JP2007050898A - Method and apparatus for manufacturing film deposition container - Google Patents
Method and apparatus for manufacturing film deposition container Download PDFInfo
- Publication number
- JP2007050898A JP2007050898A JP2005236369A JP2005236369A JP2007050898A JP 2007050898 A JP2007050898 A JP 2007050898A JP 2005236369 A JP2005236369 A JP 2005236369A JP 2005236369 A JP2005236369 A JP 2005236369A JP 2007050898 A JP2007050898 A JP 2007050898A
- Authority
- JP
- Japan
- Prior art keywords
- container
- raw material
- gas introduction
- introduction pipe
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Containers Having Bodies Formed In One Piece (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、PET(ポリエチレンテレフタレート)ボトル等のプラスチック製容器の内面に酸化ケイ素や炭素を成膜する方法およびその製造装置に関するものである。 The present invention relates to a method of forming a film of silicon oxide or carbon on the inner surface of a plastic container such as a PET (polyethylene terephthalate) bottle and an apparatus for manufacturing the same.
PET(ポリエチレンテレフタレート)ボトル等のプラスチック製容器は、その成形の容易性や軽量性、さらには低コストであることから、様々な分野において広く使用されている。
しかしながら、プラスチック製容器は、酸素や二酸化炭素、水蒸気のような低分子ガスを透過する性質を有しているため、使用形態に制約を受ける。
そうした問題を解決する手段としてプラスチック製容器の内面に炭素や酸化珪素の薄膜を成膜し、プラスチック製容器にガスバリア性を付与している。
Plastic containers such as PET (polyethylene terephthalate) bottles are widely used in various fields because of their ease of molding, light weight, and low cost.
However, a plastic container has a property of permeating low-molecular gases such as oxygen, carbon dioxide, and water vapor, and thus is restricted in the form of use.
As a means for solving such a problem, a thin film of carbon or silicon oxide is formed on the inner surface of a plastic container to give a gas barrier property to the plastic container.
プラスチック製容器の成膜方法としてはプラズマCVD法、真空蒸着法、および、スパッタ法が用いられている。
その中でもプラズマCVD法は、高いガスバリア性を持つ炭素や酸化珪素の薄膜が成膜可能であり、未処理プラスチック製容器に、10〜20倍程度のガスバリア性を付与する事ができる。
As a method for forming a plastic container, a plasma CVD method, a vacuum deposition method, and a sputtering method are used.
Among them, the plasma CVD method can form a thin film of carbon or silicon oxide having a high gas barrier property, and can impart a gas barrier property of about 10 to 20 times to an untreated plastic container.
プラズマCVD法を用いた成膜方法としては、プラスチック製容器の外形とほぼ相似形の空所を外部電極に形成し、この空所内に収容されるプラスチック製容器の口部が当接される絶縁部材により外部電極を絶縁し、空所内に収容されたプラスチック製容器の内側にプラスチック製容器の口部から内部電極を挿入するとともに、外部電極の空所内を排気し、外部電極の空所内に収容されたプラスチック製容器の内側に原料ガスを供給した後、外部電極に高周波を印加して容量結合型のプラズマを発生させ、プラスチック製容器内面にガスバリア性を有する薄膜を成膜する方法がある。(特許文献1参照) As a film-forming method using the plasma CVD method, a space substantially similar to the outer shape of the plastic container is formed in the external electrode, and the opening of the plastic container housed in this space is in contact with the insulation. The external electrode is insulated by a member, the internal electrode is inserted from the opening of the plastic container inside the plastic container housed in the space, the space of the external electrode is exhausted, and the space is accommodated in the space of the external electrode There is a method of forming a thin film having gas barrier properties on the inner surface of a plastic container by supplying a source gas to the inside of the plastic container and then applying a high frequency to an external electrode to generate capacitively coupled plasma. (See Patent Document 1)
プラズマCVD法によりプラスチック製容器への成膜を行うには、プラスチック製容器内を排気する排気手段と、原料ガスをプラスチック製容器内に供給する供給手段、原料ガスをプラズマ化するための高周波電源が必要となる。 In order to form a film in a plastic container by plasma CVD, an exhaust means for exhausting the inside of the plastic container, a supply means for supplying the source gas into the plastic container, and a high-frequency power source for converting the source gas into plasma Is required.
図2に従来の製造装置の模式図を示す。
プラスチック製容器101は真空チャンバーを兼ねる電極110の内部に設置される。
次に、図示しない真空ポンプ107を用いて真空排気口108からプラスチック製容器101内の真空排気を行う。
電極110と真空排気口108はサブチャンバ104を通じて接続されている。
プラスチック製容器101の内面に成膜を行う場合、原料ガスをプラスチック製容器101内部に充満させなければならない。
プラスチック製容器101の底部まで成膜させるためには、プラスチック製容器101の開口部から原料ガス導入管103をプラスチック製容器101内に挿入して、プラスチック製容器101の底部付近まで原料ガスを導く必要がある。
原料ガス導入管103の先端には原料ガス放出ノズル102が設置されており、原料ガス導入管103の先端よりプラスチック製容器101内へ原料ガスを流すことができる。
これにより原料ガスはプラスチック製容器101の底部からプラスチック製容器101の開口部へと流れ、プラスチック製容器101の内面全体への成膜が可能な状態となる。
最後に高周波電源109により電極110に電圧を与えることによりプラスチック製容器101内の原料ガスがプラズマ化しプラスチック製容器101内表面に成膜させることができる。
FIG. 2 shows a schematic diagram of a conventional manufacturing apparatus.
The plastic container 101 is installed inside an electrode 110 that also serves as a vacuum chamber.
Next, the plastic container 101 is evacuated from the evacuation port 108 using a vacuum pump 107 (not shown).
The electrode 110 and the vacuum exhaust port 108 are connected through the sub chamber 104.
When film formation is performed on the inner surface of the plastic container 101, the source gas must be filled in the plastic container 101.
In order to form a film up to the bottom of the plastic container 101, the source gas introduction pipe 103 is inserted into the plastic container 101 from the opening of the plastic container 101, and the source gas is guided to the vicinity of the bottom of the plastic container 101. There is a need.
A source gas discharge nozzle 102 is installed at the tip of the source gas introduction pipe 103, and the source gas can flow into the plastic container 101 from the tip of the source gas introduction pipe 103.
As a result, the source gas flows from the bottom of the plastic container 101 to the opening of the plastic container 101, and the film can be formed on the entire inner surface of the plastic container 101.
Finally, a voltage is applied to the electrode 110 by the high-frequency power source 109, whereby the raw material gas in the plastic container 101 is turned into plasma and can be deposited on the inner surface of the plastic container 101.
しかし、この方法では、プラズマ化された原料ガスと、原料ガス導入管103が接触してしまうため、プラスチック製容器101だけでなく原料ガス導入管103の表面にも成膜してしまう。
成膜を繰り返していくうちに、原料ガス導入管103表面の蒸着膜は次第に厚くなっていき、ある程度の厚さになると蒸着膜の一部が原料ガス導入管103表面から脱落する。
原料ガス導入管103表面から脱落した蒸着膜が、プラスチック製容器101に付着してプラスチック製容器101に成膜されない部分が生じたり、真空ポンプ107内に蓄積されて排気を妨げることがあり、問題となっている。
However, in this method, since the raw material gas converted into plasma comes into contact with the raw material gas introduction pipe 103, a film is formed not only on the plastic container 101 but also on the surface of the raw material gas introduction pipe 103.
As the film formation is repeated, the vapor deposition film on the surface of the raw material gas introduction pipe 103 gradually increases in thickness, and when the thickness reaches a certain level, a part of the vapor deposition film falls off the surface of the raw material gas introduction pipe 103.
The vapor deposition film dropped from the surface of the source gas introduction pipe 103 may adhere to the plastic container 101 and cause a portion that is not formed on the plastic container 101, or may accumulate in the vacuum pump 107 and hinder exhaustion. It has become.
これに対して、製造装置を停止させて、原料ガス導入管103の交換または清掃を行い対処することはできるが、製造装置の稼動効率が落ちてしまうことが問題となっている。
原料ガス導入管の清掃による稼動効率ダウンを避けるために、製造装置に原料ガス導入管の清掃機構を設けているものもある。(特許文献2参照)
その製造装置においては、成膜後に原料ガス導入管と異物除去部材を擦り合わせることで、原料ガス導入管に付着した蒸着膜を剥離し、原料ガス導入管を清浄な状態に保っている。
しかし、原料ガス導入管に付着した蒸着膜を剥離する機構、剥離した蒸着膜を回収する機構を、全ての成膜ユニットに取り付けねばならず、製造装置が煩雑になることが問題となっている。
On the other hand, it is possible to stop the manufacturing apparatus and replace or clean the raw material gas introduction pipe 103, but there is a problem that the operating efficiency of the manufacturing apparatus is lowered.
In order to avoid a reduction in operating efficiency due to the cleaning of the source gas introduction pipe, some manufacturing apparatuses are provided with a source gas introduction pipe cleaning mechanism. (See Patent Document 2)
In the manufacturing apparatus, the raw material gas introduction tube and the foreign material removing member are rubbed together after film formation, so that the deposited film attached to the raw material gas introduction tube is peeled off and the raw material gas introduction tube is kept clean.
However, a mechanism for peeling the deposited film attached to the source gas introduction pipe and a mechanism for collecting the separated deposited film have to be attached to all the film forming units, which makes the manufacturing apparatus complicated. .
本発明の課題は、プラズマCVD法によりプラスチック製容器の内面にガスバリア性を保持する蒸着膜を成膜する際に、原料ガス導入管への成膜を無くした成膜容器の製造方法およびその製造装置を提供するものである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a film-forming container that eliminates film formation on a source gas introduction pipe when a vapor-deposited film that retains gas barrier properties is formed on the inner surface of a plastic container by plasma CVD, and its manufacture A device is provided.
請求項1に記載の発明は、容器を収容する空所を取り囲む様に電極を形成した成膜装置の、前記空所内に前記容器を収容し、該容器の開口部が接する絶縁部材により前記電極を絶縁し、前記容器の内側に該容器の開口部から原料ガス導入管を挿入し、前記容器内を排気し、該容器の内側に前記原料ガス導入管から原料ガスを供給した後に排気と前記原料ガスの供給を止め、前記原料ガス導入管を前記容器外に出した後、前記電極に高周波を印加することを特徴とする成膜容器の製造方法である。
原料ガス導入管を容器外に出した後に電極に高周波を印加することにより、プラズマ化された原料ガスと原料ガス導入管の接触を無くし、原料ガス導入管への原料の成膜を防止できる。
According to the first aspect of the present invention, in the film forming apparatus in which the electrode is formed so as to surround the space for accommodating the container, the electrode is formed by the insulating member that accommodates the container in the space and is in contact with the opening of the container. And inserting a raw material gas introduction pipe from the opening of the container inside the container, exhausting the inside of the container, supplying the raw material gas from the raw material gas introduction pipe to the inside of the container, After the supply of the source gas is stopped and the source gas introduction pipe is taken out of the vessel, a high frequency is applied to the electrode.
By applying a high frequency to the electrode after the source gas introduction pipe is taken out of the container, the contact between the plasma source gas and the source gas introduction pipe is eliminated, and film formation of the source material on the source gas introduction pipe can be prevented.
請求項2に記載の発明は、容器を収容する空所を有する中空状の電極と、該電極の空所内に前記容器が収容された際に該容器の開口部が当接されるとともに前記電極を絶縁する絶縁部材と、前記電極の空所内に連通されて該空所内の排気を行う排気手段と、前記電極の空所内に収容された前記容器の内側に原料ガス導入管を通じて原料ガスを供給する供給手段と、該原料ガス導入管を前記容器に出入する出入手段と、前記電極に接続された高周波電源とを備えていることを特徴とする成膜容器の製造装置である。 According to the second aspect of the present invention, there is provided a hollow electrode having a space for accommodating a container, and the opening of the container is brought into contact with the electrode when the container is accommodated in the space of the electrode. An insulating member that insulates the electrode, an exhaust unit that communicates with the space of the electrode and exhausts the space, and supplies a source gas through a source gas introduction pipe to the inside of the container accommodated in the space of the electrode And a high-frequency power source connected to the electrode.
本発明では、原料ガス導入管への原料の成膜を無くすことにより、原料ガス導入管から発生する異物起因のプラスチック製容器の成膜不良を無くすことができ、また、製造装置内に蓄積する異物の清掃時間を減らすことができる。 In the present invention, the film formation failure of the plastic container due to the foreign matter generated from the raw material gas introduction pipe can be eliminated by eliminating the film formation of the raw material on the raw material gas introduction pipe, and it accumulates in the manufacturing apparatus. The cleaning time for foreign matter can be reduced.
本発明の実施の形態による製造装置は、プラズマCVD法を用いてプラスチック製容器の内面に酸化珪素や炭素を成膜する製造装置である。
本発明の製造装置を図1を用いて説明する。
A manufacturing apparatus according to an embodiment of the present invention is a manufacturing apparatus that forms a film of silicon oxide or carbon on the inner surface of a plastic container using a plasma CVD method.
The manufacturing apparatus of the present invention will be described with reference to FIG.
本発明に係るプラスチック製容器の製造装置は、原料ガス放出ノズル2と、原料ガス導入管3と、サブチャンバー4と、弁体5と、真空ゲートバルブ6と、真空ポンプ7と、真空排気口8と、高周波電源9と、電極10と、絶縁部材11を具備する。 The plastic container manufacturing apparatus according to the present invention includes a raw material gas discharge nozzle 2, a raw material gas introduction pipe 3, a sub chamber 4, a valve body 5, a vacuum gate valve 6, a vacuum pump 7, and a vacuum exhaust port. 8, a high-frequency power source 9, an electrode 10, and an insulating member 11.
電極10は、絶縁部材11とともに真空チャンバーを構成する。
絶縁部材11には電極10が接している。
電極10は絶縁部材11によって絶縁されている。
The electrode 10 constitutes a vacuum chamber together with the insulating member 11.
The electrode 10 is in contact with the insulating member 11.
The electrode 10 is insulated by an insulating member 11.
絶縁部材11の材料としては、ポリ四弗化エチレン、ポリイミドを用いることができる。 As a material of the insulating member 11, polytetrafluoroethylene or polyimide can be used.
電極10の内部には空所が形成されており、この空所は成膜するプラスチック製容器1を収容するためのものである。
電極10内の空所は、そこに収容されるプラスチック製容器1の外形よりも僅かに大きくなるように形成されている。
絶縁部材11には、サブチャンバー4と電極10内の空所を連通する開口部が設けられている。
A void is formed inside the electrode 10, and this void is for accommodating the plastic container 1 for film formation.
The void in the electrode 10 is formed to be slightly larger than the outer shape of the plastic container 1 accommodated therein.
The insulating member 11 is provided with an opening that communicates the subchamber 4 and a void in the electrode 10.
絶縁部材11は、サブチャンバー4に接続されており、サブチャンバー4の他方側は、真空排気口8、弁体5により開閉可能な真空ゲートバルブ6を介して真空ポンプ7に接続されている。 The insulating member 11 is connected to the sub-chamber 4, and the other side of the sub-chamber 4 is connected to a vacuum pump 7 through a vacuum gate valve 6 that can be opened and closed by a vacuum exhaust port 8 and a valve body 5.
原料ガスをプラスチック製容器1の内部に供給する際には、原料ガス導入管3をプラスチック製容器1の内部に配置する。
すなわち、原料ガス導入管3は、絶縁部材11の開口部を通して、プラスチック製容器1の内部に差し込まれている。
原料ガス導入管3は、その内部が中空からなる管形状を有している。
原料ガス導入管3の先端には原料ガス放出ノズル2が設けられている。
When supplying the source gas into the plastic container 1, the source gas introduction pipe 3 is arranged inside the plastic container 1.
That is, the source gas introduction pipe 3 is inserted into the plastic container 1 through the opening of the insulating member 11.
The source gas introduction pipe 3 has a tubular shape whose inside is hollow.
A source gas discharge nozzle 2 is provided at the tip of the source gas introduction pipe 3.
原料ガス導入管3は、プラスチック製容器1の内部に原料ガスを導入する。
原料ガスとしては、酸化珪素を成膜する場合は、ヘキサメチルジシロキサンと酸素の混合ガスを、また、炭素を成膜する場合は、アセチレンなどを用いることができる。
The source gas introduction pipe 3 introduces a source gas into the plastic container 1.
As a raw material gas, a mixed gas of hexamethyldisiloxane and oxygen can be used when silicon oxide is formed, and acetylene or the like can be used when carbon is formed.
次に、本発明の製造装置を用いて、プラスチック製容器1内に酸化珪素を成膜する方法について説明する。 Next, a method for forming a silicon oxide film in the plastic container 1 using the manufacturing apparatus of the present invention will be described.
まず、プラスチック製容器1を電極10および絶縁部材11からなる真空チャンバー内に固定する。 First, the plastic container 1 is fixed in a vacuum chamber composed of the electrode 10 and the insulating member 11.
次に、原料ガス導入管3をプラスチック製容器1内に挿入する。 Next, the source gas introduction pipe 3 is inserted into the plastic container 1.
次に、真空ゲートバルブ6を開いた後、真空ポンプ7を作動させる。
これにより、プラスチック製容器1を含む真空チャンバー内がサブチャンバー4を通して排気され、真空チャンバー内が真空となる。
この時の真空チャンバー内の圧力は6×10−2〜7×10−1Paが好ましい。
6×10−2Paより低いと真空に要する時間が掛かり過ぎ経済性が悪く、7×10−1Paより大きいと異物が多過ぎてプラスチック製容器1のガスバリア性が悪くなる。
Next, after the vacuum gate valve 6 is opened, the vacuum pump 7 is operated.
Thereby, the inside of the vacuum chamber including the plastic container 1 is evacuated through the sub-chamber 4, and the inside of the vacuum chamber is evacuated.
The pressure in the vacuum chamber at this time is preferably 6 × 10 −2 to 7 × 10 −1 Pa.
If it is lower than 6 × 10 −2 Pa, the time required for the vacuum is too long and the economic efficiency is poor, and if it is higher than 7 × 10 −1 Pa, there are too many foreign substances and the gas barrier property of the plastic container 1 is deteriorated.
次に、原料ガス導入管3より、プラスチック製容器1にヘキサメチルジシロキサンと酸素の混合ガスを導入する。 Next, a mixed gas of hexamethyldisiloxane and oxygen is introduced into the plastic container 1 from the source gas introduction pipe 3.
ヘキサメチルジシロキサンの流量は、1〜10SCCM(1分間当たりの標準状態における立方センチメートル)、酸素の流量は10〜100SCCM(1分間当たりの標準状態における立方センチメートル)が好ましい。
また、酸素の流量はヘキサメチルジシロキサンの流量の約10倍が好ましい。
The flow rate of hexamethyldisiloxane is preferably 1 to 10 SCCM (cubic centimeter in a standard state per minute), and the flow rate of oxygen is preferably 10 to 100 SCCM (cubic centimeter in a standard state per minute).
The flow rate of oxygen is preferably about 10 times that of hexamethyldisiloxane.
次に、弁体5により真空ゲートバルブ6を閉めて排気を中断し、また、原料ガスの導入を止める。
これにより成膜時の圧力を一定にでき、また、プラズマ発生中の原料ガスの動きを少なくでき蒸着膜の厚み分布を均一にする効果が得られる。
また、原料ガスを供給し続けている状態では、原料ガス導入管3を、プラスチック製容器1の外に出した時に、原料ガス放出ノズル2に近いプラスチック製容器1の開口部の方が、原料ガス放出ノズル2から遠いプラスチック製容器1の底部よりも原料ガス濃度が高くなり、プラスチック製容器1の開口部と底部の蒸着膜が均一にならない。
Next, the vacuum gate valve 6 is closed by the valve body 5 to stop the exhaust, and the introduction of the source gas is stopped.
As a result, the pressure during film formation can be made constant, the movement of the source gas during plasma generation can be reduced, and the thickness distribution of the deposited film can be made uniform.
When the raw material gas is continuously supplied, when the raw material gas introduction pipe 3 is taken out of the plastic container 1, the opening of the plastic container 1 near the raw material gas discharge nozzle 2 is the raw material. The raw material gas concentration becomes higher than the bottom of the plastic container 1 far from the gas discharge nozzle 2, and the deposited film on the opening and the bottom of the plastic container 1 is not uniform.
次に、原料ガス導入管3を、プラスチック製容器1の外に出す。
原料ガス導入管3への成膜を抑えるためには、プラズマの発生時に、プラスチック製容器1の内部に原料ガス導入管3が挿入されていない状態にする必要がある。
こうすれば、プラズマはプラスチック製容器1内にしか発生しないため、原料ガス導入管3は成膜されない。
Next, the source gas introduction pipe 3 is taken out of the plastic container 1.
In order to suppress film formation on the source gas introduction pipe 3, it is necessary to keep the source gas introduction pipe 3 from being inserted into the plastic container 1 when plasma is generated.
In this case, since plasma is generated only in the plastic container 1, the source gas introduction pipe 3 is not formed into a film.
次に、高周波電源9から電極10に13.56MHzの高周波を印加して原料ガスをプラズマ化する。
これによって、プラスチック製容器1内に酸化珪素系プラズマが発生し、酸化珪素膜がプラスチック製容器1の内面に成膜された容器を得る。
この時の成膜時間は数秒程度と短いものである。
Next, a high frequency of 13.56 MHz is applied from the high frequency power source 9 to the electrode 10 to turn the source gas into plasma.
As a result, silicon oxide-based plasma is generated in the plastic container 1, and a container having a silicon oxide film formed on the inner surface of the plastic container 1 is obtained.
The film formation time at this time is as short as several seconds.
まず、内容積400cc、厚さ350μmのPET(ポリエチレンテレフタレート)ボトルを中空状の電極内に収容した。 First, a PET (polyethylene terephthalate) bottle having an internal volume of 400 cc and a thickness of 350 μm was accommodated in a hollow electrode.
次に、PET(ポリエチレンテレフタレート)ボトル内およびサブチャンバー内の排気を行った。
この時、PET(ポリエチレンテレフタレート)ボトル内およびサブチャンバー内の圧力は1×10−1Paであった。
Next, the inside of the PET (polyethylene terephthalate) bottle and the subchamber were evacuated.
At this time, the pressure in the PET (polyethylene terephthalate) bottle and in the sub-chamber was 1 × 10 −1 Pa.
次に、原料ガス導入管をPET(ポリエチレンテレフタレート)ボトルの内部に挿入し、原料ガスとしてヘキサメチルジシロキサンを流量5SCCM(1分間当たりの標準状態における立方センチメートル)、酸素を流量50SCCM(1分間当たりの標準状態における立方センチメートル)にて、PET(ポリエチレンテレフタレート)ボトルの内部に充填した。
この時、PET(ポリエチレンテレフタレート)ボトル内およびサブチャンバー内の圧力は5Paであった。
Next, the raw material gas introduction pipe is inserted into a PET (polyethylene terephthalate) bottle, and hexamethyldisiloxane is flowed as a raw material gas at a flow rate of 5 SCCM (standard cubic centimeter per minute), and oxygen is flowed at a flow rate of 50 SCCM (per minute). The inside of a PET (polyethylene terephthalate) bottle was filled at a cubic centimeter in a standard state.
At this time, the pressure in the PET (polyethylene terephthalate) bottle and the sub-chamber was 5 Pa.
次に、原料ガスの供給、排気を止めた後、原料ガス導入管をPET(ポリエチレンテレフタレート)ボトルの内部から完全に出してサブチャンバー内に移動し、電極に13.56MHz、400Wの高周波を1秒間印加してプラズマを発生させ、酸化珪素を内面に成膜したPET(ポリエチレンテレフタレート)ボトルを得た。 Next, after the supply and exhaust of the raw material gas were stopped, the raw material gas introduction pipe was completely taken out from the inside of the PET (polyethylene terephthalate) bottle and moved into the sub-chamber, and the high frequency of 13.56 MHz and 400 W was applied to the electrode. Plasma was generated by applying for 2 seconds to obtain a PET (polyethylene terephthalate) bottle having silicon oxide film formed on the inner surface.
次に、PET(ポリエチレンテレフタレート)ボトルの内面に成膜した酸化珪素の膜厚を透過型電子顕微鏡を使用して測定した。
PET(ポリエチレンテレフタレート)ボトルの開口部の酸化珪素の膜厚は12nmであった。
また、PET(ポリエチレンテレフタレート)ボトルの胴部の酸化珪素の膜厚は12nmであった。
また、PET(ポリエチレンテレフタレート)ボトルの底部の酸化珪素の膜厚は10nmであった。
Next, the thickness of the silicon oxide film formed on the inner surface of the PET (polyethylene terephthalate) bottle was measured using a transmission electron microscope.
The film thickness of silicon oxide at the opening of the PET (polyethylene terephthalate) bottle was 12 nm.
Moreover, the film thickness of the silicon oxide in the trunk | drum of a PET (polyethylene terephthalate) bottle was 12 nm.
The film thickness of silicon oxide at the bottom of the PET (polyethylene terephthalate) bottle was 10 nm.
次に、酸化珪素を成膜したPET(ポリエチレンテレフタレート)ボトルの酸素透過量をMOCON社のOXTRANを使用して、30℃、相対湿度70%の条件で測定した。
酸化珪素を成膜したPET(ポリエチレンテレフタレート)ボトルの酸素透過量は0.020fmol/(pkg・s・Pa)であり、未成膜PET(ポリエチレンテレフタレート)ボトルの15倍の酸素バリア性を保持することが確認された。
Next, the oxygen permeation amount of a PET (polyethylene terephthalate) bottle on which silicon oxide was formed was measured under the conditions of 30 ° C. and 70% relative humidity using OXTRAN manufactured by MOCON.
The oxygen permeation rate of PET (polyethylene terephthalate) bottles with silicon oxide film formed is 0.020 fmol / (pg · s · Pa), and the oxygen barrier property is 15 times that of non-film-formed PET (polyethylene terephthalate) bottles. Was confirmed.
同成膜を10000回行い、原料ガス導入管への成膜状態を観察したが、原料ガス導入管への成膜は確認されなかった。 The film formation was performed 10,000 times, and the film formation state on the source gas introduction pipe was observed, but no film formation on the source gas introduction pipe was confirmed.
<比較例>
まず、内容積400cc、厚さ350μmのPET(ポリエチレンテレフタレート)ボトを中空状の電極内に収容した。
<Comparative example>
First, a PET (polyethylene terephthalate) bottle having an internal volume of 400 cc and a thickness of 350 μm was accommodated in a hollow electrode.
次に、PET(ポリエチレンテレフタレート)ボトル内およびサブチャンバー内の排気を行った。
この時、PET(ポリエチレンテレフタレート)ボトル内およびサブチャンバー内の圧力は1×10−1Paであった。
Next, the inside of the PET (polyethylene terephthalate) bottle and the subchamber were evacuated.
At this time, the pressure in the PET (polyethylene terephthalate) bottle and in the sub-chamber was 1 × 10 −1 Pa.
次に、原料ガス導入管をPET(ポリエチレンテレフタレート)ボトルの内部に挿入し、原料ガスとしてヘキサメチルジシロキサンを流量5SCCM(1分間当たりの標準状態における立方センチメートル)、酸素を流量50SCCM(1分間当たりの標準状態における立方センチメートル)にてPET(ポリエチレンテレフタレート)の内部に充填した。
この時、PET(ポリエチレンテレフタレート)ボトル内およびサブチャンバー内の圧力は5Paであった。
Next, the raw material gas introduction pipe is inserted into a PET (polyethylene terephthalate) bottle, and hexamethyldisiloxane is flowed as a raw material gas at a flow rate of 5 SCCM (standard cubic centimeter per minute), and oxygen is flowed at a flow rate of 50 SCCM (per minute). The inside of PET (polyethylene terephthalate) was filled with cubic centimeters in a standard state.
At this time, the pressure in the PET (polyethylene terephthalate) bottle and the sub-chamber was 5 Pa.
次に、原料ガス導入管をPET(ポリエチレンテレフタレート)ボトルの内部に配置したまま、原料ガスの供給、排気を行いながら、電極に13.56MHz、400Wの高周波を1秒間印加してプラズマを発生させ、酸化珪素を内面に成膜したPET(ポリエチレンテレフタレート)ボトルを得た。 Next, plasma is generated by applying high frequency of 13.56 MHz and 400 W to the electrode for 1 second while supplying and exhausting the raw material gas while the raw material gas introduction tube is disposed inside the PET (polyethylene terephthalate) bottle. A PET (polyethylene terephthalate) bottle having silicon oxide film formed on the inner surface was obtained.
次に、PET(ポリエチレンテレフタレート)ボトルの内側に成膜した酸化珪素の膜厚を透過型電子顕微鏡を使用して測定した。
PET(ポリエチレンテレフタレート)ボトルの開口部の酸化珪素の膜厚は12nmであった。
また、PET(ポリエチレンテレフタレート)ボトルの胴部分の酸化珪素の膜厚は12nmであった。
また、PET(ポリエチレンテレフタレート)ボトルの底部分の酸化珪素の膜厚は10nmであった。
Next, the thickness of the silicon oxide film formed inside the PET (polyethylene terephthalate) bottle was measured using a transmission electron microscope.
The film thickness of silicon oxide at the opening of the PET (polyethylene terephthalate) bottle was 12 nm.
Moreover, the film thickness of the silicon oxide of the trunk | drum part of a PET (polyethylene terephthalate) bottle was 12 nm.
The thickness of the silicon oxide film at the bottom of the PET (polyethylene terephthalate) bottle was 10 nm.
次に、酸化珪素を内面に成膜したPET(ポリエチレンテレフタレート)ボトルの酸素透過量をMOCON社のOXTRANを使用して、30℃、相対湿度70%の条件で測定した。
酸化珪素を内面に成膜したPET(ポリエチレンテレフタレート)ボトルの酸素透過量は0.020fmol/(pkg・s・Pa)であり、未成膜PET(ポリエチレンテレフタレート)ボトルボトルの15倍の酸素バリア性を保持することが確認された。
Next, the oxygen permeation amount of a PET (polyethylene terephthalate) bottle having silicon oxide film formed on the inner surface was measured under the conditions of 30 ° C. and 70% relative humidity using OXTRAN manufactured by MOCON.
The oxygen permeation rate of PET (polyethylene terephthalate) bottles with silicon oxide film formed on the inner surface is 0.020 fmol / (pg · s · Pa), which is 15 times the oxygen barrier property of undeposited PET (polyethylene terephthalate) bottles. It was confirmed to hold.
同成膜を10000回行い、原料ガス導入管への成膜状態を観察したところ、原料ガス導入管には、酸化珪素が1.1g成膜されていた。 The film was formed 10,000 times and the film formation state on the source gas introduction tube was observed. As a result, 1.1 g of silicon oxide was formed on the source gas introduction tube.
本発明の成膜容器の製造方法およびその製造装置は、プラスチック製容器に高い酸素バリア性を付与することが可能なため、酸化され易い内容物、例えば、果汁、食用油、調味料、酒、茶などの容器の製造に利用できる。 The method and apparatus for producing a film-forming container of the present invention can impart a high oxygen barrier property to a plastic container, so that it is easily oxidized, such as fruit juice, edible oil, seasoning, liquor, It can be used to manufacture tea containers.
1、101・・・プラスチック製容器
2、102・・・原料ガス放出ノズル
3、103・・・原料ガス導入管
4、104・・・サブチャンバー
5・・・・・・・弁体
6・・・・・・・真空ゲートバルブ
7、107・・・真空ポンプ
8、108・・・真空排気口
9、109・・・高周波電源
10、110・・電極
11、111・・絶縁部材
DESCRIPTION OF SYMBOLS 1,101 ... Plastic container 2, 102 ... Raw material gas discharge nozzle 3, 103 ... Raw material gas introduction pipe 4, 104 ... Sub chamber 5 ... Valve body 6 ... ... Vacuum gate valves 7, 107 ... Vacuum pumps 8,108 ... Vacuum exhaust ports 9, 109 ... High frequency power supplies 10, 110 ... Electrodes 11, 111 ... Insulating members
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005236369A JP2007050898A (en) | 2005-08-17 | 2005-08-17 | Method and apparatus for manufacturing film deposition container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005236369A JP2007050898A (en) | 2005-08-17 | 2005-08-17 | Method and apparatus for manufacturing film deposition container |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007050898A true JP2007050898A (en) | 2007-03-01 |
Family
ID=37915623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005236369A Pending JP2007050898A (en) | 2005-08-17 | 2005-08-17 | Method and apparatus for manufacturing film deposition container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007050898A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7985188B2 (en) | 2009-05-13 | 2011-07-26 | Cv Holdings Llc | Vessel, coating, inspection and processing apparatus |
US8512796B2 (en) | 2009-05-13 | 2013-08-20 | Si02 Medical Products, Inc. | Vessel inspection apparatus and methods |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
US9545360B2 (en) | 2009-05-13 | 2017-01-17 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US9554968B2 (en) | 2013-03-11 | 2017-01-31 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9662450B2 (en) | 2013-03-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9863042B2 (en) | 2013-03-15 | 2018-01-09 | Sio2 Medical Products, Inc. | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US11066745B2 (en) | 2014-03-28 | 2021-07-20 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
-
2005
- 2005-08-17 JP JP2005236369A patent/JP2007050898A/en active Pending
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7985188B2 (en) | 2009-05-13 | 2011-07-26 | Cv Holdings Llc | Vessel, coating, inspection and processing apparatus |
US8512796B2 (en) | 2009-05-13 | 2013-08-20 | Si02 Medical Products, Inc. | Vessel inspection apparatus and methods |
US8834954B2 (en) | 2009-05-13 | 2014-09-16 | Sio2 Medical Products, Inc. | Vessel inspection apparatus and methods |
US10537273B2 (en) | 2009-05-13 | 2020-01-21 | Sio2 Medical Products, Inc. | Syringe with PECVD lubricity layer |
US9545360B2 (en) | 2009-05-13 | 2017-01-17 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US10390744B2 (en) | 2009-05-13 | 2019-08-27 | Sio2 Medical Products, Inc. | Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel |
US9572526B2 (en) | 2009-05-13 | 2017-02-21 | Sio2 Medical Products, Inc. | Apparatus and method for transporting a vessel to and from a PECVD processing station |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US11123491B2 (en) | 2010-11-12 | 2021-09-21 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US11724860B2 (en) | 2011-11-11 | 2023-08-15 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11148856B2 (en) | 2011-11-11 | 2021-10-19 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11884446B2 (en) | 2011-11-11 | 2024-01-30 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
US10577154B2 (en) | 2011-11-11 | 2020-03-03 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US11406765B2 (en) | 2012-11-30 | 2022-08-09 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US10363370B2 (en) | 2012-11-30 | 2019-07-30 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9662450B2 (en) | 2013-03-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US11344473B2 (en) | 2013-03-11 | 2022-05-31 | SiO2Medical Products, Inc. | Coated packaging |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
US11298293B2 (en) | 2013-03-11 | 2022-04-12 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US10537494B2 (en) | 2013-03-11 | 2020-01-21 | Sio2 Medical Products, Inc. | Trilayer coated blood collection tube with low oxygen transmission rate |
US10912714B2 (en) | 2013-03-11 | 2021-02-09 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US11684546B2 (en) | 2013-03-11 | 2023-06-27 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US10016338B2 (en) | 2013-03-11 | 2018-07-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9554968B2 (en) | 2013-03-11 | 2017-01-31 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9863042B2 (en) | 2013-03-15 | 2018-01-09 | Sio2 Medical Products, Inc. | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
US11066745B2 (en) | 2014-03-28 | 2021-07-20 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007050898A (en) | Method and apparatus for manufacturing film deposition container | |
JP4515280B2 (en) | Apparatus and method for manufacturing a plastic container having a gas barrier thin film formed thereon | |
JP4122011B2 (en) | Method for forming diamond-like carbon film | |
US20060177575A1 (en) | Method of manufacturing gas barrier film coated plastic container | |
JP3698887B2 (en) | Diamond-like carbon film production equipment | |
JP4252347B2 (en) | Method for producing gas barrier thin film coated plastic container | |
EP1068032A1 (en) | Container with material coating having barrier effect and method and apparatus for making same | |
WO2002049925A1 (en) | Apparatus for manufacturing dlc-film-coated plastic container, method of manufacturing the same, and method for cleaning inner electrode | |
JPWO2003085165A1 (en) | Plasma CVD film forming apparatus and CVD film coated plastic container manufacturing method | |
JP4372833B1 (en) | Method for producing gas barrier thin film coated plastic container | |
JP4132982B2 (en) | DLC film coated plastic container manufacturing equipment | |
JP4519808B2 (en) | Thin film deposition method and thin film deposition apparatus | |
JP4664658B2 (en) | Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property | |
JP2005105294A (en) | Cvd film-forming apparatus, and method for manufacturing plastic container coated with cvd film | |
WO2003000559A1 (en) | Manufacturing device for dlc film coated plastic container, dlc film coated plastic container, and method of manufacturing the dlc film coated plastic container | |
JP2005113202A (en) | Plasma cvd film deposition system | |
JP4279127B2 (en) | Gas barrier thin film coated plastic container manufacturing apparatus and manufacturing method thereof | |
JP5233333B2 (en) | Hollow container deposition system | |
JP4794800B2 (en) | Thin film deposition method and thin film deposition apparatus | |
JP2004107689A (en) | Diamond like carbon film deposition method and deposition system | |
JP6578001B2 (en) | Film forming apparatus and film forming method | |
JP2001220679A (en) | Film deposition system and film deposition method | |
WO2003000558A1 (en) | Moisture and gas barrier plastic container with partition plates, and device and method for manufacturing the plastic container | |
JP4325328B2 (en) | Deposition equipment | |
JP2001031045A (en) | Dlc film, plastic container, and manufacturing apparatus for carbon film-coated plastic container |