JP2006328555A - Meta type wholly aromatic polyamide fiber and method for producing the same - Google Patents
Meta type wholly aromatic polyamide fiber and method for producing the same Download PDFInfo
- Publication number
- JP2006328555A JP2006328555A JP2005149467A JP2005149467A JP2006328555A JP 2006328555 A JP2006328555 A JP 2006328555A JP 2005149467 A JP2005149467 A JP 2005149467A JP 2005149467 A JP2005149467 A JP 2005149467A JP 2006328555 A JP2006328555 A JP 2006328555A
- Authority
- JP
- Japan
- Prior art keywords
- meta
- aromatic polyamide
- wholly aromatic
- amide solvent
- type wholly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 77
- 239000004760 aramid Substances 0.000 title claims abstract description 63
- 229920003235 aromatic polyamide Polymers 0.000 title claims abstract description 60
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000002904 solvent Substances 0.000 claims abstract description 77
- 150000001408 amides Chemical class 0.000 claims abstract description 69
- 229920000642 polymer Polymers 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 45
- 238000002166 wet spinning Methods 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 48
- 239000000243 solution Substances 0.000 claims description 41
- 238000010438 heat treatment Methods 0.000 claims description 35
- 239000004033 plastic Substances 0.000 claims description 33
- 230000015271 coagulation Effects 0.000 claims description 29
- 238000005345 coagulation Methods 0.000 claims description 29
- 239000007864 aqueous solution Substances 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 15
- QZUPTXGVPYNUIT-UHFFFAOYSA-N isophthalamide Chemical group NC(=O)C1=CC=CC(C(N)=O)=C1 QZUPTXGVPYNUIT-UHFFFAOYSA-N 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 2
- 238000009776 industrial production Methods 0.000 abstract description 6
- 238000009987 spinning Methods 0.000 description 17
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 9
- 150000004984 aromatic diamines Chemical class 0.000 description 8
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 8
- 238000007654 immersion Methods 0.000 description 7
- -1 polymetaphenylene isophthalamide Polymers 0.000 description 7
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 5
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 5
- 239000001110 calcium chloride Substances 0.000 description 5
- 229910001628 calcium chloride Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 229920006231 aramid fiber Polymers 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000000578 dry spinning Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 3
- 238000012695 Interfacial polymerization Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910017053 inorganic salt Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- RLYCRLGLCUXUPO-UHFFFAOYSA-N 2,6-diaminotoluene Chemical compound CC1=C(N)C=CC=C1N RLYCRLGLCUXUPO-UHFFFAOYSA-N 0.000 description 1
- LNTGGPJSADTYSG-UHFFFAOYSA-N 2-(2-carbonochloridoylphenoxy)benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1OC1=CC=CC=C1C(Cl)=O LNTGGPJSADTYSG-UHFFFAOYSA-N 0.000 description 1
- NGULVTOQNLILMZ-UHFFFAOYSA-N 2-bromobenzene-1,4-diamine Chemical compound NC1=CC=C(N)C(Br)=C1 NGULVTOQNLILMZ-UHFFFAOYSA-N 0.000 description 1
- MGLZGLAFFOMWPB-UHFFFAOYSA-N 2-chloro-1,4-phenylenediamine Chemical compound NC1=CC=C(N)C(Cl)=C1 MGLZGLAFFOMWPB-UHFFFAOYSA-N 0.000 description 1
- LKGQTURGJNTDLR-UHFFFAOYSA-N 2-chlorobenzene-1,3-diamine Chemical compound NC1=CC=CC(N)=C1Cl LKGQTURGJNTDLR-UHFFFAOYSA-N 0.000 description 1
- IYDFXSNAHABGJC-UHFFFAOYSA-N 2-n-(2-aminophenyl)-2-n-phenylbenzene-1,2-diamine Chemical compound NC1=CC=CC=C1N(C=1C(=CC=CC=1)N)C1=CC=CC=C1 IYDFXSNAHABGJC-UHFFFAOYSA-N 0.000 description 1
- ZBMISJGHVWNWTE-UHFFFAOYSA-N 3-(4-aminophenoxy)aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(N)=C1 ZBMISJGHVWNWTE-UHFFFAOYSA-N 0.000 description 1
- ZMPZWXKBGSQATE-UHFFFAOYSA-N 3-(4-aminophenyl)sulfonylaniline Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=CC(N)=C1 ZMPZWXKBGSQATE-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- QDBOAKPEXMMQFO-UHFFFAOYSA-N 4-(4-carbonochloridoylphenyl)benzoyl chloride Chemical compound C1=CC(C(=O)Cl)=CC=C1C1=CC=C(C(Cl)=O)C=C1 QDBOAKPEXMMQFO-UHFFFAOYSA-N 0.000 description 1
- LHSXSRQUGCHBPG-UHFFFAOYSA-N 4-(aminomethoxy)aniline Chemical compound NCOC1=CC=C(N)C=C1 LHSXSRQUGCHBPG-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- ZWUBBMDHSZDNTA-UHFFFAOYSA-N 4-Chloro-meta-phenylenediamine Chemical compound NC1=CC=C(Cl)C(N)=C1 ZWUBBMDHSZDNTA-UHFFFAOYSA-N 0.000 description 1
- HPFMWXQXAHHFAA-UHFFFAOYSA-N 5-chlorobenzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC(Cl)=CC(C(Cl)=O)=C1 HPFMWXQXAHHFAA-UHFFFAOYSA-N 0.000 description 1
- CGXXBHCRXCEKCP-UHFFFAOYSA-N 5-methoxybenzene-1,3-dicarbonyl chloride Chemical compound COC1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 CGXXBHCRXCEKCP-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- VIUHYPPHBQZSPF-UHFFFAOYSA-N naphthalene-1,4-dicarbonyl chloride Chemical compound C1=CC=C2C(C(=O)Cl)=CC=C(C(Cl)=O)C2=C1 VIUHYPPHBQZSPF-UHFFFAOYSA-N 0.000 description 1
- KQSABULTKYLFEV-UHFFFAOYSA-N naphthalene-1,5-diamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1N KQSABULTKYLFEV-UHFFFAOYSA-N 0.000 description 1
- NZZGQZMNFCTNAM-UHFFFAOYSA-N naphthalene-2,6-dicarbonyl chloride Chemical compound C1=C(C(Cl)=O)C=CC2=CC(C(=O)Cl)=CC=C21 NZZGQZMNFCTNAM-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
Abstract
Description
本発明は、メタ型全芳香族ポリアミド繊維及びその製造方法に関するものであり、より詳しくは、湿式紡糸法により、メタフェニレンイソフタルアミド骨格を主成分とするメタ型全芳香族ポリアミド繊維を高い生産性で製造する方法、およびその方法によって得られる力学特性の優れた芳香族ポリアミド繊維に関するものである。 The present invention relates to a meta-type wholly aromatic polyamide fiber and a method for producing the same. More specifically, the present invention relates to a meta-type wholly aromatic polyamide fiber having a metaphenylene isophthalamide skeleton as a main component by a wet spinning method. And an aromatic polyamide fiber having excellent mechanical properties obtained by the method.
芳香族ジアミンと芳香族ジカルボン酸ジクロリドとから製造される全芳香族ポリアミドが耐熱性に優れ、かつ難燃性に優れることは従来周知であり、また、これらの芳香族ポリアミドがアミド系溶媒に可溶であって、これらの重合体溶液から乾式紡糸、湿式紡糸、半乾半湿式紡糸等の方法によって繊維となし得ることも良く知られている。 It has been well known that wholly aromatic polyamides produced from aromatic diamines and aromatic dicarboxylic acid dichlorides are excellent in heat resistance and flame retardancy, and these aromatic polyamides can be used as amide solvents. It is also well known that these polymers can be made into fibers from these polymer solutions by methods such as dry spinning, wet spinning, and semi-dry semi-wet spinning.
かかる芳香族ポリアミドのうち、ポリメタフェニレンイソフタルアミドで代表されるメタ型全芳香族ポリアミド(以下「メタアラミド」と略称することがある)繊維は、耐熱、難燃性繊維として特に有用なものであり・かかるメタアラミド繊維は、現在、主に次の(イ)(ロ)の2つの方法によって工業的な生産が行われていると言われており、さらに、これ以外にもメタアラミド繊維の製造法として、次の(ハ)〜(ホ)のような方法が提案されている。 Among such aromatic polyamides, meta-type wholly aromatic polyamides (hereinafter sometimes abbreviated as “meta-aramid”) represented by polymetaphenylene isophthalamide are particularly useful as heat-resistant and flame-retardant fibers. -It is said that such meta-aramid fibers are currently being produced industrially mainly by the following two methods (a) and (b). Furthermore, as other methods for producing meta-aramid fibers, The following methods (ha) to (e) have been proposed.
(イ)メタフェニレンジアミンとイソフタル酸クロライドとをN,N−ジメチルアセトアミド中で低温溶液重合させることによってポリメタフェニレンイソフタルアミド溶液を調製し、しかる後、該溶液中に副生した塩酸を水酸化カルシウムで中和して得た塩化カルシウムを含む重合体溶液を、乾式紡糸することによりポリメタフェニレンイソフタルアミド繊維を製造する方法(特公昭35−14399号公報、米国特許第3360595号明細書)。 (A) A polymetaphenylene isophthalamide solution is prepared by subjecting metaphenylenediamine and isophthalic acid chloride to low-temperature solution polymerization in N, N-dimethylacetamide, and then, by-product hydrochloric acid is hydroxylated. A method of producing polymetaphenylene isophthalamide fiber by dry spinning a polymer solution containing calcium chloride obtained by neutralization with calcium (Japanese Patent Publication No. 35-14399, US Pat. No. 3,360,595).
(ロ)メタフェニレンジアミン塩とイソフタル酸クロライドとを含む生成ポリアミドの良溶媒ではない有機溶剤(例えばテトラヒドロフラン)と、無機の酸受容剤ならびに可溶性中性塩を含む水溶液系とを接触させることによってポリメタフェニレンイソフタルアミド重合体の粉末を単離し(特公昭47−10863号公報)、この重合体粉末をアミド系溶媒に再溶解した後、無機塩含有水性凝固浴中に湿式紡糸する方法(特公昭48−17551号公報)。 (B) By contacting an organic solvent (for example, tetrahydrofuran) that is not a good solvent for the resulting polyamide containing metaphenylenediamine salt and isophthalic acid chloride with an aqueous solution containing an inorganic acid acceptor and a soluble neutral salt, A method of isolating a metaphenylene isophthalamide polymer powder (Japanese Patent Publication No. 47-10863), re-dissolving the polymer powder in an amide solvent, and then wet spinning in an inorganic salt-containing aqueous coagulation bath (Japanese Patent Publication) 48-17551).
(ハ)溶液重合法で合成、単離したメタアラミドをアミド系溶媒に溶解した、無機塩を含まないか、または僅かな量(2〜3%)の塩化リチウムを含むメタアラミド溶液から、湿式成形法によって繊維等の成形物を製造する方法(特開昭50−52167号公報)。 (C) A wet molding method from a meta-aramid solution prepared by dissolving and isolating a meta-aramid synthesized in a solution polymerization method in an amide solvent and containing no inorganic salt or a small amount (2 to 3%) of lithium chloride. A method for producing a molded product such as a fiber (Japanese Patent Laid-Open No. 50-52167).
(ニ)アミド系溶媒中で溶液重合し、水酸化カルシウム、酸化カルシウム等で中和して生成した塩化カルシウムと水とを含むメタアラミド重合体溶液を、オリフィから気体中に押し出して、気体中を通過せしめた後、水性凝固浴に導入し、次いで、塩化カルシウム等の無機塩水溶液中を通過せしめて糸条物に成杉する方法(特開昭56−31009号公報)。 (D) A meta-aramid polymer solution containing calcium chloride and water produced by solution polymerization in an amide solvent and neutralized with calcium hydroxide, calcium oxide or the like is extruded from the orifice into the gas, A method of passing through an aqueous coagulation bath and then passing through an aqueous solution of an inorganic salt such as calcium chloride to form cedar into a yarn (Japanese Patent Laid-Open No. 56-31009).
(ホ)アミド系溶媒中で溶液重合し、水酸化カルシウム、酸化カルシウム等で中和して生成した塩化カルシウムと水とを含むメタアラミド重合体溶液を、オリフィスから、塩化カルシウムを高濃度に含む水性凝固浴中に紡出せしめて糸条物に成形する方法(特開平8−74121号公報、特開平10−88421号公報)。 (E) A meta-aramid polymer solution containing calcium chloride and water produced by solution polymerization in an amide solvent and neutralized with calcium hydroxide, calcium oxide, etc. A method of spinning in a coagulation bath to form a yarn (JP-A-8-74121, JP-A-10-88421).
上記(イ)の方法は、重合体を単離せずに紡糸用の重合体溶液(紡糸原液)を調製できる利点はあるが、沸点の高いアミド系溶媒を用いる乾式紡糸のため製造上のエネルギーコストが高く、しかも紡糸口金当たりの孔数を増大させると紡糸安定性が急速に低下する。また、この重合体溶液を水性凝固浴中に湿式紡糸しても失透の多い弱い繊維しか得られないことが多いため、未だに溶液重合によるメタアラミド重合体溶液を水性凝固浴を用いて湿式紡糸する方法は、多くの困難があると考えられており、工業的には実施されていない。 The above method (a) has the advantage that a polymer solution for spinning (spinning stock solution) can be prepared without isolating the polymer, but it is an energy cost for production due to dry spinning using an amide solvent having a high boiling point. However, when the number of holes per spinneret is increased, the spinning stability rapidly decreases. In addition, even when this polymer solution is wet-spun into an aqueous coagulation bath, only weak fibers with high devitrification can often be obtained. Therefore, a meta-aramid polymer solution obtained by solution polymerization is still wet-spun using an aqueous coagulation bath. The method is believed to have many difficulties and has not been implemented industrially.
一方、(ロ)及び(ハ)の方法は、上述した乾式紡糸の問題は回避されるが、重合系と紡糸系とで溶媒が異なること、一度単離された重合体を再溶解するための工程を要すること、再溶解して安定な溶液を得るには特別の配慮と細心の工程管理が要求されることが問題となる。(特公昭48−4661号公報)。 On the other hand, in the methods (b) and (c), the above-mentioned problem of dry spinning is avoided, but the solvent is different between the polymerization system and the spinning system, and the polymer once isolated is redissolved. The problem is that it requires a process, and special consideration and meticulous process control are required to re-dissolve and obtain a stable solution. (Japanese Patent Publication No. 48-4661).
また、(二)の方法では、紡糸口金から空気中に紡糸する場合、口金当たりの孔数を増大させると紡糸安定性が著しく低下するため、生産性が低く効率的でない。
さらに、(ホ)の方法は、良好な物性の繊維を与えるものの、紡糸速度を上げることが困難であるため、生産性に問題がある。
Further, in the method (2), when spinning from a spinneret into the air, increasing the number of holes per die results in a significant decrease in spinning stability, resulting in low productivity and inefficiency.
Furthermore, although the method (e) gives fibers with good physical properties, there is a problem in productivity because it is difficult to increase the spinning speed.
このような間題を改善する手段として、特開2001−348726号公報には、(ロ)と同じ方法で得たメタフェニレンイソフタルアミド骨格を主成分とするメタ型全芳香族ポリアミドをアミド系溶媒に溶解してなる重合体溶液を、アミド系溶媒と水とからなる凝固浴中に吐出して多孔質の線状体として凝固せしめ、続いて、そのままあるいは可塑液を含浸させた後に空気中で加熱延伸し、次いで一亘乾燥させることなく100〜200℃の低温で加熱処理した後、さらに250〜400℃の高温で熱処理する方法が提案されている。 As means for improving such a problem, Japanese Patent Application Laid-Open No. 2001-348726 discloses that a meta type wholly aromatic polyamide mainly composed of a metaphenylene isophthalamide skeleton obtained by the same method as (b) is used as an amide solvent. The polymer solution dissolved in the solution is discharged into a coagulation bath composed of an amide solvent and water to coagulate as a porous linear body, and then in the air as it is or after impregnation with a plastic liquid. There has been proposed a method in which a heat treatment is performed at a low temperature of 100 to 200 ° C., followed by heat treatment at a high temperature of 250 to 400 ° C.
また、特開2003−342832号公報や特開2003−301326号公報には、(ロ)と同じ方法で得たメタフェニレンイソフタルアミド骨格を主成分とするメタ型全芳香族ポリアミドをアミド系溶媒に溶解してなる重合体溶液を、アミド系溶媒と水とからなる凝固浴中に吐出して多孔質の線状体として凝固せしめ、続いて、これをアミド系溶媒の水性溶液からなる可塑延伸浴中にて延伸し、水洗後、熱処理して級密なメタ型全芳香族ポリアミド繊維を製造する方法が提案されている。 In addition, in Japanese Patent Application Laid-Open Nos. 2003-342832 and 2003-301326, a meta type wholly aromatic polyamide mainly composed of a metaphenylene isophthalamide skeleton obtained by the same method as (b) is used as an amide solvent. The dissolved polymer solution is discharged into a coagulation bath composed of an amide solvent and water to be coagulated as a porous linear body, and then this is a plastic stretching bath composed of an aqueous solution of the amide solvent. There has been proposed a method of producing a dense meta-type wholly aromatic polyamide fiber by drawing in, washing with water, and heat-treating.
確かにこの方法は、力学特性の優れたメタアラミド繊維を得る方法として優れてはいるものの、繊維中の溶媒残存率によっては熱処理工程で繊維間の密着が発生する場合がある。この間題を解消するために時間をかけて脱溶媒すると、そのための装置が大型化するという新たな間題が発生し、工業的生産としては不十分である。また、紡糸口金のホール数が増加すると力学特性が低下してしまう間題が発生するため、この点からも工業的生産方法としては有用ではなかった。紡糸口金のホール数が多くなると十分な繊維物性が得られない原困としては、ドープ溶媒であるアミド系溶媒の、吐出部付近の濃度上昇が内部の方が大きくなることや、トウの内部の糸の洗浄が十分に進まないためと考えられる。
このように、繊維間の密着がなく、カ学特性の優れたメタ干ラミド繊維を、工業的な生産レベルで製造し得る方法は未だ提案されていないのが実状である。
Certainly, this method is excellent as a method for obtaining meta-aramid fibers having excellent mechanical properties, but depending on the solvent remaining rate in the fibers, adhesion between the fibers may occur in the heat treatment step. If the solvent is removed over time to eliminate this problem, a new problem arises that the apparatus for that purpose becomes larger, which is insufficient for industrial production. In addition, when the number of holes in the spinneret increases, there arises a problem that the mechanical properties are deteriorated. Therefore, from this point, it is not useful as an industrial production method. When the number of holes in the spinneret increases, sufficient fiber properties cannot be obtained. The increase in the concentration of the amide solvent, which is a dope solvent, in the vicinity of the discharge part becomes larger in the interior. This is probably because the washing of the thread does not proceed sufficiently.
As described above, the actual situation is that no method has yet been proposed for producing meta-dried amide having excellent adhesion characteristics between fibers and having excellent chemistry characteristics at an industrial production level.
本発明は、上記従来技術を背景になされたもので、その目的は、繊維間の密着がなく力学特性、熱的性質の良好なメタ型全芳香族ポリアミド繊維を工業的な生産レベルで効率的に生産し得る新規な方法、及び該方法により製造されたメタ型全芳香族ポリアミド繊維を提供することにある。 The present invention has been made against the background of the above-described prior art, and its purpose is to efficiently produce meta-type wholly aromatic polyamide fibers having good mechanical properties and thermal properties without adhesion between fibers at an industrial production level. And a meta type wholly aromatic polyamide fiber produced by the method.
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、下記に示す製造方法を採用するとき、所望のメタ型全芳香族ポリアミド繊維が得られることを究明し、本発明に到達した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a desired meta-type wholly aromatic polyamide fiber can be obtained when the production method shown below is adopted, and have reached the present invention. did.
すなわち、本発明によれば、メタフェニレンイソフタルアミド骨格を主成分とするメタ型全芳香族ポリアミドがアミド系溶媒に溶解しているメタ型全芳香族ポリアミド重合体溶液を湿式紡糸することによりメタ型全芳香族ポリアミド繊維を製造する方法であって、下記(1)〜(6)の工程からなることを特徴とする力学特性の優れたメタ型全芳香族ポリアミド繊維の製造法。
(1)メタ型全芳香族ポリアミド重合体溶液を紡糸口金からアミド系溶媒と水とからなる凝固浴中に吐出して、多孔質の線状体として凝固せしめた後、
(2)水またはアミド系溶媒の水性溶液からなる可塑延伸浴中にて第1段延伸し、
(3)水またはアミド系溶媒の水性溶液にて水洗した後に温度100〜250℃で熱処理し、
(4)次いで、水またはアミド系溶媒の水性溶液にて、繊維中のメタ型全芳香族ポリアミドポリマー含有率(P)と、アミド系溶媒の含有率(N)とが下記(I)式を溝足するように調整した後に、アミド系溶媒と水との組成比が重量比で30/70/〜80/20であり、且つその温度が40〜100℃のアミド系溶媒の水性溶液からなる可塑延伸浴中にて0.9倍〜1.4倍の延伸倍率で第2段延伸し、
(5)さらに、水またはアミド系溶媒の水性溶液にて洗浄した後に温度100〜250℃で熱処理した後、
(6)温度270〜400℃で熱処理する
(1) After discharging the meta-type wholly aromatic polyamide polymer solution from the spinneret into a coagulation bath composed of an amide solvent and water to coagulate as a porous linear body,
(2) First-stage stretching in a plastic stretching bath comprising an aqueous solution of water or an amide solvent,
(3) After heat washing with water or an aqueous solution of an amide solvent, heat treatment is performed at a temperature of 100 to 250 ° C.
(4) Next, the content of the meta-type wholly aromatic polyamide polymer in the fiber (P) and the content of the amide solvent (N) in water or an aqueous solution of the amide solvent are expressed by the following formula (I): After adjusting so as to add a groove, the composition ratio of the amide solvent and water is 30/70 / -80 / 20 by weight, and the temperature is 40-100 ° C. Second-stage stretching in a plastic stretching bath at a stretching ratio of 0.9 to 1.4 times,
(5) Further, after washing with water or an aqueous solution of an amide solvent and then heat treating at a temperature of 100 to 250 ° C.,
(6) Heat treatment at a temperature of 270 to 400 ° C.
本発明によれば、繊維間の密着がなく力学特性、熱的性質の良好なメタ型全芳香族ポリアミド繊維を工業的な生産レベルで効率的に生産し得る方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the method which can produce efficiently the meta-type wholly aromatic polyamide fiber with favorable mechanical characteristics and a thermal property without the contact | adherence between fibers at an industrial production level is provided.
本発明は、メタフェニレンイソフタルアミド骨格を主成分とするメタ型全芳香族ポリアミドを含むアミド系溶媒からなる重合体溶液を湿式紡糸することにより、メタ型全芳香族ポリアミド繊維を製造する方法であって、上記(1)〜(6)の工程を採用することにより、繊維間の密着がなく力学特性、熱的性質に優れたメタ型全芳香族ポリアミド繊維を製造することができる。 The present invention is a method for producing a meta type wholly aromatic polyamide fiber by wet spinning a polymer solution comprising an amide solvent containing a meta type wholly aromatic polyamide mainly comprising a metaphenylene isophthalamide skeleton. By adopting the steps (1) to (6) above, it is possible to produce meta-type wholly aromatic polyamide fibers that have no adhesion between fibers and are excellent in mechanical properties and thermal properties.
本発明において使用される芳香族ポリアミドは、メタフェニレンイソフタルアミドを主骨格とするものであり、その製造方法は特に限定されず、例えば、メタ型芳香族ジアミンと芳香族ジカルボン酸クロライドとを原料とした溶液重合や界面重合等により製造することができる。 The aromatic polyamide used in the present invention has metaphenylene isophthalamide as a main skeleton, and its production method is not particularly limited. For example, a meta-type aromatic diamine and an aromatic dicarboxylic acid chloride are used as raw materials. Can be produced by solution polymerization or interfacial polymerization.
かかる原料の一つであるメタ型芳香族ジアミンとしては、主として下記式で示されるジアミンが使用される。
かかるメタ型芳香族ジアミンの具体例としては、メタフェニレンジアミン、2,4−トリレンジアミン、2,6−トリレンジアミン、2,4−ジアミノクロルベンゼン、2,6−ジアミノクロルベンゼン等が挙げられる。その他のメタ型芳香族ジアミンとしては、3,4'−ジアミノジフェニルエーテル、3,4'−ジアミノジフェニルスルホン等が挙げられる。 Specific examples of such meta-type aromatic diamines include metaphenylenediamine, 2,4-tolylenediamine, 2,6-tolylenediamine, 2,4-diaminochlorobenzene, 2,6-diaminochlorobenzene and the like. It is done. Examples of other meta-type aromatic diamines include 3,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl sulfone, and the like.
本発明では、なかでも、メタフェニレンジアミンまたはこれを主体とする混合ジアミンを使用することが好ましい。メタフェニレンジアミンと併用する他の芳香族ジアミンとしては、上記のメタ型芳香族ジアミンのほかにパラフェニレンジアミン、2,5−ジアミノクロルベンゼン、2,5−ジアミノブロムベンゼン、アミノアニシジン等のようなベンゼン誘導体、1,5−ナフチレンジアミン、4,4'−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニケトン、ビス(アミノフェニル)フェニルアミン、ビス(パラアミノフェニル)メタン等が用いられる。 In the present invention, it is particularly preferable to use metaphenylenediamine or mixed diamine mainly composed of metaphenylenediamine. Other aromatic diamines used in combination with metaphenylenediamine include paraphenylenediamine, 2,5-diaminochlorobenzene, 2,5-diaminobromobenzene, aminoanisidine, etc. in addition to the above-mentioned meta-type aromatic diamine. Benzene derivatives, 1,5-naphthylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylketone, bis (aminophenyl) phenylamine, bis (paraaminophenyl) methane and the like are used.
溶解性の良い重合体が望まれる場合には、このような他の芳香族ジアミンは全体の20モル%程度まで使用可能であるが、高結晶性の重合体が望まれる場合には、メタフェニレンジアミンが90モル%以上、特に95モル%以上含まれることが好ましい。 When a polymer with good solubility is desired, such other aromatic diamines can be used up to about 20 mol% of the whole. However, when a highly crystalline polymer is desired, metaphenylene can be used. It is preferable that diamine is contained at 90 mol% or more, particularly 95 mol% or more.
一方、本発明で使用する芳香族ジカルボン酸クロライドは、イソフタル酸クロライドまたはこれを主体とする芳香族ジカルボン酸クロライドである。イソフタル酸クロライドと併用し得る他の芳香族ジカルボン酸クロライドとしては、テレフタル酸クロライド、1,4−ナフタレンジカルボン酸クロライド、2,6−ナフタレンジカルボン酸クロライド、4,4'−ビフェニルジカルボン酸クロライド、5−クロルイソフタル酸クロライド、5−メトキシイソフタル酸クロライド、ビス(クロロカルボニルフェニル)エーテル等が挙げられる。 On the other hand, the aromatic dicarboxylic acid chloride used in the present invention is isophthalic acid chloride or an aromatic dicarboxylic acid chloride mainly composed thereof. Other aromatic dicarboxylic acid chlorides that can be used in combination with isophthalic acid chloride include terephthalic acid chloride, 1,4-naphthalenedicarboxylic acid chloride, 2,6-naphthalenedicarboxylic acid chloride, 4,4′-biphenyldicarboxylic acid chloride, 5 -Chlorisophthalic acid chloride, 5-methoxyisophthalic acid chloride, bis (chlorocarbonylphenyl) ether and the like.
本発明の実施に当たって、溶解性の良好な重合体が望まれる場合は、これらの他の芳香族ジカルボン酸を20モル%程度の比率まで混合することが可能であるが、高結晶性の重合体が望まれる場合は、イソフタル酸クロライドが90モル%以上、特に95モル%以上含まれることが好ましい。
上記のメタ型全芳香族ポリアミドの中でも、全ポリマー繰返し単位の90〜100モル%がメタフェニレンイソフタルアミド単位である重合体が好適に使用される。
In the practice of the present invention, when a polymer having good solubility is desired, these other aromatic dicarboxylic acids can be mixed up to a ratio of about 20 mol%. Is desired, isophthalic acid chloride is preferably contained in an amount of 90 mol% or more, particularly 95 mol% or more.
Among the meta-type wholly aromatic polyamides, a polymer in which 90 to 100 mol% of all polymer repeating units are metaphenylene isophthalamide units is preferably used.
本発明においては、上記メタ型全芳香族ポリアミドがアミド系溶媒に溶解した重合体溶液を、後述する工程に供給する。かかる重合体溶液は、上記溶液重合等で得られたメタ型全芳香族ポリアミドを含むアミド系溶媒溶液を用いても良いし、上記溶液重合、界面重合等で得られたメタ型全芳香族ポリアミドを含む溶液から該メタ型全芳香族ポリアミドを単離し、これをアミド系溶媒に溶解したものを用いてもよい。 In the present invention, a polymer solution in which the meta-type wholly aromatic polyamide is dissolved in an amide solvent is supplied to the process described later. As such a polymer solution, an amide solvent solution containing a meta type wholly aromatic polyamide obtained by the above solution polymerization or the like, or a meta type wholly aromatic polyamide obtained by the above solution polymerization or interfacial polymerization or the like may be used. The meta-type wholly aromatic polyamide may be isolated from a solution containing, and dissolved in an amide solvent.
ここで用いられるアミド系溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン等を例示することができるが、特に、溶液重合から湿式紡糸工程に至るまでの重合体溶液の安定性等から、N−メチル−2−ピロリドンとN,N−ジメチルアセトアミドが好ましい。 Examples of the amide solvent used here include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone and the like. N-methyl-2-pyrrolidone and N, N-dimethylacetamide are preferred from the viewpoint of the stability of the polymer solution up to the wet spinning process.
本発明において紡糸原液に用いる重合体溶液は、水を含んでいてもよい。このような水は必要に応じて添加することもあるが、溶液調製プロセスで必然的に生成するものであってもかまわない。その濃度としては、溶液が安定に存在する範囲であるならばいかなる濃度でもかまわないが、例えば通常ポリマー重量に対して0〜60重量%の範囲で添加、含有されるのが好ましく、特に15重量%以下であることが好ましい。これを超える濃度では、ポリマー溶液の安定性が損なわれ、ポリマーの析出、ゲル化によって紡糸性が著しく損なわれることがある。 In the present invention, the polymer solution used for the spinning dope may contain water. Such water may be added as necessary, but it may be inevitably produced in the solution preparation process. The concentration may be any concentration as long as the solution exists stably, but it is preferably added and contained, for example, usually in the range of 0 to 60% by weight with respect to the polymer weight, particularly 15% by weight. % Or less is preferable. If the concentration exceeds this, the stability of the polymer solution is impaired, and the spinnability may be significantly impaired by the precipitation and gelation of the polymer.
本発明において、重合体溶液を凝固浴中に吐出する場合、紡糸口金としては多ホールのものを用いることができる。実用上ホール数の上限は約50000ホールであり、好ましくは300〜30000ホール、特に3000〜20000ホールの紡糸口金が使用される。 In the present invention, when the polymer solution is discharged into the coagulation bath, a multi-hole spinneret can be used. In practice, the upper limit of the number of holes is about 50,000 holes, preferably 300 to 30000 holes, particularly 3000 to 20000 holes.
本発明で使用される凝固浴は、アミド系溶媒と水(H2O)との2成分から実質的になる水溶液で構成される。この凝固浴組成において、アミド系溶媒としてはメタアラミドを溶解し、水と良好に混和するものであれば好適に用いることができるが、特に、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミド、ジメチルイミダゾリジノン等を好適に用いることができる。溶媒の回収等を考慮すれば、紡糸原液中のアミド系溶媒と同じ種類のものを使用することが好ましい。 The coagulation bath used in the present invention is composed of an aqueous solution substantially consisting of two components of an amide solvent and water (H 2 O). In this coagulation bath composition, the amide solvent can be suitably used as long as it dissolves meta-aramid and is miscible with water. In particular, N-methyl-2-pyrrolidone, N, N-dimethylacetamide , Dimethylformamide, dimethylimidazolidinone, and the like can be preferably used. In consideration of recovery of the solvent and the like, it is preferable to use the same type of amide-based solvent in the spinning dope.
アミド系溶媒と水との最適な混合比は、重合体溶液の条件によっても若干変化するが、凝固浴液中のアミド系溶媒の濃度が40〜70重量%、特に50〜65%の範囲であることが好ましい。アミド系溶媒の濃度が40重量%を下回る場合は、糸中に非常に大きなポイドが生じやすくなり、その後の糸切れの原因となりやすい。一方、アミド系溶媒の濃度が70重量%を上回る条件では、凝固が進まず、糸同士の密着(溶着、膠着、融着等)が起こりやすくなる。 The optimum mixing ratio of the amide solvent and water varies slightly depending on the conditions of the polymer solution, but the concentration of the amide solvent in the coagulation bath liquid is 40 to 70% by weight, particularly 50 to 65%. Preferably there is. When the concentration of the amide solvent is less than 40% by weight, very large voids are likely to be generated in the yarn, which is liable to cause subsequent yarn breakage. On the other hand, under the condition where the concentration of the amide solvent exceeds 70% by weight, solidification does not proceed and the yarns tend to adhere to each other (welding, gluing, fusing, etc.).
凝固浴の温度は凝固液組成と密接な関係があるが、一般的には高温である方が、生成糸条物中にフィンガーとよばれる粗大な気泡状の空孔ができ難くなるので好ましい。しかし凝固液濃度が高い場合には、あまり高温にすると糸条物同士の密着が激しくなるので、凝固浴の好適な温度は20〜90℃、より好ましくは30〜80℃である。 The temperature of the coagulation bath is closely related to the composition of the coagulation solution, but generally a higher temperature is preferable because coarse bubble-like pores called fingers are hardly formed in the formed yarn. However, when the concentration of the coagulation liquid is high, if the temperature is too high, the yarns are closely adhered to each other, so that the suitable temperature of the coagulation bath is 20 to 90 ° C, more preferably 30 to 80 ° C.
凝固液は、実質的にアミド系溶媒と水だけで構成されることが好ましいが、これ以外に塩類が少量含まれていても差し支えない。特に、塩化カルシウム、水酸化カルシウム等の塩類は、ポリマー溶液中から抽出されてくることがあるが、これは多孔凝固に対して何らこれを阻害することはなく、例えば凝固液に対し10重量%以下、特に5重量%以下の低濃度であれば塩類が含まれていても問題はない。したがって、塩類の好適濃度は凝固液に対し0〜10重量%の範囲である。
凝固浴中での糸条物の浸漬時問は0.1〜30秒が好ましい。該浸漬時間が短かすぎると糸条物の形成が不十分となり断糸が発生するおそれがある。
The coagulation liquid is preferably substantially composed of only an amide solvent and water, but may contain a small amount of salts other than this. In particular, salts such as calcium chloride and calcium hydroxide may be extracted from the polymer solution, but this does not inhibit the porous coagulation at all, for example, 10% by weight based on the coagulation liquid. In the following, there is no problem even if salts are contained as long as the concentration is 5% by weight or less. Therefore, the preferred concentration of the salt is in the range of 0 to 10% by weight with respect to the coagulating liquid.
The immersion time of the yarn in the coagulation bath is preferably 0.1 to 30 seconds. If the soaking time is too short, the formation of the yarn is insufficient and there is a possibility that the yarn breaks.
本発明においては、上記多孔質の線状体として凝固させた糸条を、水またはアミド系溶媒の水性溶液中で少なくとも2段階の可塑延伸を施す必要がある。ここで用いられるアミド系溶媒としては、メタ型全芳香族ポリアミドを膨潤させ、水と良好に混和するものであればよいが、特にN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミド、ジメチルイミダゾリジノン等を好適に用いることができる。またさらに好適には、凝固浴に用いたものと同じ溶媒を用いることが好ましい。凝固浴と同種の溶媒を用いれば、回収工程が簡略化されるので、経済的に有益である。 In the present invention, the yarn solidified as the porous linear body needs to be subjected to plastic stretching in at least two stages in water or an aqueous solution of an amide solvent. As the amide solvent used here, any swellable meta-type wholly aromatic polyamide can be used as long as it is well mixed with water. Particularly, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, dimethyl Formamide, dimethylimidazolidinone and the like can be preferably used. More preferably, the same solvent as that used in the coagulation bath is preferably used. If the same kind of solvent as the coagulation bath is used, the recovery process is simplified, which is economically beneficial.
すなわち、重合体溶液、凝固浴および可塑延伸浴中のアミド系溶媒はすベて同種のものを使用するのが好ましく、かかる溶媒とレて、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、ジメチルホルムアミドを単独で使用するかまたは2種以上を併用することが好都合である。 That is, it is preferable to use the same type of amide solvents in the polymer solution, the coagulation bath, and the plastic drawing bath, and N-methyl-2-pyrrolidone, N, N-dimethyl, It is convenient to use acetamide or dimethylformamide alone or in combination of two or more.
可塑延伸浴の組成と温度は、本発明のメタ型全芳香族ポリアミド繊維の製造方法と密接な関係にあり、まず第1段目の可塑延伸では、該可塑延伸浴中のアミド系溶媒の濃度は20〜70重量%、温度は20〜90℃の範囲が好適に用いられる。この範囲より低い領域では可塑化が十分に進まず、十分な延伸倍率をとることが困難となる。一方、これを上回る範囲では、糸の表面が溶解して密着しやすくなり、良好な紡糸が困難になることが多い。 The composition and temperature of the plastic stretching bath are closely related to the method for producing the meta-type wholly aromatic polyamide fiber of the present invention. First, in the first-stage plastic stretching, the concentration of the amide solvent in the plastic stretching bath Is preferably 20 to 70% by weight, and the temperature is preferably 20 to 90 ° C. In a region lower than this range, plasticization does not proceed sufficiently, and it becomes difficult to obtain a sufficient draw ratio. On the other hand, in a range exceeding this range, the surface of the yarn is dissolved and tends to adhere, and good spinning is often difficult.
第1段目の可塑延伸は、通常1.5〜10倍、好ましくは2〜10倍の倍率で延伸するが、特に2.1〜6.0倍の倍率で延伸することがより好ましい。このように高倍率で延伸することにより、メタアラミド繊維の強度、弾性率が向上し良好な物性を示すようになると同時に、多孔構造の孔が引きつぶされ、可塑延伸後に行われる熱処理による級密化が良好に進行するようになる。但し、極端に高倍率で延伸した場合には、工程の調子が悪化して良好な製糸が困難になる。 The first stage of plastic stretching is usually 1.5 to 10 times, preferably 2 to 10 times, and more preferably 2.1 to 6.0 times. By stretching at a high magnification in this way, the strength and elastic modulus of the meta-aramid fiber are improved, and good physical properties are exhibited. At the same time, pores in the porous structure are collapsed, and the densification is performed by heat treatment performed after plastic stretching. Will progress well. However, when the film is stretched at an extremely high magnification, the condition of the process is deteriorated and it becomes difficult to produce a good yarn.
上記可塑延伸浴の工程を経た浴上がりの糸条物は、水あるいはアミド系溶媒の水性溶液にて水洗されるが、その際、繊維中のメタ型全芳香族ポリアミドポリマー含有率(P)、アミド系溶媒の含有率(N)及び含水率(W)が下記(II)式及び(III)式を満足するように調整することが好ましい。
アミド系溶媒の含有率及び含水率を上記範囲内に調整することにより、引続いて施される熱処理において、ポリマーの流動性が適度に向上し、配向は進むが結晶化は抑制されて、繊維の緻密化が促進されるものと考えられる。 By adjusting the content and moisture content of the amide solvent within the above ranges, in the subsequent heat treatment, the fluidity of the polymer is moderately improved, the orientation proceeds but the crystallization is suppressed, and the fiber It is thought that densification of the material is promoted.
上記(II)式におけるN/(P+N)の好ましい値の範囲は0.15〜0.25、また、上記(III)式におけるW/(P+W)の好ましい値の範囲は0.45〜0.65である。 The range of the preferable value of N / (P + N) in the formula (II) is 0.15 to 0.25, and the range of the preferable value of W / (P + W) in the formula (III) is 0.45 to 0.00. 65.
なお、アミド系溶媒の含有率及び含水率を上記範囲内に調整する方法としては、第1段目の可塑延伸後に10〜70℃の水浴あるいは10〜40℃のアミド系溶媒/水の混合浴等を通過させ、浸漬長を糸掛けターン数により調整するなどの方法が例示される。 In addition, as a method for adjusting the content and water content of the amide solvent within the above ranges, a 10 to 70 ° C. water bath or a 10 to 40 ° C. amide solvent / water mixed bath after the first stage of plastic stretching. Etc., and a method of adjusting the immersion length by the number of threading turns is exemplified.
このようにして、繊維中のアミド系溶媒の含有率が調整された糸条は、加熱ローラー、加熱板、熱風等によって一旦100〜250℃、好ましくは100〜200℃の温度範囲にて熱処理される。この100〜200℃の温度範囲での熱処理工程は、多孔質の線状体のポリマーの配向および結晶化を促進せしめて、繊維の熱収縮安定性を発現させるために重要な工程である。この熱処理温度が100℃未満であると、水やアミド系溶媒の蒸発が著しく遅くなるため、生産性が低下するばかりでなく、配向の促進も妨げられるので好ましくない。一方、この熱処理温度が250℃を超えると、アミド系溶媒の分解が一気に起こって繊維が着色されるので、好ましくない。 Thus, the yarn in which the content of the amide solvent in the fiber is adjusted is once heat-treated in a temperature range of 100 to 250 ° C., preferably 100 to 200 ° C. by a heating roller, a heating plate, hot air, or the like. The The heat treatment step in the temperature range of 100 to 200 ° C. is an important step for promoting the orientation and crystallization of the polymer of the porous linear body and expressing the heat shrinkage stability of the fiber. If the heat treatment temperature is less than 100 ° C., the evaporation of water and amide solvents is remarkably slow, which not only reduces productivity but also hinders the promotion of orientation, which is not preferable. On the other hand, when the heat treatment temperature exceeds 250 ° C., decomposition of the amide solvent occurs at once and the fibers are colored, which is not preferable.
本発明においては、上記のとおり第1段延伸、熱処理された繊維を、さらに可塑延伸浴中で第2段延伸をすることが、力学特性を良好なものにするため重要である。第2段延伸は、水あるいはアミド系溶媒の水性溶液にて繊維中のアミド系溶媒の含有率を調整された後に行われる必要があるが、その際、下記(I)式を満足するように調整する必要がある。
上記(I)式におけるN/Pの好ましい値の範囲は0.10〜0.17である。
N/Pの値が0.05未満であると、熱処理時のポリマー流動性向上の効果が不十分となり、繊維の緻密化が不十分となって良好な繊維物性を得ることが困難になる。一方、N/Pの値が0.2を超えると、熱処理時の繕晶化が進みやすくなると同時に繊維の密着も発生しやすくなるため、同じく良好な繊維物性を得ることが困難になる。
The range of a preferable value of N / P in the above formula (I) is 0.10 to 0.17.
If the value of N / P is less than 0.05, the effect of improving the polymer fluidity during heat treatment becomes insufficient, the fiber is not sufficiently densified, and it becomes difficult to obtain good fiber properties. On the other hand, if the value of N / P exceeds 0.2, repair crystallization at the time of heat treatment is likely to proceed, and at the same time, the close contact of fibers is likely to occur, so that it is difficult to obtain good fiber properties.
なお、繊維中のアミド系溶媒の含有率を上記範囲に調整する方法としては、熱処理工程後に10〜70℃の水浴あるいは10〜40℃のアミド系溶媒/水の混合浴等を通過させ、浸漬長を糸掛けターン数により調整する方法などが例示される。 As a method for adjusting the content of the amide solvent in the fiber to the above range, after the heat treatment step, it is passed through a 10-70 ° C. water bath or a 10-40 ° C. amide solvent / water mixed bath, etc. Examples thereof include a method of adjusting the length by the number of yarn hooking turns.
この第2段目の可塑延伸浴の組成と温度も、第1段目の可塑延伸と同じく、本発明のメタ型全芳香族ポリアミド繊維の製造方法と密接な関係にあり、アミド系溶媒の濃度はアミド系溶媒と水との組成比が重量比で30/70〜80/20であり、温度は40〜100℃であることが好ましい。可塑延伸浴の組成と温度がこの範囲より低い場合は、可塑化が十分に進まず、延伸を行うことが困難であり、力学特性が不十分となる。また、これを上回る範囲では、糸の表面が溶解して糸同士が密着しやすくなるので好ましくない。特に好ましいアミド系溶媒の濃度はアミド系溶媒と水との組成比が重量比で50/50〜70/30であり、温度は60〜95℃である。 The composition and temperature of the second-stage plastic drawing bath are also closely related to the method for producing the meta-type wholly aromatic polyamide fiber of the present invention, as in the first-stage plastic drawing, and the concentration of the amide solvent The composition ratio of the amide solvent and water is preferably 30/70 to 80/20 by weight, and the temperature is preferably 40 to 100 ° C. When the composition and temperature of the plastic stretching bath are lower than this range, plasticization does not proceed sufficiently, it is difficult to perform stretching, and the mechanical properties become insufficient. Moreover, since the surface of a thread | yarn melt | dissolves and it becomes easy to adhere | attach closely, the range exceeding this is not preferable. A particularly preferred concentration of the amide solvent is such that the composition ratio of the amide solvent and water is 50/50 to 70/30 by weight, and the temperature is 60 to 95 ° C.
第2段目の可塑延伸においては、0.9倍〜1.4倍の延伸倍率で延伸することが好ましい。この範囲より低い領域では延伸の効果が小さく力学特性が不十分となる。ここで、上記の可塑延伸浴濃度と温度の条件下では延伸倍率0.9倍でも繊維に収縮応力が働いているため延伸の効果が得られるようになる。また、これを上回る範囲では毛羽や単糸切れの発生が多くなり、工程調子が低下するので好ましくない。 In the second stage plastic drawing, it is preferable to draw at a draw ratio of 0.9 to 1.4 times. In a region lower than this range, the stretching effect is small and the mechanical properties are insufficient. Here, under the above-described conditions of the plastic stretching bath concentration and temperature, the stretching effect can be obtained because the shrinkage stress acts on the fiber even at a draw ratio of 0.9. Moreover, in the range exceeding this, since generation | occurrence | production of a fluff and single thread breakage will increase and a process tone will fall, it is unpreferable.
この第2段目の可塑延伸により、口金のホール数が増加しても力学特性に優れた繊維が得られる理由はまだ明確ではないが、第2段目の可塑延伸は繊維の収縮応力を利用して延伸の効果を得ているため、それまでの工程で配向、結晶化が十分に進んでいない低強度の繊維に対してより延伸の効果を発揮するため、ホール間の斑が減少し、口金のホール数が増加しても優れた力学特性が得られるものと考えられる。 The reason why the second stage plastic drawing can provide a fiber having excellent mechanical properties even if the number of holes in the die increases is not clear, but the second stage plastic drawing uses the shrinkage stress of the fiber. Since the effect of stretching is obtained, the effect of stretching is exerted on low-strength fibers that are not sufficiently advanced in orientation and crystallization in the previous steps, so the spots between holes are reduced, It is considered that excellent mechanical properties can be obtained even if the number of holes in the die increases.
このように第2段目の可塑延伸された糸条は、水またはアミド系溶媒の水性溶液でさらに洗浄した後に、加熱ローラー、加熱板、熱風等によって一旦100〜250℃、好ましくは100〜200℃の温度範囲にて熱処理、好ましくは乾熱処理が施される。 Thus, after the second stage plastic stretched yarn is further washed with water or an aqueous solution of an amide solvent, it is once heated to 100 to 250 ° C., preferably 100 to 200 ° C. with a heating roller, a heating plate, hot air or the like. Heat treatment, preferably dry heat treatment, is performed in the temperature range of ° C.
上記処理に続いて施される、温度270〜400の熱処理においては、その処理温度と繊維密度とに密接な関係があり、好ましくは300〜370℃の温度で処理する。この際、400℃を超える高温の処理では糸が激しく劣化し、着色し、場合によっては断糸する場合がある。一方、処理温度が270℃を下回る温度では十分に緻密化することができず、力学特性が不十分となる。なお、ここでいう処理温度は熱板、加熱ローラー等の加熱手段の設定温度をいい、乾熱処理が特に好ましい。 In the heat treatment at a temperature of 270 to 400, which is performed following the above treatment, the treatment temperature and the fiber density are closely related, and the treatment is preferably performed at a temperature of 300 to 370 ° C. At this time, the yarn may be severely deteriorated and colored by treatment at a high temperature exceeding 400 ° C., and in some cases, the yarn may be broken. On the other hand, if the treatment temperature is lower than 270 ° C., it cannot be sufficiently densified, resulting in insufficient mechanical properties. In addition, the treatment temperature here means the set temperature of a heating means such as a hot plate or a heating roller, and dry heat treatment is particularly preferable.
このときの延伸倍率は、弾性率、強度の発現に密接な関係を有し、必要に応じて任意の倍率をとることができるが、通常、0.7〜3.0倍、特に1.0〜2.7倍の範囲に設定することで、良好な熱延伸性が得られ、強度、弾性率が発現する。 The draw ratio at this time is closely related to the development of the elastic modulus and strength, and can take any ratio as necessary, but is usually 0.7 to 3.0 times, particularly 1.0. By setting it in a range of ˜2.7 times, good heat stretchability is obtained, and strength and elastic modulus are exhibited.
なお、ここで延伸倍率0.7倍とは、糸条が熱処理によって処理前の長さに対し30%収縮することを意味し、本発明の熱処理は処理時に一定範囲内の制限収縮熱処理であっても差し支えないことを意味する。熱処理時の延伸倍率は上述した可塑延伸の倍率を考慮して選定するのが好ましく、糸条物の緻密化と物性の発現、安定した製糸性を実現するという観点から、可塑延伸および熱延伸を含めた全延伸倍率が3.0〜12倍となるようにすること、さらには2.5〜6倍となるように設定することがより好ましい。本発明におけるメタ型全芳香族ポリアミド繊維は、延伸性がよく、可塑延伸や熱延伸時に断糸や毛羽の発生をともなうことなく円滑に高倍率まで延伸することができる。
さらに、このようにして製造された繊維は、必要に応じて捲縮加工が施され、適当な繊維長に切断され、紡績その他の工程に提供されても良い。
Here, the draw ratio of 0.7 times means that the yarn shrinks by 30% with respect to the length before the treatment by heat treatment, and the heat treatment of the present invention is a limited shrink heat treatment within a certain range during the treatment. It means that you can. The draw ratio at the time of heat treatment is preferably selected in consideration of the above-mentioned plastic draw ratio. From the viewpoints of densification of the yarn, manifestation of physical properties, and stable yarn forming properties, plastic drawing and hot drawing are performed. It is more preferable that the total draw ratio is 3.0 to 12 times, more preferably 2.5 to 6 times. The meta-type wholly aromatic polyamide fiber in the present invention has good stretchability, and can be smoothly stretched to a high magnification without causing yarn breakage or fluff during plastic stretching or heat stretching.
Further, the fiber thus produced may be crimped as necessary, cut into an appropriate fiber length, and provided to spinning or other processes.
以下、実施例により本発明をさらに具体的に説明する。また、「部」、及び「%」は特に断らない限りすべて重量に基づくものであり、量の比は特に断らない限り重量比を示す。さらに、紡糸に用いる重合体溶液(紡糸原液)における重合体濃度は、溶液全重量に対する重合体の重量%、すなわち(重合体重量)/[(重合体重量)+(溶媒重量)+(その他重量)]×100である。なお、実施例中の各特性は、以下の方法に従って評価した。 Hereinafter, the present invention will be described more specifically with reference to examples. Further, “parts” and “%” are all based on weight unless otherwise specified, and the ratio of amounts indicates a weight ratio unless otherwise specified. Further, the polymer concentration in the polymer solution (spinning stock solution) used for spinning is the polymer weight% with respect to the total weight of the solution, that is, (polymer weight) / [(polymer weight) + (solvent weight) + (other weight). )] × 100. In addition, each characteristic in an Example was evaluated in accordance with the following method.
(1)還元粘度(I.V.)
還元粘度は、重合体溶液から芳香族ポリアミドポリマーを単離して乾燥した後、濃硫酸中、ポリマー濃度100mg/100ml硫酸で30℃において測定した。
(1) Reduced viscosity (IV)
The reduced viscosity was measured at 30 ° C. with a polymer concentration of 100 mg / 100 ml sulfuric acid in concentrated sulfuric acid after the aromatic polyamide polymer was isolated from the polymer solution and dried.
(2)繊度
得られた繊維の繊度はJIS−L−1015に準じて測定した。
(2) Fineness The fineness of the obtained fiber was measured according to JIS-L-1015.
(3)靭性因子
得られた繊維の靭性因子は、JIS−L−1015に準じて、試料長20mm、初荷重1/20g/dtex、伸張速度20mm/分で強伸度を測定し、g/dtexで表した引張強度の値に0.9を乗じたものと、引張伸度(%)の平方根との積で表した。
(3) Toughness factor According to JIS-L-1015, the toughness factor of the obtained fiber was determined by measuring the strength and elongation at a sample length of 20 mm, an initial load of 1/20 g / dtex, and an elongation rate of 20 mm / min. It was expressed as the product of the value obtained by multiplying the value of tensile strength expressed in dtex by 0.9 and the square root of tensile elongation (%).
(4)全芳香族ポリアミドポリマー含有率(P)及びアミド系溶媒の含有率(N)
第1段目の可塑延伸を施した繊維を遠心分離機(回転数5000rpm)に10分間かけ、このときの繊維重量M1を測定する。この繊維をメタノール中で4時間煮沸し、繊維中のアミド系溶媒および水を抽出し、抽出後のメタノール溶液重量M2を測定する。
抽出後、繊維を105℃雰囲気下で乾燥させ、乾燥後の繊維重量を測定し、これをP1とする。抽出液中のアミド系溶媒の重量濃度C(%)をガスクロマトグラフにより求め、これらよりN1=C/100×M2、W1=M1−P1−N1を求めた後、下記式によりP及びNを算出する。
The fiber subjected to the first-stage plastic drawing is subjected to a centrifuge (rotation speed: 5000 rpm) for 10 minutes, and the fiber weight M1 at this time is measured. The fiber is boiled in methanol for 4 hours, the amide solvent and water in the fiber are extracted, and the methanol solution weight M2 after extraction is measured.
After the extraction, the fiber is dried in an atmosphere of 105 ° C., and the weight of the fiber after drying is measured. The weight concentration C (%) of the amide solvent in the extract is obtained by gas chromatography, and N1 = C / 100 × M2 and W1 = M1-P1-N1 are obtained from these, and then P and N are calculated by the following formulas. To do.
(5)繊維の密着性
長さ5cmにカットした繊維を約30gサンプリングし、乾燥後にその重量(Wa)を精秤した。さらに、これを水30リットルと混含して15分間攪拌した後、幅0.15mm、長さ50mmのスリットを400本有する濾過機を通過させた。この時、スリットを通過せずに残った繊維の乾燥後の重量(Wb)を精秤し、Wb/Wa×100により密着率(%)を算出した。ここで、密着率が0.1%未満の場合を○、密着率が0.1%以上1.0%未満の場合を△、密着率が1.0%以上の場合を×と表した。
(5) Adhesiveness of fiber About 30 g of fiber cut to a length of 5 cm was sampled, and its weight (Wa) was precisely weighed after drying. Further, this was mixed with 30 liters of water and stirred for 15 minutes, and then passed through a filter having 400 slits having a width of 0.15 mm and a length of 50 mm. At this time, the weight (Wb) after drying of the fiber remaining without passing through the slit was precisely weighed, and the adhesion rate (%) was calculated from Wb / Wa × 100. Here, the case where the adhesion rate is less than 0.1% is indicated by ◯, the case where the adhesion rate is 0.1% or more and less than 1.0% is indicated by Δ, and the case where the adhesion rate is 1.0% or more is indicated by ×.
[実施例1]
特公昭47−10863号公報記載の方法に準じた界面重合法により製造したIV=1.9のポリメタフェニレンイソフタルアミド粉未21.5重量部を、−10℃に冷却したN,N−ジメチルアセトアミド(以下DMAc)78.5重量部中に懸濁させ、スラリー状にした後、60℃まで昇温して溶解させ、透明なポリマー溶液Aを得た。該ポリマー溶液のポリマー濃度は21.5%であった。
[Example 1]
N, N-dimethyl obtained by cooling 21.5 parts by weight of polymetaphenylene isophthalamide powder of IV = 1.9 produced by an interfacial polymerization method according to the method described in Japanese Patent Publication No. 47-10863, to -10 ° C. After suspending in 78.5 parts by weight of acetamide (hereinafter referred to as DMAc) to form a slurry, the solution was heated to 60 ° C. and dissolved to obtain a transparent polymer solution A. The polymer concentration of the polymer solution was 21.5%.
上記ポリマー溶液Aを紡糸原液として、孔径0.07mm、孔数15000の紡糸口金より浴温度50℃の凝固浴中に吐出して紡糸した。この凝固浴は、水/DMAc=40/60の組成の浴を用い、浸漬長(有効凝固浴長)を40cmとして糸速度7m/分で通過させた後、一旦空気中に引き出した。 Using the polymer solution A as a spinning solution, spinning was carried out from a spinning nozzle having a pore diameter of 0.07 mm and a pore number of 15000 into a coagulation bath having a bath temperature of 50 ° C. As this coagulation bath, a bath having a composition of water / DMAc = 40/60 was used. The immersion length (effective coagulation bath length) was 40 cm, and the yarn was allowed to pass at a yarn speed of 7 m / min.
引続き、可塑延伸浴中にて3.6倍の延伸倍率で延伸を行った。この時の可塑延伸浴は、水/DMAc=40/60の組成の浴を用い、温度20℃であった。延伸後、20℃の水浴に通した(浸漬長9.0m)。このとき、N/(P+N)=0.20であった。その後、表面温度120℃のローラーに捲回して乾熱処理した。 Subsequently, the film was stretched at a stretching ratio of 3.6 times in a plastic stretching bath. The plastic stretching bath at this time was a bath having a composition of water / DMAc = 40/60, and the temperature was 20 ° C. After stretching, it was passed through a 20 ° C. water bath (immersion length 9.0 m). At this time, it was N / (P + N) = 0.20. Then, it was wound on a roller having a surface temperature of 120 ° C. and subjected to dry heat treatment.
続いて、20℃の水浴に通し(浸漬長2.0m)、N/P=0.15に調整した後、第2段目の可塑延伸浴中で1.1倍の延伸倍率で延伸を行った。この時の可塑延伸浴は、水/DMAc=40/60の組成の浴を用い、温度90℃であった。延伸後、90℃の水浴に通した(浸漬長3.6m)。その後、表面温度120℃のローラーに捲回して乾熱処理し、引き続いて表面温度160℃のローラーに捲回して乾熱処理した。 Subsequently, after passing through a 20 ° C. water bath (immersion length: 2.0 m) and adjusting to N / P = 0.15, the film was stretched at a stretch ratio of 1.1 times in the second-stage plastic stretching bath. It was. The plastic stretching bath at this time was a bath having a composition of water / DMAc = 40/60, and the temperature was 90 ° C. After stretching, the film was passed through a 90 ° C. water bath (immersion length 3.6 m). Thereafter, the film was wound on a roller having a surface temperature of 120 ° C. and subjected to dry heat treatment, and subsequently wound on a roller having a surface temperature of 160 ° C. to be subjected to dry heat treatment.
さらに、表面温度330℃の熱板で定長にて乾熱処理を施し、ポリメタフェニレンイソフタルアミド繊維を得た。
得られた繊維は繊度2.22dtex、強度4.37cN/dtex(4.46g/dtex)、伸度41.0%で靱性因子は31.7であった。また、密着率は0.03%であった。
Furthermore, dry heat treatment was performed at a constant length on a hot plate having a surface temperature of 330 ° C. to obtain polymetaphenylene isophthalamide fibers.
The obtained fiber had a fineness of 2.22 dtex, a strength of 4.37 cN / dtex (4.46 g / dtex), an elongation of 41.0%, and a toughness factor of 31.7. Further, the adhesion rate was 0.03%.
[実施例2〜4、比較例1〜3]
実施例1において、延伸後の水浴の温度と浸漬長を変更して、水洗後のN/Pの値を表1に示す如く変更した後、第2段目の可塑延伸浴の組成、温度、倍率を表1の如く変更する以外は実施例1と同様に実施した。
得られた繊維の繊度、強度、伸度、靱性因子及び密着性を表1に示す。
[Examples 2 to 4, Comparative Examples 1 to 3]
In Example 1, after changing the temperature and immersion length of the water bath after stretching and changing the value of N / P after washing as shown in Table 1, the composition, temperature, and temperature of the second-stage plastic stretching bath, The same procedure as in Example 1 was performed except that the magnification was changed as shown in Table 1.
Table 1 shows the fineness, strength, elongation, toughness factor and adhesion of the obtained fiber.
本発明によれば、繊維間の密着がなく力学特性、熱的性質の良好なメタ型全芳香族ポリアミド繊維が提供されるので、単独あるいは他の繊維と組み合わせて、例えば織編物にして消防服、防護服等の耐熱耐炎衣料、耐炎性の寝具・インテリア材料として使用できる。 According to the present invention, a meta-type wholly aromatic polyamide fiber having no adhesion between fibers and good mechanical properties and thermal properties is provided. Therefore, a fire fighting garment, for example, in the form of woven or knitted fabric, alone or in combination with other fibers. Can be used as heat-resistant and flame-resistant clothing such as protective clothing, flame-resistant bedding and interior materials.
Claims (5)
(1)メタ型全芳香族ポリアミド重合体溶液を紡糸口金からアミド系溶媒と水とからなる凝固浴中に吐出して、多孔質の線状体として凝固せしめた後、
(2)水またはアミド系溶媒の水性溶液からなる可塑延伸浴中にて第1段延伸し、
(3)水またはアミド系溶媒の水性溶液にて水洗した後に温度100〜250℃で熱処理し、
(4)次いで、水またはアミド系溶媒の水性溶液にて、繊維中のメタ型全芳香族ポリアミドポリマー含有率(P)と、アミド系溶媒の含有率(N)とが下記(I)式を溝足するように調整した後に、アミド系溶媒と水との組成比が重量比で30/70/〜80/20であり、且つその温度が40〜100℃のアミド系溶媒の水性溶液からなる可塑延伸浴中にて0.9倍〜1.4倍の延伸倍率で第2段延伸し、
(5)さらに、水またはアミド系溶媒の水性溶液にて洗浄した後に温度100〜250℃で熱処理した後、
(6)温度270〜400℃で熱処理する
(1) After discharging the meta-type wholly aromatic polyamide polymer solution from the spinneret into a coagulation bath composed of an amide solvent and water to coagulate as a porous linear body,
(2) First-stage stretching in a plastic stretching bath comprising an aqueous solution of water or an amide solvent,
(3) After heat washing with water or an aqueous solution of an amide solvent, heat treatment is performed at a temperature of 100 to 250 ° C.
(4) Next, the content of the meta-type wholly aromatic polyamide polymer in the fiber (P) and the content of the amide solvent (N) in water or an aqueous solution of the amide solvent are expressed by the following formula (I): After adjusting so as to add a groove, the composition ratio of the amide solvent and water is 30/70 / -80 / 20 by weight, and the temperature is 40-100 ° C. Second-stage stretching in a plastic stretching bath at a stretching ratio of 0.9 to 1.4 times,
(5) Further, after washing with water or an aqueous solution of an amide solvent and then heat treating at a temperature of 100 to 250 ° C.,
(6) Heat treatment at a temperature of 270 to 400 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005149467A JP2006328555A (en) | 2005-05-23 | 2005-05-23 | Meta type wholly aromatic polyamide fiber and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005149467A JP2006328555A (en) | 2005-05-23 | 2005-05-23 | Meta type wholly aromatic polyamide fiber and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006328555A true JP2006328555A (en) | 2006-12-07 |
Family
ID=37550533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005149467A Pending JP2006328555A (en) | 2005-05-23 | 2005-05-23 | Meta type wholly aromatic polyamide fiber and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006328555A (en) |
-
2005
- 2005-05-23 JP JP2005149467A patent/JP2006328555A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4820379B2 (en) | Meta-type wholly aromatic polyamide fiber excellent in high-temperature processability and method for producing the same | |
JP5710593B2 (en) | Meta-type wholly aromatic polyamide fiber | |
JP5265868B2 (en) | Ultrafine meta-type wholly aromatic polyamide fiber and its manufacturing method | |
JP3937050B2 (en) | Method for producing meta-type wholly aromatic polyamide fiber and fiber obtained thereby | |
JP3995532B2 (en) | Method for producing dense meta-type wholly aromatic polyamide fiber | |
JP5503055B2 (en) | Para-type wholly aromatic copolyamide drawn fiber and method for producing the same | |
JP3847515B2 (en) | Method for producing dense meta-type aromatic polyamide fiber | |
JP4588032B2 (en) | Improved process of wet spinning for salt-containing aramid polymers | |
JP4664794B2 (en) | Method for producing meta-type aromatic polyamide fiber | |
JP2001348726A (en) | Method for producing dense poly(metaphenyleneisophthalamide)-based fiber | |
JP2003342832A (en) | Method for producing meta-type wholly aromatic polyamide fiber having excellent shrinkage stability | |
JP3929342B2 (en) | Method for producing dense meta-type wholly aromatic polyamide fiber | |
JP2006328555A (en) | Meta type wholly aromatic polyamide fiber and method for producing the same | |
JP2005054315A (en) | Method for producing dense meta-type wholly aromatic polyamide fiber | |
JP7315378B2 (en) | Meta-type wholly aromatic polyamide fiber and method for producing the same | |
JP2011226029A (en) | Spun yarn comprising meta-type wholly aromatic polyamide fiber | |
JP2018084000A (en) | Meta-type wholly aromatic polyamide fiber and method for producing the same | |
JP5718654B2 (en) | Meta-type wholly aromatic polyamide fiber | |
JP2011226028A (en) | Meta-type wholly aromatic polyamide fiber | |
JP2010261123A (en) | Meta type wholly aromatic polyamide fiber | |
JP2012229339A (en) | Rubber composition | |
JP2006207064A (en) | Method for producing aromatic copolyamide fiber | |
JP2012097362A (en) | Yarn | |
JP2005054335A (en) | Method for producing dense meta-type wholly aromatic polyamide fiber | |
JP2011226007A (en) | Meta-type wholly aromatic polyamide staple fiber |