Nothing Special   »   [go: up one dir, main page]

JP2007042550A - 燃料電池用電解質溶液 - Google Patents

燃料電池用電解質溶液 Download PDF

Info

Publication number
JP2007042550A
JP2007042550A JP2005228136A JP2005228136A JP2007042550A JP 2007042550 A JP2007042550 A JP 2007042550A JP 2005228136 A JP2005228136 A JP 2005228136A JP 2005228136 A JP2005228136 A JP 2005228136A JP 2007042550 A JP2007042550 A JP 2007042550A
Authority
JP
Japan
Prior art keywords
polymer
side chain
general formula
polymer electrolyte
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005228136A
Other languages
English (en)
Other versions
JP4749080B2 (ja
Inventor
Yoshinori Yanagida
好徳 柳田
Masahiro Tojo
正弘 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2005228136A priority Critical patent/JP4749080B2/ja
Publication of JP2007042550A publication Critical patent/JP2007042550A/ja
Application granted granted Critical
Publication of JP4749080B2 publication Critical patent/JP4749080B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】 固体高分子形燃料電池の電解質膜およびバインダーとして、耐酸化性が高く、高温でも脱スルホンが起こりにくい、かつプロトン伝導性の高い、新規な高分子電解質溶液を提供する。
【解決手段】 スルホン酸基を有する芳香環が電子吸引性連結基で連なる構造の側鎖を有する高分子スルホン酸からなる耐酸化性の高い高分子電解質を溶液とし、電解質膜および電極用バインダーとして用いる。側鎖は、分岐側鎖でも非分岐側鎖でもよいが、分岐側鎖が好ましい。電子吸引性連結基は、−CO−、−CONH−、−(CF)p−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO− から選ばれるものである。そして、少なくともスルホン酸基を2個以上導入された側鎖を有する。
【選択図】 なし

Description

本発明は、燃料電池用の電極バインダー、固体高分子電解質燃料電池用膜の作成、燃料電池膜の改質等に用いられる有用な高分子電解質溶液に関するものである。
これまで、固体高分子形燃料電池用のバインダーや膜に用いられる電解質材料としては、(1)ナフィオン(デュポン社製)等のパーフルオロアルキルスルホン酸高分子(例えば、特許文献1参照)や、(2)ポリエーテルエーテルケトン等の耐熱性高分子の主鎖をスルホン化した高分子(例えば、特許文献2参照)、(3)スルホン酸化された側鎖を有する高分子(例えば、特許文献3、特許文献4、特許文献5参照)が知られている。しかしながら、これらの高分子は固体高分子形燃料電池用の電解質材料として、いずれも問題を有していた。すなわち、燃料電池の出力向上の点から100℃以上の運転温度が望まれているが、上記(1)のパーフルオロアルキルスルホン酸ポリマーはガラス転移点が約120℃と低いため、使用温度が100℃未満という制約がある。また、上記(2)および(3)の高分子は、脱スルホンが進行するため高い温度では使用できない。さらに、上記(2)および(3)の高分子は、耐酸化性が充分ではない。耐酸化性を向上させる方法としては、高分子電解質に酸化防止剤を添加する方法(例えば、特許文献6および特許文献7参照)が提案されている。しかしながら、この方法では高分子電解質そのものの耐酸化性を向上させているわけではないので、添加した酸化防止剤が消費されると、電解質膜の耐酸化性が低下してしまうと推定される。また、上記(2)のポリマーは、プロトン伝導性を向上すべくスルホン酸化率を高めると水溶性となる問題がある(例えば、非特許文献1参照)。
米国特許第3,282,875号明細書 米国特許第5,795,496号明細書 米国特許第5,403,675号明細書 特開2001−329053号公報 特開2002−289222号公報 特開2003−201352号公報 特開2003−201403号公報 Electrochemical and Solid−State Letters,Vol.6,No.11,p.A229−A231(2003)
本発明は、固体高分子形燃料電池の電解質膜および電解質バインダー等の、耐酸化性が高く、高温でも脱スルホンが起こりにくい、かつプロトン伝導性の高い新規な高分子電解質材料の溶液およびその製造方法を提供することを目的とするものである。
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、スルホン酸が置換した芳香環が電子吸引性連結基で連なる特定構造の側鎖を有する高分子スルホン酸からなる高分子電解質がその目的に適合し、またこの高分子電解質が水を含む有機溶媒、又は有機溶媒のみに溶解できることを見出し、本発明をなすに至った。
本発明の高分子電解質溶液中の電解質は、耐酸化性が高く、高温でも脱スルホンが起こ
りにくく、プロトン伝導性が高く、かつ、力学的性質にも優れた、新規な高分子電解質である。したがって、固体高分子形燃料電池の電解質膜およびバインダーとして好適に使用することができる。
以下、本発明について具体的に説明する。
本発明の高分子電解質は下記一般式(1)で表される繰り返し単位(A)を有する。
Figure 2007042550
上記一般式(1)中、kは通常1〜4の整数であって、好ましくは1または2である。上記一般式(1)中、Yは(k+2)価の芳香族残基であり、例えば、下記式(7)に示す3価の芳香族残基、下記式(8)に示す4価の芳香族残基、下記式(9)に示す5価の芳香族残基などが挙げられる。これら芳香族残基の水素原子がアルキル基、ハロゲン原子、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、−CN、−NO2 、−COR、−COO R(Rは水素原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる。)、−CONRR’(R’はRと同様である。)、−SO3 R、−SOR、−SO2 Rで置換されていてもよく、F、パーフルオロアルキル、−CN、−NO2 、−COR、−COO R、−CONRR’、−SO3 R、−SOR、−SO2 R等の電子吸引基が置換していることが好ましい。
Figure 2007042550
Figure 2007042550
Figure 2007042550
上記一般式(7)〜(9)における2価の基Qは−CO−、−COO−、−O−、−S−、−SO−、−SO2 −、−CCR1 2−(R1 は水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる)、単結合から選ばれ、好ましくは−CO−、−O−、−S−、−SO2 −から選ばれる。
上記一般式(1)中、Pは −CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、単結合から選ばれる連結基であり、好ましくは、−CO−、−O−、−S−、−SO−、−C(CF−から選ばれる連結基であり、さらに好ましくは−CO−、−O−、−S−、−SO−から選ばれる連結基である。
上記一般式(1)中の側鎖部分Zは、下記一般式(2)で表される。
Z=−(XAr(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr) (2)
上記一般式(2)中のB〜Bn−1は、側鎖部分Zにおける分岐鎖を意味し、以下の式で表される。
=−〔(XAr(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr)〕
=−〔(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr)〕



n−1=−〔XAr
上記一般式(2)式中nはそれぞれ独立に2〜5から選ばれる整数を表し、好ましくは2〜4から選ばれ、さらに好ましくは2〜3から選ばれる。fはそれぞれ独立に0〜5から選ばれる整数を表し、好ましくは0〜2から選ばれ、かつ、少なくとも一つのfが1または2であり、さらに好ましくは0〜1から選ばれ、かつ、少なくとも一つのfが1である。
上記一般式(2)において、fが1以上である場合、上記一般式(2)で表される側鎖は芳香族残基Ar〜Arn−1 において分岐構造をとるが、その際、各分岐鎖は各々異なった鎖長および分岐構造をとることもできる。すなわち、本発明の上記一般式(2)で表される側鎖は、例えば、下記式(10)に示す構造をとることができる。
Figure 2007042550
上記一般式(2)におけるAr〜Arn-1は(f+2)価の芳香族残基を表し、例えば下記式(11)に示す2価の芳香族残基、上記式(7)に示す3価の芳香族残基、上記式(8)に示す4価の芳香族残基、上記式(9)に示す5価の芳香族残基などが挙げられる。これら芳香族残基の水素原子がアルキル基、ハロゲン原子、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、−CN、−NO2 、−COR、−COO R(Rは水素原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる。)、−CONRR’(R’はRと同様である。)、−SO3 R、−SOR、−SO2 Rで置換されていてもよく、F、パーフルオロアルキル、−CN、−NO2 、−COR、−COO R、−CONRR’、−SO3 R、−SOR、−SO2 R等の電子吸引基が置換していることが好ましい。また、Ar〜Arn-1 は互いに同じであっても異なっていてもよい。
Figure 2007042550
さらに上記一般式(2)におけるArは側鎖末端のアリール基を表し、例えば、下式
(12)に示すアリール基が挙げられ、当該アリール基の水素原子がアルキル基、ハロゲン原子、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、−CN、−NO2 、−COR、−COO R(Rは水素原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる。)、−CONRR’(R’はRと同様である。)、−SO3 R、−SOR、−SO2 Rで置換されていてもよく、Arは互いに同じであっても異なっていてもよい。
Figure 2007042550
また上記一般式(2)におけるX〜Xは2価の電子吸引基を表し、例えば、−CO−、−CONH−、−(CF2 p −(ここで、pは1〜10の整数である)、−C(CF3 2 −、−COO−、−SO−、−SO2 −などが挙げられ、好ましくは−CO−、−C(CF3 2 −、−SO−、−SO2 −さらに好ましくは−CO−、−SO−、−SO2 −などが用いられる。X〜Xは互いに同じであっても異なっていてもよい。本発明の上記一般式(1)中、Zで表される側鎖の具体例としては、例えば、下記式(13)の基が挙げられる。
Figure 2007042550
(上記式中、スルホン酸基は記載していない。)
本発明では、通常、非分岐型側鎖、分岐型側鎖から選ばれる側鎖が用いられ、好ましくは分岐型側鎖が用いられる。分岐型側鎖は、(i)スルホン化が容易な末端芳香環の数が多く、高分子(主鎖)までの距離が同じスルホン酸基を同一側鎖に複数導入することが可能であり、プロトン伝導性に必要なイオンクラスター構造を形成し易く、それゆえプロトン伝導性が高いものと考えられる。また、(ii)側鎖の形状が嵩高くなるので異なる高
分子鎖間の側鎖が互いに絡み合うものと推察され、その結果、電解質膜の強度が高く、寸法安定性も高いものと考えられる。
上記一般式(2)において、fが1以上である場合、上記一般式(2)で表される側鎖は芳香族残基Ar〜Arn−1 において分岐構造をとるが、その際、各分岐鎖は各々異なった鎖長および分岐構造をとることもできる。すなわち、本発明の上記一般式(2)で表される側鎖は、例えば、上記式(10)に示す構造をとることができる。
本発明の高分子電解質は、少なくとも上記一般式(1)で表される繰り返し単位(A)を有する。本発明の高分子電解質としては、通常、上記一般式(1)で表される繰り返し単位(A)を1〜100モル%、好ましくは5〜95モル%、さらに好ましくは10〜80モル%、特に好ましくは15〜75モル%含み、その重量平均分子量が1000〜100万、好ましくは1万〜100万、さらに好ましくは2万〜80万、特に好ましくは3万〜40万の重合体である高分子電解質が挙げられる。
本発明の高分子電解質が、従来の高分子電解質と比較して、(1)耐酸化性が高く、(2)高温でも脱スルホンが起こりにくく、(3)プロトン伝導性が高いという、優れた性能を併せ持つ理由は未だ明確ではないが、およそ次のように推定される。
(1)耐酸化性が高い理由:燃料電池運転時には過酸化水素や・OOHラジカルのような酸化性物質が生成することが知られている。そのため、高分子電解質としては化学的に安定な高分子パーフルオロスルホン酸が用いられてきた。従来の炭化水素系高分子スルホン酸では耐酸化性が不十分であることは、例えば特許文献6および7において、耐酸化性を補うために酸化防止剤を併用していることからも明らかである。上記特許文献6および7で用いられている高分子電解質(本発明の比較例1にその一つを示す)は、スルホン酸が置換した芳香環が電子供与性連結基(−O−)で連なる構造の側鎖を有している。酸化性物質例えば・OOHラジカルは芳香環を親電子的に攻撃するので、電子密度の高い芳香環ほど攻撃されやすく、特許文献6および7で用いられる電解質は耐酸化性が低いものと推察される。一方、本発明の電解質は、スルホン酸が置換した芳香環が電子吸引性連結基で連なる特定構造の側鎖を有する。すなわち、本発明の方法では電子吸引性連結基を用いることにより芳香環の電子密度を低下させ、それゆえ、酸化性物質が反応し難く、耐酸化性が高いものと考えられる。
(2)脱スルホンが起こり難い理由:一方、芳香族スルホン酸は、高温ほど脱スルホンが進行することが知られており、燃料電池運転温度である100℃付近での脱スルホンも皆無ではないため、この点を改良することは高分子スルホン酸電解質の課題の一つであった。脱スルホン反応は芳香族スルホン酸へのプロトンの攻撃により開始すると考えられ、したがって、電子密度の高い芳香環ほど脱スルホンし易いものと推測される。先述のように、電子吸引性連結基が置換した本発明の電解質は芳香環の電子密度が低いので、脱スルホンし難いものと推測される。
(3)プロトン伝導度が高い理由:電子吸引性連結基が置換した本発明の電解質は芳香環の電子密度が低い。したがって解離したスルホン酸アニオンを安定化するために酸解離定数が高く、それゆえ、プロトン伝導度が高いものと推測される。
本発明の高分子電解質は従来知られていない。それには必然的な理由があったからである。すなわち、従来知られている、側鎖スルホン酸を有する高分子電解質は、スルホン酸が置換した芳香環が電子供与性連結基で連なる構造を有している。通常、芳香環をスルホン化する場合、電子吸引性基が置換していると、当該芳香環の反応性が著しく低下し、その結果スルホン化を進行させることが困難となってしまう。それゆえ、従来の方法では、芳香環を活性化しスルホン化の進行を容易にするために電子供与基を置換せざるを得なかったのである。その結果、本発明のような側鎖電子吸引性連結基を有する高分子電解質は合成が困難であった。一方、本発明においては、電子吸引性連結基へ変換可能な電子供与
性連結基前駆体を用いることにより、(1)スルホン化反応性の促進と、(2)電子吸引性連結基の使用、を両立することが初めて可能となり、その結果、本発明の優れた効果を見出すことが可能となったのである。
本発明の高分子電解質の製造方法は特に限定されるものではない。例えば、
(M1)高分子に側鎖導入剤を反応させて側鎖を導入する方法
上記一般式(1)においてZが置換していない構造に相当する、−Y−P−(Yは2価の芳香族残基、Pは前記のとおり)を繰り返し単位として有する高分子へ側鎖導入剤を反応させてZを導入させても良いし、予め反応性の置換基を導入した−Y(M)−P−(Yは3価の芳香族残基、Mは反応性基、Pは前記のとおり)に、Mと反応する側鎖導入剤を反応させることによりZを導入しても良い。
(M2)少なくとも側鎖を有するモノマーを重合させて製造する方法
繰り返し構造単位(A)に対応するモノマーおよび他の繰り返し単位に対応するモノマーを重合することによっても得られるし、繰り返し単位(A)に対応するモノマーや他の繰り返し単位に対応するモノマーからまずオリゴマーを合成し、次に当該オリゴマー同士または当該オリゴマーとモノマーを反応させることにより得ることもできる。また、繰り返し単位(A)と一つのまたは複数の他の繰り返し単位が連結した構造に対応するモノマーを予め合成し、このものの単独重合や、このものと他の繰り返し構造に対応するモノマーとの重合によって合成することもできる。
前記方法(M1)の通常用いられる具体例を次に示す。すなわち、下記一般式(3)で表される繰り返し単位を有する高分子と下記一般式(4)で表される側鎖導入剤を反応させることにより、上記一般式(1)で示される高分子電解質を製造することができる。なお、この場合には、上記一般式(2)におけるXは−CO−および−SO−から選ばれる。
Figure 2007042550
上記一般式(3)において、Y、kおよびPは上記一般式(1)に記載のものと同様であり、Uは水素原子、−COX、−SOXから選ばれる反応性基であり、Xはハロゲン原子、OR(Rは水素原子、アルキル基、またはアリール基)、水酸基から選ばれる。
Z’−V (4)
上記一般式(3)のUが水素原子の場合、Vは−COX、−SOXから選ばれる反応性基であり、Uが−COX、−SOXから選ばれる反応性基である場合には、Vは水素原子であり、Z’は、下記一般式(5)で表される。
Z’=−(Ar(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr) (5)
上記一般式(5)中、Ar、B、nは上記一般式(2)に記載のものと同様であり、Xは上記一般式(2)に記載の連結基及び連結基前駆体から選ばれる。)
連結基前駆体とは、連結基に変換することのできる基をいう。連結基前駆体を連結基に変換する方法としては公知の方法を用いることができる。表1に例を示す。
Figure 2007042550
連結基前駆体を連結基に変換するのはいずれの時点でもよいが、好ましくは次の方法が用いられる。すなわち、上記一般式(3)で表される繰り返し単位を有する高分子と上記一般式(4)で表される側鎖導入剤を反応させるに際し、
(i)側鎖導入剤がスルホン酸基またはその前駆体を有せず、かつ、側鎖導入剤のXが、電子供与性の連結基前駆体であって、高分子と反応後、スルホン酸化を行い、続いて連結基前駆体を電子吸引性の連結基に変換することにより、または、
(ii)側鎖導入剤がスルホン酸基またはその前駆体を有し、かつ、側鎖導入剤のXが、(ii−1)電子供与性の連結基前駆体である場合には、続いて連結基前駆体を電子吸引性の連結基に変換することにより、(ii−2)電子吸引性の連結基である場合には、その状態で、上記一般式(1)で表される繰り返し単位を有する燃料電池用高分子電解質を得る方法である。
本発明で使用する、上記一般式(3)で表される繰り返し単位を有する高分子の例を以下に示す。
Uが水素原子のもの:上記一般式(11)で示される残基から選ばれる2価芳香族残基と、−CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、単結合から選ばれる連結基Pの組み合わせからなる高分子が通常用いられ、好ましくは、フェニレン、ナフチレン、ビフェニレンから選ばれる2価芳香族残基と−CO−、−O−、−S−、−SO−から選ばれる連結基Pの組み合わせが用いられ、より好ましくはポリエーテルケトン、ポリエーテルスルホン、ポリチオエーテルケトン、ポリチオエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルエーテルケトンが用いら
れ、さらに好ましくは、下式で表される高分子においてZが水素原子のものが用いられる。
Figure 2007042550
Figure 2007042550
Uが−COXまたは−SOXのもの:上記一般式(11)で示される残基から選ばれる2価芳香族残基と、−CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、単結合から選ばれる連結基Pの組み合わせからなる高分子に−COXまたは−SOXを導入したものが通常用いられ、好ましくは、フェニレン、ナフチレン、ビフェニレンから選ばれる2価芳香族残基と−CO−、−O−、−S−、−SO−から選ばれる連結基Pの組み合わせの高分子に−COXまたは−SOXを導入したものが用いられ、より好ましくはポリエーテルケトン、ポリエーテルスルホン、ポリチオエーテルケトン、ポリチオエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルエーテルケトンに−COXまたは−SOXを導入したものが用いられ、さらに好ましくは、上式で表される高分子においてZが−COXまたは−SOXを導入したものが用いられる。(−COXまたは−SOXの導入には公知の導入方法を用いることができる。)。上記一般式(3)UのCOX、SOXにおけるXは、通常、ハロゲン原子、OR(Rは水素原子、アルキル基、またはアリール基)、水酸基から選ばれ、好ましくは、ハロゲン原子、水酸基から選ばれる。上記一般式(4)で表される側鎖導入剤の例を次に示す。
側鎖導入剤がスルホン酸基またはその前駆体を有し、かつ、側鎖導入剤のXが電子吸引性の連結基であり、さらに、Vが−COX、−SOXから選ばれる反応性基である場合の、好ましいZ’−Vの例を下記式(14)および下記式(15)に示す。さらに好ましいZ’−Vは下記式(15)に示す分岐構造である。(式中、−SORはスルホン酸基またはその前駆体を表し、Rは水酸基、アルキル基、アルカリ金属、アルカリ土類金属から選ばれる。)
Figure 2007042550
Figure 2007042550
側鎖導入剤がスルホン酸基またはその前駆体を有せず、かつ、側鎖導入剤のXが、電子供与性の連結基前駆体であり、さらに、Vが−COX、−SOXから選ばれる反応性基である場合の、好ましいZ’−Vの例を下記式(16)および下記式(17)に示す。さらに好ましいZ’は下記式(17)に示す分岐構造である。Vが水素原子である場合の好ましいZ’−Vの例を下記式(18)および下記式(19)に示す。
Figure 2007042550
Figure 2007042550
Figure 2007042550
Figure 2007042550
上記式(4)のVにおけるXは通常、ハロゲン原子、OR(Rは水素原子、アルキル基、またはアリール基)、水酸基から選ばれ、好ましくは、ハロゲン原子、水酸基から選ばれる。
高分子に側鎖導入剤を反応させる際の反応の種類は、特に制限されない。上記式(3)で表される高分子と上記式(4)で表される側鎖導入剤を反応させる際の好ましい方法としては次の方法が挙げられる。
(i)上記式(3)のUが水素原子で、上記式(4)のVが−COX(Xがハロゲン原子または水酸基)であるか、または、上記式(3)のUが−COX(Xがハロゲン原子)で、上記式(4)のVが水素原子である場合:フリーデル・クラフツ−アシル化反応を用いることができる。
(ii)上記式(3)のUが水素原子で、上記式(4)のVが−SOX(Xがハロゲン原子または水酸基)であるか、または、上記式(3)のUが−SOX(Xがハロゲン原子)で、上記式(4)のVが水素原子である場合:フリーデル・クラフツ型スルホニル化反応を用いることができる。
(iii)上記式(3)のUが水素原子で、上記式(4)のVが−COOHまたは−SOHであるか、または、上記式(3)のUが−COOHまたは−SOHで、上記式(4)のVが水素原子である場合:脱水縮合反応を用いることができる。
前記方法(M2)の具体例を次に示す。すなわち、少なくとも上記一般式(18)で示されるモノマーを用いて重合させることにより、上記一般式(1)で示される高分子電解質を製造することができる。
連結基前駆体を連結基に変換するのはいずれの時点でもよいが、好ましくは次の方法が用いられる。すなわち、少なくとも上記一般式(6)で表されるモノマーを重合させるに際し、(i)Z”がスルホン酸基またはその前駆体を有せず、かつ、Z”のXが電子供与性の連結基前駆体であって、重合後、スルホン酸化を行い、続いて連結基前駆体を電子吸引性の連結基に変換することにより、または、(ii)Z”がスルホン酸基またはその前駆体を有し、かつ、Z”のXが、(ii−1)電子供与性の連結基前駆体である場合には、続いて連結基前駆体を電子吸引性の連結基に変換することにより、(ii−2)電子吸引性の連結基である場合には、その状態で、上記一般式(1)で表される繰り返し単位を有する燃料電池用高分子電解質を得る方法である。
Figure 2007042550
[式中、k、PおよびYは上記一般式(1)と同様であり、WおよびW’は水素原子、ハロゲン、−COX(XはハロゲンまたはOR(Rは水素原子、アルキル基、またはアリール基))、−OH、−SH、−SO2 X(Xは前記のとおり)から選ばれ、同一であっても異なっていても良く、Z”はXが連結基及び前記の連結基前駆体から選ばれ、Arがスルホン酸基を有していてよいことを除いて上記一般式(1)のZと同様である。]
また、本発明の重合体において、繰り返し単位(A)以外の他の繰り返し単位としては、重合できるものであればいずれも用いることができ、下記一般式(20)で表される繰り返し単位(B)が好ましく用いられる。
−Y−P− (20)
式中、Y2 は上記一般式(11)に示されるものと同様の2価の芳香族残基から選ばれ、当該芳香族残基の水素原子がアルキル基、ハロゲン原子、ハロゲン化アルキル基、またはアリール基で置換されていてもよく、P2 は−CO−、−O−、−S−、−SO−、−SO2 −、−COO−、−SO3 −、−CONH−、単結合から選ばれ、好ましくは−CO−、−O−、−S−、−SO2 −から選ばれる。]
本発明の好ましい重合体において、繰り返し単位(A)と他の繰り返し単位は、(以下、簡単のため本段落ではYの側鎖基Zを略す)例えば−Y−P−Y2 −P2 −Y−P−のように、YまたはY2がPまたはP2を介してYまたはY2と結合していればよく、任意の繰返し順序を取ることができる。例えば、−(Y−P)m −(Y2 −P2 n −[m,nは正の整数]のようなブロックポリマーであってもよく、またはランダムポリマーであってもよい。 繰り返し単位(A)と他の繰り返し単位の割合は、繰り返し単位(A)5〜95モル%、好ましくは10〜80モル%、より好ましくは15〜75モル%、他の繰り返し単位が95〜5モル%、好ましくは90〜20モル%、より好ましくは85〜25モル%である。繰り返し単位(A)以外の他の繰り返し単位が、繰り返し単位(B)からなる場合、同一種類の繰り返し単位(B)が用いられても良いし複数の種類の繰り返し単位(B)が用いられても良い。
以下、前記方法(M2)として通常用いられる合成法の例を述べる。
[合成方法−1]本発明において、連結基Pが単結合である重合体を製造する際の反応として好ましく用いられるのは、遷移触媒を用いた、芳香族ハロゲン化物同士のカップリング反応である。例えば特許文献3および特許文献6に記載された方法を用いることができる。
[合成方法−2]本発明において、連結基Pおよび/またはP2 が−O−である重合体を製造する際の反応として好ましく用いられるのは、芳香族ヒドロキシ化合物と芳香族ハロゲン化物の芳香族求核置換反応による芳香族ポリエーテルの合成反応である。
例えば、文献1(高分子学会編「高性能芳香族系高分子材料」丸善株式会社 1990年3月30日 p.128〜132)に記載された方法を用いることができる。別の方法としては、芳香族ハロゲン化物同士を炭酸塩と触媒の存在下に反応させて芳香族ポリエーテル類を合成する反応を用いることができる。例えば、文献2(Fukawaら、Macromolecules,1991年,24巻 p.3838)に記載された方法を用いることができる。
[合成方法−3]本発明において、連結基Pおよび/またはP2 が−S−である重合体を
製造する際の反応として好ましく用いられるのは、前記合成方法−2における芳香族ヒドロキシ化合物の代わりに芳香族チオール化合物を用いて芳香族ポリスルフィド類を合成する方法である。また、別の方法としては、芳香族ジクロリドと硫化ナトリウムから芳香族ポリスルフィドを合成する反応を用いることができる。例えば、文献1のp.133〜134に記載された方法を用いることができる。
[合成方法−4]本発明において、連結基Pおよび/またはP2 が−SO2 −である重合体を製造する際の反応として好ましく用いられるのは、上記合成法−3で製造した芳香族スルフィド類を過酸化水素などの酸化剤を用いて酸化する方法である。
また、別の方法としては、水素原子を芳香環に有する芳香族化合物に、芳香族スルホン酸ハライドを親電子置換反応させて芳香族スルホン結合を形成する方法を用いることができる。例えば、文献1のp.132〜133に記載された方法を用いることができる。
[合成方法−5]本発明において、連結基Pおよび/またはP2 が−CO−である重合体を製造する際の反応として好ましく用いられるのは、フリーデル・クラフツ−アシル化反応である。例えば、前記文献1のp.132〜133に記載された方法を用いることができる。
次に、前記方法(M2)による好ましい合成法の例を説明する
[重合体の例−1]重合体が繰り返し単位(A)と繰り返し単位(B)からなり、連結基PおよびP2 がいずれも−O−の場合:例えば下記一般式(21)に示す繰り返し単位(A)モノマーと、下記一般式(22)に示す繰り返し単位(B)モノマーとの反応、または、下記一般式(23)に示す繰り返し単位(A)モノマーと、下記一般式(24)に示す繰り返し単位(B)モノマーとの反応、または、下記一般式(25)に示す繰り返し単位(A)モノマーと、下記一般式(26)に示す繰り返し単位(B)モノマーとの反応により、繰り返し単位(A)と繰り返し単位(B)からなる下記一般式(27)で示される重合体を得ることができる。
Figure 2007042550
[式中、Xはハロゲン原子を表し、k、Y 、Y2 、Zは前記のとおりである。]
Figure 2007042550
なお、上記一般式(22),(23),(25),(26)における酸素原子の代わり
にイオウ原子を用いた原料を用いることにより、連結基PおよびP2 がいずれも−S−の重合体を得ることができる。
上記一般式(21)で表される繰り返し単位(A)モノマーの具体例としては、2,5−ジクロロ−4’−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゾフェノン、2,5−ジブロモ−4’−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゾフェノン、2,5−ジヨード−4’−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゾフェノン、;2,5−ジクロロ−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノン、2,5−ジブロモ−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノン、2,5−ジヨード−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノン;2,5−ジクロロ−4’−チオフェノキシベンゾフェノン、2,5−ジブロモ−4’−チオフェノキシベンゾフェノン、2,5−ジヨード−4’−チオフェノキシベンゾフェノン;2,5−ジクロロ−1−(4−チオフェノキシ)チオフェノキシベンゼン、2,5−ジブロモ−1−(4−チオフェノキシ)チオフェノキシベンゼン、2,5−ジヨード−1−(4−チオフェノキシ)チオフェノキシベンゼン;2,5−ジクロロ−1−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゼン、2,5−ジブロモ−1−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゼン、2,5−ジヨード−1−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゼン;2,5−ジクロロ−4’−(4−ベンゾイル)ベンゾイルベンゾフェノン、2,5−ジブロモ−4’−(4−ベンゾイル)ベンゾイルベンゾフェノン、2,5−ジヨード−4’−(4−ベンゾイル)ベンゾイルベンゾフェノン;2,5−ジクロロ−4’−ベンゾイルベンゾフェノン、2,5−ジブロモ−4’−ベンゾイルベンゾフェノン、2,5−ジヨード−4’−ベンゾイルベンゾフェノン、およびこれらの位置異性体などが挙げられる。
上記一般式(23)で表される繰り返し単位(A)モノマーの具体例としては、2,5−ジヒドロキシ−4’−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゾフェノン;2,5−ジヒドロキシ−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノン;2,5−ジヒドロキシ−4’−チオフェノキシベンゾフェノン;2,5−ジヒドロキシ−1−(4−チオフェノキシ)チオフェノキシベンゼン;2,5−ジヒドロキシ−1−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゼン;2,5−ジヒドロキシ−4’−(4−ベンゾイル)ベンゾイルベンゾフェノン;2,5−ジヒドロキシ−4’−ベンゾイルベンゾフェノンおよびこれらの位置異性体などが挙げられる。
上記一般式(25)で表される繰り返し単位(A)モノマーの具体例としては、2−クロロ−5−ヒドロキシ−4’−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゾフェノン、2−ブロモ−5−ヒドロキシ−4’−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゾフェノン、2−ヨード−5−ヒドロキシ−4’−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゾフェノン、;2−クロロ−5−ヒドロキシ−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノン、2−ブロモ−5−ヒドロキシ−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノン、2−ヨード−5−ヒドロキシ−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノン;2−クロロ−5−ヒドロキシ−4’−チオフェノキシベンゾフェノン、2−ブロモ−5−ヒドロキシ−4’−チオフェノキシベンゾフェノン、2−ヨード−5−ヒドロキシ−4’−チオフェノキシベンゾフェノン;2−クロロ−5−ヒドロキシ−1−(4−チオフェノキシ)チオフェノキシベンゼン、2−ブロモ−5−ヒドロキシ−1−(4−チオフェノキシ)チオフェノキシベンゼン、2−ヨード−5−ヒドロキシ−1−(4−チオフェノキシ)チオフェノキシベンゼン;2−クロロ−5−ヒドロキシ−1−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゼン、2,5−ジブロモ−1−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゼン、2−ヨード−5−
ヒドロキシ−1−(4−チオフェノキシ−4−チオフェノキシ)チオフェノキシベンゼン;2−クロロ−5−ヒドロキシ−4’−(4−ベンゾイル)ベンゾイルベンゾフェノン、2−ブロモ−5−ヒドロキシ−4’−(4−ベンゾイル)ベンゾイルベンゾフェノン、2−ヨード−5−ヒドロキシ−4’−(4−ベンゾイル)ベンゾイルベンゾフェノン;2−クロロ−5−ヒドロキシ−4’−ベンゾイルベンゾフェノン、2−ブロモ−5−ヒドロキシ−4’−ベンゾイルベンゾフェノン、2−ヨード−5−ヒドロキシ−4’−ベンゾイルベンゾフェノン、およびこれらの位置異性体などが挙げられる。
上記一般式(22)で表される繰り返し単位(B)モノマーの具体例としては、4,4′−ジヒドロキシベンゾフェノン、2,4′−ジヒドロキシベンゾフェノン、3,3′−ジヒドロキシベンゾフェノン;4,4′−ジヒドロキシジフェニルエーテル、2,4′−ジヒドロキシジフェニルエーテル、3,3′−ジヒドロキシジフェニルエーテル;4,4′−ジヒドロキシジフェニルチオエーテル、2,4′−ジヒドロキシジフェニルチオエーテル、3,3′−ジヒドロキシジフェニルチオエーテル;2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス(3−ヒドロキシフェニル)ヘキサフルオロプロパン;ビス(ヒドロキシフェニル)ジフルオロメタン;4−ヒドロキシ安息香酸−4−ヒドロキシフェニル、4−ヒドロキシ安息香酸−3−ヒドロキシフェニル、3−ヒドロキシ安息香酸−3−ヒドロキシフェニル、3−ヒドロキシ安息香酸−4−ヒドロキシフェニル;ビス(4−ヒドロキシフェニル)スルホキシド、ビス(3−ヒドロキシフェニル)スルホキシド;ビス(4−ヒドロキシフェニル)スルホン、ビス(3−ヒドロキシフェニル)スルホン;2,5−ジヒドロキシ4′−フェノキシベンゾフェノン、p−ジヒドロキシベンゼン、2,5−ジヒドロキシトルエン、2,5−ジヒドロキシp−キシレン、2,5−ジヒドロキシベンゾトリフルオライド、1,4−ジヒドロキシ2,3,5,6−テトラフルオロベンゼン;4,4′−ジヒドロキシビフェニル;m−ジヒドロキシベンゼン、2,4−ジヒドロキシトルエン、3,5−ジヒドロキシトルエン、2,6−ジヒドロキシトルエンなどが挙げられる。
上記一般式(24)で表される繰り返し単位(B)モノマーの具体例としては、4,4′−ジクロロベンゾフェノン、2,4′−ジクロロベンゾフェノン、3,3′−ジクロロベンゾフェノン、4,4′−ジブロモベンゾフェノン、2,4′−ジブロモベンゾフェノン、3,3′−ジブロモベンゾフェノン、4,4′−ジヨードベンゾフェノン、2,4′−ジヨードベンゾフェノン、3,3′−ジヨードベンゾフェノン;4,4′−ジクロロジフェニルエーテル、2,4′−ジクロロジフェニルエーテル、3,3′−ジクロロジフェニルエーテル、4,4′−ジブロモジフェニルエーテル、2,4′−ジブロモジフェニルエーテル、3,3′−、ジブロモジフェニルエーテル、4,4′−ジヨードジフェニルエーテル、2,4′−ジヨードジフェニルエーテル、3,3′−ジヨードジフェニルエーテル;4,4′−ジクロロジフェニルチオエーテル、2,4′−ジクロロジフェニルチオエーテル、3,3′−ジクロロジフェニルチオエーテル、4,4′−ジブロモジフェニルチオエーテル、2,4′−ジブロモジフェニルチオエーテル、3,3′−、ジブロモジフェニルチオエーテル、4,4′−ジヨードジフェニルチオエーテル、2,4′−ジヨードジフェニルチオエーテル、3,3′−ジヨードジフェニルチオエーテル:2,2−ビス(4−クロロフェニル)ヘキサフルオロプロパン、2,2−ビス(3−クロロフェニル)ヘキサフルオロプロパン、2,2−ビス(4−ブロモフェニル)ヘキサフルオロプロパン、2,2−ビス(3−ブロモフェニル)ヘキサフルオロプロパン、2,2−ビス(4−ヨードフェニル)ヘキサフルオロプロパン、2,2−ビス(3−ヨードフェニル)ヘキサフルオロプロパン;ビス(クロロフェニル)ジフルオロメタン、ビス(ブロモフェニル)ジフルオロメタン、ビス(ヨードフェニル)ジフルオロメタン;4−クロロ安息香酸−4−クロロフェニル、4−クロロ安息香酸−3−クロロフェニル、3−クロロ安息香酸−3−クロロフェニル、3−クロロ安息香酸−4−クロロフェニル、4−ブロモ安息香酸−4−ブロモフェニル、4−ブロモ安息香酸−3−ブロモフェニル、3−ブロモ安息香酸−3−ブロ
モフェニル、3−ブロモ安息香酸−4−ブロモフェニル;ビス(4−クロロフェニル)スルホキシド、ビス(3−クロロフェニル)スルホキシド、ビス(4−ブロモフェニル)スルホキシド、ビス(3−ブロモフェニル)スルホキシド、ビス(4−ヨードフェニル)スルホキシド、ビス(3−ヨードフェニル)スルホキシド;ビス(4−クロロフェニル)スルホン、ビス(3−クロロフェニル)スルホン、ビス(4−ブロモフェニル)スルホン、ビス(3−ブロモフェニル)スルホン、ビス(4−ヨードフェニル)スルホン、ビス(3−ヨードフェニル)スルホン;2,5−ジクロロ−4′−フェノキシベンゾフェノン、p−ジクロロベンゼン、p−ジブロモベンゼン、p−ジヨードベンゼン、2,5−ジクロロトルエン、2,5−ジブロモトルエン、2,5−ジヨードトルエン、2,5−ジクロロ−p−キシレン、2,5−ジブロモ−p−キシレン、2,5−ジヨード−p−キシレン、2,5−ジクロロベンゾトリフルオライド、2,5−ジブロモベンゾトリフルオライド、2,5−ジヨードベンゾトリフルオライド、1,4−ジクロロ−2,3,5,6−テトラフルオロベンゼン、1,4−ジブロモ−2,3,5,6−テトラフルオロベンゼン、1,4−ジヨード−2,3,5,6−テトラフルオロベンゼン;4,4′−ジクロロビフェニル、4,4′−ジブロモビフェニル、4,4′−ジヨードビフェニル、4,4′−ジブロモオクタフルオロビフェニル;m−ジクロロベンゼン、m−ジブロモベンゼン、m−ジヨードベンゼン、2,4−ジクロロトルエン、2,4−ジブロモトルエン、2,4−ジヨードトルエン、3,5−ジクロロトルエン、3,5−ジブロモトルエン、3,5−ジヨードトルエン、2,6−ジクロロトルエン、2,6−ジブロモトルエン、2,6−ジヨードトルエン、1,3−ジブロモ−2,4,5,6−テトラフルオロベンゼンなどが挙げられる。なお、上記具体例において、一般式(15)における二つのXのうち一つをフッ素原子に置換したものも好ましく用いることができる。
上記一般式(26)で表される繰り返し単位(B)モノマーの具体例としては、上記一般式(15)で表される繰り返し単位(B)モノマーの具体例における、非フッ素ハロゲン原子の一つを水酸基で置換した構造およびその位置異性体が挙げられる。
重合体が繰り返し単位(A)と繰り返し単位(B)からなり、連結基PおよびP2 がいずれも−O−の場合の合成例を以下に具体的に例示する。繰り返し単位(A)のモノマーとして2,5−ジクロロ−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノンを用い、繰り返し単位(B)のモノマーとしてp,p’−ジヒドロキシベンゾフェノンを用いる。両者を炭酸カリウムの存在下で共重合し、次いで、スルホン酸化剤を用いて、スルホン酸化した後に、スルフィド結合を酸化剤を用いて酸化してスルホンへ転化することで、連結基P=O、P2 =Oの下記(28)式に示すポリマー(Q=−CO−)のスルホン酸化物が高分子電解質として得られる。
Figure 2007042550
[式中、Z”は側鎖基を示す。]
同様にして、Qが−O−、−S−、−SO2 −、−CR1 2−(R1 は水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる)または単結合であるポリマーを合成することができる。
[重合体の例−2]重合体が繰り返し単位(A)と繰り返し単位(B)からなり、連結基PおよびP2 がいずれも単結合の場合:下記一般式(29)に示す、繰り返し単位(A)モノマーと、下記一般式(30)に示す、繰り返し単位(B)モノマーとの反応により、繰り返し単位(A)と繰り返し単位(B)からなる、下記一般式(31)で示される重合
体を得ることができる。下記一般式(29)で表される繰り返し単位(A)モノマーの具体例としては、上記一般式(21)に対する具体例と同様の化合物が挙げられる。下記一般式(30)で表される繰り返し単位(B)モノマーの具体例としては、上記一般式(24)に対する具体例と同様の化合物が挙げられる。
Figure 2007042550
[式中、X、X’は互いに同一であっても異なっていても良いハロゲン原子を表し、k、Y、Y2 、Zは前記のとおりである。]
Figure 2007042550
重合体が繰り返し単位(A)と繰り返し単位(B)からなり、連結基PおよびP2 がいずれも単結合の場合の例を以下に具体的に例示する。繰り返し単位(A)のモノマーとして2,5−ジクロロ−4’−チオフェノキシベンゾフェノンを用い、繰り返し単位(B)のモノマーとしてp,p’−ジクロロジフェニルスルホンを用いる。両者を、遷移金属化合物を含む触媒の存在下で共重合し、次いで、スルホン酸化剤を用いて、スルホン酸化した後に、スルフィド結合を酸化剤を用いて酸化してスルホンへ転化することで、連結基P=単結合、P2 =単結合の下記式(32)に示すポリマー(Q=−SO2 −)のスルホン酸化物が高分子電解質として得られる。
Figure 2007042550
[式中、Z”は側鎖基を示す。]
[重合体の例−3]重合体が繰り返し単位(A)と繰り返し単位(B)からなり、連結基PおよびP2 がいずれも−CO−の場合:例えば下記一般式(33)に示す、繰り返し単位(A)モノマーと、下記一般式(34)に示す、繰り返し単位(B)モノマーとの反応、または、下記一般式(35)に示す、繰り返し単位(A)モノマーと、下記一般式(36)に示す、繰り返し単位(B)モノマーとの反応により、繰り返し単位(A)と繰り返し単位(B)からなる、下記一般式(37)で示される重合体を得ることができる。なお、下記一般式(34),(35)におけるCOの代わりにSO2 を用いた原料を使用することにより、連結器P およびP2 がいずれも−SO2 −の重合体が得られる。[式中、Xはハロゲン原子を表し、Y、Y2 、Zは前記のとおりである。]
Figure 2007042550
Figure 2007042550
上記一般式(33)で表される繰り返し単位(A)モノマーの具体例としては、 上記一般式(21)で表される繰り返し単位(A)モノマーの具体例における、−Xを水素原子で置換した構造のものおよびその位置異性体が挙げられる。
上記一般式(35)で表される繰り返し単位(A)モノマーの具体例としては、上記一般式(21)で表される繰り返し単位(A)モノマーの具体例における、−Xを−COX(Xはハロゲン原子を示す)で置換した構造のものおよびその位置異性体が挙げられる。
上記一般式(34)で表される繰り返し単位(B)モノマーの具体例としては、上記一般式(24)で表される繰り返し単位(B)モノマーの具体例における、−Xを−COX(Xはハロゲン原子を示す)で置換した構造のものおよびその位置異性体が挙げられる。
上記一般式(36)で表される繰り返し単位(B)モノマーの具体例としては、上記一般式(24)で表される繰り返し単位(B)モノマーの具体例における、Xを水素原子で置換した構造のものが挙げられる。
重合体が繰り返し単位(A)と繰り返し単位(B)からなり、連結基PおよびP2 がいずれも−CO−の場合の合成例を以下に具体的に例示する。繰り返し単位(A)のモノマーとして2−[4−(4−チオフェノキシ)チオフェノキシベンゾイル]テレフタルクロリドを用い、繰り返し単位(B)のモノマーとしてジフェニルエーテルを用いる。両者を塩化アルミニウム等のフリーデルクラフツ触媒の存在下で共重合し、次いで、スルホン酸化剤を用いて、スルホン酸化した後に、スルフィド結合を酸化剤を用いて酸化してスルホンへ転化することで、連結基P=CO、P2 =COの下記(38)式に示すポリマー(Q=−O−)のスルホン酸化物が高分子電解質として得られる。
Figure 2007042550
[式中、Z”は側鎖基を示す。]
同様にして、Qが−CO−、−S−、−SO2 −、−CR1 2−(R1 は水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アリール基から選ばれる)または単結合
であるポリマーを合成することができる。
[重合体の例−4]重合体が繰り返し単位(A)と複数の繰り返し単位(B)からなり、連結基Pが単結合、連結基P2 が−O−の場合:例えば下記一般式(39)に示す、繰り返し単位(A)モノマーと、下記一般式(40)および下記一般式(41)に示す、繰り返し単位(B)モノマーとの反応により、繰り返し単位(A)と2種類の繰り返し単位(B)からなる、下記一般式(42)で示される重合体を得ることができる。
Figure 2007042550
[式中、X、X’、X’’はハロゲン原子を表し互いに異なっていても同一でも良く、Y2 ’はY2 と同様の基であり、k、Y、Y2 、Zは前記のとおりである。]
Figure 2007042550
上記一般式(39)で表される繰り返し単位(A)モノマーの具体例としては、上記一般式(21)に対する具体例と同様の化合物が挙げられる。上記一般式(40)で表される繰り返し単位(B)モノマーの具体例としては、上記一般式(24)に対する具体例と同様の化合物が挙げられる。上記一般式(41)で表される繰り返し単位(B)モノマーの具体例としては、上記一般式(22)に対する具体例と同様の化合物が挙げられる。
重合体が繰り返し単位(A)と繰り返し単位(B)からなり、連結基Pが単結合、連結基P2 が−O−の場合の例を以下に具体的に例示する。繰り返し単位(A)のモノマーとして2,5−ジクロロ−4’−チオフェノキシベンゾフェノンを用い、繰り返し単位(B)のモノマーとして4−クロロフルオロベンゼンと4,4’−ジヒドロキシベンゾフェノンを用いる。まず、4−クロロフルオロベンゼンとビス(4−ヒドロキシフェニル)スルホンを炭酸カリウムの存在下で反応させてビス[4−(4−クロロフェノキシ)フェニル]スルホンを合成する。次にこのものと2,5−ジクロロ−4’−チオフェノキシベンゾフェノンを、遷移金属化合物を含む触媒の存在下で共重合し、次いで、スルホン酸化剤を用いて、スルホン酸化した後に、スルフィド結合を酸化剤を用いて酸化してスルホンへ転化することで、連結基P=単結合、P2 =−O−結合の下記式(43)に示すポリマー(Q=−SO2 −)のスルホン酸化物が高分子電解質として得られる。本発明の重合体において、他の繰り返し単位中の繰り返し単位(B)の割合は、10〜100モル%、好ましくは20〜100モル%である。
Figure 2007042550
[式中、Z”は側鎖基を示す。]
本発明の高分子電解質の主鎖に含まれる芳香族残基は少なくとも一つの電子吸引基が結合していることが好ましい。この場合の電子吸引基は、例えば、−CO−、−CONH−、−(CF2 p −(ここで、pは1〜10の整数である)、−C(CF3 2 −、−COO−、−SO−、−SO−、−SO2 −などの2価の基;F、パーフルオロアルキル、−CN、−NO2 、−COR、−COOR(Rは水素、アルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基から選ばれる)、−CONRR’(R’は前記Rと同様の基である。)、−SO3 R、−SOR、−SO2 Rなどの1価の基が挙げられる。
本発明の高分子電解質の構造例を以下に示す。[式中、Zは上記一般式(1)で表される側鎖を示す。]
Figure 2007042550
Figure 2007042550
Figure 2007042550
Figure 2007042550
本発明の高分子電解質においては、側鎖Zにスルホン酸基が存在する。そして、少なくともn≧2で、かつ、スルホン酸基の1.0を超える数が導入されたZを有する。なお、Zが直鎖状の場合には、同一側鎖の複数のAr基にスルホン酸基が導入されていてもよい。さらに付加的に主鎖がスルホン酸基で置換されてもよい。本発明の製造方法においてスルホン酸基の導入方法は限定されず、例えば(1)重合体をスルホン酸化することにより導入してもよいし、(2)スルホン酸基を含有するモノマーを重合してもよいし、(3)スルホン酸基誘導体、スルホン酸基前駆体から選ばれる基を含有するモノマーを重合した後に当該基をスルホン酸基に変換することによりスルホン酸基を導入することもできる。
本発明の高分子電解質の製造方法のおいて、スルホン酸基を導入する方法として、スルホン基を含有しない高分子をスルホン酸化することにより導入する場合には、スルホン酸化剤による常法のスルホン酸化を用いることができる。スルホン酸基を導入する方法としては、例えば、上記スルホン酸基を有しない高分子を、無水硫酸、発煙硫酸、クロルスルホン酸、硫酸、亜硫酸水素ナトリウムなどの公知のスルホン酸化剤を用いて、公知の条件でスルホン酸化することができる(本発明において、スルホン酸化とは、−Hなる基の水素原子をSO3 Hで置換する反応を示す。)。
このスルホン酸化の反応条件としては、上記スルホン酸基を有しない高分子を、無溶剤下、あるいは溶剤存在下で、上記スルホン酸化剤と反応させる。溶剤としては、例えばn−ヘキサンなどの炭化水素系溶剤、テトラヒドロフラン、ジオキサンなどのエーテル系溶剤、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドのような非プロトン系極性溶剤のほか、テトラクロロエタン、ジクロロエタン、クロロホルム、塩化メ
チレンなどのハロゲン化炭化水素などが挙げられる。反応温度は特に制限はないが、通常、−50〜200℃、好ましくは−10〜100℃である。また、反応時間は、通常、0.5〜1,000時間、好ましくは1〜200時間である。
このようにして得られる、本発明のスルホン酸基含有重合体中の、スルホン酸基量は、0.5〜5ミリグラム当量/g、好ましくは0.7〜4ミリグラム当量/g、さらに好ましくは0.8〜3ミリグラム当量/gである。低いスルホン酸基量では、プロトン伝導性が上がらず、一方、スルホン酸基量が高いと、親水性が向上し、構造によっては水溶性ポリマーとなってしまう。上記のスルホン酸基量は、反応条件(温度、時間)や仕込量(組成)により調整することができる。
また、このようにして得られる本発明の高分子電解質の、スルホン酸化前またはスルホン酸の前駆体のポリマーの分子量は、ポリスチレン換算重量平均分子量で、1000〜100万、好ましくは1万〜100万、さらに好ましくは2万〜80万、特に好ましくは3万〜40万である。1000未満では、成形フィルムが割れ易く、また強度的性質にも問題がある。一方、100万を超えると、溶解性が不充分となり、また溶液粘度が高く、加工性が不良になるなどの問題がある。
次に、本発明の高分子電解質は、上記スルホン酸基含有重合体からなるが、上記スルホン酸基含有重合体以外に、硫酸、リン酸などの無機酸、カルボン酸を含む有機酸、適量の水などを併用しても良い。
本発明の高分子電解質をフィルム化するには、例えば本発明のスルホン酸基含有重合体を溶剤に溶解したのち、塗布によりフィルム状に成形するキャスト法や、溶融成形法などが挙げられる。
本発明の高分子電解質の構造は、例えば、赤外線吸収スペクトルや核磁気共鳴スペクトル(H−NMR、13C−NMR)により確認することができる。また、組成比は元素分析によっても測定でき、スルホン酸の含量は中和滴定によって測定することができる。
本発明の高分子電解質溶液は上記の高分子電解質が、水又は極性有機溶媒に溶解したものをいう。ここで極性有機溶媒とは、プロトン性、非プロトン性を限らず、極性を有する有機溶媒が使用できる。またこれらの極性有機溶媒には、水を含んでいても構わない。本発明の溶液とは、高分子電解質が溶媒中に溶解したもの、又はミセル、コロイド、膨純ゲルなどの様態にかかわらず分散したものをいう。
溶解に用いられる極性有機溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、γ−ブチロラクトン、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジメチル尿素、ジメチルイミダゾリジノン、スルホラン、クロロホルム、テトラヒドロフラン等やメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、tert−ブチルアルコール、1−ペエンタノール、2−ペンタノール、3−ペンタノール、2−メチル−1−ブタノール、イソペンチルアルコール、tert−ペンチルアルコール、3−メチル−2−ブタノール、ネオペンチルアルコール、1−ヘキサノール、2−メチル−1−ペンタノール、4−メチルー2−ペンタノール、2−エチル−1−ブタノール、1−へプタノール、2−ヘプタノール、3−ヘプタノール、1−オクタノール、2−オクタノール、2−メチル−1−ヘキサノール、1−ノナノール、3,5,5−トリメチル−1−ヘキサノール、1−デカノール、1−ウンデカノール、1−ドデカノール、アリルアルコール、プロパンギルアルコール、ベンジルアルコール、シクロヘキサノール、1−メチル−シクロヘキサノール、2−メチルシクロヘキサノール、3−メチルシクロヘキサノール、4−メチルシクロヘキサノール、α−テルピネオール、アビエチノール、2−メトキシエタノール、2−エトキシエタノール、2−(メトキシメトキシ)エタノール、2−イソプロポキシエタノール、2−ブトキシエタノール、2−(イソペンチルオキシ)エタノール、2−(へキシルオキシ)エタノール、2−フェノキシエタノール、2−(ベンジルオキシ)エタノール、フ
ルフリルアルコール、テトラヒドロフルフリルアルコール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、テトラエチレングリコール、ポリエチレングリコール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、ポリプロピレングリコール、ジアセトンアルコール、2−クロロエタノール、1−クロロ−2−プロパノール、3−クロロ−1,2−プロパンジオール、1,3−ジクロロ−2−プロパンノール、2,2,2−トリフルオロエタノール、3−ヒドロキシプロピオノニトリル、2,2’−チオジエタノール、ジオール類として、1,2−エタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、2−ブテン−1,4−ジオール、2−メチル−2,4−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、グリセリン、2−エチル−2−(ヒドロキシメチル)−1,3−プロパンジオール、1,2,6−ヘキサントリオール、フェノール類として、フェノール、クレゾール、o−クレゾール、m−クレゾール、p−クレゾール、キシレノール類、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、ピバル酸、吉草酸、イソ吉草酸、カプロン酸、2−エチル酪酸、カプリル酸、2−エチルヘキサン酸、オレイン酸、エチルアセテート、γ−ブチロラクトン、プロピレンンカーボネート、エチレンカーボネート、ジオキサン、メチラール、ジメチルスルホン、ベンゼン、クロロホルム、メチレンクロライド、エチレンクロライド、トリクロロエチレン、2,2−ジクロロジエチルエーテル、クロロベンゼン、o−ジクロロベンゼン、クロロプロパノール、エピクロロヒドリン、1−ブロモナフタレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルイソアミルケトン、ジイソブチルケトン、イソホロン、アセトフェノン、シクロヘキサノン、メシチルオキサイド、ベンズアルデヒド、アセトニトリル、ブチロニトリル、ニトロメタン、ニトロエタン、2−ニトロプロパン、ニトロベンゼン、アニリン、エタノールアミン、シクロヘキシルアミン、ピリジン、モルホリン、ジエチレンアミン,ベンゾニトリル、n−メチル−2−ピロリドン、2−ピロリドン、テトラメチル尿素、ヘキサメチルホスホルアミド、トリメチルホスフェート、トリエチルホスフェート、スチレン、テトラリン等がある。
これらの溶媒は単独で用いても良いし、2種類以上を混合してもよい。また単独、あるいは混合した極性有機溶媒に水が加えられても良い。溶解方法は得られた高分子電解質を溶媒に加え、必要に応じて、加熱しながら攪拌しても良い。高分子電解質の溶解性が低い場合には、高分子電解質を微細に細粒化して溶解に用いてもよい。加えて、高分子電解質の均一な溶解液を得るには、高分子電解質と単独あるいは、水を含む有機溶媒を混合した溶媒を加熱可能な耐圧容器中に入れ、加熱することによって溶解することができる。特に極性有機溶媒中に水を添加した場合、または水のみで溶解する場合
にはこの耐圧容器を用いた加熱溶解が好ましい。溶解する温度は、20〜250℃が好ましく、更に好ましくは、80〜180℃である。溶解温度が低すぎると溶解性が悪化し、高すぎるとポリマーや溶媒が分解する。
溶媒として水と極性有機溶媒との混合物を用いる場合には、水が99〜25重量%、好ましくは99〜50重量%、有機溶媒が1〜75重量%、好ましくは1〜50重量%(但し、合計は100重量%)の組成の混合溶媒が用いられる。水の量が上記範囲内にあると、溶液粘度を下げる効果に優れる。
高分子電解質を溶解させた溶液のポリマー濃度は、高分子電解質を構成するスルホン酸基を有する重合体の分子量にもよるが、通常、1〜50重量%、好ましくは2〜40重量%である。50重量%を超えると、溶液粘度が高すぎるため、白金担持カーボン等の触媒粒子の分散性が低下する。
次に本発明の高分子電解質溶液を使用し、燃料電池を作成する方法について説明する。
燃料電池は、酸素極と燃料極との間にプロトン伝導膜が挟持されており、酸素極および燃料極は、いずれも拡散層と、拡散層上に形成された電極層を備え、電極層側で高分子電解質膜に接している。また拡散層は、通常、カーボンペーパーおよび下地層からなる。下地層は、例えば、所定の重量比で混合したカーボンブラックとポリテトラフルオロエチレン(PTFE)とをエチレングリコール等の有機溶媒に均一に分散したスラリーを、カーボンペーパーの片面、あるいは両面に塗布、乾燥することにより形成される。
電極層は、例えば、カーボンブラックに所定の重量比で白金を担持させた触媒粒子と高分子電解質溶液を均一に混合した触媒ペーストを、下地層上に塗布、乾燥することにより形成される。本発明の電極とは、燃料電池用として触媒能を有する微細な粒子、例えば白金やその粒子を、カーボン粒子上に担持させ、これを高分子電解質溶液と均一に混合させたペーストを乾燥したものをいう。また膜―電極接合体とは、上記の電極を燃料電池用電解質膜上に形成させたものをいう。これらの膜―電極接合体は、PTFEやPPS等の耐熱性の高いフィルム上に塗工、乾燥された後、燃料電池用電解質膜上に転写する方法、または燃料電池膜上に直接スプレー又は塗布する等して形成される方法がある。また、拡散層電極用のペーストをPTFE分散液などで撥水性を持たせたカーボンクロス、カーボンペーパー等の拡散層上に塗布後、乾燥したものを熱プレスで高分子電解質膜上に接合させても構わない。
本発明において、電極触媒として使用される白金担持カーボンは、カーボンに常法で10〜30重量%の白金を担持したカーボンで、担体となるカーボンは、ケッチェン法やアセチレン法などで作られたもので、かつ平均比表面積の大きいものが好適に使用される。この白金担持カーボンと高分子電解質溶液を混合して触媒ペーストが得られる。
また触媒ペーストは塗布後、白金触媒量は、0.5〜0.8mg/cmとなるように選択するのが好ましい。このように作成された電極層は、100〜240℃の加熱加圧プレスによって、高分子電解質膜に接合することができる。
以下、実施例を挙げ、本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の各種の測定項目は、下記のようにして求めた。[数平均、重量平均分子量]スルホン酸化前の前駆体ポリマーの数平均分子量,重量平均分子量は、溶媒にテトラヒドロフラン(THF)を用い、ゲルパーミエーションクロマトグラフィー(GPC)によって、ポリスチレン換算の分子量を求めた。
[イオン交換容量]得られたポリマーの水洗水が中性になるまで充分に水洗し、乾燥後、所定量を秤量し、THF/水の混合溶剤に溶解し、フェノールフタレインを指示薬とし、NaOHの標準液にて滴定し、中和点から、イオン交換容量(スルホン酸化当量)を求めた。
[プロトン伝導度の測定]温度20℃で100%相対湿度下に置かれた厚み40〜60μmのフィルム状試料を、白金電極に挟み、複素インピーダンス測定を行い、プロトン伝導度を算出した。
[フェントン試験]過酸化水素濃度が3重量%、且つ硫酸第2鉄・7水和物を鉄イオンの濃度が20ppmになるようにフェントン試薬を調製した。250ccのポリエチレン製容器に200gのフェントン試薬を採取し、3cm×4cm、膜厚40〜60μmに切削した高分子電解膜を投入後、密栓後、50℃の恒温水槽に浸漬させ、6時間のフェントン試験を行った。フェントン試験後、フィルムを取り出し、イオン交換水にて水洗後、25℃・50%RH24時間保持して調湿を行い、重量測定を行った。フェントン試験における重量保持率は、下記の数式により算出した。
フェントン試験における重量保持率(%)=(フェントン試験後のフィルム重量/フェントン試験前のフィルム重量)×100
また、フェントン試験前後のイオン交換容量から、次式によりイオン交換容量保持率を求めた。このイオン交換容量保持率が高いほど脱SO性が低いことを示す。
フェントン試験におけるイオン交換容量保持率(%)=(フェントン試験前のイオン交換容量/フェントン試験後のイオン交換容量)×100
[参考例1]高分子電解質1の製造
(1)2,5−ジクロロ−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノン[下記式(44)]の合成
2,5−ジクロロ−4’−フルオロベンゾフェノン10.8g(40mmol)、4−フェニルスルファニルチオフェノール8.7g(40mmol)と炭酸カリウム8.29g(60mmol)をディーンスターク管、冷却管、温度計を備えた三口フラスコにとり、ジメチルアセトアミド50gとトルエン50gの混合溶媒を注ぎ、撹拌した。次いで130℃まで昇温し、加熱還流しながら生成する水を除去した。さらにトルエンを系外に除去しながら150℃で4時間反応させた。TLCで反応が終了したことを確認後、室温まで内容物を冷却し、水に注ぎ1時間撹拌した。この混合物溶液中から有機物を分離、さらに酢酸エチルで抽出し、抽出層を水、食塩水で洗浄後、無水硫酸マグネシウムを用いて乾燥した。無機塩を濾別後、溶媒を留去し粗生成物を得た。酢酸エチル:n−ヘキサン=1:5(容積比)の混合溶媒で再結晶を行い、目的物を収量85%で得た(15.8g)。
Figure 2007042550
(2)ビス[4−[4−(4−クロロフェニルスルホニル)フェノキシ]フェニル]スルホンの合成
(2−1)4−クロロフェニル−4’−フルオロフェニルスルホンの合成
フルオロベンゼン192g(2.0mol)と塩化アルミニウム69.5g(520mmol)を、温度計、滴下ろうと、三方コックをつけた三口フラスコに入れ、窒素置換した。氷水で10℃に冷却しながら、メカニカルスターラーにて撹拌した。4−クロロベンゼンスルホニルクロライド84.4g(400mmol)を滴下ろうとで30分かけて滴下し、室温で4時間撹拌した。反応混合物を、濃塩酸:氷=1:10水溶液に投入し、1時間撹拌した。酢酸エチルで抽出し、有機層を5%炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、酢酸エチルを減圧留去し、ヘキサン: 酢酸エチル混合溶媒で再結晶した。目的物が生成しているのをNMRおよびIRスペクトルで確認した。収率85%(92.0g)。
(2−2)ビス[4−[4−(4−クロロフェニルスルホニル)フェノキシ] フェニル]スルホン[下記式(45)]の合成
ビス(4−ヒドロキシフェニル)スルホン(ビスフェノールS)25.0g(100mmol)と炭酸カリウム30.4g(220mmol)、ジメチルアセトアミド100ml、トルエン50mlを、温度計、Dean−Stark管、還流管、三方コックをつけた三口フラスコに入れ、窒素置換した。オイルバスで130℃に昇温しながら撹拌し、反応により生成する水とトルエンを共沸させ、Dean−Stark管で除去した。水の生成が見られなくなったら、150℃まで昇温し、トルエンを留去した。反応溶液を80℃
まで冷却した後、4−クロロフェニル−4’−フルオロフェニルスルホン67.6g(250mmol)を入れ、110℃で7h撹拌した。副生成物である無機塩を濾過除去した後、濾液をメタノール500mlに投入して沈殿物をろ過し、トルエンにて再結晶した。目的物が生成しているのをNMRおよびIRスペクトルで確認した。収率71%(51.0g)。
Figure 2007042550
(3)高分子電解質の合成
(3−1)重合
上記で得られたビス[4−[4−(4−クロロフェニルスルホニル)フェノキシ]フェニル]スルホン25.17g(35.0mmol)、2,5−ジクロロ−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノン16.3g(35.0mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド1.43g(2.2 mmol)、よう化ナトリウム1.37g(9.14mmol)、トリフェニルホスフィン7.73g(29.5mmol)、亜鉛末11.3g(172mmol)を反応容器に入れ、乾燥窒素で系内を置換した。N−メチル−2−ピロリドン(NMP)0.2リットルを加え、80℃に加熱し、4時間攪拌することで重合をおこなった。重合後の反応溶液をテトラヒドロフラン(THF)で希釈し、塩酸とメタノールの混合液を投入することでポリマーを回収し、次いでメタノール洗浄を4回繰り返し、THFに溶解させたポリマーをメタノールで再沈殿させることにより精製し、濾別したポリマーを真空乾燥して、所望の重合体34.7g(95%)を得た。GPC(THF)で求めたポリスチレン換算の数平均分子量は40,000、重量平均分子量は145,000であった。
(3−2)重合体のスルホン酸化
上記で得られた重合体20.0gを0.5リットルの反応溶液に入れ、96%硫酸0.25リットルを加え、窒素下室温で2日間攪拌を続けた。得られた溶液を5リットルのイオン交換水の中に注ぎ入れることでポリマーを沈殿させた。洗浄液のpHが5になるまでポリマーの水洗を繰り返した。乾燥して、23.7g(95%)のスルホン酸化重合体を得た。
(3−3)スルホン酸化重合体の酸化
上記で得られたスルホン酸化重合体20.0gを2リットルのガラス反応容器へ入れ酢酸を0.8リットル、および34%過酸化水素水溶液200gを加え、攪拌しながら徐々に昇温し、90℃で6時間反応を続けた。反応後、放冷し、ポリマーを濾別水洗後、真空乾燥して、所望の高分子電解質[下記式(46)のスルホン酸化物]19.6g(92%)を得た。構造解析により、スルホン酸基が側鎖当たり複数個側鎖に導入されていることを確認した。
Figure 2007042550
(4)高分子電解質膜としての評価
上記の高分子電解質の濃度が30wt%となるように、高分子電解質15gおよびNMPをフラスコに入れて、攪拌しながら80℃で加熱溶解させてポリマーワニスを得た。バーコーター(200μm用)を用い、ガラス基板上に貼り付けたPET薄膜上に塗布後、乾燥器にて80℃、0.5時間予備乾燥させ、塗膜をPET薄膜から剥がした。剥がした塗膜を真空乾燥器で100℃、3時間乾燥した。さらに、塗膜重量の1,000倍量のイオン交換水中に室温で2日間浸漬させることで、NMPを除去したフィルムを得た。次に、フィルムを25℃・50%RH環境に24時間静置することで調湿し、所望の高分子電解質フィルムを得た。物性測定結果を表2に示す。
[参考例2]高分子電解質2の製造
(1)2,5−ジクロロ−4’−チオフェノキシベンゾフェノン[下記式(47)]の合成
4−フェニルスルファニルチオフェノールの代わりにチオフェノール4.4 g(40mmol)を用いたほかは、参考例1の2,5−ジクロロ−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノンの合成と同様の方法を用いて目的物を収率83%で得た(11.9g)
Figure 2007042550
(2)4,4’−ビス[4−(4−クロロベンゾイル)フェノキシ]ベンゾフェノンの合成
(2−1)4−クロロ−4’−フルオロベンゾフェノンの合成
4−クロロベンゼンスルホニルクロライドの代わりに4−クロロベンゾイルクロライド70.0g(400mmol)を用いたほかは参考例1と同様の方法を用い、所望の化合物を得た。NMRおよびIRスペクトルで構造を確認した。収率79%(74.1g)。
(2−2)4,4’−ビス[4−(4−クロロベンゾイル)フェノキシ]ベンゾフェノン[下記式(48)]の合成
ビス(4−ヒドロキシフェニル)スルホンの代わりに4−クロロ−4’−フルオロベンゾフェノン58.6g(250mmol)を用いたほかは実施例1と同様の方法を用い、所望の化合物を得た。NMRおよびIRスペクトルで構造を確認した。収率75%(48.2g)。
Figure 2007042550
(3)高分子電解質の合成
(3−1)重合
ビス[4−[4−(4−クロロフェニルスルホニル)フェノキシ]フェニル]スルホンの代わりに、上記で得られた4,4’−ビス[4−(4−クロロベンゾイル)フェノキシ]ベンゾフェノン22.5g(35.0mmol)を用い、2,5−ジクロロ−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノンの代わりに2,5−ジクロロ−4’−チオフェノキシベンゾフェノン12.6g(35.0mmol)を用いたほかは実施例1と同様の方法を用い、所望の重合体30.6g(94%)を得た。数平均分子量は44,000、重量平均分子量は150,000 であった。
(3−2)重合体のスルホン酸化
上記で得た重合体を用いたほかは実施例1と同様の方法を用い、スルホン酸化重合体を得た(収率96%)。
(3−3)スルホン酸化重合体の酸化
上記で得たスルホン酸化重合体を用いたほかは参考例1と同様の方法を用い、所望の高分子電解質[下記式(49)のスルホン酸化物](92%)を得た。構造解析により、スルホン酸基が側鎖当たり2.6個側鎖に導入されていることを確認した。
Figure 2007042550
(4)高分子電解質膜としての評価
上記で得た高分子電解質[上記式(49)]を用いたほかは参考例1と同様の方法を用い、調湿した高分子電解質フィルムを得た。物性測定結果を表2に示す。
[参考例3]高分子電解質3の製造
(1)2,5−ジクロロフェニル−4’−チオフェニルベンゼンスルフィド[下記式(50)]の合成
窒素下で撹拌されているキノリン(0.5リットル)と1,2,4−トリクロロベンゼン36g(0.2mol)中に、ナトリウム4−フェニルスルファニルチオフェノラート120g(0.5mol)を加えた。攪拌しながら昇温し、反応温度160℃で3時間撹拌した。反応混合物を水に注ぎ、ジイソプロピルエーテルで抽出後、溶媒を除去すると目的物が得られた。収率90%(65.3g)。
Figure 2007042550
(2)高分子電解質の合成
(2−1)重合
ビス(4−ヒドロキシフェニル)スルホン25.0g(100mmol)、炭酸カリウム30.4g(220mmol)、ジメチルアセトアミド0.1リットルおよびトルエン0.05リットルを、温度計、ディーンスターク管、還流管、三方コックを付けた三口フラスコへ入れ、窒素置換した。130℃の油浴で加熱しながら攪拌し、反応により生成する水をトルエンで共沸させてディーンスターク管で反応系から分離した。水が生成しなくなった時点で油浴温度を150℃としトルエンを留去した。反応溶液を80℃まで冷却した後、2,5−ジクロロフェニル−4’−チオフェニルベンゼンスルフィド36.3g(100 mmol)を入れ、油浴温度150℃で20時間攪拌した。副生物である無機塩を濾過分離した後、濾液をメタノール2リットルに投入して沈殿物を濾過し、メタノールで洗浄後、真空乾燥することで目的の重合体を得た(収率87%)。数平均分子量は48,000、重量平均分子量は150,000であった。
(2−2) 重合体のスルホン酸化
上記で得た重合体を用いたほかは実施例1と同様の方法を用い、スルホン酸化重合体を得た(収率95%)。
(3−3)スルホン酸化重合体の酸化
上記で得たスルホン酸化重合体を用いたほかは実施例1と同様の方法を用い、所望の高分子電解質[下記式(51)のスルホン酸化物](94%)を得た。構造解析により側鎖当たり2.1個のスルホン酸基が側鎖に導入されていることを確認した。
Figure 2007042550
(4)高分子電解質膜としての評価
上記で得た高分子電解質[上記式(51)]を用いたほかは参考例1と同様の方法を用い、調湿した高分子電解質フィルムを得た。物性測定結果を表2に示す。
[参考例4]高分子電解質4の製造
(1)高分子電解質の合成
(1−1)重合
ビス(4−ヒドロキシフェニル)スルホンの代わりに4,4 ’−ジヒドロキシベンゾフェノンを使用し、2,5−ジクロロフェニル−4’−チオフェニルベンゼンスルフィドの代わりに2,5−ジクロロ−4’−(4−チオフェノキシ)チオフェノキシベンゾフェノンを用いたほかは実施例3の重合と同様の方法で目的の重合体を得た(収率92%)。数平均分子量は51,000、重量平均分子量は160,000であった。
(1−2)重合体のスルホン酸化
上記で得た重合体を用いたほかは実施例1と同様の方法を用い、スルホン酸化重合体を得た(収率95%)。
(1−3)スルホン酸化重合体の酸化
上記で得たスルホン酸化重合体を用いたほかは実施例1と同様の方法を用い、所望の高分子電解質[下記式(52)のスルホン酸化物](92%)を得た。構造解析により、側鎖当たり1.9個のスルホン酸基が側鎖に導入されていることを確認した。
Figure 2007042550
(2)高分子電解質膜としての評価
上記で得た高分子電解質[上記式(52)のスルホン化物]を用いたほかは実施例1と同様の方法を用い、調湿した高分子電解質フィルムを得た。物性測定結果を表2に示す。
[比較例1]
ポリエーテルエーテルケトン(ICI社)を参考例1と同様の方法でスルホン酸化し、得られたスルホン酸化ポリエーテルエーテルケトン[S−PEEK、下記式(53)]のフィルムを得た。物性測定結果を表2に示す。
Figure 2007042550
[参考例5] 高分子電解質5の製造
(1) 4−(4’−スルホニルフェニルチオ)ベンゼンスルホニルクロライド[下記式(55)]の合成
Figure 2007042550
温度計、滴下ろうと、三方コックをつけた三口フラスコにジフェニルスルフィド20.0g(108 mmol)とクロロホルム 35mlを入れ、乾燥窒素で系内を置換した。この溶液を氷水で5℃に冷却し、クロロ硫酸 25.1g(215mmol)をゆっくり滴下した。反応溶液を5℃、3時間撹拌すると、白色固体が析出してきた。薄層クロマトグラフィーにて、全てのジフェニルスルフィドが反応したことを確認したあと、塩化チオニル25.6g(215mmol)をゆっくり滴下した。90分還流したあと、溶媒のクロロホルムを留去し、真空乾燥した。収率:96%(37.8g)
(2)ポリエーテルスルホンへの4−(4’−スルホニルフェニルチオ)ベンゼンスルホニルクロライド[上記式(55)]の導入反応[下記式(56)]の合成
Figure 2007042550
ポリエーテルスルホン(ソルベイアドバンストポリマーズ社製、Radel A−200)2.0g、ニトロベンゼン30mlを反応容器に入れ、60℃で加熱溶解しながら乾燥窒素で系内を置換した。このポリマー溶液に4−(4’−スルホニルフェニルチオ)ベンゼンスルホニルクロライド[上記式(55)] 6.28g(17.24mmol)を入れ、溶解させた。この溶液に塩化アルミニウム2.54g(18.80mmol)を少量ずつ加え、80℃、20時間で撹拌した。反応溶液をメタノール:塩酸=10:1混合溶液 500mlに投入し、析出した固体を粉砕しながら撹拌した。この固体をろ過したあと、メタノールで数回洗浄し、80℃で真空乾燥した。収量は2.22gであった。
(3)上記で得た固体(上記式(56))を用いた他は実施例1と同様の方法でスルホン酸化を行った。
(4)酸化反応[下記式(57)の合成]
温度計をつけた二口フラスコに側鎖導入反応した上記」式(56)記載のポリマー1.0gと酢酸20mlを入れた。この混合物に30%過酸化水素水1000mg(9.0mmol)を加え、3時間還流した。系内の固体を吸引ろ過して水洗し、100℃にて真空
乾燥した。NMR、IRより側鎖のスルフィドがスルホンに変換していることを確認した。また、側鎖当たり複数のスルホン酸基が側鎖に導入されていることを確認した。収量は880mgであった。
上記で得た高分子電解質[下記式(57)]を用いたほかは参考例1と同様の方法を用い、調湿した高分子電解質フィルムを得た。物性測定結果を表2に示す。
Figure 2007042550
[参考例6] 高分子電解質6の製造
(1)ポリエーテルスルホンへの4−(4’−スルホニルフェニルチオ)ベンゼンスルホニルクロライド[上記式(55)]の導入反応(2)
撹拌温度を90℃、撹拌時間を40時間にした以外は実施例1−(2)記載と同様の方法にて合成した。
(2)酸化反応
実施例1−(3)記載と同様の方法にて酸化反応を行った。得られた高分子電解質フィルムの物性測定結果を表2に示す。
[参考例7] 高分子電解質7の製造
(1) ポリエーテルエーテルスルホンへの4−(4’−スルホニルフェニルチオ)ベンゼンスルホニルクロライド[上記式(55)]の導入反応[下記式(58)]の合成
Figure 2007042550
ポリエーテルエーテルスルホン(Aldrich製)3.0g、ニトロベンゼン60mlを反応容器に入れ、60℃で加熱溶解しながら乾燥窒素で系内を置換した。このポリマー溶液に4−(4’−スルホニルフェニルチオ)ベンゼンスルホニルクロライド[上記式(55)]3.50g(37mmol)を入れ、溶解させた。この反応溶液に塩化アルミニウム
5.44g(40.8mmol)を少量ずつ加え、90℃、40時間で撹拌した。反応溶液をメタノール:塩酸=10:1混合溶液 500mlに投入し、析出した固体を粉砕しながら撹拌した。この固体をろ過したあと、メタノールで数回洗浄し、80℃で真空乾燥して、収量が4.36gのポリマー(上記式(58))を得た。
(2)上記で得たポリマー(上記式(58))を用いたほかは実施例1と同様の方法を用いてスルホン酸化を行った。
(3)酸化反応[下記式(59)の合成]
実施例1−(3)記載と同様の方法にて酸化反応を行った。側鎖当たり1.6個のスルホン酸基が側鎖に導入されていることを確認した。
上記で得た高分子電解質[下記式(59)]を用いたほかは実施例1と同様の方法を用い、調湿した高分子電解質フィルムを得た。物性測定結果を表2に示す。
Figure 2007042550
[参考例8]高分子電解質8の製造
(1)ビス(チオフェノキシ)ベンゼンスルホニルクロリド(下記式(60))の合成
温度計、滴下ろうと、三方コックをつけた三口フラスコに1,4−ジブロモベンゼン50g(212mmol)とクロロホルム16mlを入れ、乾燥窒素で系内を置換した。これに室温でクロロホルム100mlに溶解したクロロ硫酸27.2g(233mmol)をゆっくり滴下した。室温にて4時間、さらに冷却管を取り付けてクロロホルム還流下で10時間反応させた。薄層クロマトグラフィーにて全ての1,4−ジブロモベンゼンが反応したことを確認したあと、減圧下クロロホルムとクロロ硫酸を留去し、精製してジブロモベンゼンスルホン酸56.9g(180mmol)を得た(収率85%)。次にチオフェノール3.5g(79mmol)をディーンスターク管、冷却管、温度計を備えた三口フラスコにとり、水酸化カリウム4.5gとN,N−ジメチルアセトアミド25ml、トルエン25mlを加えてスターラーで攪拌した。150℃まで昇温し、加熱還流しながら生成する水を除去した。これにジブロモベンゼンスルホン酸7.1g(23mmol)を加え、160℃で4時間反応させた。薄層クロマトグラフィーで反応が終了したことを確認後、この混合物溶液中から有機物を分離、再結晶による精製をして、ビス(チオフェノキシ)ベンゼンスルホン酸7.2gを得た(収率84%)。これを温度計、滴下ろうと、三方コックをつけた三口フラスコに入れ、クロロホルム100mlを入れて溶解させる。滴下ろうとで塩化チオニル2.1g(21.2mmol)をゆっくり滴下し、90分還流したあと、クロロホルムを留去して真空乾燥し、ビス(チオフェノキシ)ベンゼンスルホニルクロリド(下記式(60))6.4gを得た(収率85%)。
Figure 2007042550
(2)ポリエーテルスルホンへのビス(チオフェノキシ)ベンゼンスルホニルクロライド(上記式(60))の導入反応[下記式(61)]の合成
ポリエーテルスルホン(ソルベイアドバンストポリマーズ社製、Radel A−200)2.0g、ニトロベンゼン30mlを反応容器に入れ、60℃で加熱溶解しながら乾燥窒素で系内を置換した。このポリマー溶液にビス(チオフェノキシ)ベンゼンスルホニルクロライド(上記式(60))6.70g(17.08mmol)を入れ、溶解させた。この溶液に塩化アルミニウム2.54g(18.96mmol)を少量ずつ加え、80℃、20時間で撹拌した。反応溶液をメタノール:塩酸=10:1混合溶液 500mlに投入し、析出した固体を粉砕しながら撹拌した。この固体をろ過したあと、メタノールで数回洗浄し、80℃で真空乾燥して側鎖導入したポリエーテルスルホン(下記式(61))を得た。収量は2.31gであった。
Figure 2007042550
(3)側鎖基のスルホン化
温度計、滴下ろうと、三方コックをつけた三口フラスコに側鎖導入した上記式(61)記載のポリマー2.00gとクロロホルム16mlを入れ、乾燥窒素で系内を置換した。これに室温でクロロホルム100mlに溶解したクロロ硫酸4.0g(40mmol)をゆっくり滴下した。室温にて4時間、さらに冷却管を取り付けてクロロホルム還流下で10時間反応させた。薄層クロマトグラフィーにて全ての原料ポリマーが反応したことを確認したあと、減圧下クロロホルムとクロロ硫酸を留去し精製して側鎖導入反応したポリエーテルスルホンのスルホン化物(下記式(62))2.03gを得た。
Figure 2007042550
(4)酸化反応
温度計をつけた二口フラスコに、側鎖導入しスルホン化反応した上記式(62)記載の
ポリマー1.0gと酢酸20mlを入れた。この混合物に30%過酸化水素水1000mg(9mmol)を加え、3時間還流した。系内の固体を吸引ろ過して水洗し、100℃にて真空乾燥して最終目的の電解質ポリマー(下記式(63))を得た。NMR、IRより側鎖のスルフィドがスルホンに変換していることを確認した。収量は0.87gであった。側鎖当たり複数のスルホン酸基が導入されていることを確認した。上記で得た高分子電解質(下記式(63))を用いたほかは実施例1と同様の方法を用い、調湿した高分子電解質フィルムを得た。物性測定結果を表2に示す。
Figure 2007042550
[参考例9]高分子電解質9の製造
(1)4−チオフェノキシベンゼンスルフィドの合成
温度計、滴下ろうと、三方コックをつけた三口フラスコに3−ブロモ−1−フルオロベンゼン50.0g(286mmol)、N,N−ジメチルホルムアミド300mlを入れ、ナトリウムチオメチラート22.0g(314mmol)をN,N−ジメチルホルムアミド100mlに溶解したものを滴下ろうとでゆっくり滴下し、20℃で100時間攪拌して反応させた。薄層クロマトグラフィーにて全ての3−ブロモ−1−フルオロベンゼンが反応したことを確認したあと、この混合物溶液中から有機物を分離、再結晶による精製をして、4−ブロモフェニルメチルスルフィド49.3g(243mmol)を得た。次に温度計、滴下ろうと、三方コックをつけた三口フラスコに4−ブロモフェニルメチルスルフィド45.0g(222mmol)、酸化銅15.5g、ピリジン60mlキノリン240mlを入れ、チオフェノール26.8g(244mmol)をピリジン20mlキノリン80mlに溶解・分散したものを滴下ろうとで加え、150℃で40時間反応させた。薄層クロマトグラフィーで反応が終了したことを確認後、この混合物溶液中から有機物を分離、再結晶による精製をして、4−チオフェノキシフェニルメチルスルフィド 43.8g(189mmol)を得た。続いて得られた4−チオフェノキシフェニルメチルスルフィド40.0g(172mmol)とN,N−ジメチルホルムアミド300mlを温度計、冷却管をつけた三口フラスコに入れ、ナトリウムチオt−ブチラート21.3g(190mmol)をN,Nで反応が終了したことを確認後、この混合物溶液中から有機物を分離、再結晶による精−ジメチルホルムアミド300mlに溶解したものを滴下ろうとで加え、150℃で4時間反応させた。薄層クロマトグラフィー製をして、4−チオフェノキシベンゼンスルフィド32.2g(148mmol)を得た(収率86%)。
(2)長分岐型スルフィドの合成
(1)でチオフェノールの代わりに(1)で得た4−チオフェノキシベンゼンスルフィド30.0g(138mmol)を用いる以外は同様にして、長分岐型スルフィド(下記式(64))31.0gを得た(収率83%)。
Figure 2007042550
(3)スルホン化反応
温度計、滴下ろうと、三方コックをつけた三口フラスコに長分岐スルフィド(上記式(64))31.0g(57.2mmol)とクロロホルム200mlを入れ、乾燥窒素で系内を置換した。これに室温でクロロホルム100mlに溶解したクロロ硫酸7.34g(63.0mmol)をゆっくり滴下した。室温にて4時間、さらに冷却管を取り付けてクロロホルム還流下で10時間反応させた。薄層クロマトグラフィーにて全ての原料ポリマーが反応したことを確認したあと、減圧下クロロホルムとクロロ硫酸を留去し精製して長分岐スルフィドのスルホン化物(下記式(65))36.1gを得た(収率90%)。
Figure 2007042550
(4)酸化反応
温度計をつけた二口フラスコに、長分岐スルフィドのスルホン化物36.0g(51.3mmol)と酢酸200mlを入れた。この混合物に30%過酸化水素水116g(1.03mmol)を加え、3時間還流した。系内の固体を吸引ろ過して水洗し、100℃にて真空乾燥して長分岐型スルホンのスルホン化物(下記式(66))42.8gを得た(収率95%)。
Figure 2007042550
(5)塩素化
長分岐型スルホンのスルホン化物(上記式(66))30.0g(34.2mmol)を温度計、滴下ろうと、三方コックをつけた三口フラスコに入れ、クロロホルム100mlを入れて溶解させる。滴下ろうとで塩化チオニル3.74g(37.6mmol)をゆっくり滴下し、90分還流したあと、クロロホルムを留去して真空乾燥し、長分岐型スルホンの塩化スルホニル(下記式(67))27.0gを得た(収率88%)。
Figure 2007042550
(6)ポリエーテルスルホンへの長分岐型スルホンの塩化スルホニルの導入反応
実施例8の2)でビス(チオフェノキシ)ベンゼンスルホニルクロライドの代わりに長分岐型スルホンの塩化スルホニルを用いる以外は同様にして、長分岐型スルホンの側鎖を有するポリエーテルスルホン(下記式(68))を得た。収量は2.05gであった。上記で得た高分子電解質[下記式(68)]を用いたほかは参考例1と同様の方法を用い、調湿した高分子電解質フィルムを得た。物性測定結果を表2に示す。
Figure 2007042550
[参考例10]高分子電解質10の製造
(1)ビス(3,5−チオフェノキシ)ベンゼンスルフィドの合成
温度計、滴下ろうと、三方コックをつけた三口フラスコに3,5−ジブロモ-1-フルオロベンゼン50.0g(197mmol)、N,N−ジメチルホルムアミド300mlを入れ、ナトリウムチオメチラート15.2g(217mmol)をN,N−ジメチルホルムアミド100mlに溶解したものを滴下ろうとでゆっくり滴下し、20℃で4.5日間攪拌して反応させた。薄層クロマトグラフィーにて全ての3,5−ジブロモ-1-フルオロベンゼンが反応したことを確認したあと、この混合物溶液中から有機物を分離、再結晶による精製をして、3,5−ジブロモフェニルメチルスルフィド48.3g(171mol)を得た(収率87%)。次に温度計、滴下ろうと、三方コックをつけた三口フラスコに3,5−ジブロモフェニルメチルスルフィド45g(160mmol)、酸化銅22.4g、ピリジン60mlキノリン240mlを入れ、チオフェノール38.7g(352mmol)をピリジン20mlキノリン80mlに溶解・分散したものを滴下ろうとで加え、150℃で40時間反応させた。薄層クロマトグラフィーで反応が終了したことを確認後、この混合物溶液中から有機物を分離、再結晶による精製をして、ビス(3,5−チオフェノキシ)フェニルメチルスルフィド45.7g(134mmol)を得た。続いて得られたビス(3,5−チオフェノキシ)フェニルメチルスルフィド40.0g(118mmol)を温度計、冷却管をつけた三口フラスコに入れ、ナトリウムチオt−ブチラート14.5g(129mmol)をN,N−ジメチルホルムアミド300mlに溶解したものを滴下ろうとで加え、150℃で4時間反応させた。薄層クロマトグラフィーで反応が終了したことを確認後、この混合物溶液中から有機物を分離、再結晶による精製をして、ビス(3,5−チオフェノキシ)ベンゼンスルフィド33.1g(101mmol)を得た(収率86%)。
(2)多分岐型スルフィド(式(69))の合成
(1)でチオフェノールの代わりに(1)で得たビス(3,5−チオフェノキシ)ベンゼンスルフィド30.0g(92.0mmol)を用いる以外は同様にして、多分岐型スルフィド(下記式(69))31.4gを得た。(収率90%)
Figure 2007042550
(3)スルホン化反応
温度計、滴下ろうと、三方コックをつけた三口フラスコに多分岐型スルフィド(上記式(69))30.0g(39.6mmol)とクロロホルム200mlを入れ、乾燥窒素で系内を置換した。これに室温でクロロホルム100mlに溶解したクロロ硫酸5.07g(43.5mmol)をゆっくり滴下した。室温にて4時間、さらに冷却管を取り付けてクロロホルム還流下で10時間反応させた。薄層クロマトグラフィーにて全ての原料スルフィドが反応したことを確認したあと、減圧下クロロホルムとクロロ硫酸を留去し精製して多分岐型スルフィドのスルホン化物(下記式(70))36.3gを得た(収率85%)。
Figure 2007042550
6(4)酸化反応
温度計をつけた二口フラスコに、多分岐型スルフィドのスルホン化物36.0g(33.4mmol)と酢酸200mlを入れた。この混合物に30%過酸化水素水114g(1.00mol)を加え、3時間還流した。系内の固体を吸引ろ過して水洗し、100℃にて真空乾燥して多分岐型スルホンのスルホン化物(下記式(71))39.6gを得た(収率90%)。
Figure 2007042550
(5)塩素化
多分岐型スルホンのスルホン化物(上記式(71))30.0g(22.8mol)を温度計、滴下ろうと、三方コックをつけた三口フラスコに入れ、クロロホルム100mlを入れて溶解させる。滴下ろうとで塩化チオニル2.49g(25.0mmol)をゆっくり滴下し、90分還流したあと、クロロホルムを留去して真空乾燥し、多分岐型スルホンのスルホニルクロライド(下記式(72))27.1gを得た(収率89%)。
Figure 2007042550
(6)ポリエーテルスルホンへの多分岐型スルホンのスルホニルクロライドの導入反応
実施例8−(2)でビス(チオフェノキシ)ベンゼンスルホニルクロライドの代わりに多分岐型スルホンの塩化スルホニルを用いる以外は同様にして、多分岐型スルホンの側鎖を有するポリエーテルスルホン(下記式(73))を得た。収量は2.10gであった。
Figure 2007042550
上記で得た高分子電解質[上記式(73)]を用いたほかは実施例1と同様の方法を用い、調湿した高分子電解質フィルムを得た。物性測定結果を表2に示す。
[参考例11]高分子電解質11の製造
(1)TTBS3の合成
温度計、滴下ろうと、三方コックをつけた三口フラスコに1,3,5−トリス(フェニルチオ)−ベンゼン(TTB)50.0g(124mmol)とスルホラン120mlを入れ、乾燥窒素で系内を置換した。液温を70℃に保ち、クロロ硫酸47.8g(409mmol)をゆっくり滴下し、その後1.5時間攪拌した。反応の確認は液体クロマトグラフィー[Agilent社製100シリーズ、カラム:GLサイエンス社製、Intersil ODS−3、移動相:10Mギ酸アンモニウム/アセトニトリル、UV検出波長:254nm]にて行なった。TTBのトリスルホン化物[TTBS3、下記式(74)]53gを含む混合物を得た(収率67%)。
Figure 2007042550
(2)TTBS3Cの合成
TTBS3を含む上記の混合物を、温度計、滴下ろうと、三方コックをつけた三口フラスコに入れた。液温を70℃に保ち、滴下ろうとから塩化チオニル12.4g(124mmol)をゆっくり滴下し、2時間攪拌した。反応の確認は液体クロマトグラフィーにて行なった。TTBトリスルホン化物のスルホニルクロライド[TTBS3C、下記式(75)]18.5gを含む混合物を得た(収率34%)。
Figure 2007042550
(3)ポリエーテルスルホンへの側鎖導入反応
参考例8−(2)でビス(チオフェノキシ)ベンゼンスルホニルクロライドの代わりに上記のTTBS3C[上記式(75)]11.3g(17.1mmol)を含む混合物を用いる以外は同様にして、側鎖スルホン酸ポリエーテルスルホン[下記式(76)]を得た。収量は2.30gであった。
Figure 2007042550
上記で得た高分子電解質[上記式(76)]を用いたほかは実施例1と同様の方法を用い、調湿した高分子電解質フィルムを得た。物性測定結果を表2に示す。
得られた高分子電解質フィルム(参考例1〜11)はフェントン試験に高い耐性を示し、高いプロトン伝導性及び低脱SO性を示した。
Figure 2007042550
[実施例1]
参考例1で作成した高分子電解質を濃度5wt%でエタノールと水の重量比が50/50になるの混合溶媒に入れ、これを100℃で1hr攪拌溶解し、透明な溶液を得た。この溶液に白金担持カーボンを加え、室温で30分間十分に攪拌し、電極ペーストを得た。この電極ペーストをPTFEのフィルム上に乾燥後の厚さ約25μになるようにキャストとし、80℃で2hr乾燥後、真空乾燥器で100℃、2時間乾燥し、更に160℃で1時間乾燥した。この電極でNafion112(Du Pont製)をはさみ、140℃で10分、プレス圧力 5MPa/cmでプレスした。この様にして得られた膜―電極接合体を評価セル(エレクトロケム製FC−05−01−SP:25cm)に組み込んだ。セル温度100℃とし、ガス加湿には水バブリング方式を用いて水素ガス及び空気ガス共に加湿温度を50℃(湿度12RH%に相当)とした。発電試験の結果、高温低加湿条件にもかかわらず、電流密度0.8A/cm時に0.60Vと高い電圧が得られるとともに、安定に運転することができた。
[実施例2〜3]
電極を参考例7または11で製造した高分子電解質を使った他は実施例1と同様にして膜―電極接合体を作り、これを実施例1と同様に電池運転した。参考例7の高分子電解質を使用した結果を実施例2とし、参考例11の高分子電解質を使用した結果を実施例3とする。発電試験の結果、実施例2の電流密度0.8A/cm時の電圧は0.58V、実施例3の時は0.60Vであった。実施例2、3ともに、高温低加湿条件にもかかわらず、高い電圧が得られるとともに安定に運転することができた。
[実施例4]
電極と膜に参考例11で製造した高分子電解質を用いた他は実施例1と同様にして電池運
転した。発電試験の結果、高温低加湿条件にもかかわらず、電流密度0.8A/cm時に0.64Vと高い電圧が得られるとともに、安定に運転することができた。
[比較例2]
電極用溶液に比較例1のポリマーをNMP溶媒中、濃度5wt%になる様に加え、100℃で1hr攪拌溶解し、透明な溶液を得た。この溶液に白金担持カーボンを加え、室温で30分間十分に攪拌し、電極ペーストを得た。この電極ペーストをPTFEのフィルム上に乾燥後の厚さ約25μになるようにキャストとし、80℃で2hr乾燥後、真空乾燥器で100℃、2時間乾燥した後、純水で充分に洗浄した後、更に160℃で1時間乾燥した(前記、溶媒種、ポリマー、Tgによっては乾燥方法を変更する)。この電極でNafion112(Du Pont製)をはさみ、140℃で10分、プレス圧力 5MPa/cmでプレスした。この膜・電極接合体を実施例1と同様にして電池運転した。発電試験の結果、電流密度0.8A/cm2時に0.31Vであり、出力も不安定であった。
以上の結果から、本発明の耐酸化性の高い高分子電解質を電極に使用した膜−電極接合体は、比較例1のイオン交換樹脂を電極に使用した膜−電極接合体より電圧の低下が少なく、高い耐久性を有する。また、本発明の耐酸化性の高分子電解質を電極と膜、両方に用いた膜−電極接合体は、更に高い耐久性を有する。
本発明は、固体高分子形燃料電池の高分子電解質およびバインダーとして有用である。

Claims (7)

  1. 少なくとも下記一般式(1)で表される繰り返し単位(A)を有する事を特徴とする燃料電池用高分子電解質をその濃度が1〜50wt%となるように、水または極性有機溶媒に溶解させた電解質溶液。
    Figure 2007042550
    (Yは(k+2)価の芳香族残基を表し、Pは −CO−、−O−、−S−、−SO−、−SO−、−CONH−、−C(CF−、単結合から選ばれる連結基であり、kは1〜4の整数であって、式中の側鎖部分Zは、下記一般式(2)で表される。
    Z=−(XAr(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr) (2)

    上記一般式(2)中のB〜Bn−1は、側鎖部分Zにおける分岐鎖を意味し、以下の式で表される。

    =−〔(XAr(B))−(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr)〕

    =−〔(XAr(B))−・・・−(Xn−1Arn−1(Bn−1))−(XAr)〕



    n−1=−〔XAr
    上記一般式(2)中
    nは各々独立に2〜5の整数、
    fは各々独立に0〜5の整数、
    Ar〜Arは各々独立に芳香族残基であって、
    〜Xは各々独立に−CO−、−CONH−、−(CF−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO−から選ばれる連結基である。
    そして、Zは−SOH基の1.0を超える数を有する。)
  2. Pが −CO−、−O−、−S−、−SO−、−C(CF− から選ばれる連結基であることを特徴とする請求項1記載の電解質溶液。
  3. kが1〜2の整数であり、fが各々独立に0〜2の整数であることを特徴とする請求項1または2記載の電解質溶液。
  4. 少なくとも一つのfが1または2であることを特徴とする請求項3記載の電解質溶液。
  5. fが0または1であり、少なくとも一つのfが1であることを特徴とする請求項3記載の電解質溶液。
  6. 請求項1〜5のいずれかに記載の電解質溶液を用いた燃料電池用電極。
  7. 請求項1〜5のいずれかに記載の電解質溶液を用いた燃料電池用電極と請求項1〜5のいずれかに記載の電解質溶液を用いた燃料電池用膜とからなる膜・電極接合体。
JP2005228136A 2005-08-05 2005-08-05 燃料電池用電解質溶液 Expired - Fee Related JP4749080B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228136A JP4749080B2 (ja) 2005-08-05 2005-08-05 燃料電池用電解質溶液

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228136A JP4749080B2 (ja) 2005-08-05 2005-08-05 燃料電池用電解質溶液

Publications (2)

Publication Number Publication Date
JP2007042550A true JP2007042550A (ja) 2007-02-15
JP4749080B2 JP4749080B2 (ja) 2011-08-17

Family

ID=37800336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228136A Expired - Fee Related JP4749080B2 (ja) 2005-08-05 2005-08-05 燃料電池用電解質溶液

Country Status (1)

Country Link
JP (1) JP4749080B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437358A (zh) * 2022-01-25 2022-05-06 吉林大学 一种带有聚乙二醇侧链的聚合物树脂及其制备方法和电力存储器电极

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289222A (ja) * 2001-03-26 2002-10-04 Mitsui Chemicals Inc イオン伝導性高分子およびそれを用いた高分子膜と燃料電池
JP2003132908A (ja) * 2001-10-25 2003-05-09 Toyota Motor Corp 固体電解質材料
JP2003292608A (ja) * 2002-03-29 2003-10-15 Sumitomo Chem Co Ltd 芳香族系高分子、その製造方法及びその用途
JP2005082757A (ja) * 2003-09-10 2005-03-31 Jsr Corp スルホン酸基を有するポリアリーレン共重合体およびその製造方法、ならびに高分子固体電解質、プロトン伝導膜および電池用電極
JP2005158265A (ja) * 2002-11-18 2005-06-16 Honda Motor Co Ltd 固体高分子型燃料電池用電極構造体及びそれを用いる固体高分子型燃料電池
JP2005183311A (ja) * 2003-12-22 2005-07-07 Jsr Corp 直接メタノール型燃料電池電極用高分子電解質、ワニス組成物および直接メタノール型燃料電池
WO2005076397A1 (ja) * 2004-02-06 2005-08-18 Asahikasei Kabushikikaisha 燃料電池用電解質およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289222A (ja) * 2001-03-26 2002-10-04 Mitsui Chemicals Inc イオン伝導性高分子およびそれを用いた高分子膜と燃料電池
JP2003132908A (ja) * 2001-10-25 2003-05-09 Toyota Motor Corp 固体電解質材料
JP2003292608A (ja) * 2002-03-29 2003-10-15 Sumitomo Chem Co Ltd 芳香族系高分子、その製造方法及びその用途
JP2005158265A (ja) * 2002-11-18 2005-06-16 Honda Motor Co Ltd 固体高分子型燃料電池用電極構造体及びそれを用いる固体高分子型燃料電池
JP2005082757A (ja) * 2003-09-10 2005-03-31 Jsr Corp スルホン酸基を有するポリアリーレン共重合体およびその製造方法、ならびに高分子固体電解質、プロトン伝導膜および電池用電極
JP2005183311A (ja) * 2003-12-22 2005-07-07 Jsr Corp 直接メタノール型燃料電池電極用高分子電解質、ワニス組成物および直接メタノール型燃料電池
WO2005076397A1 (ja) * 2004-02-06 2005-08-18 Asahikasei Kabushikikaisha 燃料電池用電解質およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437358A (zh) * 2022-01-25 2022-05-06 吉林大学 一种带有聚乙二醇侧链的聚合物树脂及其制备方法和电力存储器电极

Also Published As

Publication number Publication date
JP4749080B2 (ja) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4106983B2 (ja) 芳香族系高分子、その製造方法およびその用途
JP3867029B2 (ja) プロトン伝導膜の製造方法
WO2009136631A1 (ja) 新規スルホン酸基含有セグメント化ブロック共重合体ポリマー及びその用途、新規ブロック共重合体ポリマーの製造方法
JP2004346163A (ja) 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP2003292609A (ja) プロトン酸基含有架橋性ポリスルホンとその製法、それよりなるイオン伝導性高分子膜、およびそれを用いた燃料電池
KR101006941B1 (ko) 전해막-전극 기판 복합체의 제조 방법
JP4048812B2 (ja) 芳香族系高分子、その製造方法及びその用途
JP4019855B2 (ja) プロトン伝導膜の製造方法
JP2005036125A (ja) ポリアリーレンおよびその製造方法
JP4993910B2 (ja) 燃料電池用電解質およびその製造方法
JP4749080B2 (ja) 燃料電池用電解質溶液
JP4657055B2 (ja) 電解質膜の製造方法
JP3841168B2 (ja) 新規な含リン芳香族ジハロゲン化合物、ポリアリーレン重合体、スルホン化ポリアリーレン重合体およびこれら重合体の製造方法、ならびにプロトン伝導膜
JP3937912B2 (ja) 直接メタノール型燃料電池用電解質膜及びそれを使用した直接メタノール型燃料電池
JP4841193B2 (ja) 燃料電池用複合イオン交換膜
JP4841195B2 (ja) 燃料電池用電解質膜
JP4841194B2 (ja) 燃料電池用高分子電解質膜
JP2004075895A (ja) プロトン伝導性樹脂組成物その製造方法およびプロトン伝導膜
JP2003113226A (ja) 分岐状ポリアリーレン系共重合体の製法、スルホン化分岐状ポリアリーレン系共重合体の製法およびスルホン化分岐状ポリアリーレン系共重合体からなるプロトン伝導膜
JP4089821B2 (ja) プロトン伝導性樹脂組成物、プロトン伝導性膜および架橋物
JP2006172861A (ja) 燃料電池用膜−電極接合体
JP2008010430A (ja) 芳香族系高分子、その製造方法およびその用途
JP4868787B2 (ja) 酸触媒転化反応用高分子触媒
JP2007115475A (ja) 高分子電解質
JP2007045848A (ja) イオン交換樹脂用電解質およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Ref document number: 4749080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees