JP2006315697A - Plastic bottle for carbonated beverage - Google Patents
Plastic bottle for carbonated beverage Download PDFInfo
- Publication number
- JP2006315697A JP2006315697A JP2005137968A JP2005137968A JP2006315697A JP 2006315697 A JP2006315697 A JP 2006315697A JP 2005137968 A JP2005137968 A JP 2005137968A JP 2005137968 A JP2005137968 A JP 2005137968A JP 2006315697 A JP2006315697 A JP 2006315697A
- Authority
- JP
- Japan
- Prior art keywords
- bottle
- gas
- carbonated
- plastic bottle
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、炭酸飲料用プラスチックボトルに関するものである。 The present invention relates to a plastic bottle for carbonated beverages.
従来、ポリエチレンテレフタレート等のプラスチックからなるプリフォームを二軸延伸ブロー成形してなるプラスチックボトルが知られている。前記プラスチックボトルは、機械的強度、透明性等に優れ、また、ガラス容器に比して割れにくく軽量であるので、種々の用途に用いられており、飲料充填用ボトルとしても広く用いられている。 Conventionally, a plastic bottle formed by biaxially stretching blow-molding a preform made of plastic such as polyethylene terephthalate is known. The plastic bottle is excellent in mechanical strength, transparency and the like, and is harder to break than a glass container and light in weight. Therefore, the plastic bottle is used in various applications and widely used as a beverage filling bottle. .
ところが、前記プラスチックボトルは、金属容器やガラス容器に比べてガスバリア性が低く、酸素、炭酸ガス等の気体を透過しやすいとの問題がある。例えば、近年消費が増大している小容量のプラスチックボトルでは、内容液量に対する表面積の割合が大きいため、内容物品質に対するガス透過の影響が大きく、特に500ml以下の容量の炭酸飲料用小型プラスチックボトルでは賞味期限が極端に短くなることがある。そこで、前記プラスチックボトルのガスバリア性を改良するために、内面側にアモルファスカーボン被膜またはケイ素酸化物含有被膜等のガスバリア被膜を形成したプラスチックボトルが提案されている(例えば、特許文献1参照)。 However, the plastic bottle has a problem that the gas barrier property is lower than that of a metal container or a glass container, and gas such as oxygen and carbon dioxide gas is easily transmitted. For example, in a small-capacity plastic bottle whose consumption has been increasing in recent years, since the ratio of the surface area to the content liquid amount is large, the effect of gas permeation on the content quality is large. Then, the expiration date may become extremely short. Therefore, in order to improve the gas barrier property of the plastic bottle, a plastic bottle in which a gas barrier film such as an amorphous carbon film or a silicon oxide-containing film is formed on the inner surface side has been proposed (for example, see Patent Document 1).
前記ガスバリア被膜は、例えば、中空の処理室に前記プラスチックボトルを配置し、該プラスチックボトル口部から内部に原料ガス導入管を挿入して、該処理室及びプラスチックボトル内部を真空に排気した後、原料ガスを供給すると共に高周波またはマイクロ波電圧を印加することによってプラズマを発生させる方法(プラズマCVD法)により形成することができる。 The gas barrier coating is, for example, arranging the plastic bottle in a hollow processing chamber, inserting a raw material gas introduction pipe into the inside from the plastic bottle mouth, and exhausting the inside of the processing chamber and the plastic bottle to a vacuum, It can be formed by a method (plasma CVD method) in which plasma is generated by supplying a source gas and applying a high frequency or microwave voltage.
前記プラスチックボトルは、内面側に前記ガスバリア被膜を形成することにより、ボトル壁面からの炭酸ガスの透過を極めて少なくすることができるため、炭酸飲料を充填する用途に好適である。このような炭酸飲料用プラスチックボトルには、サイダー、コーラ等の炭酸飲料を約5℃程度の低温で充填する用途に用いられる耐圧ボトルと、果汁入り炭酸飲料等を約5℃程度の低温で充填した後、さらに容器中心部を65℃の温度に10分間以上保持して加熱殺菌処理する用途に用いられる耐熱圧ボトルとがある。前記加熱殺菌処理は、通常、66℃程度の熱水シャワーを、前記耐熱圧ボトルに30〜40分間かけることにより行われる。 By forming the gas barrier coating on the inner surface side of the plastic bottle, it is possible to extremely reduce the permeation of carbon dioxide gas from the wall surface of the bottle. Such plastic bottles for carbonated drinks are filled with pressure-resistant bottles used for filling carbonated drinks such as cider and cola at a low temperature of about 5 ° C, and carbonated drinks with fruit juice at a low temperature of about 5 ° C. After that, there is a heat and pressure bottle used for the purpose of heat sterilization by holding the container center at a temperature of 65 ° C. for 10 minutes or more. The heat sterilization treatment is usually performed by applying a hot water shower at about 66 ° C. to the heat-resistant pressure bottle for 30 to 40 minutes.
しかしながら、前記ガスバリア被膜を形成した耐圧ボトルでは、前記炭酸飲料を充填した場合、夏期等に店頭に陳列したり、倉庫に保存している間等の室温より高温の環境下でガスバリア性が低下して該炭酸飲料中の炭酸ガスが抜けやすくなり、商品価値が低下するという不都合がある。また、前記ガスバリア被膜を形成した耐熱圧ボトルにおいても、果汁入り炭酸飲料を充填した後の加熱殺菌処理等の室温より高温の環境下でガスバリア性が低下して該炭酸飲料中の炭酸ガスが抜けやすくなり、商品価値が低下するという不都合がある。
本発明は、かかる不都合を解消して、夏期等の店頭陳列や倉庫保存、または果汁入り炭酸飲料を充填した後の加熱殺菌処理等の室温より高温の環境下でも優れたガスバリア性を保持することができる炭酸飲料用プラスチックボトルを提供することを目的とする。 The present invention eliminates such inconvenience and maintains excellent gas barrier properties even in an environment higher than room temperature, such as store display in the summer, storage in a warehouse, or heat sterilization after filling with a carbonated beverage containing fruit juice. An object of the present invention is to provide a plastic bottle for carbonated beverages.
本発明者らは、前記ガスバリア被膜を形成したプラスチックボトルに炭酸飲料を充填したときに、夏期等の店頭陳列や倉庫保存、または果汁入り炭酸飲料を充填した後の加熱殺菌処理等の室温より高温の環境下でガスバリア性が低下する理由について検討した結果、前記室温より高温の環境下ではボトル内圧が上昇し、これに伴ってボトルの体積がある一定量を超えて膨張したときに、該ガスバリア性が低下することを見出した。前記プラスチックボトルの体積が膨張すると、前記ガスバリア性被膜を形成しているアモルファスカーボン被膜またはケイ素酸化物含有被膜に目視では判別できない程度の微細な欠陥が発生し、該欠陥が発生した部分で酸素、炭酸ガス等のガスが透過しやすくなるものと思われる。 The present inventors, when filled with carbonated beverages in the plastic bottle formed with the gas barrier coating, store higher than room temperature, such as store display in the summer, storage in the store, or heat sterilization treatment after filling with carbonated beverages containing fruit juice As a result of examining the reason why the gas barrier property is lowered in the environment of the above, when the bottle internal pressure increases in the environment higher than the room temperature, and the bottle volume expands beyond a certain amount, the gas barrier It has been found that the performance is lowered. When the volume of the plastic bottle expands, an amorphous carbon coating or a silicon oxide-containing coating forming the gas barrier coating generates a fine defect that cannot be visually discerned, and oxygen in the portion where the defect has occurred, It seems that gas such as carbon dioxide gas is easy to permeate.
そこで、前記目的を達成するために、本発明は、プラズマCVDにより形成されたガスバリア性被膜を内面側に備える炭酸飲料用プラスチックボトルにおいて、室温より高温の環境下における体積増加率が8.0%以下であることを特徴とする。本発明において、前記室温より高温の環境下における体積増加率は、ガスボリューム4.2の炭酸水を充填して40℃の温度で2週間保存後の値、または、ガスボリューム2.8の炭酸水を充填して容器中心部を65℃の温度に10分間以上保持する加熱処理を施した後の値である。 Therefore, in order to achieve the above object, the present invention provides a plastic bottle for carbonated beverages having a gas barrier coating formed by plasma CVD on the inner surface side, and has a volume increase rate of 8.0% in an environment higher than room temperature. It is characterized by the following. In the present invention, the volume increase rate in an environment higher than the room temperature is a value after filling with carbonated water having a gas volume of 4.2 and storing at a temperature of 40 ° C. for 2 weeks, or a carbon dioxide having a gas volume of 2.8. It is a value after performing a heat treatment that fills water and holds the center of the container at a temperature of 65 ° C. for 10 minutes or more.
尚、「ガスボリューム4.2の炭酸水を充填して40℃の温度で2週間保存後」との条件は、最高レベルの炭酸ガスを含む炭酸飲料を充填したプラスチックボトルを、夏期に相当の期間の店頭陳列、倉庫保存を行う場合を想定し、これよりもさらに過酷な条件を設定したものである。また、果汁入り炭酸飲料等は、充填後、容器中心部を65℃の温度に10分間以上保持する加熱処理による殺菌を必要とするが、該果汁入り炭酸飲料等のガスボリュームは、通常、最大で2.8程度である。 The condition “After filling with carbonated water with a gas volume of 4.2 and storing for 2 weeks at a temperature of 40 ° C.” is equivalent to a plastic bottle filled with a carbonated beverage containing the highest level of carbon dioxide in the summer. Stricter conditions are set for the storefront display and warehouse storage during the period. In addition, carbonated beverages with fruit juice require sterilization by heat treatment that keeps the center of the container at a temperature of 65 ° C. for 10 minutes or longer after filling, but the gas volume of carbonated beverages with fruit juice is usually maximum. It is about 2.8.
本発明の炭酸飲料用プラスチックボトルによれば、前記室温より高温の環境下における体積増加率が8.0%以下であることにより、前記室温より高温の環境下でも優れたガスバリア性を保持することができ、内容物中の炭酸ガス含有量を維持すると共に酸素の侵入を防止して、商品価値の低下を防止することができる。一方、前記室温より高温の環境下における体積増加率が8.0%を超えると、ガスバリア性が低下し、内容物中の炭酸ガス含有量の低下や、酸素の侵入を阻止することができなくなる。 According to the plastic bottle for carbonated beverages of the present invention, the volume increase rate under the environment higher than the room temperature is 8.0% or less, so that excellent gas barrier properties are maintained even under the environment higher than the room temperature. The content of carbon dioxide in the contents can be maintained, and oxygen can be prevented from entering, thereby preventing a decrease in commercial value. On the other hand, if the volume increase rate in the environment higher than the room temperature exceeds 8.0%, the gas barrier property is lowered, and it becomes impossible to prevent the content of carbon dioxide gas in the contents from being lowered and the invasion of oxygen. .
前記ガスバリア被膜は、炭素原子を含む出発原料からプラズマCVDにより形成された炭素を主要構成元素とするアモルファスカーボン被膜、または、有機ケイ素化合物を含む出発原料からプラズマCVDにより形成されたSi/O比が原子比で1/1.5〜1/2.2の範囲にあるケイ素酸化物含有被膜である。 The gas barrier film has an amorphous carbon film mainly containing carbon formed by plasma CVD from a starting material containing carbon atoms, or an Si / O ratio formed by plasma CVD from a starting material containing an organosilicon compound. It is a silicon oxide-containing film in an atomic ratio range of 1 / 1.5-1 to 2.2.
前記プラスチックボトルとしては、ポリエチレンテレフタレート等のポリエステルからなるポリエステルボトルを挙げることができる。 Examples of the plastic bottle include a polyester bottle made of polyester such as polyethylene terephthalate.
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の炭酸飲料用プラスチックボトルの製造に用いるCVD装置の一構成例を示す説明的断面図である。 Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory cross-sectional view showing a configuration example of a CVD apparatus used for manufacturing a plastic bottle for carbonated beverages of the present embodiment.
本実施形態の炭酸飲料用プラスチックボトルは、例えば、ポリエステル樹脂からなるプリフォームのブロー成形により得られた耐圧ボトルまたは耐熱圧ボトルであり、ビール、発泡酒等の炭酸を含有するアルコール飲料、ソーダ水、サイダー、コーラ、果汁入り炭酸飲料等の炭酸を含有する清涼飲料の容器として用いられる。前記炭酸飲料用プラスチックボトルは、飲料中の炭酸ガスがボトル外部に揮散したり、空気中の酸素がボトル内部に侵入することを防止するために、その内面側にガスバリア被膜が形成されている。 The plastic bottle for carbonated beverages of the present embodiment is, for example, a pressure-resistant bottle or heat-resistant pressure bottle obtained by blow molding a preform made of a polyester resin, and alcoholic beverages containing carbonate such as beer and sparkling liquor, soda water It is used as a container for soft drinks containing carbonic acid such as cider, cola, and carbonated drink containing fruit juice. The plastic bottle for carbonated beverages has a gas barrier coating formed on the inner surface side thereof in order to prevent carbon dioxide in the beverage from evaporating to the outside of the bottle and oxygen in the air from entering the inside of the bottle.
そして、前記耐圧ボトルでは、夏期における長期間の店頭陳列や倉庫保存を想定したガスボリューム4.2の水を充填して40℃の温度で2週間保存後の体積増加率が8.0%以下となっている。また、前記耐熱圧ボトルでは、ガスボリューム2.8の炭酸水を充填して容器中心部を65℃の温度に10分間以上保持する加熱処理を施した後の体積増加率が8.0%以下となっている。 The pressure bottle has a volume increase rate of 8.0% or less after being stored for 2 weeks at a temperature of 40 ° C. and filled with water of a gas volume of 4.2 assuming long-term store display and storage in the summer. It has become. In the heat and pressure bottle, the volume increase rate after filling with carbonated water with a gas volume of 2.8 and holding the center of the container at a temperature of 65 ° C. for 10 minutes or more is 8.0% or less. It has become.
この結果、前記炭酸飲料用プラスチックボトルは、前記夏期における長期間の店頭陳列や倉庫保存、または果汁入り炭酸飲料を充填した後の加熱殺菌処理等の室温より高温の環境下で、飲料中の炭酸によりボトル内圧が上昇し、ボトルの体積が膨張しても、前記ガスバリア被膜によるガスバリア性を保持することができる。 As a result, the plastic bottle for carbonated beverages is used for the carbonated beverages in beverages in an environment where the temperature is higher than room temperature such as long-term store display in the summer, storage in a warehouse, or heat sterilization after filling with carbonated beverages containing fruit juice. Therefore, even if the bottle internal pressure increases and the volume of the bottle expands, the gas barrier property of the gas barrier coating can be maintained.
前記炭酸飲料用プラスチックボトルを形成するポリエステル樹脂は、多価アルコールと多価カルボン酸化合物との縮合重合反応、エステル交換反応等により得られる樹脂である。このようなポリエステル樹脂として、例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート、ポリエチレンナフタレート等を挙げることができる。本実施形態では、以下、前記プラスチックボトルが、ポリエチレンテレフタレート樹脂製ボトル(以下、PETボトルと略記する)である場合を例として説明する。 The polyester resin forming the plastic bottle for carbonated beverages is a resin obtained by a condensation polymerization reaction, a transesterification reaction or the like of a polyhydric alcohol and a polyvalent carboxylic acid compound. Examples of such a polyester resin include polyethylene terephthalate resin, polybutylene terephthalate, and polyethylene naphthalate. In the present embodiment, a case where the plastic bottle is a polyethylene terephthalate resin bottle (hereinafter abbreviated as a PET bottle) will be described as an example.
前記炭酸飲料用PETボトルは、まず、ポリエチレンテレフタレート樹脂からなるプリフォームをブロー成形することにより、ベースボトルとしての耐圧ボトルまたは耐熱圧ボトルを製造し、該ベースボトルの内面側に前記ガスバリア被膜を形成することにより製造することができる。 The PET bottle for carbonated beverages is manufactured by first blow-molding a preform made of polyethylene terephthalate resin to produce a pressure-resistant bottle or heat-resistant pressure bottle as a base bottle, and forming the gas barrier coating on the inner surface side of the base bottle Can be manufactured.
このとき、前記室温より高温の環境下における体積増加率を抑制するためのベースボトルの製造方法として、例えば、前記プリフォームの樹脂量を多くしてベースボトルの胴部の側壁を肉厚にする方法がある。 At this time, as a method for manufacturing the base bottle for suppressing the volume increase rate in the environment higher than the room temperature, for example, the resin amount of the preform is increased to thicken the side wall of the base portion of the base bottle. There is a way.
また、プリフォームをブロー成形してベースボトルを製造する際、肩部、胴部に高度の二軸分子配向を与えることにより分子鎖が緊張し、同時に結晶化が進行して耐圧強度が著しく向上するので、ブロー成形時の延伸倍率は、過延伸によるパール色が発生しない範囲で高目に設定することが望ましい。 Also, when a preform bottle is blow molded to produce a base bottle, the molecular chain is tensioned by giving a high degree of biaxial molecular orientation to the shoulder and torso, and at the same time, crystallization progresses to significantly improve the pressure resistance. Therefore, it is desirable to set the stretch ratio at the time of blow molding to a high value within a range where pearl color due to overstretching does not occur.
この際、プリフォームの加熱温度が高すぎると分子鎖の緊張が緩和して内圧による膨張が大きくなり、また、肉厚分布が不均一となる傾向があるため、プリフォームの加熱温度は、冷延伸によるパール色が発生しない程度で低く設定することが望ましい。 At this time, if the heating temperature of the preform is too high, the tension of the molecular chain is relaxed and the expansion due to the internal pressure increases, and the thickness distribution tends to be uneven. It is desirable to set it low so as not to generate pearl color due to stretching.
一方、ブロー成形時の金型温度が低すぎると、急冷による残留歪みのためにボトルの経時収縮が大きくなり、結果として炭酸水充填後の体積膨張率が大きくなることがある。 On the other hand, when the mold temperature at the time of blow molding is too low, the shrinkage with time of the bottle increases due to residual distortion due to rapid cooling, and as a result, the volume expansion rate after filling with carbonated water may increase.
そこで、これらを勘案して、前記プリフォームの設計(質量、延伸倍率)、プリフォームの加熱温度、ブロー金型温度等を含む成形条件を適切に組み合わせることにより、前記室温より高温の環境下における体積増加率を抑制するためのベースボトルを製造することができる。 Therefore, in consideration of these, by appropriately combining molding conditions including the preform design (mass, draw ratio), preform heating temperature, blow mold temperature, etc., in an environment higher than the room temperature. A base bottle for suppressing the volume increase rate can be manufactured.
また、プリフォームを一旦目的のベースボトルよりも大きな容積のボトルにブロー成形した後、加熱して収縮させ、再度ブロー成形して目的のベースボトルとする二段ブロー成形法は、首下部や底部が不必要に厚肉となり、肩部から胴部にかけて薄肉となることを回避できると同時に側壁の結晶化度を向上させ、剛性を高めることができるため、前記室温より高温の環境下における体積増加率を抑制するためのベースボトルを製造する用途に好適に用いることができる。 In addition, the preform is once blow-molded into a bottle with a volume larger than the target base bottle, then heated and shrunk, and blow-molded again to obtain the target base bottle. Is unnecessarily thick and can be avoided from becoming thin from the shoulder to the body, while at the same time improving the crystallinity of the side walls and increasing the rigidity, increasing the volume in an environment higher than room temperature. It can use suitably for the use which manufactures the base bottle for suppressing a rate.
前記ベースボトルの内面側に前記ガスバリア被膜を備える前記炭酸飲料用PETボトルは、例えば、図1示のプラズマCVD装置1により製造することができる。 The said PET bottle for carbonated drinks provided with the said gas barrier film in the inner surface side of the said base bottle can be manufactured with the plasma CVD apparatus 1 of FIG. 1, for example.
図1において、プラズマCVD装置1は、マイクロ波導入部がパイレックス(登録商標)ガラスで形成された側壁2と、昇降自在の底板3とにより画成された処理室4を備え、側壁2に臨む位置にマイクロ波発生装置5を備える。処理室4の上方には、側壁6と上壁7とにより画成された排気室8が備えられ、処理室4との間には隔壁9が設けられている。
In FIG. 1, a plasma CVD apparatus 1 includes a
底板3は、ベースボトル10を配置して上昇移動することにより、ベースボトル10を処理室4内に収納する。このようにして収納されたベースボトル10は、口部保持具11を介してボトル内部が隔壁9に設けられた排気孔12と連通するように配置される。口部保持具11は上部突出部13が排気孔12に密に挿入され、口部保持部14がベースボトル10の口部に所定の間隔を存して挿入される。
The
処理室4と排気室8とは隔壁9に設けられた通気口15のバルブ16を介して連通しており、排気室8の側壁6に形成された開口17は図示しない真空装置に接続されている。排気室8の上壁7にはシール18を介して、ガス状の出発原料(以下、原料ガスと略記する)を供給するガス導入管19が支持されており、ガス導入管19は上壁7と口部保持具11とを貫通して、ベースボトル10内に挿入される。尚、ガス導入管19と口部保持具11の内周面との間には間隙がある。
The
図1示のプラズマCVD装置1では、まず、ベースボトル10を載置した底板3を上昇移動せしめ、処理室4内にベースボトル10を収納する。次に、図示しない真空装置を作動して、排気室8内を排気し、これにより通気口15を介して処理室4の内部を減圧する。同時に、排気孔12に挿入されたガス導入管19と口部保持具11の内周面との間隙を介して、ベースボトル10の内部を所定の真空度に減圧する。
In the plasma CVD apparatus 1 shown in FIG. 1, first, the
次に、ガス導入管19からベースボトル10内に、前記原料ガスを供給する。プラズマCVD装置1では、前記原料ガスを連続的に供給すると共に、前記真空装置により連続的に排気し、処理室4とベースボトル10との内部を所定の真空度に保持する。また、前記原料ガスの供給量は、対象となるベースボトル10の表面積、形成される被膜の厚さに応じて適正な量に設定される。
Next, the source gas is supplied from the
そして、前記原料ガスが供給されている間、マイクロ波発生装置5を作動して、所定周波数、所定出力のマイクロ波を、所定時間照射することにより、前記原料ガスを電磁励起してベースボトル10内にプラズマを発生せしめ、ベースボトル10の内面にガスバリア性被膜(図示せず)を形成する。
Then, while the source gas is being supplied, the
次に、前記原料ガスの供給が終了したならば、マイクロ波発生装置5を停止して、処理室4とベースボトル10との内部を大気圧に戻し、底板3を降下させてベースボトル10を取り出すことにより、処理を終了する。マイクロ波発生装置5は、前記原料ガスの供給が終了と同時に停止してもよいが、短時間延長して照射するようにしてもよい。このようにすることにより、容器中に残存している原料ガス成分を完全に被膜化することができ、得られたボトル10のガスバリヤ性、内容物を充填した際のフレーバー保持性をさらに向上させることができる。
Next, when the supply of the raw material gas is completed, the
次に、前記ガスバリア性被膜として、炭素を主要構成元素とするアモルファスカーボン被膜を形成する場合について説明する。 Next, the case where an amorphous carbon film having carbon as a main constituent element is formed as the gas barrier film will be described.
まず、用いる原料ガスとしては、アセチレン、エチレン、プロピレン等の脂肪族不飽和炭化水素化合物、メタン、エタン、プロパン等の脂肪族飽和炭化水素化合物、シクロヘキサン等の脂環式炭化水素化合物、ベンゼン、トルエン、キシレン等の芳香族炭化水素化合物等の炭素含有化合物を用いることができる。前記原料ガスは、単独で用いても、必要に応じて2種以上混合して用いてもよく、被膜改質剤として少量の水素、有機ケイ素化合物、その他の被膜形成性有機化合物を併用してもよい。また、前記原料ガスは、アルゴン、ヘリウム等の希ガスで希釈して用いるようにしてもよい。 First, the raw material gases used include aliphatic unsaturated hydrocarbon compounds such as acetylene, ethylene, and propylene, aliphatic saturated hydrocarbon compounds such as methane, ethane, and propane, alicyclic hydrocarbon compounds such as cyclohexane, benzene, and toluene. Carbon-containing compounds such as aromatic hydrocarbon compounds such as xylene can be used. The source gas may be used alone or as a mixture of two or more as required. A small amount of hydrogen, an organosilicon compound, and other film-forming organic compounds are used in combination as a film modifier. Also good. The source gas may be diluted with a rare gas such as argon or helium.
ただし、ガスバリヤ性に優れた被膜であるアモルファスカーボン薄膜をより短時間で形成するためには、前記原料ガスが実質的にアセチレンであることが適しており、前記原料ガスの60容量%以上、好ましくは80容量%以上をアセチレンとする。尚、前記原料ガスが実質的にアセチレンからなる場合、該アセチレンは製造過程等で混入する不可避的な不純物を含んでいてもよい。 However, in order to form an amorphous carbon thin film, which is a coating having excellent gas barrier properties, in a shorter time, it is suitable that the source gas is substantially acetylene, preferably 60% by volume or more of the source gas, preferably 80% by volume or more is acetylene. When the source gas is substantially composed of acetylene, the acetylene may contain inevitable impurities mixed in during the production process.
前記原料ガスの供給量は、内容積200〜2000mlのサイズのベースボトル10に、0.007〜0.08μmの膜厚の前記アモルファスカーボン被膜を形成するには、容器内表面積当たり0.1〜0.8sccm/cm2の範囲とすることが適している。
In order to form the amorphous carbon film having a film thickness of 0.007 to 0.08 μm on the
前記原料ガスが供給されている間のマイクロ波発生装置5の作動条件は、例えば周波数2.45GHz、出力150〜600Wのマイクロ波を、0.2〜2.0秒間、好ましくは0.4〜1.5秒間照射するものとする。この結果、前記原料ガスを電磁励起してベースボトル10内にプラズマを発生せしめ、ベースボトル10の内面にアモルファスカーボン被膜(図示せず)が形成される。
The operating condition of the
このとき、前記原料ガスを連続的に供給しつつ、前記真空装置により連続的に排気し、ベースボトル10内部の真空度を1〜50Paに保持することが望ましい。前記真空度が1Pa未満では前記アモルファスカーボン被膜の形成に長時間を要し、50Paを超えるとベースボトル10内面に対する該アモルファスカーボン被膜の密着性、加工性、ガスバリア性が低下する。
At this time, it is desirable that the vacuum in the
尚、前記マイクロ波の出力が150W未満では形成された被膜の着色が大になることがあり、600Wを超えると酸素透過性が大になることがある。また、前記マイクロ波の照射時間が0.2秒未満のときには前記アモルファスカーボン被膜において所望の膜厚が得られないことがあり、2.0秒を超えると前記アモルファスカーボン被膜の膜厚が大になり、着色が濃くなることがある。 When the microwave output is less than 150 W, the formed coating may be highly colored, and when it exceeds 600 W, the oxygen permeability may be increased. In addition, when the microwave irradiation time is less than 0.2 seconds, a desired film thickness may not be obtained in the amorphous carbon film, and when it exceeds 2.0 seconds, the film thickness of the amorphous carbon film is increased. And coloring may become darker.
次に、前記ガスバリア性被膜として、ケイ素酸化物含有被膜を形成する場合について説明する。 Next, the case where a silicon oxide containing film is formed as the gas barrier film will be described.
まず、用いる原料ガスとしては、シラン、アルキルシラン、ジアルキルシラン、トリアルキルシラン等のシラン類、モノアルコキシシラン、ジアルコキシシラン、トリアルコキシシラン等のアルコキシシラン類、テトラアルキルジシロキサン、ヘキサアルキルジシロキサン等のシロキサン類、ヘキサメチルジシラザン等のシラザン類等の他、それ自体公知の有機ケイ素化合物のガスを用いることができる。前記原料ガスは単独で用いても、必要に応じて2種以上混合して用いてもよく、さらに酸素ガスを適切な割合で混合して用いることが好ましい。前記原料ガスとして炭素含有量の高い有機ケイ素化合物を用いるときには、炭素を二酸化炭素として除去するために、酸素ガスの混合割合を高くすることが好ましい。また、前記原料ガスは、アルゴン、ヘリウム等の希ガスで稀釈して用いるようにしてもよい。 First, as source gases to be used, silanes such as silane, alkylsilane, dialkylsilane, and trialkylsilane, alkoxysilanes such as monoalkoxysilane, dialkoxysilane, and trialkoxysilane, tetraalkyldisiloxane, and hexaalkyldisiloxane In addition to siloxanes such as hexamethyldisilazane, etc., known organic silicon compound gases can be used. The raw material gases may be used alone or as a mixture of two or more as necessary, and oxygen gas is preferably mixed and used at an appropriate ratio. When an organosilicon compound having a high carbon content is used as the source gas, it is preferable to increase the mixing ratio of oxygen gas in order to remove carbon as carbon dioxide. The source gas may be diluted with a rare gas such as argon or helium.
前記原料ガスとして、前記有機ケイ素化合物のガスと共に、酸素ガス、希ガス等の他のガスを用いる場合には、予め前記有機ケイ素化合物のガスと他のガスとを混合してガス導入管19から導入してもよく、ガス導入管19を2本設け、その1つから前記有機ケイ素化合物のガスを導入し、他の1つから他のガスを導入するようにしてもよい。また、ガス導入管19を内外2重に設け、内側または外側の一方の側から前記有機ケイ素化合物のガスを導入し、他方の側から他のガスを導入するようにしてもよい。ただし、ガス導入管19を2本設け、またはガス導入管19を内外2重に設ける場合には、前記有機ケイ素化合物と、他のガスとが、十分に混合されるように注意する必要がある。
When other gas such as oxygen gas or rare gas is used together with the organosilicon compound gas as the source gas, the organosilicon compound gas and other gas are mixed in advance from the
この場合、ベースボトル10内部の真空度は、10−1〜102Paとすることが好ましい。前記真空度が10−1Pa未満では前記ケイ素酸化物含有被膜の形成に長時間を要し、102Paを超えるとベースボトル10内面に対する該ケイ素酸化物含有被膜の密着性、加工性、ガスバリア性が低下する。
In this case, the degree of vacuum inside the
前記原料ガスが供給されている間のマイクロ波発生装置5の作動条件は、ベースボトル10の内容積や、原料ガスの種類、組成等により異なるが、例えば周波数2.45GHz、出力100〜3000Wのマイクロ波を、1〜30秒間、好ましくは3〜10秒間照射するものとする。この結果、前記原料ガスを電磁励起してベースボトル10内にプラズマを発生せしめ、ベースボトル10の内面に、Si/O比が原子比で1/1.5〜1/2.2の範囲にあり、厚さ3〜100nmのケイ素酸化物被膜(図示せず)が形成される。
The operating conditions of the
次に、本発明の実施例と比較例とを示す。 Next, examples of the present invention and comparative examples will be described.
本実施例では、まず、ポリエチレンテレフタレート樹脂からなる質量32gのプリフォームを用い、プリフォーム加熱温度、ブロー金型温度、延伸倍率、肉厚分布等を適切に設定してブロー成形を行い、ベースボトルとして内容量500mlの耐圧ボトルを製造した。 In this example, first, a preform made of polyethylene terephthalate resin having a mass of 32 g was used, blow molding was performed by appropriately setting the preform heating temperature, blow mold temperature, stretch ratio, wall thickness distribution, etc. As a result, a pressure-resistant bottle having an internal volume of 500 ml was manufactured.
次に、図1示のCVD装置1により、前記ベースボトルの内面側に約35nmの膜厚のアモルファスカーボン被膜を形成した。前記アモルファスカーボン被膜の形成は、ベースボトル10内部を5Paに維持しつつ、原料ガスとしてアセチレンを供給し、周波数2.45GHz、出力260Wのマイクロ波を短時間照射することにより行った。
Next, an amorphous carbon film having a thickness of about 35 nm was formed on the inner surface side of the base bottle by the CVD apparatus 1 shown in FIG. The amorphous carbon coating was formed by supplying acetylene as a raw material gas while maintaining the interior of the
この結果、ガスボリューム4.2の炭酸水を、ヘッドスペースを炭酸ガスで置換して充填した後、40℃で2週間保存した後の体積増加率が5.5%の炭酸飲料用PETボトルが得られた。前記体積増加率は、次のようにして測定した。 As a result, a carbonated beverage PET bottle having a volume increase rate of 5.5% after being stored for 2 weeks at 40 ° C. after filling the carbonated water with a gas volume of 4.2 by replacing the head space with carbon dioxide gas. Obtained. The volume increase rate was measured as follows.
まず、本実施例で得られた炭酸飲料用PETボトルを沈めることができる量の水を収容した容器を天秤上に配置した。次に、本実施例で得られた炭酸飲料用PETボトルに水を満量充填した後キャップを取り付け、前記天秤上に配置された容器に収容された水中に、該ボトルが該容器の内面に接触しないようにして完全に沈め、その前後の重量差から、内容液を含む該炭酸飲料用PETボトルの体積(V1)を求めた。 First, the container which accommodated the quantity of water which can sink the PET bottle for carbonated drinks obtained by the present Example was arrange | positioned on the balance. Next, after filling the PET bottle for carbonated drink obtained in this example with a full amount of water, a cap is attached, and the bottle is placed on the inner surface of the container in the water contained in the container arranged on the balance. The volume (V 1 ) of the carbonated beverage PET bottle containing the content liquid was determined from the weight difference between before and after sinking completely without contact.
次に、前記炭酸飲料用PETボトルから水を排出した後、ガスボリューム4.2の炭酸水を、ヘッドスペースを炭酸ガスで置換して充填し、40℃で2週間保存した後、40℃の温度を保ったまま、前記天秤上に配置された容器に収容された水中に、該ボトルが該容器の内面に接触しないようにして完全に沈め、その前後の重量差から、内容液を含む該炭酸飲料用PETボトルの体積(V2)を求めた。そして、次式により体積増加率を求めた。 Next, after discharging water from the PET bottle for carbonated beverages, the carbonated water of gas volume 4.2 was filled by replacing the head space with carbon dioxide gas, and stored at 40 ° C. for 2 weeks. While maintaining the temperature, the bottle is completely submerged in water accommodated in a container placed on the balance so as not to contact the inner surface of the container. The volume (V 2 ) of the PET bottle for carbonated beverages was determined. And the volume increase rate was calculated | required by following Formula.
体積増加率(%)=((V2−V1)/V1)×100
また、本実施例で得られた炭酸飲料用PETボトルにガスボリューム4.2の炭酸水を、ヘッドスペースを炭酸ガスで置換して充填し、40℃で2週間保存した後と、40℃で4週間保存した後とに、それぞれのボトル内炭酸水のガスボリュームを測定し、充填直後のガスボリュームとの差から、炭酸ガスの減少量を求めた。前記ガスボリュームの測定は、前記炭酸水が充填されたボトルを約6℃まで冷却した後、京都電子工業株式会社製ガスボリューム測定機(商品名:VAG−500)を用いて行った。
Volume increase rate (%) = ((V 2 −V 1 ) / V 1 ) × 100
In addition, the carbonated beverage PET bottle obtained in this example was filled with carbonated water with a gas volume of 4.2 by replacing the headspace with carbon dioxide gas, and stored at 40 ° C. for 2 weeks, and at 40 ° C. After storing for 4 weeks, the gas volume of carbonated water in each bottle was measured, and the amount of decrease in carbon dioxide gas was determined from the difference from the gas volume immediately after filling. The gas volume was measured using a gas volume measuring device (trade name: VAG-500) manufactured by Kyoto Electronics Industry Co., Ltd. after cooling the bottle filled with carbonated water to about 6 ° C.
また、本実施例で得られた炭酸飲料用PETボトルの前記炭酸水充填前の酸素透過率と、前記炭酸水充填後、40℃4週間保存した後の酸素透過率とを測定した。前記酸素透過率の測定は、MOCON社製OXTRAN2/20(商品名)を用いて、22℃、相対湿度60%の条件下で行った。
Moreover, the oxygen transmission rate before filling the carbonated water of the PET bottle for carbonated beverages obtained in this example and the oxygen transmission rate after storing for 4 weeks at 40 ° C. after filling the carbonated water were measured. The measurement of the oxygen transmission rate was performed under the conditions of 22 ° C. and relative humidity 60
結果を表1に示す。 The results are shown in Table 1.
本実施例では、実施例1で製造したベースボトルを用い、図1示のCVD装置1により、前記ベースボトルの内面側に約30nmの膜厚のケイ素酸化物含有被膜を形成した。前記ケイ素酸化物含有被膜の形成は、処理室4とベースボトル10との内部を所定の真空度に減圧した後、原料ガスとして有機ケイ素化合物ガスと酸素とを供給しつつ、周波数2.45GHz、出力1500Wのマイクロ波を短時間照射することにより行った。
In this example, a silicon oxide-containing film having a thickness of about 30 nm was formed on the inner surface side of the base bottle by the CVD apparatus 1 shown in FIG. 1 using the base bottle manufactured in Example 1. The silicon oxide-containing film is formed by reducing the inside of the
この結果、ガスボリューム4.2の炭酸水を、ヘッドスペースを炭酸ガスで置換して充填した後、40℃で2週間保存した後の体積増加率が5.4%の炭酸飲料用PETボトルが得られた。尚、前記体積増加率は、実施例1と全く同一にして測定した。 As a result, a carbonated beverage PET bottle having a volume increase rate of 5.4% after being stored for 2 weeks at 40 ° C. after filling the carbonated water with a gas volume of 4.2 by replacing the head space with carbon dioxide gas. Obtained. The volume increase rate was measured in the same manner as in Example 1.
次に、本実施例で得られた炭酸飲料用PETボトルを用いた以外は、実施例1と全く同一にして、該炭酸飲料用PETボトルにおける前記炭酸水中の炭酸ガス減少量と、該炭酸飲料用PETボトルの酸素透過率とを測定した。結果を表1に示す。
〔比較例1〕
本比較例では、実施例1で製造したベースボトルに、ガスバリア被膜を全く形成せずに、ガスボリューム4.2の炭酸水を、ヘッドスペースを炭酸ガスで置換して充填した後、40℃で2週間保存した後の体積増加率が5.7%の炭酸飲料用PETボトルを得た。尚、前記体積増加率は、実施例1と全く同一にして測定した。
Next, except that the carbonated beverage PET bottle obtained in this example was used, exactly the same as in Example 1, the amount of carbon dioxide gas in the carbonated water in the carbonated beverage PET bottle, and the carbonated beverage The oxygen transmission rate of the PET bottle for medical use was measured. The results are shown in Table 1.
[Comparative Example 1]
In this comparative example, the base bottle manufactured in Example 1 was filled with carbonated water having a gas volume of 4.2 without replacing the headspace with carbon dioxide gas at 40 ° C. without forming a gas barrier coating at all. A PET bottle for carbonated drink having a volume increase rate of 5.7% after storage for 2 weeks was obtained. The volume increase rate was measured in the same manner as in Example 1.
次に、本比較例で得られた炭酸飲料用PETボトルを用いた以外は、実施例1と全く同一にして、該炭酸飲料用PETボトルにおける前記炭酸水中の炭酸ガス減少量と、該炭酸飲料用PETボトルの酸素透過率とを測定した。結果を表1に示す。
〔比較例2〕
本比較例では、実施例1で製造したベースボトルと同一質量(32g)であるが、実施例1で使用したプリフォームに比較して胴部の延伸倍率が低い耐圧PETボトルをベースボトルとした以外は、実施例1と全く同一にして、該ベースボトルの内面側に約35nmの膜厚のアモルファスカーボン被膜を形成した。この結果、ガスボリューム4.2の炭酸水を、ヘッドスペースを炭酸ガスで置換して充填した後、40℃で2週間保存した後の体積増加率が9.4%の炭酸飲料用PETボトルが得られた。尚、前記体積増加率は、実施例1と全く同一にして測定した。
Next, except for using the carbonated beverage PET bottle obtained in this comparative example, exactly the same as in Example 1, the amount of carbon dioxide gas in the carbonated water in the carbonated beverage PET bottle, and the carbonated beverage The oxygen transmission rate of the PET bottle for medical use was measured. The results are shown in Table 1.
[Comparative Example 2]
In this comparative example, although it is the same mass (32g) as the base bottle manufactured in Example 1, the pressure-resistant PET bottle having a lower body stretch ratio than the preform used in Example 1 was used as the base bottle. Except for the above, an amorphous carbon film having a film thickness of about 35 nm was formed on the inner surface side of the base bottle in exactly the same manner as in Example 1. As a result, a carbonated beverage PET bottle with a volume increase rate of 9.4% after being stored for 2 weeks at 40 ° C. after filling the carbonated water with a gas volume of 4.2 by replacing the head space with carbon dioxide gas. Obtained. The volume increase rate was measured in the same manner as in Example 1.
次に、本比較例で得られた炭酸飲料用PETボトルを用いた以外は、実施例1と全く同一にして、該炭酸飲料用PETボトルにおける前記炭酸水中の炭酸ガス減少量と、該炭酸飲料用PETボトルの酸素透過率とを測定した。結果を表1に示す。
〔比較例3〕
本比較例では、まず、ポリエチレンテレフタレート樹脂からなる質量24gのプリフォームを金型内でブロー成形して、ベースボトルとして内容量500mlの耐圧ボトルを製造した。
Next, except for using the carbonated beverage PET bottle obtained in this comparative example, exactly the same as in Example 1, the amount of carbon dioxide gas in the carbonated water in the carbonated beverage PET bottle, and the carbonated beverage The oxygen transmission rate of the PET bottle for medical use was measured. The results are shown in Table 1.
[Comparative Example 3]
In this comparative example, first, a preform made of polyethylene terephthalate resin having a mass of 24 g was blow-molded in a mold to produce a pressure-resistant bottle having an internal capacity of 500 ml as a base bottle.
次に、本比較例で得られたベースボトルを用いた以外は、実施例1と全く同一にして、該ベースボトルの内面側に約35nmの膜厚のアモルファスカーボン被膜を形成した。この結果、ガスボリューム4.2の炭酸水を、ヘッドスペースを炭酸ガスで置換して充填した後、40℃で2週間保存した後の体積増加率が10.7%の炭酸飲料用PETボトルが得られた。本比較例の炭酸飲料用PETボトルは、前記プリフォームの質量が実施例1に比較して少なく、この結果として側壁が薄肉となっているために前記体積増加率が7%を超える値となっているものと思われる。尚、前記体積増加率は、実施例1と全く同一にして測定した。 Next, an amorphous carbon film having a thickness of about 35 nm was formed on the inner surface side of the base bottle in exactly the same manner as in Example 1 except that the base bottle obtained in this comparative example was used. As a result, a carbonated beverage PET bottle having a volume increase rate of 10.7% after being stored for 2 weeks at 40 ° C. after filling the carbonated water with a gas volume of 4.2 by replacing the head space with carbon dioxide gas. Obtained. The PET bottle for carbonated beverages of this comparative example has a smaller mass of the preform than that of Example 1, and as a result, the side wall is thin, so the volume increase rate exceeds 7%. It seems to have been. The volume increase rate was measured in the same manner as in Example 1.
次に、本比較例で得られた炭酸飲料用PETボトルを用いた以外は、実施例1と全く同一にして、該炭酸飲料用PETボトルにおける前記炭酸水中の炭酸ガス減少量と、該炭酸飲料用PETボトルの酸素透過率とを測定した。結果を表1に示す。 Next, except for using the carbonated beverage PET bottle obtained in this comparative example, exactly the same as in Example 1, the amount of carbon dioxide gas in the carbonated water in the carbonated beverage PET bottle, and the carbonated beverage The oxygen transmission rate of the PET bottle for medical use was measured. The results are shown in Table 1.
表1から、内面側にガスバリア被膜を備え、ガスボリューム4.2の炭酸水を充填し、40℃で2週間保存後の体積増加率が8.0%以下である実施例1,2の炭酸飲料用PETボトルによれば、前記充填から4週間後でも酸素透過量によって示される酸素バリア性が0.015ml/ボトル/日以下と良好であり、前記炭酸水中の炭酸ガス減少量も少なく、夏期等の店頭陳列や倉庫保存等の室温より高温の環境下でも、優れたガスバリア性を保持していることが明らかである。
From Table 1, the carbon dioxide of Examples 1 and 2 having a gas barrier coating on the inner surface, filled with carbonated water having a gas volume of 4.2, and having a volume increase rate of 8.0% or less after storage at 40 ° C. for 2 weeks. According to the PET bottle for beverages, the oxygen barrier property indicated by the oxygen permeation amount is good at 0.015 ml / bottle / day or less even after 4 weeks from the filling, and the amount of carbon dioxide in the carbonated water is small, and the summer It is apparent that excellent gas barrier properties are maintained even in an environment where the temperature is higher than room temperature such as store display or storage in a warehouse.
これに対して、ガスボリューム4.2の炭酸水を充填し、40℃で2週間保存後の体積増加率が8.0%以下であるがガスバリア被膜を備えていない炭酸飲料用PETボトル(比較例1)、ガスバリア性被膜は備えているがガスボリューム4.2の炭酸水を充填し、40℃で2週間保存後の体積増加率が8.0%を超える炭酸飲料用PETボトル(比較例2,3)では、いずれも前記充填から4週間後の酸素透過量、炭酸ガス減少量とも実施例1,2に比較して多いことが明らかである。 In contrast, a carbonated beverage PET bottle filled with carbonated water having a gas volume of 4.2 and having a volume increase rate of 8.0% or less after being stored at 40 ° C. for 2 weeks (without comparison) Example 1) PET bottle for carbonated beverages with a gas barrier coating but filled with carbonated water with a gas volume of 4.2 and having a volume increase rate of more than 8.0% after storage at 40 ° C. for 2 weeks (Comparative Example) 2 and 3), it is clear that both oxygen permeation amount and carbon dioxide gas decrease amount after 4 weeks from the filling are larger than those in Examples 1 and 2.
本実施例では、まず、ポリエチレンテレフタレート樹脂からなる質量28gのプリフォームを用い、肉厚分布、ヒートセット条件等を適切に設定してブロー成形し、ベースボトルとして内容量350mlの耐熱圧ボトルを製造した。 In this example, first, a preform of polyethylene terephthalate resin having a mass of 28 g is used, blow molding is performed with appropriate settings of thickness distribution, heat setting conditions, etc., and a heat-resistant pressure bottle with an internal capacity of 350 ml is produced as a base bottle. did.
次に、図1示のCVD装置1により、前記ベースボトルの内面側に約50nmの膜厚のアモルファスカーボン被膜を形成した。前記アモルファスカーボン被膜の形成は、処理室4とベースボトル10との内部を所定の真空度に減圧して、原料ガスとしてアセチレンを供給しつつ、周波数2.45GHz、出力380Wのマイクロ波を短時間照射することにより行った。
Next, an amorphous carbon film having a thickness of about 50 nm was formed on the inner surface side of the base bottle by the CVD apparatus 1 shown in FIG. The amorphous carbon film is formed by depressurizing the interior of the
この結果、ガスボリューム2.8の果汁入り炭酸飲料を、ヘッドスペースを炭酸ガスで置換して充填し、35分間の熱水シャワーにより容器中心部が65℃の温度に10分間以上保持されるようにして加熱殺菌処理を行った後の体積増加率が3.4%の炭酸飲料用PETボトルが得られた。尚、前記体積増加率は、実施例1と同様にして測定した。 As a result, the carbonated beverage containing fruit juice with a gas volume of 2.8 is filled by replacing the head space with carbon dioxide, and the center of the container is maintained at a temperature of 65 ° C. for 10 minutes or more by hot water shower for 35 minutes. Thus, a PET bottle for carbonated beverages having a volume increase rate of 3.4% after the heat sterilization treatment was obtained. The volume increase rate was measured in the same manner as in Example 1.
次に、本実施例で得られた炭酸飲料用PETボトルに、ガスボリューム2.8の果汁入り炭酸飲料を、ヘッドスペースを炭酸ガスで置換して充填し、35分間の熱水シャワーにより容器中心部が65℃の温度に10分間以上保持されるようにして加熱殺菌処理を行い、さらに40℃で2週間保存した後の前記果汁入り炭酸飲料中の炭酸ガス減少量と、40℃で4週間保存した後の前記果汁入り炭酸飲料中の炭酸ガス減少量とを測定した。また、前記炭酸飲料用PETボトルの前記充填直後の酸素透過率と、40℃で4週間保存した後の酸素透過率とを測定した。尚、前記炭酸ガス減少量と、酸素透過率とは、実施例1と全く同一にして測定した。結果を表2に示す。 Next, a carbonated beverage containing fruit juice with a gas volume of 2.8 was filled in the PET bottle for carbonated beverage obtained in this example by replacing the head space with carbon dioxide gas, and the center of the container was obtained by hot water shower for 35 minutes. The portion is kept at a temperature of 65 ° C. for 10 minutes or longer and then heat sterilized, and further stored at 40 ° C. for 2 weeks. The amount of carbon dioxide reduction in the carbonated beverage containing fruit juice after storage was measured. Moreover, the oxygen transmission rate immediately after the filling of the PET bottle for carbonated beverages and the oxygen transmission rate after storage at 40 ° C. for 4 weeks were measured. The amount of carbon dioxide reduction and the oxygen transmission rate were measured in the same manner as in Example 1. The results are shown in Table 2.
本実施例では、実施例3で製造したベースボトルを用い、図1示のCVD装置1により、前記ベースボトルの内面側に約30nmの膜厚のケイ素酸化物被膜を形成した。前記ケイ素酸化物被膜の形成は、ベースボトル10の内部を30Paに維持しつつ、原料ガスとして有機ケイ素化合物と酸素とを供給しつつ、周波数2.45GHz、出力1000Wのマイクロ波を短時間照射することにより行った。
In this example, the base bottle manufactured in Example 3 was used, and a silicon oxide film having a thickness of about 30 nm was formed on the inner surface side of the base bottle by the CVD apparatus 1 shown in FIG. The silicon oxide film is formed by irradiating a microwave with a frequency of 2.45 GHz and an output of 1000 W for a short time while supplying the organic silicon compound and oxygen as source gases while maintaining the interior of the
この結果、ガスボリューム2.8の果汁入り炭酸飲料を、ヘッドスペースを炭酸ガスで置換して充填し、35分間の熱水シャワーにより容器中心部が65℃の温度に10分間以上保持されるようにして加熱殺菌処理を行った後の体積増加率が3.3%の炭酸飲料用PETボトルが得られた。尚、前記体積増加率は、実施例1と同様にして測定した。 As a result, the carbonated beverage containing fruit juice with a gas volume of 2.8 is filled by replacing the head space with carbon dioxide, and the center of the container is maintained at a temperature of 65 ° C. for 10 minutes or more by hot water shower for 35 minutes. Thus, a PET bottle for carbonated beverages having a volume increase rate of 3.3% after the heat sterilization treatment was obtained. The volume increase rate was measured in the same manner as in Example 1.
次に、本実施例で得られた炭酸飲料用PETボトルを用いた以外は、実施例3と全く同一にして、該炭酸飲料用PETボトルにおける前記果汁入り炭酸飲料中の炭酸ガス減少量と、該炭酸飲料用PETボトルの酸素透過率とを測定した。結果を表2に示す。
〔比較例4〕
本比較例では、実施例3で製造したベースボトルに、ガスバリア被膜を全く形成せずに、ガスボリューム2.8の果汁入り炭酸飲料を、ヘッドスペースを炭酸ガスで置換して充填し、35分間の熱水シャワーにより容器中心部が65℃の温度に10分間以上保持されるようにして加熱殺菌処理を行った後の体積増加率が3.9%の炭酸飲料用PETボトルを得た。尚、前記体積増加率は、実施例1と同様にして測定した。
Next, except using the carbonated beverage PET bottle obtained in this example, exactly the same as in Example 3, the amount of carbon dioxide gas in the carbonated beverage containing fruit juice in the carbonated beverage PET bottle, The oxygen transmission rate of the carbonated beverage PET bottle was measured. The results are shown in Table 2.
[Comparative Example 4]
In this comparative example, the base bottle manufactured in Example 3 was filled with a carbonated beverage containing fruit juice having a gas volume of 2.8 without replacing any gas barrier coating, replacing the headspace with carbon dioxide gas, for 35 minutes. A PET bottle for carbonated beverages having a volume increase rate of 3.9% after heat sterilization treatment was performed so that the center of the container was kept at a temperature of 65 ° C. for 10 minutes or more by a hot water shower. The volume increase rate was measured in the same manner as in Example 1.
次に、本比較例で得られた炭酸飲料用PETボトルを用いた以外は、実施例3と全く同一にして、該炭酸飲料用PETボトルにおける前記果汁入り炭酸飲料中の炭酸ガス減少量と、該炭酸飲料用PETボトルの酸素透過率とを測定した。結果を表2に示す。
〔比較例5〕
本比較例では、プリフォーム加熱温度が高く、肉厚分布がやや不均一である以外は実施例3と全く同一にして耐熱圧PETボトルを製造した。次に、本比較例で得られた耐熱圧PETボトルをベースボトルとした以外は、実施例4と全く同一にして、該ベースボトルの内面側に約30nmの膜厚のケイ素酸化物被膜を形成した。この結果、ガスボリューム2.8の果汁入り炭酸飲料を、ヘッドスペースを炭酸ガスで置換して充填し、35分間の熱水シャワーにより容器中心部が65℃の温度に10分間以上保持されるようにして加熱殺菌処理を行った後の体積増加率が9.8%の炭酸飲料用PETボトルが得られた。尚、前記体積増加率は、実施例1と同様にして測定した。
Next, except for using the carbonated beverage PET bottle obtained in this Comparative Example, exactly the same as Example 3, the amount of carbon dioxide reduction in the carbonated beverage containing fruit juice in the carbonated beverage PET bottle, The oxygen transmission rate of the carbonated beverage PET bottle was measured. The results are shown in Table 2.
[Comparative Example 5]
In this comparative example, a heat-resistant pressure PET bottle was manufactured in exactly the same manner as in Example 3 except that the preform heating temperature was high and the thickness distribution was slightly non-uniform. Next, a silicon oxide film having a thickness of about 30 nm is formed on the inner surface of the base bottle in exactly the same manner as in Example 4 except that the heat-resistant pressure PET bottle obtained in this comparative example is used as a base bottle. did. As a result, the carbonated beverage containing fruit juice with a gas volume of 2.8 is filled by replacing the head space with carbon dioxide, and the center of the container is maintained at a temperature of 65 ° C. for 10 minutes or more by hot water shower for 35 minutes. Thus, a PET bottle for carbonated beverages having a volume increase rate of 9.8% after the heat sterilization treatment was obtained. The volume increase rate was measured in the same manner as in Example 1.
次に、本比較例で得られた炭酸飲料用PETボトルを用いた以外は、実施例3と全く同一にして、該炭酸飲料用PETボトルにおける前記果汁入り炭酸飲料中の炭酸ガス減少量と、該炭酸飲料用PETボトルの酸素透過率とを測定した。結果を表2に示す。 Next, except for using the carbonated beverage PET bottle obtained in this Comparative Example, exactly the same as Example 3, the amount of carbon dioxide reduction in the carbonated beverage containing fruit juice in the carbonated beverage PET bottle, The oxygen transmission rate of the carbonated beverage PET bottle was measured. The results are shown in Table 2.
表2から、内面側にガスバリア被膜を備え、ガスボリューム2.8の果汁入り炭酸飲料を充填し、35分間の熱水シャワーにより容器中心部が65℃の温度に10分間以上保持されるようにして加熱殺菌処理を行った後の体積増加率が8.0%以下である実施例3,4の炭酸飲料用PETボトルによれば、前記充填から4週間後でも酸素透過量によって示される酸素バリア性が0.015ml/ボトル/日以下と良好であり、前記果汁入り炭酸飲料中の炭酸ガス減少量も少なく、前記果汁入り炭酸飲料を充填した後の加熱殺菌処理等における室温より高温の環境下でも、優れたガスバリア性を保持していることが明らかである。
From Table 2, a gas barrier coating is provided on the inner surface side, filled with a carbonated beverage containing fruit juice with a gas volume of 2.8, and the center of the container is kept at a temperature of 65 ° C. for 10 minutes or more by hot water shower for 35 minutes. According to the PET bottles for carbonated beverages of Examples 3 and 4 having a volume increase rate of 8.0% or less after the heat sterilization treatment, the oxygen barrier indicated by the oxygen permeation amount even after 4 weeks from the filling In an environment at a temperature higher than room temperature in a heat sterilization treatment or the like after filling the carbonated beverage with fruit juice, and the like is less than 0.015 ml / bottle / day. However, it is clear that excellent gas barrier properties are maintained.
これに対して、ガスボリューム2.8の果汁入り炭酸飲料を充填し、35分間の熱水シャワーにより容器中心部が65℃の温度に10分間以上保持されるようにして加熱殺菌処理を行った後の体積増加率が8.0%以下であるがガスバリア被膜を備えていない炭酸飲料用PETボトル(比較例4)、ガスバリア性被膜は備えているがガスボリューム2.8の果汁入り炭酸飲料を充填し、35分間の熱水シャワーにより容器中心部が65℃の温度に10分間以上保持されるようにして加熱殺菌処理を行った後の体積増加率が8.0%を超える炭酸飲料用PETボトル(比較例5)では、いずれも前記充填から4週間後の酸素透過量、前記果汁入り炭酸飲料中の炭酸ガス減少量とも実施例3,4に比較して多いことが明らかである。 On the other hand, a carbonated beverage containing fruit juice with a gas volume of 2.8 was filled, and a heat sterilization treatment was performed so that the center of the container was kept at a temperature of 65 ° C. for 10 minutes or more by a hot water shower for 35 minutes. PET bottles for carbonated beverages having a volume increase rate of 8.0% or less but not having a gas barrier coating (Comparative Example 4), and carbonated beverages containing fruit juice having a gas volume of 2.8 but having a gas barrier coating PET for carbonated beverages with a volume increase rate of more than 8.0% after filling and heat sterilization by keeping the container center at a temperature of 65 ° C. for 10 minutes or more by hot water shower for 35 minutes In the bottle (Comparative Example 5), it is clear that both the oxygen permeation amount after 4 weeks from the filling and the carbon dioxide gas reduction amount in the carbonated beverage containing fruit juice are larger than those in Examples 3 and 4.
本実施例では、まず、ポリエチレンテレフタレート樹脂からなる質量25gのプリフォームをブロー成形して、内容量約500mlの予備成形ボトルを得た後、該予備成形ボトルを加熱して収縮させ、再度ブロー成形を行う、二段ブロー成形により、ベースボトルとして内容量350mlの耐熱圧ボトルを製造した。 In this example, first, a preform made of polyethylene terephthalate resin having a mass of 25 g is blow-molded to obtain a preformed bottle having an internal volume of about 500 ml, and then the preformed bottle is heated to shrink and blow-molded again. A heat-resistant pressure bottle with an internal capacity of 350 ml was manufactured as a base bottle by two-stage blow molding.
次に、本実施例で得られたベースボトルを用いた以外は、実施例3と全く同一にして、該ベースボトルの内面側に約50nmの膜厚のアモルファスカーボン被膜を形成した。 Next, an amorphous carbon film having a thickness of about 50 nm was formed on the inner surface of the base bottle in exactly the same manner as in Example 3 except that the base bottle obtained in this example was used.
この結果、ガスボリューム2.8の果汁入り炭酸飲料を、ヘッドスペースを炭酸ガスで置換して充填し、35分間の熱水シャワーにより容器中心部が65℃の温度に10分間以上保持されるようにして加熱殺菌処理を行った後の体積増加率が4.0%の炭酸飲料用PETボトルが得られた。本実施例の炭酸飲料用PETボトルは、前記プリフォームの質量が実施例3に比較して小さいが、前記二段ブロー成形によりボトル全体の肉厚がより均一となり、側壁の結晶度も高くなっており、胴部の剛性が高いため、前記体積増加率が低く抑えられているものと思われる。尚、前記体積増加率は、実施例1と同様にして測定した。 As a result, the carbonated beverage containing fruit juice with a gas volume of 2.8 is filled by replacing the head space with carbon dioxide, and the center of the container is maintained at a temperature of 65 ° C. for 10 minutes or more by hot water shower for 35 minutes. Thus, a PET bottle for carbonated beverages having a volume increase rate of 4.0% after heat sterilization treatment was obtained. The PET bottle for carbonated beverages of this example has a smaller mass of the preform than that of Example 3, but the thickness of the entire bottle becomes more uniform and the crystallinity of the side walls becomes higher by the two-stage blow molding. It is considered that the volume increase rate is kept low because of the high rigidity of the body. The volume increase rate was measured in the same manner as in Example 1.
次に、本実施例で得られた炭酸飲料用PETボトルを用いた以外は、実施例3と全く同一にして、該炭酸飲料用PETボトルにおける前記果汁入り炭酸飲料中の炭酸ガス減少量と、該炭酸飲料用PETボトルの酸素透過率とを測定した。結果を表3に示す。
〔比較例6〕
本比較例では、実施例5で製造したベースボトルに、ガスバリア被膜を全く形成せずに、ガスボリューム2.8の果汁入り炭酸飲料を、ヘッドスペースを炭酸ガスで置換して充填し、35分間の熱水シャワーにより容器中心部が65℃の温度に10分間以上保持されるようにして加熱殺菌処理を行った後の体積増加率が4.2%の炭酸飲料用PETボトルを得た。尚、前記体積増加率は、実施例1と同様にして測定した。
Next, except using the carbonated beverage PET bottle obtained in this example, exactly the same as in Example 3, the amount of carbon dioxide gas in the carbonated beverage containing fruit juice in the carbonated beverage PET bottle, The oxygen transmission rate of the carbonated beverage PET bottle was measured. The results are shown in Table 3.
[Comparative Example 6]
In this comparative example, the base bottle produced in Example 5 was filled with a carbonated beverage containing fruit juice with a gas volume of 2.8 without replacing any gas barrier coating, with the headspace replaced with carbon dioxide gas, for 35 minutes. A PET bottle for carbonated beverages having a volume increase rate of 4.2% after the heat sterilization treatment was performed so that the center of the container was kept at a temperature of 65 ° C. for 10 minutes or more by a hot water shower. The volume increase rate was measured in the same manner as in Example 1.
次に、本比較例で得られた炭酸飲料用PETボトルを用いた以外は、実施例3と全く同一にして、該炭酸飲料用PETボトルにおける前記果汁入り炭酸飲料中の炭酸ガス減少量と、該炭酸飲料用PETボトルの酸素透過率とを測定した。結果を表3に示す。 Next, except for using the carbonated beverage PET bottle obtained in this Comparative Example, exactly the same as Example 3, the amount of carbon dioxide reduction in the carbonated beverage containing fruit juice in the carbonated beverage PET bottle, The oxygen transmission rate of the carbonated beverage PET bottle was measured. The results are shown in Table 3.
表3から、内面側にガスバリア被膜を備え、ガスボリューム2.8の果汁入り炭酸飲料を充填し、35分間の熱水シャワーにより容器中心部が65℃の温度に10分間以上保持されるようにして加熱殺菌処理を行った後の体積増加率が8.0%以下である実施例5の炭酸飲料用PETボトルによれば、前記充填から4週間後でも酸素透過量によって示される酸素バリア性が0.015ml/ボトル/日以下と良好であり、前記果汁入り炭酸飲料中の炭酸ガス減少量も少なく、前記果汁入り炭酸飲料を充填した後の殺菌処理等における室温より高温の環境下でも、優れたガスバリア性を保持していることが明らかである。
From Table 3, a gas barrier coating is provided on the inner surface side, filled with a carbonated beverage containing fruit juice with a gas volume of 2.8, and the center of the container is kept at a temperature of 65 ° C. for 10 minutes or more by hot water shower for 35 minutes. According to the PET bottle for carbonated beverages of Example 5 in which the volume increase rate after performing the heat sterilization treatment is 8.0% or less, the oxygen barrier property indicated by the oxygen permeation amount is 4 weeks after the filling. 0.015 ml / bottle / day or less is good, the amount of carbon dioxide in the fruit juice-containing carbonated drink is small, and excellent even in an environment at a temperature higher than room temperature in the sterilization treatment after filling the fruit juice-containing carbonated drink. It is clear that the gas barrier property is maintained.
これに対して、ガスボリューム2.8の果汁入り炭酸飲料を充填し、35分間の熱水シャワーにより容器中心部が65℃の温度に10分間以上保持されるようにして加熱殺菌処理を行った後の体積増加率が8.0%以下であるがガスバリア被膜を備えていない炭酸飲料用PETボトル(比較例6)は、前記充填から4週間後の酸素透過量、前記果汁入り炭酸飲料中の炭酸ガス減少量ともに実施例5に比較して多いことが明らかである。 On the other hand, a carbonated beverage containing fruit juice with a gas volume of 2.8 was filled, and a heat sterilization treatment was performed so that the center of the container was kept at a temperature of 65 ° C. for 10 minutes or more by a hot water shower for 35 minutes. The PET bottle for carbonated drinks (Comparative Example 6) having a volume increase rate of 8.0% or less but not equipped with a gas barrier film is the oxygen permeation amount after 4 weeks from the filling, in the carbonated drink containing fruit juice. It is clear that the amount of carbon dioxide gas reduction is larger than that in Example 5.
1…CVD装置、 4…処理室、 5…マイクロ波発生装置、 8…排気室、 10…ベースボトル、 19…ガス導入管。 DESCRIPTION OF SYMBOLS 1 ... CVD apparatus, 4 ... Processing chamber, 5 ... Microwave generator, 8 ... Exhaust chamber, 10 ... Base bottle, 19 ... Gas introduction pipe | tube.
Claims (6)
室温より高温の環境下における体積増加率が8.0%以下であることを特徴とする炭酸飲料用プラスチックボトル。 In a plastic bottle for carbonated drinks provided with a gas barrier coating formed by plasma CVD on the inner surface side,
A plastic bottle for carbonated drinks, wherein the volume increase rate in an environment higher than room temperature is 8.0% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005137968A JP2006315697A (en) | 2005-05-11 | 2005-05-11 | Plastic bottle for carbonated beverage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005137968A JP2006315697A (en) | 2005-05-11 | 2005-05-11 | Plastic bottle for carbonated beverage |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006315697A true JP2006315697A (en) | 2006-11-24 |
Family
ID=37536722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005137968A Pending JP2006315697A (en) | 2005-05-11 | 2005-05-11 | Plastic bottle for carbonated beverage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006315697A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008137687A (en) * | 2006-11-30 | 2008-06-19 | Yoshino Kogyosho Co Ltd | Synthetic resin bottle with excellent gas barrier functionality |
JP2011105359A (en) * | 2009-11-19 | 2011-06-02 | Hokkai Can Co Ltd | Polyester resin container for carbonated drink |
JP2014005071A (en) * | 2012-06-27 | 2014-01-16 | Kirin Brewery Co Ltd | Bottle for carbonated beverage and carbonated beverage filled therein |
KR20170039252A (en) * | 2014-08-01 | 2017-04-10 | 더 코카콜라 컴파니 | Small carbonated beverage packaging with enhanced shelf life properties |
WO2023178939A1 (en) * | 2022-03-24 | 2023-09-28 | 江门市伊科迈特电子科技有限公司 | Vacuum sparkling water bottle |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1143129A (en) * | 1997-07-22 | 1999-02-16 | Mitsubishi Plastics Ind Ltd | Polyester resin bottle |
JP2003095272A (en) * | 2001-09-18 | 2003-04-03 | Dainippon Printing Co Ltd | Plastic container |
JP2004505177A (en) * | 2000-08-01 | 2004-02-19 | シデル | Plasma coating deposition method, apparatus for performing the method, and coating obtained by such a method |
JP2004504965A (en) * | 2000-08-01 | 2004-02-19 | シデル | Barrier coating |
JP2004149151A (en) * | 2002-10-30 | 2004-05-27 | Mitsubishi Shoji Plast Kk | Dlc film-coated plastic container and method for manufacturing the same |
JP2004169087A (en) * | 2002-11-19 | 2004-06-17 | Dainippon Printing Co Ltd | High frequency plasma cvd system, and plastic vessel |
JP2004168325A (en) * | 2002-11-18 | 2004-06-17 | Toppan Printing Co Ltd | Plastic container with barrier property |
JP2004352915A (en) * | 2003-05-30 | 2004-12-16 | Toppan Printing Co Ltd | Method for producing hollow vessel provided with ceramic thin film |
-
2005
- 2005-05-11 JP JP2005137968A patent/JP2006315697A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1143129A (en) * | 1997-07-22 | 1999-02-16 | Mitsubishi Plastics Ind Ltd | Polyester resin bottle |
JP2004505177A (en) * | 2000-08-01 | 2004-02-19 | シデル | Plasma coating deposition method, apparatus for performing the method, and coating obtained by such a method |
JP2004504965A (en) * | 2000-08-01 | 2004-02-19 | シデル | Barrier coating |
JP2003095272A (en) * | 2001-09-18 | 2003-04-03 | Dainippon Printing Co Ltd | Plastic container |
JP2004149151A (en) * | 2002-10-30 | 2004-05-27 | Mitsubishi Shoji Plast Kk | Dlc film-coated plastic container and method for manufacturing the same |
JP2004168325A (en) * | 2002-11-18 | 2004-06-17 | Toppan Printing Co Ltd | Plastic container with barrier property |
JP2004169087A (en) * | 2002-11-19 | 2004-06-17 | Dainippon Printing Co Ltd | High frequency plasma cvd system, and plastic vessel |
JP2004352915A (en) * | 2003-05-30 | 2004-12-16 | Toppan Printing Co Ltd | Method for producing hollow vessel provided with ceramic thin film |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008137687A (en) * | 2006-11-30 | 2008-06-19 | Yoshino Kogyosho Co Ltd | Synthetic resin bottle with excellent gas barrier functionality |
JP2011105359A (en) * | 2009-11-19 | 2011-06-02 | Hokkai Can Co Ltd | Polyester resin container for carbonated drink |
JP2014005071A (en) * | 2012-06-27 | 2014-01-16 | Kirin Brewery Co Ltd | Bottle for carbonated beverage and carbonated beverage filled therein |
KR20170039252A (en) * | 2014-08-01 | 2017-04-10 | 더 코카콜라 컴파니 | Small carbonated beverage packaging with enhanced shelf life properties |
KR102584505B1 (en) * | 2014-08-01 | 2023-10-04 | 더 코카콜라 컴파니 | Small carbonated beverage packaging with enhanced shelf life properties |
US11801964B2 (en) | 2014-08-01 | 2023-10-31 | The Coca-Cola Company | Small carbonated beverage packaging with enhanced shelf life properties |
WO2023178939A1 (en) * | 2022-03-24 | 2023-09-28 | 江门市伊科迈特电子科技有限公司 | Vacuum sparkling water bottle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4146463B2 (en) | Container coated with barrier effect material, manufacturing method and apparatus thereof | |
JP4437647B2 (en) | Method for producing gas container coated plastic container | |
CN104220341B (en) | Closeouts for product holding container | |
JP5695673B2 (en) | Method for producing gas barrier plastic molding | |
WO2004087989A1 (en) | Chemical vapor deposition film formed by plasma cvd process and method for forming same | |
KR100545908B1 (en) | Barrier coating | |
JP2005200044A (en) | Plastic container and manufacturing method for the same | |
JP2006160268A (en) | Method for manufacturing carbon film coating plastic container, plasma cvd film forming apparatus and plastic container | |
JP4372833B1 (en) | Method for producing gas barrier thin film coated plastic container | |
WO2001098150A1 (en) | Method for filling, apparatus for filling, and container for filling and packaging | |
JP2006315697A (en) | Plastic bottle for carbonated beverage | |
Nakaya et al. | Impact of hot wire and material gas species on the Cat-CVD coating of gas barrier SiOC thin films onto PET bottles | |
JP2006089073A (en) | Internally coated plastic container and method for manufacturing the same | |
JP5273760B2 (en) | Plastic container | |
JP6009243B2 (en) | Carbonated beverage bottle and method for producing the same | |
JP4380197B2 (en) | Method of forming chemical vapor deposition film by plasma CVD method | |
JP5075527B2 (en) | Bottle manufacturing method and bottle | |
JP2006160269A (en) | Plasma cvd film forming apparatus and method for manufacturing plastic container with gas barrier property | |
JP4268545B2 (en) | Plastic container | |
JP4279127B2 (en) | Gas barrier thin film coated plastic container manufacturing apparatus and manufacturing method thereof | |
JP2006008206A (en) | Filling method for polyester container | |
US20080145651A1 (en) | Method for Manufacturing a Pecvd Carbon Coated Polymer Article and Article Obtained by Such Method | |
JP4593213B2 (en) | Gas barrier plastic container and manufacturing method thereof | |
JP2004149151A (en) | Dlc film-coated plastic container and method for manufacturing the same | |
JP2007076658A (en) | Film formed container, and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110210 |
|
A02 | Decision of refusal |
Effective date: 20110913 Free format text: JAPANESE INTERMEDIATE CODE: A02 |