、ゲルマニウム、ヒ素、スズ、アンチモンおよびビスマスからなる群より選ばれる少なくとも1種の元素を表す。ただし、f、g、hおよびiは各元素の原子比を表し、f=1のとき、0.1≦g≦10、0≦h≦5であり、iは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
Mo f D g E h O i (2)
(In the formula (2), Mo and O represent molybdenum and oxygen, respectively, and D represents a group consisting of iron, cobalt, nickel, copper, chromium, zinc, ruthenium, rhodium, silver, cadmium, tellurium, rhenium, cerium and lanthanum. E represents at least one element selected from the group consisting of potassium, rubidium, cesium, thallium, magnesium, calcium, strontium, barium, titanium, vanadium, manganese, zirconium, niobium, tantalum, tungsten, aluminum, silicon, phosphorus, gallium , Represents at least one element selected from the group consisting of germanium, arsenic, tin, antimony and bismuth, where f, g, h and i represent the atomic ratio of each element, and when f = 1, 0. 1 ≦ g ≦ 10, 0 ≦ h ≦ 5, i represents each of the above components An atomic ratio of oxygen required to satisfy the atomic ratio.)

本発明において、前記水性スラリーAは、該スラリー中に含まれるモリブデン原子100質量部に対して、0.1〜100質量部のアンモニアおよび/またはアンモニウムイオンを含むことが好ましい。また、前記組成物Bに含まれる前記複合酸化物(2)の量は、前記水性スラリーA中に含まれるモリブデン原子100質量部に対して、1〜100質量部であることが好ましい。   In this invention, it is preferable that the said aqueous slurry A contains 0.1-100 mass parts ammonia and / or ammonium ion with respect to 100 mass parts of molybdenum atoms contained in this slurry. Further, the amount of the composite oxide (2) contained in the composition B is preferably 1 to 100 parts by mass with respect to 100 parts by mass of molybdenum atoms contained in the aqueous slurry A.

本発明の第2は、上記の本発明の方法で製造されたメタクリル酸合成用触媒、ならびに、前記式(1)で表される組成物(1)および前記式(2)で表される複合酸化物(2)を含むメタクリル酸合成用触媒である。   A second aspect of the present invention is a catalyst for synthesizing methacrylic acid produced by the above-described method of the present invention, and a composition represented by the formula (1) (1) and a composite represented by the formula (2). A catalyst for synthesizing methacrylic acid containing an oxide (2).

本発明の第3は、メタクロレインを分子状酸素で気相接触酸化するメタクリル酸の製造方法において、第2発明のメタクリル酸合成用触媒を用いることを特徴とするメタクリル酸の製造方法である。   According to a third aspect of the present invention, there is provided a method for producing methacrylic acid, which comprises using the catalyst for synthesizing methacrylic acid according to the second aspect of the present invention in a method for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen.

本発明の方法により得られた触媒は、メタクロレインの気相接触酸化反応において、高い収率でメタクリル酸を生成させるという優れた効果を有する。この触媒によって効率的にメタクリル酸を製造することが可能になり、工業的な価値は極めて高い。   The catalyst obtained by the method of the present invention has an excellent effect of producing methacrylic acid in a high yield in the gas phase catalytic oxidation reaction of methacrolein. This catalyst makes it possible to produce methacrylic acid efficiently, and its industrial value is extremely high.

本発明において、水性スラリーAには前記式(1)で表される組成物(1)および/またはその前駆体が含まれる。   In the present invention, the aqueous slurry A contains the composition (1) represented by the formula (1) and / or a precursor thereof.

式(1)において、Mo、PおよびOはそれぞれモリブデン、リンおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれる少なくとも1種の元素を表し、Yは鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれる少なくとも1種の元素を表す。   In the formula (1), Mo, P and O represent molybdenum, phosphorus and oxygen, respectively, X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, Y represents iron, cobalt, Nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, It represents at least one element selected from the group consisting of zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium.

また、式(1)において、a、b、c、dおよびeは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦6、0≦d≦3であり、eは前記各成分の原子比を満足するのに必要な酸素の原子比を表す。   In the formula (1), a, b, c, d and e represent the atomic ratio of each element. When a = 12, 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 6, 0 ≦ d ≦ 3, and e represents the atomic ratio of oxygen necessary for satisfying the atomic ratio of the respective components.

水性スラリーAの調製方法は特に限定されないが、例えば、共沈法等により調製できる。また、蒸発乾固法、酸化物混合法等によって得られた固形物を水に分散させて調製してもよい。   Although the preparation method of the aqueous slurry A is not specifically limited, For example, it can prepare by a coprecipitation method etc. Alternatively, a solid obtained by evaporation to dryness, oxide mixing, or the like may be prepared by dispersing in water.

水性スラリーAの調製に用いるモリブデン、リン、X、Y等の元素の原料(以下、触媒原料とも言う。)は特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、酸素酸等を適宜組み合わせて使用することができる。例えば、モリブデンの原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等、リンの原料としては、リン酸、五酸化リン、リン酸アンモニウム等が使用できる。   The raw materials of elements such as molybdenum, phosphorus, X, and Y (hereinafter also referred to as catalyst raw materials) used for preparing the aqueous slurry A are not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides of each element , Halides, oxygen acids and the like can be used in appropriate combinations. For example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, and the like can be used as the molybdenum source, and phosphoric acid, phosphorus pentoxide, ammonium phosphate, and the like can be used as the phosphorus source.

本発明において、水性スラリーAに含まれるアンモニアおよびアンモニウムイオン(以下、これらをまとめてアンモニウム根と言う。)の合計質量は、該スラリー中に含まれるモリブデン原子100質量部に対して0.1〜100質量部が好ましく、1〜50質量部がより好ましく、5〜30質量部が特に好ましい。水性スラリーA中にアンモニウム根を存在させることによって、組成物Bを混合した後に得られる触媒の性能を向上させることができる。アンモニウム根は、触媒原料由来のものであっても、スラリー調製時に添加することができるアンモニア、硝酸アンモニウム、炭酸アンモニウム等のアンモニウム根を含有する化合物(以下、アンモニウム根原料とも言う。)由来のものであっても構わない。   In the present invention, the total mass of ammonia and ammonium ions (hereinafter collectively referred to as ammonium roots) contained in the aqueous slurry A is 0.1 to 100 parts by mass of molybdenum atoms contained in the slurry. 100 mass parts is preferable, 1-50 mass parts is more preferable, and 5-30 mass parts is especially preferable. The presence of ammonium roots in the aqueous slurry A can improve the performance of the catalyst obtained after mixing the composition B. The ammonium root is derived from a compound containing an ammonium root such as ammonia, ammonium nitrate, or ammonium carbonate (hereinafter also referred to as an ammonium root raw material) that can be added at the time of slurry preparation even if it is derived from the catalyst raw material. It does not matter.

組成物(1)は次の式(1')で表される組成のものが好ましい。
MoY'd'Cu (1')
(式中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれる少なくとも1種の元素を表し、好ましくはカリウム、セシウムである。Y'は鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれる少なくとも1種の元素を表し、好ましくは、鉄、アンチモン、ヒ素、ゲルマニウム、セリウムである。a、b、c、d'、i、jおよびeは各元素の原子比を表し、a=12のとき、bは0.1≦b≦3、好ましくは0.5≦b≦3である。同様にcは0.01≦c≦6、好ましくは0.1≦c≦4である。同様にd'は0≦d'≦2.98、好ましくは0≦d'≦2.5である。同様にiは0.01≦i≦2.99、好ましくは0.01≦i≦2である。同様にjは0.01≦j≦2.99、好ましくは0.01≦j≦2である。eは前記各成分の原子比を満足するのに必要な酸素の原子比である。ただし、d'+i+jは0.02≦(d'+i+j)≦3である。)
The composition (1) preferably has a composition represented by the following formula (1 ′).
Mo a P b X c Y ' d' Cu i V j O e (1 ')
(Wherein Mo, P, Cu, V and O represent molybdenum, phosphorus, copper, vanadium and oxygen, respectively, X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium; Preferred are potassium and cesium Y 'is iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead Represents at least one element selected from the group consisting of arsenic, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, preferably iron, antimony, arsenic, germanium, cerium A, b, c, d ′, i, j and e represent the atomic ratio of each element, and when a = 12, b is 0.1 ≦ b ≦ 3, preferably 0.5 ≦ b ≦ 3. .01 ≦ c ≦ 6, preferably 0.1 ≦ c ≦ 4 Similarly, d ′ is 0 ≦ d ′ ≦ 2.98, preferably 0 ≦ d ′ ≦ 2.5. 0.01 ≦ i ≦ 2.99, preferably 0.01 ≦ i ≦ 2.Similarly, j is 0.01 ≦ j ≦ 2.99, preferably 0.01 ≦ j ≦ 2. (This is the atomic ratio of oxygen necessary to satisfy the atomic ratio of the above components, where d ′ + i + j is 0.02 ≦ (d ′ + i + j) ≦ 3.)

水性スラリーAには、組成物(1)および/またはその前駆体以外に、アンモニウム根原料が含まれていてもよい。また、触媒原料やアンモニウム根原料等に由来する不純物等が少量含まれていても構わない。   The aqueous slurry A may contain an ammonium root raw material in addition to the composition (1) and / or its precursor. Further, a small amount of impurities derived from catalyst raw materials, ammonium root raw materials and the like may be contained.

水性スラリーAに含まれる組成物(1)および/またはその前駆体の粒子の平均粒子径は、0.1〜100μmの範囲にあることが好ましい。   The average particle size of the particles of the composition (1) and / or its precursor contained in the aqueous slurry A is preferably in the range of 0.1 to 100 μm.

本発明において、組成物(1)の前駆体とは、組成物(1)の製造過程において、メタクロレインの選択酸化能を示す活性点構造を有する前段階の状態のものであって、例えば、焼成を実施していない乾燥物等がこれにあたる。   In the present invention, the precursor of the composition (1) is in the state of the previous stage having an active site structure showing the selective oxidation ability of methacrolein in the production process of the composition (1), This includes dry matter that has not been fired.

本発明において、組成物Bには前記式(2)表される複合酸化物(2)が含まれる。   In the present invention, the composition B includes the composite oxide (2) represented by the formula (2).

式(2)において、MoおよびOはそれぞれモリブデンおよび酸素を表す。Dは鉄、コバルト、ニッケル、銅、クロム、亜鉛、ルテニウム、ロジウム、銀、カドミニウム、テルル、レニウム、セリウムおよびランタンからなる群より選ばれる少なくとも1種の元素であり、好ましくは、鉄、コバルト、ニッケル、銅である。Eはカリウム、ルビジウム、セシウム、タリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、マンガン、ジルコニウム、ニオブ、タンタル、タングステン、アルミニウム、ケイ素、リン、ガリウム、ゲルマニウム、ヒ素、スズ、アンチモンおよびビスマスからなる群より選ばれる少なくとも1種の元素であり、好ましくは、カリウム、ルビジウム、セシウム、タリウム、バナジウム、ジルコニウム、ニオブである。   In formula (2), Mo and O represent molybdenum and oxygen, respectively. D is at least one element selected from the group consisting of iron, cobalt, nickel, copper, chromium, zinc, ruthenium, rhodium, silver, cadmium, tellurium, rhenium, cerium and lanthanum, preferably iron, cobalt, Nickel and copper. E is from potassium, rubidium, cesium, thallium, magnesium, calcium, strontium, barium, titanium, vanadium, manganese, zirconium, niobium, tantalum, tungsten, aluminum, silicon, phosphorus, gallium, germanium, arsenic, tin, antimony and bismuth And at least one element selected from the group consisting of potassium, rubidium, cesium, thallium, vanadium, zirconium, and niobium.

また、式(2)において、f、g、hおよびiは各元素の原子比を表し、f=1のとき、0.1≦g≦10、0≦h≦5であり、iは前記各成分の原子比を満足するのに必要な酸素の原子比を表す。f=1のとき、gは0.1≦g≦5が好ましく、hは0≦h≦3が好ましい。   In the formula (2), f, g, h and i represent atomic ratios of the respective elements. When f = 1, 0.1 ≦ g ≦ 10, 0 ≦ h ≦ 5, and i is It represents the atomic ratio of oxygen necessary to satisfy the atomic ratio of the components. When f = 1, g is preferably 0.1 ≦ g ≦ 5, and h is preferably 0 ≦ h ≦ 3.

複合酸化物(2)の調製に用いる原料は特に限定されず、各種元素の硝酸塩、炭酸塩、酢酸塩、硫酸塩、アンモニウム塩、酸化物、ハロゲン化物、酸素酸等を適宜組み合わせて使用することができる。例えば、モリブデンの原料としては、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が使用できる。   The raw materials used for the preparation of the composite oxide (2) are not particularly limited, and nitrates, carbonates, acetates, sulfates, ammonium salts, oxides, halides, oxygen acids, etc. of various elements may be used in appropriate combinations. Can do. For example, as a raw material of molybdenum, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, or the like can be used.

複合酸化物(2)の調製方法は特に限定されない。複合酸化物(2)は、例えば、モリブデン含有化合物とD元素および/またはE元素含有化合物とを、水中に溶解または懸濁させて湿式で混合、または粉末どうしを乾式で混合した後、焼成することによって製造することができる。具体的には、各元素含有化合物を湿式で混合した後に蒸発乾固またはろ過し、焼成を実施する方法、各元素の酸化物を擂潰機等を用い、所定の割合で機械的に混合した後、焼成する方法等が例示できる。なかでも、平均粒子径が小さく、大きな表面積を有する複合酸化物を調製できる理由から、各元素含有化合物を湿式で混合する方法が好ましい。   The method for preparing the composite oxide (2) is not particularly limited. The composite oxide (2) is, for example, fired after dissolving or suspending a molybdenum-containing compound and a D element and / or E element-containing compound in water and mixing them in a wet manner, or mixing powders in a dry manner. Can be manufactured. Specifically, each element-containing compound is wet-mixed, then evaporated to dryness or filtered, and fired. The oxide of each element is mechanically mixed at a predetermined ratio using a crusher or the like. Thereafter, a method of firing and the like can be exemplified. Among these, a method of mixing each element-containing compound in a wet manner is preferable because a composite oxide having a small average particle size and a large surface area can be prepared.

焼成の条件は、用いる原料、組成、調製条件によって異なるので一概には言えないが、空気等の酸素含有ガス流通下および/または不活性ガス流通下で、300〜800℃、好ましくは350〜600℃で、0.5時間以上、好ましくは1〜40時間実施する方法が望ましい。焼成後の複合酸化物の構造は、粉末X線回折パターンで確認することができる。このような複合酸化物の構造としては、例えば、Fe(MoO(JCPDS番号:31−642)、CoMoO(JCPDS番号:21−868)等が挙げられる。 The firing conditions vary depending on the raw materials, composition, and preparation conditions to be used, but cannot be generally stated, but are 300 to 800 ° C., preferably 350 to 600, under an oxygen-containing gas flow such as air and / or an inert gas flow. A method of carrying out at 0.5 ° C. for 0.5 hour or longer, preferably 1 to 40 hours is desirable. The structure of the composite oxide after firing can be confirmed by a powder X-ray diffraction pattern. Examples of the structure of such a composite oxide include Fe 2 (MoO 4 ) 3 (JCPDS number: 31-642), CoMoO 4 (JCPDS number: 21-868), and the like.

組成物Bの調製方法は特に限定されないが、例えば、複合酸化物(2)の調製と同様の方法、または複合酸化物(2)をシリカ、アルミナ等の不活性担体に担持させること等により調製できる。   The preparation method of the composition B is not particularly limited. For example, it is prepared by the same method as the preparation of the composite oxide (2) or by supporting the composite oxide (2) on an inert carrier such as silica or alumina. it can.

組成物Bに含まれる複合酸化物(2)の割合は、10〜100質量%が好ましく、製造される触媒の活性および選択性の観点から、50〜100質量%がより好ましい。   The ratio of the composite oxide (2) contained in the composition B is preferably 10 to 100% by mass, and more preferably 50 to 100% by mass from the viewpoint of the activity and selectivity of the produced catalyst.

組成物Bに含まれる複合酸化物(2)以外のものとしては、例えば、D元素やE元素の単独酸化物および/または複合酸化物、D元素とE元素の複合酸化物、モリブデンの単独酸化物等が挙げられる。また、複合酸化物(2)はシリカ、アルミナ等の不活性担体に担持させて組成物Bとしてもよい。   Examples other than the composite oxide (2) contained in the composition B include, for example, a single oxide and / or composite oxide of D element and E element, a composite oxide of D element and E element, and a single oxidation of molybdenum. Thing etc. are mentioned. Further, the composite oxide (2) may be supported on an inert carrier such as silica or alumina to form the composition B.

組成物Bは0.1〜100μmの平均粒子径を有する粉体であることが望ましい。   The composition B is desirably a powder having an average particle size of 0.1 to 100 μm.

本発明において、水性スラリーAと組成物Bを混合する方法は特に限定されないが、水性スラリーAに組成物Bを投入する方法が好ましい。その際、できるだけ均一になるように混合するとメタクロレインの転化率が高く、メタクリル酸の収率の高い触媒が得られるので好ましい。このようにすることで性能の高い触媒が得られる理由は明らかではないが、均一に混合することで平均粒子径が小さく、粒子径が均一な混合物が得られ、混合物中にメタクロレイン酸化反応に有効な組成物(1)と複合酸化物(2)の界面が均一により多く形成されるからと推定している。   In the present invention, a method of mixing the aqueous slurry A and the composition B is not particularly limited, but a method of charging the composition B into the aqueous slurry A is preferable. In that case, it is preferable to mix as uniformly as possible, since the conversion of methacrolein is high and a catalyst with a high yield of methacrylic acid can be obtained. The reason why a catalyst with high performance can be obtained in this way is not clear, but by mixing uniformly, a mixture having a small average particle size and a uniform particle size can be obtained, and a methacrolein oxidation reaction is carried out in the mixture. It is estimated that the interface between the effective composition (1) and the composite oxide (2) is more uniformly formed.

水性スラリーAと組成物Bは、水性スラリーAに含まれるモリブデン原子100質量部に対して、複合酸化物(2)が好ましくは1〜100質量部、より好ましくは3〜50、特に好ましくは5〜30質量部となるような割合で混合する。   In the aqueous slurry A and the composition B, the composite oxide (2) is preferably 1 to 100 parts by mass, more preferably 3 to 50, particularly preferably 5 with respect to 100 parts by mass of molybdenum atoms contained in the aqueous slurry A. It mixes in the ratio which becomes -30 mass parts.

通常、水性スラリーAと組成物Bの混合物は乾燥される。乾燥方法は特に限定されないが、例えば、箱型乾燥機、噴霧乾燥機、スラリードライヤー等を用いて乾燥することができる。   Usually, the mixture of aqueous slurry A and composition B is dried. Although a drying method is not specifically limited, For example, it can dry using a box-type dryer, a spray dryer, a slurry dryer etc.

通常、得られた乾燥物は成形する。成形は、後述する焼成を実施した後に行ってもよいが、焼成前に行うことが好ましい。成形方法は特に限定されないが、例えば、打錠成形、押出成形、造粒、担持等の方法が挙げられる。担持成形する場合の担体としては、例えば、シリカ、アルミナ、シリカ・アルミナ、シリコンカーバイド等の不活性担体が挙げられる。   Usually, the obtained dried product is molded. Molding may be performed after firing described below, but is preferably performed before firing. Although a shaping | molding method is not specifically limited, For example, methods, such as tableting shaping | molding, extrusion molding, granulation, a support | carrier, are mentioned. Examples of the carrier in the case of support molding include inert carriers such as silica, alumina, silica / alumina, and silicon carbide.

成形に際しては、成形物の比表面積、細孔容積および細孔分布を制御したり、機械的強度を高めたりする目的で、例えば、硫酸バリウム、硝酸アンモニウム等の無機塩類、グラファイト等の滑剤、セルロース類、でんぷん、ポリビニルアルコール、ステアリン酸等の有機物、シリカゾル、アルミナ等の水酸化物ゾル、ウィスカー、ガラス繊維、炭素繊維等の添加剤を適宜添加してもよい。   In the molding, for the purpose of controlling the specific surface area, pore volume and pore distribution of the molded product or increasing the mechanical strength, for example, inorganic salts such as barium sulfate and ammonium nitrate, lubricants such as graphite, celluloses, etc. Additives such as organic substances such as starch, polyvinyl alcohol and stearic acid, hydroxide sols such as silica sol and alumina, whiskers, glass fibers and carbon fibers may be added as appropriate.

成形体を焼成する場合、焼成は成形体を反応管に充填する前に行っても、反応管の中で行ってもよい。焼成条件は、用いる触媒の原料、触媒組成、調製条件等によって異なるので一概には言えないが、通常、空気等の酸素含有ガス流通下および/または不活性ガス流通下で300〜500℃、好ましくは300〜450℃で、0.5時間以上、好ましくは1〜40時間行われる。   When the molded body is fired, the firing may be performed before filling the molded body into the reaction tube or in the reaction tube. The firing conditions vary depending on the raw material of the catalyst to be used, the catalyst composition, the preparation conditions, etc., and cannot generally be said, but usually 300 to 500 ° C., preferably under an oxygen-containing gas flow and / or an inert gas flow such as air. Is performed at 300 to 450 ° C. for 0.5 hour or longer, preferably 1 to 40 hours.

以上の方法により本発明のメタクリル酸合成用触媒は製造することができる。しかし、本発明の触媒は前述の方法で製造されたものに限定されず、前記式(1)で表される組成物(1)および前記式(2)で表される複合酸化物(2)を含むものであればよい。本発明の触媒において、複合酸化物(2)の量は、組成物(1)に含まれるモリブデン原子100質量部に対して好ましくは1〜100質量部、より好ましくは3〜50、特に好ましくは5〜30質量部である。   The methacrylic acid synthesis catalyst of the present invention can be produced by the above method. However, the catalyst of the present invention is not limited to the one produced by the method described above, and the composition (1) represented by the formula (1) and the composite oxide (2) represented by the formula (2). As long as it contains. In the catalyst of the present invention, the amount of the composite oxide (2) is preferably 1 to 100 parts by weight, more preferably 3 to 50, particularly preferably 100 parts by weight of molybdenum atoms contained in the composition (1). 5 to 30 parts by mass.

次に、本発明のメタクリル酸合成用触媒を用いてメタクロレインを分子状酸素で気相接触酸化させてメタクリル酸を製造する方法について説明する。触媒に接触させる原料ガスには少なくともメタクロレインと分子状酸素が含まれる。   Next, a method for producing methacrylic acid by subjecting methacrolein to gas phase catalytic oxidation with molecular oxygen using the methacrylic acid synthesis catalyst of the present invention will be described. The source gas brought into contact with the catalyst contains at least methacrolein and molecular oxygen.

原料ガスのメタクロレイン濃度は広い範囲で変えることができるが、好ましくは1〜20容量%、特に好ましくは3〜10容量%である。原料ガスの調製に用いるメタクロレインには、水、低級飽和アルデヒド等の実質的に反応に影響を与えない不純物が少量含まれている場合があるが、このようなメタクロレイン由来の不純物が原料ガスに含まれていてもよい。   The concentration of methacrolein in the raw material gas can be varied within a wide range, but is preferably 1 to 20% by volume, particularly preferably 3 to 10% by volume. The methacrolein used for the preparation of the raw material gas may contain a small amount of impurities that do not substantially affect the reaction, such as water and lower saturated aldehydes. May be included.

原料ガスの分子状酸素濃度はメタクロレインの0.4〜4倍が好ましく、0.5〜3倍が特に好ましい。原料ガスの分子状酸素源には空気を用いるのが工業的に有利であるが、必要に応じて純酸素で富化した空気も使用できる。   The molecular oxygen concentration of the source gas is preferably 0.4 to 4 times, more preferably 0.5 to 3 times that of methacrolein. Although it is industrially advantageous to use air as the molecular oxygen source of the source gas, air enriched with pure oxygen can also be used if necessary.

原料ガスは、窒素、炭酸ガス等の不活性ガス、水蒸気等で希釈されていることが好ましい。   The source gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide, water vapor or the like.

気相接触酸化の反応圧力は常圧〜数気圧である。反応温度は、通常200〜450℃、好ましくは250〜400℃である。原料ガスと触媒の接触時間は通常1.5〜15秒、好ましくは2〜7秒である。   The reaction pressure for gas phase catalytic oxidation is from atmospheric pressure to several atmospheres. The reaction temperature is usually 200 to 450 ° C., preferably 250 to 400 ° C. The contact time between the source gas and the catalyst is usually 1.5 to 15 seconds, preferably 2 to 7 seconds.

以下、本発明を実施例および比較例により説明する。ただし、実施例および比較例中の「部」は質量部を意味する。反応試験分析はガスクロマトグラフィーにより行った。また、原料であるメタクロレインの転化率、生成したメタクリル酸の選択率および収率は以下のように定義される。
メタクロレイン転化率(%)=(B/A)×100
メタクリル酸選択率(%)=(C/B)×100
メタクリル酸単流収率(%)=(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
Hereinafter, the present invention will be described with reference to examples and comparative examples. However, “parts” in Examples and Comparative Examples means parts by mass. Reaction test analysis was performed by gas chromatography. Further, the conversion rate of the raw material methacrolein, the selectivity of the produced methacrylic acid and the yield are defined as follows.
Conversion rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid single stream yield (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.

[実施例1]
(水性スラリーAの調製)
パラモリブデン酸アンモニウム100部を純水200部に溶解し、そこへメタバナジン酸アンモニウム2.8部、85重量%リン酸8.2部を純水30部に溶解した溶液、硝酸銅1.1部を純水30部に溶解した溶液および硝酸鉄3.8部を純水10部に溶解した溶液を順次加え、これを攪拌しながら90℃まで加熱し、液温を90℃に保ちつつ5時間加熱攪拌した後に硝酸セシウム6.4部を純水100部に溶解した溶液をこれに加え、組成物(1)の前駆体を含む水性スラリーAを得た。このようにして調製したスラリーの粒度分布をレーザー回折式粒度分布装置(セイシン企業社製PRO−7000S)を用いて測定したところ平均粒径は24.7μmだった。また、水性スラリーAに含まれるアンモニア量をケールダール法で求めたところ、モリブデン原子100質量部に対して15.8部であった。
[Example 1]
(Preparation of aqueous slurry A)
A solution in which 100 parts of ammonium paramolybdate is dissolved in 200 parts of pure water and 2.8 parts of ammonium metavanadate and 8.2 parts of 85 wt% phosphoric acid are dissolved in 30 parts of pure water, 1.1 parts of copper nitrate A solution prepared by dissolving 30 parts of pure water and a solution of 3.8 parts of iron nitrate in 10 parts of pure water are sequentially added, heated to 90 ° C. with stirring, and maintained for 5 hours while maintaining the liquid temperature at 90 ° C. After heating and stirring, a solution obtained by dissolving 6.4 parts of cesium nitrate in 100 parts of pure water was added thereto to obtain an aqueous slurry A containing the precursor of the composition (1). The particle size distribution of the slurry thus prepared was measured using a laser diffraction particle size distribution device (PRO-7000S manufactured by Seishin Enterprise Co., Ltd.), and the average particle size was 24.7 μm. Moreover, when the ammonia amount contained in the aqueous slurry A was determined by the Kjeldahl method, it was 15.8 parts with respect to 100 parts by mass of molybdenum atoms.

(組成物Bの調製)
パラモリブデン酸アンモニウム100部を純水300部に溶解し、硝酸コバルト164.8部を純水200部に溶解した溶液、硝酸セシウム11.0部を純水30部に溶解した溶液を加熱攪拌下で加え、これを攪拌しながら90℃まで加熱し、液温を90℃に保ちつつ2時間攪拌した後に混合液を加熱攪拌しながら蒸発乾固した。得られた固形物を130℃で乾燥させた後に粉砕し、得られた粉体を500℃で3時間焼成した。このようにして得られた組成物Bの酸素原子を除く組成はMoCoCs0.1であった。また、組成物Bは、粉末X線構造解析よりCoMoOで表される複合酸化物構造を有し、残余は主にCsOであることを確認した。また、複合酸化物(2)を88.6質量%含む組成物Bの平均粒径は4.2μmだった。
(Preparation of composition B)
A solution prepared by dissolving 100 parts of ammonium paramolybdate in 300 parts of pure water, 164.8 parts of cobalt nitrate in 200 parts of pure water, and a solution of 11.0 parts of cesium nitrate in 30 parts of pure water are heated and stirred. The mixture was heated to 90 ° C. with stirring, stirred for 2 hours while maintaining the liquid temperature at 90 ° C., and then the mixture was evaporated to dryness while stirring with heating. The obtained solid was dried at 130 ° C. and pulverized, and the obtained powder was calcined at 500 ° C. for 3 hours. The composition excluding oxygen atoms in the composition B thus obtained was Mo 1 Co 1 Cs 0.1 . Composition B was confirmed by powder X-ray structural analysis to have a complex oxide structure represented by CoMoO 4 and the remainder being mainly Cs 2 O. Moreover, the average particle diameter of the composition B containing 88.6% by mass of the composite oxide (2) was 4.2 μm.

(混合工程)
上記の方法で製造した複合酸化物(2)88.6質量%を含む組成物B14.1部を、上記の方法で製造した組成物(1)前駆体を含む水性スラリーAに添加した。このときの組成物Bに含まれる複合酸化物(2)の量は、水性スラリーAに含まれるモリブデン原子100部に対して23部であった。
(Mixing process)
14.1 parts of the composition B containing 88.6% by mass of the composite oxide (2) produced by the above method was added to the aqueous slurry A containing the composition (1) precursor produced by the above method. The amount of the composite oxide (2) contained in the composition B at this time was 23 parts relative to 100 parts of molybdenum atoms contained in the aqueous slurry A.

得られた液状物を加熱攪拌しながら蒸発乾固した後、130℃で16時間乾燥し、得られた乾燥物を粉砕した。得られた粉体100部に対してグラファイト3部を添加し、続いて打錠成形機により、外形5mm、内径2mm、長さ5mmのリング状に成形した。   The obtained liquid was evaporated to dryness while stirring with heating, and then dried at 130 ° C. for 16 hours, and the obtained dried product was pulverized. 3 parts of graphite was added to 100 parts of the obtained powder, and then formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm by a tableting machine.

得られた成形物を空気流通下に380℃で5時間焼成して触媒を得た。触媒中に含まれる組成物(1)の酸素原子を除く組成はMo121.50.5Cu0.1Fe0.2Cs、複合酸化物(2)の酸素原子を除く組成はMoCoであった。この触媒には、組成物(1)中のモリブデン原子100部に対して23部の複合酸化物(2)が含まれていた。 The obtained molded product was calcined at 380 ° C. for 5 hours under air flow to obtain a catalyst. The composition excluding oxygen atoms of the composition (1) contained in the catalyst is Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1 , and the composition excluding oxygen atoms of the composite oxide (2). Was Mo 1 Co 1 . This catalyst contained 23 parts of complex oxide (2) with respect to 100 parts of molybdenum atoms in composition (1).

この触媒を固定床管型反応管に充填し、メタクロレイン5%、酸素10%、水蒸気30%、窒素55%(容量%)の混合ガスを反応温度290℃、接触時間3.6秒で通じた。反応結果を表1に示した。   This catalyst is filled into a fixed bed tube type reaction tube, and a mixed gas of 5% methacrolein, 10% oxygen, 30% water vapor, 55% nitrogen (volume%) is passed at a reaction temperature of 290 ° C. and a contact time of 3.6 seconds. It was. The reaction results are shown in Table 1.

[実施例2]
実施例1において、組成物Bの量を14.1部から28.8部に変更した以外は実施例1と同様に触媒を製造し、メタクロレインの酸化反応を行った。このときの組成物Bに含まれる複合酸化物(2)の量は、水性スラリーAに含まれるモリブデン原子100部に対して47部であった。得られた触媒中に含まれる組成物(1)の酸素原子を除く組成はMo121.50.5Cu0.1Fe0.2Cs、複合酸化物(2)の酸素原子を除く組成はMoCoであった。この触媒には、組成物(1)中のモリブデン原子100部に対して47部の複合酸化物(2)が含まれていた。反応結果を表1に示した。
[Example 2]
In Example 1, a catalyst was produced in the same manner as in Example 1 except that the amount of the composition B was changed from 14.1 parts to 28.8 parts, and methacrolein was oxidized. The amount of the composite oxide (2) contained in the composition B at this time was 47 parts with respect to 100 parts of molybdenum atoms contained in the aqueous slurry A. The composition excluding oxygen atoms of the composition (1) contained in the obtained catalyst is Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1 , oxygen atoms of the composite oxide (2) The composition excluding was Mo 1 Co 1 . This catalyst contained 47 parts of complex oxide (2) with respect to 100 parts of molybdenum atoms in composition (1). The reaction results are shown in Table 1.

[実施例3]
実施例1において、組成物Bの量を14.1部から2.5部に変更した以外は実施例1と同様に触媒を製造し、メタクロレインの酸化反応を行った。このときの組成物Bに含まれる複合酸化物(2)の量は、水性スラリーAに含まれるモリブデン原子100部に対して4部であった。得られた触媒中に含まれる組成物(1)の酸素原子を除く組成はMo121.50.5Cu0.1Fe0.2Cs、複合酸化物(2)の酸素原子を除く組成はMoCoであった。この触媒には、組成物(1)中のモリブデン原子100部に対して4部の複合酸化物(2)が含まれていた。反応結果を表1に示した。
[Example 3]
In Example 1, a catalyst was produced in the same manner as in Example 1 except that the amount of the composition B was changed from 14.1 parts to 2.5 parts, and an oxidation reaction of methacrolein was performed. The amount of the composite oxide (2) contained in the composition B at this time was 4 parts with respect to 100 parts of molybdenum atoms contained in the aqueous slurry A. The composition excluding oxygen atoms of the composition (1) contained in the obtained catalyst is Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1 , oxygen atoms of the composite oxide (2) The composition excluding was Mo 1 Co 1 . This catalyst contained 4 parts of the composite oxide (2) with respect to 100 parts of molybdenum atoms in the composition (1). The reaction results are shown in Table 1.

[実施例4]
実施例1において、組成物Bの量を14.1部から0.43部に変更した以外は実施例1と同様に触媒を製造し、メタクロレインの酸化反応を行った。このときの組成物Bに含まれる複合酸化物(2)の量は、水性スラリーAに含まれるモリブデン原子100部に対して0.7部であった。得られた触媒中に含まれる組成物(1)の酸素原子を除く組成はMo121.50.5Cu0.1Fe0.2Cs、複合酸化物(2)の酸素原子を除く組成はMoCoであった。この触媒には、組成物(1)中のモリブデン原子100部に対して0.7部の複合酸化物(2)が含まれていた。反応結果を表1に示した。
[Example 4]
In Example 1, a catalyst was produced in the same manner as in Example 1 except that the amount of the composition B was changed from 14.1 parts to 0.43 parts, and an oxidation reaction of methacrolein was performed. The amount of the composite oxide (2) contained in the composition B at this time was 0.7 parts with respect to 100 parts of molybdenum atoms contained in the aqueous slurry A. The composition excluding oxygen atoms of the composition (1) contained in the obtained catalyst is Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1 , oxygen atoms of the composite oxide (2) The composition excluding was Mo 1 Co 1 . This catalyst contained 0.7 part of the composite oxide (2) with respect to 100 parts of molybdenum atoms in the composition (1). The reaction results are shown in Table 1.

[実施例5]
(水性スラリーA'の調製)
実施例1において、組成物(1)前駆体スラリー調製時に29質量%アンモニア水97.1部を加えた以外は実施例1と同様に組成物(1')前駆体を含む水性スラリーA'を調製した。水性スラリーA'中にはモリブデン原子100質量部に対して31.1部のアンモニアが含まれていた。また、水性スラリーA'の平均粒径は28.6μmだった。
[Example 5]
(Preparation of aqueous slurry A ′)
In Example 1, an aqueous slurry A ′ containing the composition (1 ′) precursor was added in the same manner as in Example 1 except that 97.1 parts of 29% by mass ammonia water was added during preparation of the composition (1) precursor slurry. Prepared. The aqueous slurry A ′ contained 31.1 parts of ammonia with respect to 100 parts by mass of molybdenum atoms. The average particle size of the aqueous slurry A ′ was 28.6 μm.

(混合工程)
実施例1において、水性スラリーAを組成物(1')前駆体を含む水性スラリーA'に変更した以外は実施例1と同様にして触媒を製造し、メタクロレインの酸化反応を行った。このときの組成物Bに含まれる複合酸化物(2)の量は、水性スラリーA'に含まれるモリブデン原子100部に対して23部であった。得られた触媒中に含まれる組成物(1')の酸素原子を除く組成はMo121.50.5Cu0.1Fe0.2Cs、複合酸化物(2)の酸素原子を除く組成はMoCoであった。この触媒には、組成物(1')中のモリブデン原子100部に対して23部の複合酸化物(2)が含まれていた。反応結果を表1に示した。
(Mixing process)
In Example 1, a catalyst was produced in the same manner as in Example 1 except that the aqueous slurry A was changed to the aqueous slurry A ′ containing the composition (1 ′) precursor, and methacrolein was oxidized. The amount of the composite oxide (2) contained in the composition B at this time was 23 parts with respect to 100 parts of molybdenum atoms contained in the aqueous slurry A ′. The composition excluding oxygen atoms of the composition (1 ′) contained in the obtained catalyst was Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1 , oxygen of the composite oxide (2). The composition excluding atoms was Mo 1 Co 1 . This catalyst contained 23 parts of the composite oxide (2) with respect to 100 parts of molybdenum atoms in the composition (1 ′). The reaction results are shown in Table 1.

[実施例6]
(水性スラリーA''の調製)
実施例1おいて得られた組成物(1)前駆体を含む水性スラリーAを加熱攪拌しながら蒸発乾固した。得られた固形物を130℃で16時間乾燥した後に粉砕し、380℃で5時間焼成して組成物(1'')を得た。このようにして得られた組成物(1'')全量を純水200部に投入し、水性スラリーA''を得た。水性スラリーA''中にはモリブデン100質量部に対して0.04部のアンモニアが含まれていた。水性スラリーA''の平均粒径は22.5μmだった。
[Example 6]
(Preparation of aqueous slurry A ″)
The aqueous slurry A containing the composition (1) precursor obtained in Example 1 was evaporated to dryness while heating and stirring. The obtained solid was dried at 130 ° C. for 16 hours, pulverized, and calcined at 380 ° C. for 5 hours to obtain a composition (1 ″). The total amount of the composition (1 ″) thus obtained was put into 200 parts of pure water to obtain an aqueous slurry A ″. The aqueous slurry A ″ contained 0.04 part of ammonia with respect to 100 parts by weight of molybdenum. The average particle size of the aqueous slurry A ″ was 22.5 μm.

(混合工程)
実施例1において、水性スラリーAを組成物(1'')を含む水性スラリーA''に変更した以外は実施例1と同様にして触媒を製造し、メタクロレインの酸化反応を行った。このときの組成物Bに含まれる複合酸化物(2)の量は、水性スラリーA''に含まれるモリブデン原子100部に対して23部であった。得られた触媒中に含まれる組成物(1'')の酸素原子を除く組成はMo121.50.5Cu0.1Fe0.2Cs、複合酸化物(2)の酸素原子を除く組成はMoCoであった。この触媒には、組成物(1'')中のモリブデン原子100部に対して23部の複合酸化物(2)が含まれていた。反応結果を表1に示した。
(Mixing process)
In Example 1, except that the aqueous slurry A was changed to the aqueous slurry A ″ containing the composition (1 ″), a catalyst was produced in the same manner as in Example 1, and an oxidation reaction of methacrolein was performed. The amount of the composite oxide (2) contained in the composition B at this time was 23 parts with respect to 100 parts of molybdenum atoms contained in the aqueous slurry A ″. The composition excluding oxygen atoms of the composition (1 ″) contained in the obtained catalyst was Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1 , composite oxide (2). The composition excluding oxygen atoms was Mo 1 Co 1 . This catalyst contained 23 parts of complex oxide (2) with respect to 100 parts of molybdenum atoms in the composition (1 ″). The reaction results are shown in Table 1.

[実施例7]
(組成物B'の調製)
パラモリブデン酸アンモニウム100部を純水300部に溶解し、硝酸ニッケル164.7部を純水200部に溶解した溶液を加熱攪拌下で加え、これを攪拌しながら90℃まで加熱し、液温を90℃に保ちつつ2時間攪拌した後に混合液を加熱攪拌しながら蒸発乾固した。得られた固形物を130℃で乾燥させた後に粉砕し、得られた粉体を500℃で3時間焼成した。このようにして得られた組成物B'の酸素原子を除く組成はMoNiであった。また、組成物B'は、粉末X線構造解析よりNiMoOで表される複合酸化物構造を有することを確認した。また、複合酸化物(2')を100質量%含む組成物B'の平均粒径は3.7μmだった。
[Example 7]
(Preparation of composition B ′)
A solution prepared by dissolving 100 parts of ammonium paramolybdate in 300 parts of pure water and 164.7 parts of nickel nitrate in 200 parts of pure water was added with heating and stirring, and this was heated to 90 ° C. while stirring. The mixture was stirred for 2 hours while maintaining at 90 ° C., and then the mixture was evaporated to dryness with heating and stirring. The obtained solid was dried at 130 ° C. and pulverized, and the obtained powder was calcined at 500 ° C. for 3 hours. The composition excluding oxygen atoms of the composition B ′ thus obtained was Mo 1 Ni 1 . The compositions B 'was confirmed to have a composite oxide structure represented by NiMoO 4 from the powder X-ray structure analysis. Further, the average particle size of the composition B ′ containing 100% by mass of the composite oxide (2 ′) was 3.7 μm.

(混合工程)
実施例1において、組成物Bを複合酸化物(2')だけからなる組成物B'に変更した以外は実施例1と同様にして触媒を製造し、メタクロレインの酸化反応を行った。このときの組成物B'に含まれる複合酸化物(2')の量は、水性スラリーAに含まれるモリブデン原子100部に対して18部であった。得られた触媒中に含まれる組成物(1)の酸素原子を除く組成はMo121.50.5Cu0.1Fe0.2Cs、複合酸化物(2')の酸素原子を除く組成はMoNiであった。この触媒には、組成物(1)中のモリブデン原子100部に対して18部の複合酸化物(2')が含まれていた。反応結果を表1に示した。
(Mixing process)
A catalyst was produced in the same manner as in Example 1 except that the composition B was changed to the composition B ′ composed only of the composite oxide (2 ′) in Example 1, and an oxidation reaction of methacrolein was performed. The amount of the composite oxide (2 ′) contained in the composition B ′ at this time was 18 parts with respect to 100 parts of molybdenum atoms contained in the aqueous slurry A. The composition excluding oxygen atoms of the composition (1) contained in the obtained catalyst is Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1 , oxygen of the composite oxide (2 ′). The composition excluding atoms was Mo 1 Ni 1 . This catalyst contained 18 parts of the composite oxide (2 ′) with respect to 100 parts of molybdenum atoms in the composition (1). The reaction results are shown in Table 1.

[実施例8]
(組成物B''の調製)
パラモリブデン酸アンモニウム100部を純水300部に溶解し、硝酸鉄228.8部を純水200部に溶解した溶液を加熱攪拌下で加え、これを攪拌しながら90℃まで加熱し、液温を90℃に保ちつつ2時間攪拌した後に混合液を加熱攪拌しながら蒸発乾固した。得られた固形物を130℃で乾燥させた後に粉砕し、得られた粉体を500℃で3時間焼成した。このようにして得られた組成物B''の酸素原子を除く組成はMoFeであった。また、組成物B''は、粉末X線構造解析よりFe(MoOで表される複合酸化物構造を有し、残余は主にFeであることを確認した。また、複合酸化物(2'')を88質量%含む組成物B''の平均粒径は4.5μmだった。
[Example 8]
(Preparation of composition B '')
A solution prepared by dissolving 100 parts of ammonium paramolybdate in 300 parts of pure water and 228.8 parts of iron nitrate in 200 parts of pure water was added with heating and stirring, and this was heated to 90 ° C. while stirring. The mixture was stirred for 2 hours while maintaining at 90 ° C., and then the mixture was evaporated to dryness with heating and stirring. The obtained solid was dried at 130 ° C. and pulverized, and the obtained powder was calcined at 500 ° C. for 3 hours. The composition excluding oxygen atoms of the composition B ″ thus obtained was Mo 1 Fe 1 . Composition B '' was confirmed by powder X-ray structural analysis to have a complex oxide structure represented by Fe 2 (MoO 4 ) 3 with the remainder being mainly Fe 2 O 3 . Further, the average particle size of the composition B ″ containing 88% by mass of the composite oxide (2 ″) was 4.5 μm.

(混合工程)
実施例1において、組成物Bを複合酸化物(2'')88質量%を含む組成物B''に変更した以外は実施例1と同様にして触媒を製造し、メタクロレインの酸化反応を行った。このときの組成物B''に含まれる複合酸化物(2'')の量は、水性スラリーAに含まれるモリブデン原子100部に対して14部であった。得られた触媒中に含まれる組成物(1)の酸素原子を除く組成はMo121.50.5Cu0.1Fe0.2Cs、複合酸化物(2'')の酸素原子を除く組成はMoFe0.67であった。この触媒には、組成物(1)中のモリブデン原子100部に対して14部の複合酸化物(2'')が含まれていた。反応結果を表1に示した。
(Mixing process)
A catalyst was produced in the same manner as in Example 1 except that the composition B was changed to the composition B ″ containing 88% by mass of the composite oxide (2 ″) in Example 1, and the oxidation reaction of methacrolein was performed. went. The amount of the composite oxide (2 ″) contained in the composition B ″ at this time was 14 parts with respect to 100 parts of molybdenum atoms contained in the aqueous slurry A. The composition excluding oxygen atoms in the composition (1) contained in the obtained catalyst was Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1 , composite oxide (2 ″). The composition excluding oxygen atoms was Mo 1 Fe 0.67 . This catalyst contained 14 parts of complex oxide (2 ″) per 100 parts of molybdenum atoms in composition (1). The reaction results are shown in Table 1.

[比較例1]
実施例1において、組成物Bを用いずに水性スラリーAだけを用いた以外は実施例1と同様にして触媒を製造し、メタクロレインの酸化反応を行った。得られた触媒中に含まれる組成物(1)の酸素原子を除く組成はMo121.50.5Cu0.1Fe0.2Csであり、前記式(2)で表される複合酸化物(2)は含まれていなかった。反応結果を表1に示した。
[Comparative Example 1]
In Example 1, a catalyst was produced in the same manner as in Example 1 except that only the aqueous slurry A was used without using the composition B, and an oxidation reaction of methacrolein was performed. The composition excluding oxygen atoms in the composition (1) contained in the obtained catalyst is Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1 and is represented by the above formula (2). The composite oxide (2) to be produced was not contained. The reaction results are shown in Table 1.

[比較例2]
実施例1において得られた組成物(1)前駆体を含む水性スラリーAを加熱攪拌しながら蒸発乾固した。得られた固形物を130℃で16時間乾燥した後に粉砕して、組成物(1)前駆体を含む乾燥物を得た。得られた乾燥物中にはモリブデン原子100質量部に対して12.4部のアンモニアが含まれていた。乾燥物を純水に分散した後、粒度分布を測定したところ平均粒径は24.7μmだった。
[Comparative Example 2]
The aqueous slurry A containing the composition (1) precursor obtained in Example 1 was evaporated to dryness while heating and stirring. The obtained solid was dried at 130 ° C. for 16 hours and then pulverized to obtain a dried product containing the composition (1) precursor. The obtained dried product contained 12.4 parts of ammonia with respect to 100 parts by mass of molybdenum atoms. After the dried product was dispersed in pure water, the particle size distribution was measured. The average particle size was 24.7 μm.

上記方法で製造した組成物(1)を含む乾燥物全量と、複合酸化物(2)だけからなる組成物B12.5部を、らい潰機を用いて乾式混合した後、実施例1と同様に成形、焼成を行って触媒を製造し、メタクロレイン酸化反応を行った。得られた触媒中に含まれる組成物(1)の酸素原子を除く組成はMo121.50.5Cu0.1Fe0.2Csであり、複合酸化物(2)の酸素原子を除く組成はMoCoであった。この触媒には、組成物(1)中のモリブデン原子100部に対して23部の複合酸化物(2)が含まれていた。反応結果を表1に示した。 After dry-mixing the total amount of the dry matter containing the composition (1) produced by the above method and 12.5 parts of the composition B consisting only of the composite oxide (2) using a cracker, the same as in Example 1 Then, the catalyst was produced by molding and firing, and methacrolein oxidation reaction was performed. The composition excluding oxygen atoms in the composition (1) contained in the obtained catalyst is Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1 , and the composition of the composite oxide (2) The composition excluding oxygen atoms was Mo 1 Co 1 . This catalyst contained 23 parts of complex oxide (2) with respect to 100 parts of molybdenum atoms in composition (1). The reaction results are shown in Table 1.

[比較例3]
実施例1における組成物Bの製造工程で、乾燥後に得られた粉末を500℃、3時間の焼成を実施せず、組成物B'''を得た。このようにして得られた組成物B'''12.5部を組成物(1)前駆体を含む水性スラリーAに添加した以外は実施例1と同様に触媒を製造し、メタクロレインの酸化反応を行った。このときの組成物B'''には複合酸化物(2''')は含まれていなかった。得られた触媒中に含まれる組成物(1)の酸素原子を除く組成はMo121.50.5Cu0.1Fe0.2Csであり、前記式(2)で表される複合酸化物(2)は含まれていなかった。反応結果を表1に示した。
[Comparative Example 3]
In the production process of the composition B in Example 1, the powder obtained after drying was not fired at 500 ° C. for 3 hours to obtain a composition B ′ ″. A catalyst was produced in the same manner as in Example 1 except that 12.5 parts of the composition B ′ ″ thus obtained was added to the aqueous slurry A containing the composition (1) precursor, and oxidation of methacrolein was performed. Reaction was performed. At this time, the composite oxide (2 ′ ″) was not contained in the composition B ′ ″. The composition excluding oxygen atoms in the composition (1) contained in the obtained catalyst is Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1 and is represented by the above formula (2). The composite oxide (2) to be produced was not contained. The reaction results are shown in Table 1.

[実施例9]
(水性スラリーA'''の調製)
純水400部に三酸化モリブデン100部、85質量%リン酸7.3部、五酸化バナジウム4.7部、酸化銅0.9部、酸化鉄0.2部を加え、還流下で5時間攪拌した。得られた混合液を50℃まで冷却した後、29質量%アンモニア水37.4部を滴下し、15分間攪拌した。次いで、硝酸セシウム9.0部を純水30部に溶解した溶液を滴下し、15分間攪拌し、組成物(1''')前駆体を含む水性スラリーA'''を得た。水性スラリーA'''の平均粒径は12.7μmだった。また、水性スラリーA'''には、スラリー中のモリブデン原子100質量部に対して16.3部のアンモニアが含まれていた。
[Example 9]
(Preparation of aqueous slurry A ''')
To 400 parts of pure water, 100 parts of molybdenum trioxide, 7.3 parts of 85% by weight phosphoric acid, 4.7 parts of vanadium pentoxide, 0.9 parts of copper oxide and 0.2 parts of iron oxide are added and refluxed for 5 hours. Stir. After cooling the obtained liquid mixture to 50 degreeC, 37.4 parts of 29 mass% ammonia water was dripped, and it stirred for 15 minutes. Next, a solution obtained by dissolving 9.0 parts of cesium nitrate in 30 parts of pure water was added dropwise and stirred for 15 minutes to obtain an aqueous slurry A ′ ″ containing the composition (1 ′ ″) precursor. The average particle size of the aqueous slurry A ′ ″ was 12.7 μm. The aqueous slurry A ′ ″ contained 16.3 parts of ammonia with respect to 100 parts by mass of molybdenum atoms in the slurry.

(組成物B''''の調製)
パラモリブデン酸アンモニウム100部を純水300部に溶解し、硝酸ニッケル164.7部を純水200部に溶解した溶液、三酸化アンチモン2.48部を加熱攪拌下で加え、これを攪拌しながら90℃まで加熱し、液温を90℃に保ちつつ2時間攪拌した後に混合液を加熱攪拌しながら蒸発乾固した。得られた固形物を130℃で乾燥させた後に粉砕し、得られた粉体を500℃で3時間焼成した。このようにして得られた組成物B''''の酸素原子を除く組成はMoNiSb0.03であった。また、組成物B''''は、粉末X線構造解析よりNiMoOで表される複合酸化物構造を有し、残余はSbであることを確認した。また、複合酸化物(2'''')を95.7質量%含む組成物B''''の平均粒径は4.1μmだった。
(Preparation of composition B ″ ″)
A solution prepared by dissolving 100 parts of ammonium paramolybdate in 300 parts of pure water, 164.7 parts of nickel nitrate in 200 parts of pure water, and 2.48 parts of antimony trioxide are added with heating and stirring. The mixture was heated to 90 ° C. and stirred for 2 hours while maintaining the liquid temperature at 90 ° C., and then the mixture was evaporated to dryness while heating and stirring. The obtained solid was dried at 130 ° C. and pulverized, and the obtained powder was calcined at 500 ° C. for 3 hours. The composition excluding oxygen atoms of the composition B ″ ″ thus obtained was Mo 1 Ni 1 Sb 0.03 . In addition, it was confirmed that the composition B ″ ″ had a composite oxide structure represented by NiMoO 4 from the powder X-ray structural analysis, and the remainder was Sb 2 O 5 . In addition, the average particle size of the composition B ″ ″ containing 95.7% by mass of the composite oxide (2 ″ ″) was 4.1 μm.

(混合工程)
実施例1において、水性スラリーAを組成物(1''')前駆体を含む水性スラリーA'''に変更し、組成物B14.1部を組成物B''''12.5部に変更して混合を実施した以外は実施例1と同様にして触媒を製造し、メタクロレインの酸化反応を行った。得られた触媒中に含まれる組成物(1''')の酸素原子を除く組成はMo121.10.9Cu0.2Fe0.05Cs0.8であり、複合酸化物(2'''')の酸素原子を除く組成はMoNiであった。この触媒には、組成物(1''')中のモリブデン原子100部に対して18部の複合酸化物(2'''')が含まれていた。反応結果を表1に示した。
(Mixing process)
In Example 1, the aqueous slurry A was changed to an aqueous slurry A ′ ″ containing the composition (1 ′ ″) precursor, and 14.1 parts of composition B was changed to 12.5 parts of composition B ″ ″. A catalyst was produced in the same manner as in Example 1 except that the mixing was carried out and the methacrolein was oxidized. The composition excluding oxygen atoms in the composition (1 ′ ″) contained in the obtained catalyst is Mo 12 P 1.1 V 0.9 Cu 0.2 Fe 0.05 Cs 0.8 , and is a composite oxidation The composition excluding oxygen atoms of the product (2 ″ ″) was Mo 1 Ni 1 . This catalyst contained 18 parts of complex oxide (2 ″ ″) per 100 parts of molybdenum atoms in the composition (1 ″ ′). The reaction results are shown in Table 1.

[比較例4]
実施例9において、組成物B''''を用いずに水性スラリーA'''だけを用いた以外は実施例9と同様にして触媒を製造し、メタクロレインの酸化反応を行った。得られた触媒中に含まれる組成物(1''')の酸素原子を除く組成はMo121.10.9Cu0.2Fe0.05Cs0.8であり、前記式(2)で表される複合酸化物(2)は含まれていなかった。反応結果を表1に示した。

Figure 2005058909
[Comparative Example 4]
In Example 9, a catalyst was produced in the same manner as in Example 9 except that only the aqueous slurry A ′ ″ was used without using the composition B ″ ″, and an oxidation reaction of methacrolein was performed. The composition excluding oxygen atoms in the composition (1 ′ ″) contained in the obtained catalyst is Mo 12 P 1.1 V 0.9 Cu 0.2 Fe 0.05 Cs 0.8 , The composite oxide (2) represented by (2) was not included. The reaction results are shown in Table 1.
Figure 2005058909

Claims (7)

式(1)で表される組成物(1)および/またはその前駆体を含む水性スラリーAと、式(2)で表される複合酸化物(2)を含む組成物Bとを混合する工程を含むメタクリル酸合成用触媒の製造方法。
Mo (1)
(式(1)中、Mo、PおよびOはそれぞれモリブデン、リンおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれる少なくとも1種の元素を表し、Yは鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれる少なくとも1種の元素を表す。ただし、a、b、c、dおよびeは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦6、0≦d≦3であり、eは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
Mo (2)
(式(2)中、MoおよびOはそれぞれモリブデンおよび酸素を表し、Dは鉄、コバルト、ニッケル、銅、クロム、亜鉛、ルテニウム、ロジウム、銀、カドミニウム、テルル、レニウム、セリウムおよびランタンからなる群より選ばれる少なくとも1種の元素を表し、Eはカリウム、ルビジウム、セシウム、タリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、マンガン、ジルコニウム、ニオブ、タンタル、タングステン、アルミニウム、ケイ素、リン、ガリウム、ゲルマニウム、ヒ素、スズ、アンチモンおよびビスマスからなる群より選ばれる少なくとも1種の元素を表す。ただし、f、g、hおよびiは各元素の原子比を表し、f=1のとき、0.1≦g≦10、0≦h≦5であり、iは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
A step of mixing the aqueous slurry A containing the composition (1) represented by the formula (1) and / or its precursor and the composition B containing the composite oxide (2) represented by the formula (2). A process for producing a catalyst for synthesizing methacrylic acid.
Mo a P b X c Y d O e (1)
(In the formula (1), Mo, P and O represent molybdenum, phosphorus and oxygen, respectively, X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and Y represents iron, cobalt , Nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium, tantalum Represents at least one element selected from the group consisting of zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, where a, b, c, d and e represent the atomic ratio of each element, and a = 12: 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 6, 0 ≦ d ≦ 3 Ri, e is an atomic ratio of oxygen required to satisfy the atomic ratio of the respective components.)
Mo f D g E h O i (2)
(In the formula (2), Mo and O represent molybdenum and oxygen, respectively, and D represents a group consisting of iron, cobalt, nickel, copper, chromium, zinc, ruthenium, rhodium, silver, cadmium, tellurium, rhenium, cerium and lanthanum. E represents at least one element selected from the group consisting of potassium, rubidium, cesium, thallium, magnesium, calcium, strontium, barium, titanium, vanadium, manganese, zirconium, niobium, tantalum, tungsten, aluminum, silicon, phosphorus, gallium , Represents at least one element selected from the group consisting of germanium, arsenic, tin, antimony and bismuth, where f, g, h and i represent the atomic ratio of each element, and when f = 1, 0. 1 ≦ g ≦ 10, 0 ≦ h ≦ 5, i represents each of the above components An atomic ratio of oxygen required to satisfy the atomic ratio.)
前記水性スラリーAに含まれるアンモニアおよびアンモニウムイオンの合計質量が、水性スラリーAに含まれるモリブデン原子100質量部に対して0.1〜100質量部である請求項1記載のメタクリル酸合成用触媒の製造方法。   The catalyst for synthesizing methacrylic acid according to claim 1, wherein the total mass of ammonia and ammonium ions contained in the aqueous slurry A is 0.1 to 100 parts by mass with respect to 100 parts by mass of molybdenum atoms contained in the aqueous slurry A. Production method. 前記組成物Bに含まれる前記複合酸化物(2)の質量が、前記水性スラリーA中に含まれるモリブデン原子100質量部に対して1〜100質量部である請求項1または2に記載のメタクリル酸合成用触媒の製造方法。   The methacryl of Claim 1 or 2 whose mass of the said complex oxide (2) contained in the said composition B is 1-100 mass parts with respect to 100 mass parts of molybdenum atoms contained in the said aqueous slurry A. A method for producing a catalyst for acid synthesis. 請求項1から3いずれかに記載の方法で製造されたことを特徴とするメタクリル酸合成用触媒。   A catalyst for synthesizing methacrylic acid produced by the method according to any one of claims 1 to 3. 前記式(1)で表される組成物(1)および前記式(2)で表される複合酸化物(2)を含むメタクリル酸合成用触媒。   A catalyst for synthesizing methacrylic acid comprising the composition (1) represented by the formula (1) and the composite oxide (2) represented by the formula (2). 前記組成物(1)に含まれるモリブデン原子100質量部に対して前記式(2)で表される複合酸化物(2)が1〜100質量部である請求項5記載のメタクリル酸合成用触媒。   The catalyst for synthesizing methacrylic acid according to claim 5, wherein the composite oxide (2) represented by the formula (2) is 1 to 100 parts by mass with respect to 100 parts by mass of molybdenum atoms contained in the composition (1). . メタクロレインを分子状酸素で気相接触酸化するメタクリル酸の製造方法において、請求項4から6いずれかに記載のメタクリル酸合成用触媒を用いることを特徴とするメタクリル酸の製造方法。

A method for producing methacrylic acid, comprising using the catalyst for synthesizing methacrylic acid according to any one of claims 4 to 6 in a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen.

JP2003292381A 2003-08-12 2003-08-12 Production method for catalyst for synthesizing methacrylic acid Pending JP2005058909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292381A JP2005058909A (en) 2003-08-12 2003-08-12 Production method for catalyst for synthesizing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292381A JP2005058909A (en) 2003-08-12 2003-08-12 Production method for catalyst for synthesizing methacrylic acid

Publications (1)

Publication Number Publication Date
JP2005058909A true JP2005058909A (en) 2005-03-10

Family

ID=34369750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292381A Pending JP2005058909A (en) 2003-08-12 2003-08-12 Production method for catalyst for synthesizing methacrylic acid

Country Status (1)

Country Link
JP (1) JP2005058909A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301470A (en) * 2006-05-11 2007-11-22 Asahi Kasei Chemicals Corp Improved catalyst
JP2008062231A (en) * 2006-09-07 2008-03-21 Rohm & Haas Co Activated mixed metal oxide oxidation catalyst
JP2009190984A (en) * 2008-02-12 2009-08-27 Mitsubishi Rayon Co Ltd Method for producing methacrylic acid
JP2011072909A (en) * 2009-09-30 2011-04-14 Sumitomo Chemical Co Ltd Method for producing complex oxide catalyst
US8017547B2 (en) 2005-05-12 2011-09-13 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
US8716523B2 (en) 2005-03-29 2014-05-06 Nippon Kayaku Kabushiki Kaisha Catalyst for use in production of methacrylic acid and method for manufacturing the same
JP2016165706A (en) * 2015-03-06 2016-09-15 日清紡ホールディングス株式会社 Heteropolyacid-based catalyst, production method of the catalyst, and electrode and battery obtained by using the catalyst
WO2018181544A1 (en) * 2017-03-31 2018-10-04 三菱ケミカル株式会社 Catalyst for producing unsaturated carboxylic acid, method for producing unsaturated carboxylic acid, and method for producing unsaturated carboxylic ester

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716523B2 (en) 2005-03-29 2014-05-06 Nippon Kayaku Kabushiki Kaisha Catalyst for use in production of methacrylic acid and method for manufacturing the same
US8017547B2 (en) 2005-05-12 2011-09-13 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
US8148291B2 (en) 2005-05-12 2012-04-03 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
JP4743620B2 (en) * 2006-05-11 2011-08-10 旭化成ケミカルズ株式会社 Improved catalyst
JP2007301470A (en) * 2006-05-11 2007-11-22 Asahi Kasei Chemicals Corp Improved catalyst
JP2011078982A (en) * 2006-09-07 2011-04-21 Rohm & Haas Co Activated mixed metal oxide oxidation catalyst
JP2011101882A (en) * 2006-09-07 2011-05-26 Rohm & Haas Co Activated mixed metal oxide oxidation catalyst
JP2008062231A (en) * 2006-09-07 2008-03-21 Rohm & Haas Co Activated mixed metal oxide oxidation catalyst
JP2009190984A (en) * 2008-02-12 2009-08-27 Mitsubishi Rayon Co Ltd Method for producing methacrylic acid
JP2011072909A (en) * 2009-09-30 2011-04-14 Sumitomo Chemical Co Ltd Method for producing complex oxide catalyst
JP2016165706A (en) * 2015-03-06 2016-09-15 日清紡ホールディングス株式会社 Heteropolyacid-based catalyst, production method of the catalyst, and electrode and battery obtained by using the catalyst
WO2018181544A1 (en) * 2017-03-31 2018-10-04 三菱ケミカル株式会社 Catalyst for producing unsaturated carboxylic acid, method for producing unsaturated carboxylic acid, and method for producing unsaturated carboxylic ester
JPWO2018181544A1 (en) * 2017-03-31 2020-02-20 三菱ケミカル株式会社 Catalyst for producing unsaturated carboxylic acid, method for producing unsaturated carboxylic acid, and method for producing unsaturated carboxylic acid ester
JP6999909B2 (en) 2017-03-31 2022-02-04 三菱ケミカル株式会社 A catalyst for producing an unsaturated carboxylic acid, a method for producing an unsaturated carboxylic acid, and a method for producing an unsaturated carboxylic acid ester.

Similar Documents

Publication Publication Date Title
JP4030740B2 (en) Method for producing ammoxidation catalyst
JP4691359B2 (en) Method for producing a catalyst for methacrylic acid production
JP4925415B2 (en) Method for producing a catalyst for methacrylic acid production
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP2004008834A (en) Method for producing catalyst for use in manufacturing methacrylic acid
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4766610B2 (en) Method for producing a catalyst for methacrylic acid production
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP4745766B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5560596B2 (en) Method for producing a catalyst for methacrylic acid production
JP4947753B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP4372573B2 (en) Method for producing a catalyst for methacrylic acid production
JP4236415B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP2005066476A (en) Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid
JP2004188231A (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4933736B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4017864B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP2003154273A (en) Method for manufacturing catalyst for manufacture of methacrylic acid, catalyst for manufacture of methacrylic acid and method for manufacturing methacrylic acid
JP4301484B2 (en) Method for producing methacrylic acid
JP2008149263A (en) Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron
JP2005230720A (en) Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same
JP4895303B2 (en) Method for producing catalyst for producing methacrylic acid, catalyst for producing methacrylic acid, and method for producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090827