JP2006234536A - Micro fluid mixer - Google Patents
Micro fluid mixer Download PDFInfo
- Publication number
- JP2006234536A JP2006234536A JP2005048423A JP2005048423A JP2006234536A JP 2006234536 A JP2006234536 A JP 2006234536A JP 2005048423 A JP2005048423 A JP 2005048423A JP 2005048423 A JP2005048423 A JP 2005048423A JP 2006234536 A JP2006234536 A JP 2006234536A
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- sample
- samples
- microfluidic
- confluence part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Description
本発明は、マイクロ流体チップの分野に属するものであり、遺伝子検査や免疫学的検査等の生化学的検査および診断、または化学分析、化学反応に好適なマイクロ流体チップに関するものである。 The present invention belongs to the field of microfluidic chips, and relates to a microfluidic chip suitable for biochemical tests and diagnoses such as genetic tests and immunological tests, or chemical analysis and chemical reactions.
近年、ナノテクノロジーに代表される微細加工技術を駆使して、化学分析や化学反応、または遺伝子検査や免疫学的検査などを微細化して行うμ−TAS(μ−Total Analysis Systems)が注目を集めている。μ−TASにおいては、これらの反応をマイクロチップ上に集積化することで、必要試薬量の低減、それによる産業廃棄物の削減、操作の簡便性、さらには比表面積増大による攪拌効率や抽出効率の向上により、分析所要時間の大幅な短縮などが期待されている。 In recent years, μ-TAS (μ-Total Analysis Systems), which performs fine analysis of chemical analysis, chemical reaction, genetic testing, immunological testing, etc., using microfabrication technology represented by nanotechnology, has attracted attention. ing. In μ-TAS, these reactions are integrated on a microchip to reduce the amount of reagents required, thereby reducing industrial waste, ease of operation, and stirring efficiency and extraction efficiency due to increased specific surface area. Improvements in performance are expected to significantly reduce analysis time.
また、装置の小型化による省スペース化、さらには、持ち運び可能な大きさにすることでPoint Of Care Testing(その場分析)の実現も期待されている。例えば、感染症の診断および治療においては、適切な処置を行うために感染している細菌やウィルス種を特定する必要があり、免疫学的検査や遺伝子検査が実施されている。後者においては、細菌やウィルス由来の核酸を増幅するために、PCR(ポリメレースチェーンリアクション)法の適用が検討されている。しかしながら、従来の免疫学的検査や遺伝子検査においては、検体の前処理や必要となる試薬類の保存や調製、さらには、大掛かりな検出装置などが必要であり、中央検査室と称される大型の医療機関において主に利用されてきた。 In addition, space saving is achieved by downsizing the apparatus, and further, point of care testing (in-situ analysis) is expected to be realized by making it portable. For example, in the diagnosis and treatment of infectious diseases, it is necessary to identify the bacteria and virus species that are infected in order to perform appropriate treatment, and immunological tests and genetic tests are performed. In the latter case, application of a PCR (polymerase chain reaction) method is being studied in order to amplify nucleic acids derived from bacteria or viruses. However, conventional immunological tests and genetic tests require specimen pretreatment, storage and preparation of necessary reagents, and a large-scale detection device. It has been mainly used in medical institutions.
一方、マイクロ流体チップに上記の検査項目を集積化することが可能ならば、小病院への各種検査法の導入のみならず、入院患者がベッドサイドで自ら分析することや、ひいては、自宅で簡便に健康状態を把握することも不可能ではなくなり、QOL(Quality Of Life;生活の質)の向上による豊かな暮らしへの貢献が期待されている。 On the other hand, if it is possible to integrate the above-mentioned inspection items into a microfluidic chip, not only the introduction of various inspection methods to small hospitals, but also in-patients can analyze by themselves at the bedside, and eventually at home. It is no longer impossible to grasp the health condition, and it is expected to contribute to a prosperous life by improving QOL (Quality Of Life).
実際、これまでにいくつかの遺伝子分析や化学分析を行うマイクロ流体チップの報告がなされているが、実用的な臨床診断ツールとして利用させている例は皆無である。 In fact, several microfluidic chips that perform genetic analysis and chemical analysis have been reported so far, but no examples have been used as practical clinical diagnostic tools.
実用的なマイクロ流体チップの実現が困難であることの一因として、従来の技術ではマイクロ流体チップ上における流体制御が難しく、特に、複数のサンプルを流路合流部で定量的に均一に混合することが容易ではない。そのため、チップ上での複数の溶液の混合法が提案されている。混合部後方に垂直及び水平流路を有する基板を複数枚積層する方法(特許文献1および2)や反応流路部に圧電素子を装着し、流路の変形により混合させる方法(特許文献3)、さらには合流部の後方に微細な凹凸面を有する混合器を形成させる方法(特許文献4)等が提案されている。各提案の多くは流動溶液の分割と合流により混合を促進させる方法であり、その実現にはチップ作製の困難性、コスト増大等の問題が残っている。さらに上記手段ではサンプル溶液を継続的に送液する連続流体を前提にしており、臨床診断分野や分析分野のように取り扱えるサンプル量が微量である不連続流体への適用は困難であり、簡便な構造で上記の目的を達成可能な混合機構が望まれている。
One of the reasons why it is difficult to realize a practical microfluidic chip is that it is difficult to control the fluid on the microfluidic chip with the conventional technology. In particular, a plurality of samples are mixed quantitatively and uniformly at the flow path junction. It is not easy. Therefore, a method for mixing a plurality of solutions on a chip has been proposed. A method of laminating a plurality of substrates having vertical and horizontal channels behind the mixing unit (
サンプル量が微量で、不連続流体を均一に混合する必要のあるマイクロ流体チップにおいては、導入したサンプルがマイクロ流体チップ上で混合することで反応がスタートするような系、特に、遺伝子増幅反応においては検体と各種酵素、基質溶液をマイクロ流体チップ上で混合させる場合、各サンプルは定量的に混合されるべきであるが、図3に示すように、各サンプルの流路合流部への到達時間にズレがあると、サンプルが混合している間に空気を挟み込むなどして均一な混合が難しく反応が進行しない原因となっていた。また、流路を送液する複数のサンプルの流路合流部への到達時間を合わせるためには、流路を流れるサンプルの液先端を揃える必要があるが、その目的で送液制御を行うためには、各流路を別々に制御する複数のポンプが必要となり、装置が大掛かりとなってしまい、ひいてはその場分析への対応は不可能となってしまう。 In microfluidic chips that require a small amount of sample and need to mix discontinuous fluids uniformly, in systems where the reaction starts when the introduced sample is mixed on the microfluidic chip, especially in gene amplification reactions When mixing specimens, various enzymes, and substrate solutions on a microfluidic chip, each sample should be mixed quantitatively, as shown in FIG. 3, the arrival time of each sample to the flow path junction If there is a deviation, it was difficult to make uniform mixing, for example, by sandwiching air while the sample was mixed, causing the reaction not to proceed. In addition, in order to match the arrival time of a plurality of samples that flow through the flow path to the flow path confluence, it is necessary to align the liquid tips of the samples that flow through the flow path. Requires a plurality of pumps for controlling each flow path separately, and the apparatus becomes large, which makes it impossible to cope with in-situ analysis.
本発明は、マイクロ流体チップに導入されたサンプルを、厳密な送液制御を必要とせずに、均一に混合することが可能な流路合流部の形状をもつマイクロ流体混合器により、簡便かつ低コストで製作可能なマイクロ流体チップを提供するものである。 The present invention provides a simple and low-fluidity microfluidic mixer having a shape of a flow path merging section that can uniformly mix a sample introduced into a microfluidic chip without requiring strict liquid feeding control. A microfluidic chip that can be manufactured at low cost is provided.
本発明者は上記課題を解決するべく鋭意研究を重ねた結果、複数のサンプルをマイクロ流体チップ上で混合することにより化学反応が開始するような反応系を実施するに当たり、複数の流路の合流部の形状が流路合流部下流端を頂点とした概ね三角形状であることで、流路内に定量的に導入したサンプルを複雑な送液制御を必要とせず、均一に混合することが可能となることを見出した。 As a result of intensive studies to solve the above problems, the present inventor conducted a reaction system in which a chemical reaction is started by mixing a plurality of samples on a microfluidic chip. Because the shape of the section is generally triangular with the downstream end of the flow path merge section as the apex, the sample introduced quantitatively into the flow path can be mixed uniformly without requiring complicated liquid feeding control I found out that
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明は、マイクロ流体チップにおいて複数のサンプルを均一に混合するための流路合流部の形状に関するものであって、複数の流路が合流する流路合流部の形状が流路合流部下流端を頂点とした概ね三角形状であることを特徴とする。 The present invention relates to the shape of a flow path merging section for uniformly mixing a plurality of samples in a microfluidic chip, and the shape of the flow path merging section where a plurality of flow paths merge is the downstream end of the flow path merging section It is characterized by a generally triangular shape with the apex as the apex.
図1に示したマイクロ流体チップ1において、サンプル導入口2および3に定量的にサンプルを導入し、該導入口から延びる導入路4へサンプルを送液し、流路合流部5でサンプルを混合することで反応がスタートするような化学反応を行う際、マイクロ流体チップに接続されたポンプで加圧または減圧することによりサンプルを送液することとなるが、その際、サンプルの液先端が同時に流路合流部5に到達しなければ、図3に示すようにサンプルの混合液に気泡を噛み込んでしまう。この状態では意図した試薬組成と異なる混合液が生成したこととなり、均一な混合または化学反応が進行しない原因となる。このことを防止するためには、流路を送液する複数のサンプルの液先端を厳密に制御することが必要である。しかしながら、そのためにはサンプル数と同じ数の加圧ポンプのような制御装置が必要となり、小型化、簡便化の妨げとなる。そこで、流路合流部を特徴的な形状にすることで、この問題を解決することが可能となった。すなわち、図4に示すように、サンプルの液先端が揃わずに一方のサンプルが先に流路合流部に到達しても、流路合流部を流路合流部下流端を頂点とした概ね三角形状にすることで、先に到達したサンプルが流路合流部よりも下流に流れていくことなく一旦留まり、遅れて到達したサンプルと混合することにより体積が増加することで流路合流部内を混合液が満たし、排出路へと送液され、下流の検出部等で検出等することが可能となった。これにより、意図した試薬組成の混合液が生成し、目的の化学反応の反応効率が向上する。
In the
前記流路合流部の形状は図2の(B)に示したように、合流する流路を二辺とし、流路合流部下流端を頂点とするような形状の二等辺三角形であることが好ましく、さらに好適には、図2の(C)に示したように、上記二等辺三角形の底辺を送液方向に凸となるようにすることが好ましい。具体的には、底辺のなす角θが150°以上180°以下であることが好ましい。またθは、流路合流部の概ね三角形状の流路合流部下流端の頂点のなす角θ’より大きいことが好ましく、θ’は150°以下であることが好ましい。これら図2の(B)および(C)を含めて概ね三角形状ということができる。また図2の(A)、(D)および(E)については、(A)および(E)は流路合流部に底辺が無く、(D)は底辺がサンプル送液方向に向かって凸ではないため、それぞれ概ね三角形状には含まれないとする。また、図2の(B)および(C)とは異なる形状であっても流路合流部が概ね三角形状であればよく、たとえば図2の(F)のように二等辺三角形ではないもの、(G)のように頂点を形成する2辺が直線ではないもの等もサンプルを均一に混合する効果があり、概ね三角形状に含まれるものとする。(H)の場合は、底辺が曲線であるものの送液方向に向かって凸である形状であるため、サンプルを均一に混合する効果があり、概ね三角形状に含まれるものとする。なお、本発明において概ね三角形状とは図2のようにマイクロ流体チップの上方から見て概ね三角形状であることを意味する。 As shown in FIG. 2B, the shape of the flow path merging portion is an isosceles triangle having a shape in which the flow paths to be merged are two sides and the downstream end of the flow path merging portion is a vertex. More preferably, as shown in FIG. 2C, the base of the isosceles triangle is preferably convex in the liquid feeding direction. Specifically, the angle θ formed by the base is preferably 150 ° or more and 180 ° or less. Further, θ is preferably larger than an angle θ ′ formed by the apex of the downstream end of the substantially triangular channel merging portion of the channel merging portion, and θ ′ is preferably 150 ° or less. These (B) and (C) in FIG. 2 (A), (D), and (E), (A) and (E) have no bottom at the flow path confluence, and (D) has a bottom that is convex toward the sample liquid feeding direction. Therefore, it is not included in each triangle. Moreover, even if it is a shape different from (B) and (C) in FIG. 2, the flow path merging portion only needs to be approximately triangular, for example, is not an isosceles triangle as shown in FIG. Samples such as (G) where the two sides forming the apex are not straight have an effect of mixing the samples uniformly, and are generally included in a triangular shape. In the case of (H), since the base is a curve but is convex in the liquid feeding direction, there is an effect of uniformly mixing the sample, and it is assumed that it is generally included in a triangular shape. In the present invention, the generally triangular shape means a generally triangular shape as viewed from above the microfluidic chip as shown in FIG.
本発明における流路合流部の容積は特に限定されないが、流路合流部に送液されるサンプルの総量に対して同程度であることが好ましく、特に50%以上150%以下であることが好ましい。 The volume of the flow path merging portion in the present invention is not particularly limited, but is preferably the same as the total amount of the sample sent to the flow path merging portion, and particularly preferably 50% or more and 150% or less. .
本発明において流路合流部に接続される2つの導入路および1つの排出路が、概ね三角形状である流路合流部の、三角形の各頂点に接続されていることが好ましい。 In the present invention, it is preferable that two introduction paths and one discharge path connected to the flow path merging section are connected to each vertex of the triangular shape of the flow path merging section which is generally triangular.
マイクロ流体チップの材質は、特に限定されることはなく、目的の形状を作製可能であり、流路内に送液する液体と反応を起こさないものであればどのような材質を用いても構わない。たとえばアクリル樹脂、塩化ビニル樹脂、ポリアセタール等の合成樹脂製や、磁器製、金属製、ガラス製などが例示できる。また、マイクロ流体チップの流路の幅および深さは特に限定されない。 The material of the microfluidic chip is not particularly limited, and any material can be used as long as it can produce a desired shape and does not react with the liquid fed into the flow path. Absent. Examples thereof include synthetic resins such as acrylic resin, vinyl chloride resin and polyacetal, porcelain, metal, and glass. Further, the width and depth of the flow path of the microfluidic chip are not particularly limited.
本発明において、混合するサンプルの種類は特に限定されることはなく、たとえば混合後反応が開始される酵素と基質、抗原と抗体などの組み合わせでもよいし、反応が開始されない物質の組み合わせを混合するだけでもよい。 In the present invention, the kind of sample to be mixed is not particularly limited. For example, a combination of an enzyme and a substrate that initiates a reaction after mixing, an antigen and an antibody, or a combination of substances that do not initiate a reaction is mixed. Just be fine.
本発明において、1つの流路合流部では2つの導入路が接続されて1つの排出路へと送液されるが、3つ以上のサンプルを混合する場合には、まず2つのサンプルを最初の流路合流部において混合し、その混合液が送液される排出路が再び次の流路合流部の導入路となって、3つ目のサンプルと混合することができる。このように順次サンプルを混合することで、本発明では1つのマイクロ流体チップ上で3つ以上のサンプルを均一に混合することも可能である。 In the present invention, two introduction paths are connected to one flow path merging section and fed to one discharge path. When mixing three or more samples, first, the two samples are first mixed. The discharge path through which the mixed liquid is fed at the flow path merging portion again becomes the introduction path of the next flow path merging portion, and can be mixed with the third sample. By sequentially mixing the samples in this way, in the present invention, it is also possible to uniformly mix three or more samples on one microfluidic chip.
本発明によれば、複数のサンプルを送液可能な複数の導入路を備え、かつそれらの導入路が合流し、複数のサンプルが混合することで反応が進行するような系を備えたマイクロ流体チップにおいて、流路合流部の形状を流路合流部下流端を頂点とした概ね三角形状にすることにより、容易に複数のサンプルを均一に混合することが可能となった。特に、マイクロ流体チップの流路に導入した一定量のサンプル同士を、一定の割合で混合することが必要な場合、従来は送液するサンプルの液先端を揃える必要があったが、本発明によれば、送液するサンプルの液先端を厳密に揃えなくとも、先に到達したサンプル溶液が流路合流部で留まり、遅れて到達したサンプルと混合してから下流の流路へ流れていく。これにより、意図した反応試薬組成通りの混合が可能となり、マイクロ流体チップ上で行う各種化学反応の反応効率が向上すると期待できる。このような単純な機構で均一な混合が達成可能であるため、複雑な送液制御の必要がなくなるため装置の単純化や小型化、低コスト化に繋がり、マイクロ流体チップの応用が期待されているPOC分野への対応の可能性が向上した。また、本発明によるマイクロ流体混合器はサンプル量が微量である不連続流体の均一な混合を可能としており、臨床診断分野や分析分野への応用が可能となる。 According to the present invention, a microfluid having a plurality of introduction paths capable of feeding a plurality of samples, and a system in which the introduction paths merge and the reaction proceeds by mixing the plurality of samples. In the chip, it is possible to easily mix a plurality of samples uniformly by making the shape of the flow path merging portion approximately triangular with the downstream end of the flow path merging portion as a vertex. In particular, when it is necessary to mix a certain amount of samples introduced into the flow path of the microfluidic chip at a certain ratio, it has been necessary to align the liquid tip of the sample to be fed conventionally. According to this, even if the liquid tip of the sample to be fed is not strictly aligned, the sample solution that has reached first stays at the flow path merging portion, mixes with the sample that has arrived late, and then flows to the downstream flow path. Thereby, mixing according to the intended reaction reagent composition becomes possible, and it can be expected that the reaction efficiency of various chemical reactions performed on the microfluidic chip is improved. Uniform mixing can be achieved with such a simple mechanism, which eliminates the need for complicated liquid feeding control, leading to simplification, miniaturization, and cost reduction of the device, and application of microfluidic chips is expected. The possibility of dealing with the existing POC field has improved. In addition, the microfluidic mixer according to the present invention enables uniform mixing of discontinuous fluids with a small amount of sample, and can be applied to clinical diagnostic fields and analytical fields.
以下、実施例を用いてさらに詳細に説明するが、本発明はこれらに限定される物ではない。 Hereinafter, although it demonstrates still in detail using an Example, this invention is not a thing limited to these.
さまざまな形状の流路合流部を備えたマイクロ流体チップにおける核酸増幅反応。
(1)図2の(A)、(B)、(D)または(E)の形状の流路および流路合流部と、それぞれの導入路にサンプルを導入可能な導入口を有し、かつ、流路合流部からサンプルが送液される排出路を備えたアクリル樹脂製マイクロ流体チップと、TRC反応(特許文献5および非特許文献1)に用いる試薬(基質試薬、酵素試薬、プライマー試薬、標的核酸溶液)を用意した。基質試薬と酵素試薬、およびプライマー試薬と標的核酸溶液を予め混合し、それぞれA液、B液とした。マイクロ流体チップの流路は幅、深さ共に300μmであり、全ての混合器の内容積は12μlである。
Nucleic acid amplification reactions in microfluidic chips with various shapes of flow path confluence.
(1) It has a channel and a channel merging portion in the shape of (A), (B), (D) or (E) of FIG. 2, and an introduction port through which a sample can be introduced into each introduction channel, and , An acrylic resin microfluidic chip having a discharge path through which the sample is fed from the flow path junction, and reagents used in the TRC reaction (
A液
120mM Tris−塩酸緩衝液(pH8.6)
34mM 塩化マグネシウム
2mM DTT
0.4U/μl RNase Inhibitor
各0.5mMのdATP、dCTP、dGTP、dTTP
7.2mM ITP
各6mMのATP、CTP、GTP、UTP
4% ソルビトール
0.24mg/ml 牛血清アルブミン
11.36U/μl T7RNAポリメレース
0.53U/μl AMV逆転写酵素
容量調整用蒸留水
B液
220mM 塩化カリウム
2.0μMの第一のオリゴヌクレオチド(T7RNAポリメレース・プロモーター配列含有センスプライマー)
2.0μMの第二のオリゴヌクレオチド(アンチセンスプライマー)
0.32μMの第三のオリゴヌクレオチド(3’末端をアミノ基修飾)
20.8% DMSO
1000コピー/15μl 標準RNA
容量調整用蒸留水
(2)使用した標準RNAは、mecA(メチシリン耐性黄色ブドウ球菌の細胞壁合成酵素PBP2’遺伝子配列(非特許文献2参照)を含む2183塩基のRNA)。この標準RNAをRNA希釈液(10mM Tris−HCl (pH8.0)、0.1mM EDTA、1mM DTT、0.5U/μl RNase Inhibitor)で1000コピー/5μlになるように調製しRNA試料とした。
(3)オリゴヌクレオチドの塩基配列
第一のオリゴヌクレオチド(T7RNAポリメレース・プロモーター配列含有センスプライマー)
5’−AAT TCT AAT ACG ACT CAC TAT AGG GAG ACT AAC TAT TGA TGC TAA AGT TCA AA−3’
第二のオリゴヌクレオチド(アンチセンスプライマー)
5’−TTC TTT TTT ATC TTC GGT−3’
第三のオリゴヌクレオチド(3’末端をアミノ基修飾)
5’−GTT AGT TGA ATA TCT TTG CCA TCT TTT TTC TTT TTC TCT ATT AAT GTA T−3’NH2
(4)先に調製したA液、B液を、それぞれ異なるサンプル導入口に5μlずつ導入し、それぞれの導入口には、空気圧によりサンプルを送液するためにシリンジポンプを接続した。
(5)試薬導入後、43℃に設定されたホットプレート上にマイクロ流体チップを乗せ、5分間放置して導入したサンプルおよびマイクロ流体チップが暖まるのを待った。
(6)毎分10μlの送液速度に設定したシリンジポンプを動作させ、導入口に導入した試薬を空気圧により送液した。A液、B液が流路合流部で混合し、さらに下流の排出路に送液され、混合液の全量が流路合流部を通過後にシリンジポンプによる送液を一旦停止した。但し、(E)の流路合流部形状を有するマイクロ流体チップにおいては、混合液の全量が流路合流部の下流に設置された混合部を通過後に送液を停止した。この状態で20分間放置し、TRC反応を進行させた。
(7)20分経過後、毎分50μlの送液速度に設定したシリンジポンプを動作させ、サンプル排出口からA液とB液の混合液を回収し、アガロースゲルで電気泳動を行い、SYBR Green IIで染色し、デンシトメーターでRNA増幅産物のバンド濃度を定量した。
Solution A 120 mM Tris-HCl buffer (pH 8.6)
34
0.4 U / μl RNase Inhibitor
0.5 mM each of dATP, dCTP, dGTP, dTTP
7.2 mM ITP
6 mM ATP, CTP, GTP, UTP each
4% sorbitol 0.24 mg / ml bovine serum albumin 11.36 U / μl T7 RNA polymerase 0.53 U / μl distilled water for adjusting AMV reverse transcriptase volume B solution 220 mM potassium chloride 2.0 μM first oligonucleotide (T7 RNA polymerase Sense primer containing promoter sequence)
2.0 μM second oligonucleotide (antisense primer)
0.32 μM third oligonucleotide (3 ′ end modified with amino group)
20.8% DMSO
1000 copies / 15 μl standard RNA
Volumetric distilled water (2) The standard RNA used was mecA (RNA of 2183 bases containing the methicillin-resistant Staphylococcus aureus cell wall synthase PBP2 ′ gene sequence (see Non-Patent Document 2)). This standard RNA was prepared in an RNA dilution solution (10 mM Tris-HCl (pH 8.0), 0.1 mM EDTA, 1 mM DTT, 0.5 U / μl RNase Inhibitor) at 1000 copies / 5 μl to prepare an RNA sample.
(3) Nucleotide base sequence First oligonucleotide (sense primer containing T7 RNA polymerase promoter sequence)
5'-AAT TCT AAT ACG ACT CAC TAT AGG GAG ACT AAC TAT TGA TGC TAA AGT TCA AA-3 '
Second oligonucleotide (antisense primer)
5'-TTC TTT TTT ATC TTC GGT-3 '
Third oligonucleotide (3 'end is modified with an amino group)
5'-GTT AGT TGA ATA TCT TTG CCA TCT TTT TTC TTT TTC TCT ATT AAT GTA T-3'NH2
(4) 5 μl each of the liquid A and the liquid B prepared previously were introduced into different sample introduction ports, and syringe pumps were connected to the respective introduction ports in order to send the sample by air pressure.
(5) After the introduction of the reagent, the microfluidic chip was placed on a hot plate set at 43 ° C., and the sample and the microfluidic chip that were introduced after being allowed to stand for 5 minutes were waited for warming.
(6) The syringe pump set to a liquid feed speed of 10 μl per minute was operated, and the reagent introduced into the inlet was fed by air pressure. The liquid A and the liquid B were mixed at the flow path merging section, and further fed to the downstream discharge path. After the entire amount of the mixed liquid passed through the flow path merging section, the liquid feeding by the syringe pump was temporarily stopped. However, in the microfluidic chip having the shape of the flow path merging portion of (E), the liquid feeding was stopped after the total amount of the mixed liquid passed through the mixing portion installed downstream of the flow path merging portion. This state was left for 20 minutes to allow the TRC reaction to proceed.
(7) After 20 minutes, the syringe pump set at a liquid feed rate of 50 μl per minute is operated, the liquid mixture of liquid A and liquid B is collected from the sample outlet, electrophoresed on an agarose gel, and SYBR Green After staining with II, the band concentration of the RNA amplification product was quantified with a densitometer.
図5に示したように、アガロースゲル電気泳動で増幅産物量を数値化した結果、流路合流部が(B)の形状であるマイクロ流体チップにおける増幅産物量は、概ね三角形状の流路混合部のない(A)、(D)および(E)のマイクロ流体チップにおける増幅産物量よりも顕著に多く得られ、さらには、増幅産物量の再現性が高いことが分かった。また、(D)および(E)のように丸型の流路合流部または丸型の混合部を備えたものは、増幅産物量、再現性共に特徴的な流路合流部を備えていないマイクロ流体チップと同程度であった。また、A液とB液の合流の際に、(B)の形状の流路合流部により顕著に気泡の混入が抑制され、均一に混合されている様子が観察された。これらのことから、流路合流部を(B)のような形状にすることにより、定量的に導入したA液とB液が均一に混合し易くなり、TRC反応の成功率を向上させることが分かった。このように、TRC反応に限らず、流路に導入した試薬をマイクロ流体チップ上で混合させることにより反応がスタートするような化学反応を行う際には、本発明により導入サンプルの均一な混合が達せられることにより、目的反応の反応効率を向上させることが期待される。 As shown in FIG. 5, the amplification product amount in the microfluidic chip in which the flow path merging portion is in the shape of (B) as a result of quantifying the amplification product amount by agarose gel electrophoresis is approximately triangular channel mixing. It was found that the amount of the amplified product was significantly larger than that of the microfluidic chips of (A), (D), and (E) having no part, and the reproducibility of the amount of the amplified product was high. In addition, as shown in (D) and (E), those equipped with a round channel merging section or a round-shaped mixing section are micros without a channel merging section that is characteristic in both amplification product amount and reproducibility. It was almost the same as the fluid chip. In addition, when the liquid A and the liquid B were merged, it was observed that the mixing of bubbles was remarkably suppressed by the flow path merge portion having the shape of (B) and was uniformly mixed. From these facts, by making the flow path confluence part as shown in (B), it becomes easy to mix the liquid A and the liquid B introduced quantitatively and improve the success rate of the TRC reaction. I understood. Thus, not only the TRC reaction but also a chemical reaction in which the reaction starts by mixing the reagent introduced into the flow channel on the microfluidic chip, the introduction sample can be uniformly mixed according to the present invention. It is expected to improve the reaction efficiency of the target reaction.
Claims (5)
流路合流部の形状が流路合流部下流端を頂点とした概ね三角形状であるマイクロ流体混合器。 A plurality of sample introduction ports capable of introducing a sample, a plurality of introduction passages for feeding the introduced sample, a discharge passage connected after the introduction passages join, and a discharge port connected to the discharge passage to take out a sample. In a microfluidic chip having a flow path pattern,
A microfluidic mixer in which the shape of the flow path merging portion is generally triangular with the downstream end of the flow path merging portion as a vertex.
4. The microfluidic mixer according to claim 1, wherein the bottom of the substantially triangular flow path converging portion is configured by a curve that is convex toward the liquid feeding direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005048423A JP2006234536A (en) | 2005-02-24 | 2005-02-24 | Micro fluid mixer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005048423A JP2006234536A (en) | 2005-02-24 | 2005-02-24 | Micro fluid mixer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006234536A true JP2006234536A (en) | 2006-09-07 |
Family
ID=37042356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005048423A Pending JP2006234536A (en) | 2005-02-24 | 2005-02-24 | Micro fluid mixer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006234536A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008107340A (en) * | 2006-09-29 | 2008-05-08 | Fujifilm Corp | Droplet mixing method and apparatus |
JP2014038018A (en) * | 2012-08-14 | 2014-02-27 | Alps Electric Co Ltd | Channel chip |
WO2015137691A1 (en) * | 2014-03-10 | 2015-09-17 | 연세대학교 산학협력단 | Micro mixer using taylor-gortler vortex and method for manufacturing same |
WO2016076133A1 (en) * | 2014-11-14 | 2016-05-19 | 株式会社エンプラス | Liquid handling device |
JP2017111029A (en) * | 2015-12-17 | 2017-06-22 | 住友ベークライト株式会社 | Micro channel device |
JPWO2017213080A1 (en) * | 2016-06-06 | 2019-04-11 | 株式会社ニコン | Fluid device, system, sample substance detection method and sample substance purification method |
JPWO2017213074A1 (en) * | 2016-06-06 | 2019-04-11 | 株式会社ニコン | Fluidic device, system, and sample substance detection method |
CN110058007A (en) * | 2019-05-12 | 2019-07-26 | 南京岚煜生物科技有限公司 | Single channel micro-fluidic chip |
WO2020003520A1 (en) * | 2018-06-29 | 2020-01-02 | 株式会社ニコン | Fluid device and system |
WO2020003526A1 (en) * | 2018-06-29 | 2020-01-02 | 株式会社ニコン | Fluid device and system |
CN113804658A (en) * | 2020-06-11 | 2021-12-17 | 京东方科技集团股份有限公司 | Microfluidic flow channel structure, detection system and using method thereof |
-
2005
- 2005-02-24 JP JP2005048423A patent/JP2006234536A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008107340A (en) * | 2006-09-29 | 2008-05-08 | Fujifilm Corp | Droplet mixing method and apparatus |
JP2014038018A (en) * | 2012-08-14 | 2014-02-27 | Alps Electric Co Ltd | Channel chip |
WO2015137691A1 (en) * | 2014-03-10 | 2015-09-17 | 연세대학교 산학협력단 | Micro mixer using taylor-gortler vortex and method for manufacturing same |
US10458572B2 (en) | 2014-11-14 | 2019-10-29 | Enplas Corporation | Liquid handling device |
WO2016076133A1 (en) * | 2014-11-14 | 2016-05-19 | 株式会社エンプラス | Liquid handling device |
JP2016095237A (en) * | 2014-11-14 | 2016-05-26 | 株式会社エンプラス | Liquid handling device |
CN107076773A (en) * | 2014-11-14 | 2017-08-18 | 恩普乐股份有限公司 | Liquid handling device |
JP2017111029A (en) * | 2015-12-17 | 2017-06-22 | 住友ベークライト株式会社 | Micro channel device |
JPWO2017213074A1 (en) * | 2016-06-06 | 2019-04-11 | 株式会社ニコン | Fluidic device, system, and sample substance detection method |
US11511244B2 (en) | 2016-06-06 | 2022-11-29 | Nikon Corporation | Fluidic device, system and method for detecting sample substance |
JPWO2017213080A1 (en) * | 2016-06-06 | 2019-04-11 | 株式会社ニコン | Fluid device, system, sample substance detection method and sample substance purification method |
EP3467514A4 (en) * | 2016-06-06 | 2019-12-18 | Nikon Corporation | Fluid device, system, and method of detecting specimen substance |
US11192106B2 (en) | 2016-06-06 | 2021-12-07 | Nikon Corporation | Fluidic device, system, method of detecting sample material and method of purifying sample material |
JPWO2020003526A1 (en) * | 2018-06-29 | 2021-07-15 | 株式会社ニコン | Fluid devices and systems |
WO2020003526A1 (en) * | 2018-06-29 | 2020-01-02 | 株式会社ニコン | Fluid device and system |
JPWO2020003520A1 (en) * | 2018-06-29 | 2021-07-15 | 株式会社ニコン | Fluid devices and systems |
WO2020003520A1 (en) * | 2018-06-29 | 2020-01-02 | 株式会社ニコン | Fluid device and system |
JP7196916B2 (en) | 2018-06-29 | 2022-12-27 | 株式会社ニコン | fluidic devices and systems |
JP7226444B2 (en) | 2018-06-29 | 2023-02-21 | 株式会社ニコン | fluidic devices and systems |
US12083518B2 (en) | 2018-06-29 | 2024-09-10 | Nikon Corporation | Fluidic device and system |
CN110058007A (en) * | 2019-05-12 | 2019-07-26 | 南京岚煜生物科技有限公司 | Single channel micro-fluidic chip |
CN113804658A (en) * | 2020-06-11 | 2021-12-17 | 京东方科技集团股份有限公司 | Microfluidic flow channel structure, detection system and using method thereof |
CN113804658B (en) * | 2020-06-11 | 2023-06-06 | 京东方科技集团股份有限公司 | Microfluidic flow channel structure, detection system and use method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006234536A (en) | Micro fluid mixer | |
Kaushik et al. | Droplet microfluidics for high‐sensitivity and high‐throughput detection and screening of disease biomarkers | |
JP5523327B2 (en) | Integrated microfluidic device and method | |
US9493826B2 (en) | Multivolume devices, kits and related methods for quantification and detection of nucleic acids and other analytes | |
Fu et al. | A microfluidic chip based on surfactant-doped polydimethylsiloxane (PDMS) in a sandwich configuration for low-cost and robust digital PCR | |
Wu et al. | Extraction, amplification and detection of DNA in microfluidic chip-based assays | |
Nie et al. | Assembled step emulsification device for multiplex droplet digital polymerase chain reaction | |
Zhang et al. | Single-molecule DNA amplification and analysis using microfluidics | |
Geng et al. | “Sample-to-answer” detection of rare ctDNA mutation from 2 mL plasma with a fully integrated DNA extraction and digital droplet PCR microdevice for liquid biopsy | |
Tan et al. | Current commercial dPCR platforms: Technology and market review | |
Wang et al. | Performance of nanoliter-sized droplet-based microfluidic PCR | |
Hernández-Neuta et al. | Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode | |
Hou et al. | Droplet-based digital PCR (ddPCR) and its applications | |
Okochi et al. | Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system | |
JP2017514438A (en) | Portable nucleic acid analysis system and high performance microfluidic electroactive polymer actuator | |
Wang et al. | An integrated chip capable of performing sample pretreatment and nucleic acid amplification for HIV-1 detection | |
KR20110030415A (en) | Universal sample preparation system and use in an integrated analysis system | |
Ouyang et al. | Pressure-modulated selective electrokinetic trapping for direct enrichment, purification, and detection of nucleic acids in human serum | |
Si et al. | A multi-volume microfluidic device with no reagent loss for low-cost digital PCR application | |
JP2020500517A (en) | Systems and methods relating to continuous flow droplet reactions | |
US20080124716A1 (en) | Method and device for time-effective biomolecule detection | |
Xiang et al. | Advances in improvement strategies of digital nucleic acid amplification for pathogen detection | |
Li et al. | Recent progress in CRISPR-based microfluidic assays and applications | |
Schulz et al. | High dynamic range digital assay enabled by dual-volume centrifugal step emulsification | |
Yin et al. | Digital Recombinase Polymerase Amplification, Digital Loop‐Mediated Isothermal Amplification, and Digital CRISPR‐Cas Assisted Assay: Current Status, Challenges, and Perspectives |