Nothing Special   »   [go: up one dir, main page]

JP2006214101A - Hole-curvature measuring apparatus and chemical-agent injection method using it - Google Patents

Hole-curvature measuring apparatus and chemical-agent injection method using it Download PDF

Info

Publication number
JP2006214101A
JP2006214101A JP2005025640A JP2005025640A JP2006214101A JP 2006214101 A JP2006214101 A JP 2006214101A JP 2005025640 A JP2005025640 A JP 2005025640A JP 2005025640 A JP2005025640 A JP 2005025640A JP 2006214101 A JP2006214101 A JP 2006214101A
Authority
JP
Japan
Prior art keywords
hole
injection
casing
magnetic sensor
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005025640A
Other languages
Japanese (ja)
Other versions
JP4525371B2 (en
Inventor
Katsuji Fukumoto
勝司 福本
Akio Ueda
明生 上田
Shin Matsumoto
伸 松本
Yoshio Murata
芳雄 村田
Masaaki Ohinata
正明 大日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2005025640A priority Critical patent/JP4525371B2/en
Publication of JP2006214101A publication Critical patent/JP2006214101A/en
Application granted granted Critical
Publication of JP4525371B2 publication Critical patent/JP4525371B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-diameter and high-precision hole-curvature measuring apparatus which can be used by being inserted into an injection outer pipe, an upward borehole or the like, and a chemical-agent injection method using the apparatus. <P>SOLUTION: In the hole-curvature measuring apparatus, a triaxial magnetic sensor 11, a triaxial acceleration sensor 13, a signal processing circuit part 12, a power supply circuit and a signal transmission circuit part 14 are internally provided in a cylindrical container 10 of a nonmagnetic material. In the structure of each magnetic sensor of the triaxial magnetic sensor, a rod-shaped core material, around which a coil is wound, is fixed by means of a silicon material, and further fixed in the state of being put into a holder so as to prevent a deviation in shaft arrangement from being caused by vibrations. In the chemical-agent injection method, a casing 1 is pulled out by erecting the injection outer pipe 2 after casing drilling; after that, hole curvature is measured by inserting the hole-curvature measuring apparatus 5 into the injection outer pipe 2; and subsequently, a chemical agent is injected by erecting an injection inner pipe with a packer into the injection outer pipe 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、小型の孔曲がり測定装置及びそれを利用した薬液注入工法に関するものである。   The present invention relates to a small hole bending measuring device and a chemical injection method using the device.

地盤改良工法としての薬液注入工法は、地盤の中に固化材(グラウト)を注入して固結土を造成し、地盤の透水性を低下させるとともに地盤を強化するものであり、この中の一つとして二重管ダブルパッカー工法が知られている。   The chemical injection method as a ground improvement method is to inject solidified material (grouting) into the ground to create consolidated soil, thereby reducing the water permeability of the ground and strengthening the ground. As one example, a double pipe double packer method is known.

図6及び図7に、この二重管ダブルパッカー工法の施工手順を示す。まず、図7(a)に示すように、ドリリングマシン(ロータリーボーリングマシンまたはロータリーパーカッション)4によって地盤を所定深度まで泥水削孔する。この削孔は孔壁保護と後述の注入外管の設置のために、通常はケーシング1による削孔としている(ケーシング削孔工程:図6(a)参照)。
次いで、ジャイロ式測定器を用いて孔の予定角度からの曲がり(鉛直角からの傾斜角)を計測する(孔曲がり測定工程:図6(b−1)、図7(b−1)参照)。
次いで、図7(c)に示すように、このケーシング1内にシールグラウトを充填する。すなわち、泥水をシール液(CB液)に変えて孔内を充填する(泥水をシール液に置換する置換工程:図6(c)参照)。このシールグラウトはフレキシブルパイプを孔底まで挿入して充填する。
その後、図7(d)に示すように、ケーシング1内に、最先端をキャップで閉鎖した注入外管2の建て込みを行い、ケーシング1を引き抜く(注入外管建て込み後ケーシング引き抜く工程:図6(d)参照)。
6 and 7 show the construction procedure of this double pipe double packer method. First, as shown in FIG. 7A, the ground is drilled to a predetermined depth by a drilling machine (rotary boring machine or rotary percussion) 4. This hole is usually made by the casing 1 for protecting the hole wall and installing an injection outer pipe to be described later (casing hole drilling process: see FIG. 6A).
Next, the bending from the planned angle of the hole (inclination angle from the vertical angle) is measured using a gyro-type measuring device (hole bending measurement process: see FIGS. 6B-1 and 7B-1). .
Next, as shown in FIG. 7C, the casing 1 is filled with a seal grout. That is, the muddy water is changed to the sealing liquid (CB liquid) to fill the hole (substitution process for replacing the muddy water with the sealing liquid: see FIG. 6C). This seal grout is filled by inserting a flexible pipe to the bottom of the hole.
Thereafter, as shown in FIG. 7 (d), the outer injection pipe 2 whose tip is closed with a cap is built in the casing 1, and the casing 1 is pulled out (the process of pulling out the casing after the injection outer pipe is built: FIG. 6 (d)).

上記工程(a)〜(d)を繰り返し、全孔削孔する(図6(e)、図7(e)参照)。このとき上記工程(d)において引き抜いたケーシング1は別の箇所の開孔作業に用いられる。   The above steps (a) to (d) are repeated to drill all holes (see FIGS. 6 (e) and 7 (e)). At this time, the casing 1 pulled out in the step (d) is used for opening a hole at another location.

次に、図7(f)に示すように、上記注入外管2の中に、先端部にダブルパッカーを装着したパッカー付注入内管(注入ホース)を建て込み、二重管とする。そして注入内管を軸方向に移動させて、注入内管の噴出孔を注入外管の最深の注入孔に一致させ、地上から薬液を圧送し、注入孔から薬液を地盤中に注入する(CB液注入実施工程:図6(f)参照)。   Next, as shown in FIG. 7 (f), an injection inner tube with a packer (injection hose) with a double packer attached to the tip is built into the injection outer tube 2 to form a double tube. Then, the injection inner tube is moved in the axial direction so that the injection hole of the injection inner tube coincides with the deepest injection hole of the injection outer tube, the chemical liquid is pumped from the ground, and the chemical liquid is injected into the ground from the injection hole (CB) Liquid injection implementation step: see FIG. 6 (f)).

次いで、注入内管を上方に移動させることにより噴出孔を直上の注入孔に合わせ、当該注入孔から薬液を地盤中に注入する(図7(g)参照)。 この工程を、最上部の注入孔まで順次行い、各注入孔から薬液を地盤中に注入する(図7(h)参照)。   Next, by moving the injection inner pipe upward, the injection hole is aligned with the injection hole directly above, and the chemical solution is injected from the injection hole into the ground (see FIG. 7G). This process is sequentially performed up to the uppermost injection hole, and a chemical solution is injected into the ground from each injection hole (see FIG. 7 (h)).

上記したように、二重管ダブルパッカー工法においては、多数本のケーシング削孔を行い、それぞれが所定の小エリアの地盤改良範囲A(図7(a)参照)を受け持ち、全体としてより広い所定範囲の地盤改良を行うものである。このため削孔された孔の傾き(孔曲がり)の程度を知ることは、薬液を所定の地盤改良範囲に満遍なく行き渡らせるように注入調整する上で非常に重要である。   As described above, in the double-pipe double packer method, a large number of casing holes are drilled, each responsible for a predetermined small area ground improvement range A (see FIG. 7 (a)), and as a whole wider predetermined It is intended to improve the ground of the range. For this reason, it is very important to know the degree of inclination (hole bending) of the drilled hole in order to inject and adjust the chemical solution so that it spreads uniformly over a predetermined ground improvement range.

従来、この孔曲がりを測定する機器としては、三軸計測(鉛直角0〜360°)が可能なジャイロコンパスを利用したジャイロ式測定器や、例えば、特許文献1に示されているような、非磁性体の円筒状ハウジング内にロッド先端側から、方位計、方位信号処理部、傾斜計、傾斜信号処理部、メモリー部、バッテリー部を内設した削孔情報計測装置が知られている。この特許文献1の削孔情報計測装置では、傾斜計が、2つの加速度センサをそれぞれX軸方向及びY軸方向に直交配置した二軸式の傾斜計として構成され、また方位計は電子磁気コンパスにより構成されている。
特開平10−148084号公報
Conventionally, as a device for measuring this hole bending, a gyro-type measuring device using a gyrocompass capable of triaxial measurement (vertical angle 0 to 360 °), for example, as shown in Patent Document 1, 2. Description of the Related Art There is known a drilling information measuring device in which an azimuth meter, an azimuth signal processing unit, an inclinometer, an inclination signal processing unit, a memory unit, and a battery unit are provided in a nonmagnetic cylindrical housing from the rod tip side. In the drilling information measuring apparatus of Patent Document 1, the inclinometer is configured as a two-axis inclinometer in which two acceleration sensors are arranged orthogonally to the X-axis direction and the Y-axis direction, respectively, and the compass is an electronic magnetic compass. It is comprised by.
Japanese Patent Laid-Open No. 10-148084

一般に、薬液注入工法等で斜めボーリング削孔を行う場合には、設計通り削孔できているかその孔曲がり(傾斜角度、方位角度等)を計測する必要がある。   In general, when performing oblique boring with a chemical injection method or the like, it is necessary to measure whether the hole has been drilled as designed or the bending (tilt angle, azimuth angle, etc.).

従来の特許文献1の装置では、非磁性体の円筒状ハウジング内に方位計と傾斜計を内設している。しかし、この傾斜計は二軸式であり、その計測範囲が鉛直角0〜90弱度(水平)迄である。また、方位計は電子磁気コンパスにより構成され、この電子磁気コンパスは、二軸のフラックスゲートコンパスをジンバルの中に入れ、傾斜角が大きくなったとしてもジンバルにてコンパスは常に水平を保つ構成となっている。この電子磁気コンパスを用いた方位計の構成に起因して、特許文献1の計測装置は小型化が困難であり、下記のような問題点があった。   In the conventional device of Patent Document 1, an azimuth meter and an inclinometer are provided in a nonmagnetic cylindrical housing. However, this inclinometer is a biaxial type, and its measurement range is from 0 to 90 weakness (horizontal) in the vertical angle. In addition, the compass is composed of an electronic magnetic compass, and this electronic magnetic compass has a configuration in which a biaxial fluxgate compass is placed in the gimbal and the compass is always kept horizontal even when the tilt angle increases. It has become. Due to the configuration of the azimuth meter using the electronic magnetic compass, it is difficult to reduce the size of the measuring device of Patent Document 1, and there are the following problems.

(1)例えば二重管ダブルパッカー工法の孔曲がり測定に使用しようとした場合、挿入する相手方の口径として60mm以上が必要であり、計測装置外径との大小関係から、注入外管(内径40mm)内に挿入することはできず、ケーシング内に挿入して計測する必要があった。このため孔曲がりの計測作業中は、ケーシングを抜き取ることができず、この約40分〜60分の間、掘削後のボーリングマシン等をそのまま待機させておく必要があった。このことは当該ケーシング及びボーリングマシンを他の削孔のために利用することができない約40分〜60分の期間が、各削孔ごとに存在することを意味し、非常に不経済であった。なお、全ての孔について高価なケーシングを用意することは非現実的である。 (1) For example, when trying to use for the measurement of hole bending in the double pipe double packer method, the diameter of the other party to be inserted must be 60 mm or more. ) Cannot be inserted into the casing, and must be inserted into the casing for measurement. For this reason, during the hole bending measurement operation, the casing could not be pulled out, and it was necessary to wait for the boring machine after excavation for about 40 to 60 minutes. This meant that there was a period of about 40-60 minutes for each drilling where the casing and boring machine could not be used for other drilling, which was very uneconomical. . It is impractical to prepare expensive casings for all holes.

(2)また地磁気センサタイプの二軸式測定装置では、上向きのボーリング孔を計測できないなど、斜孔について測定限界があり、斜め精度が悪く計測できないボーリング孔もあった。また、コイル芯に環状のパーマロイが使用されていたため、感度が十分でなく、また三軸方向の測定に不向きであった。 (2) In addition, the geomagnetic sensor type biaxial measuring device has a measurement limit for oblique holes, such as being unable to measure upward bore holes, and some bore holes cannot be measured with poor oblique accuracy. Moreover, since an annular permalloy was used for the coil core, the sensitivity was not sufficient, and it was not suitable for measurement in the triaxial direction.

本発明は上記の課題に鑑みてなされたものであり、その目的は、注入外管内や上向きのボーリング孔などに挿入して使用し得る小径かつ高精度の孔曲がり測定装置及びそれを利用した薬液注入工法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its object is to provide a small-diameter and high-precision hole bending measuring device that can be used by inserting into an injection outer tube or an upward boring hole, and a chemical solution using the device. It is to provide an injection method.

上記目的を達成するため、請求項1に係る発明では、孔曲がり測定装置を次のように構成する。即ち、削孔内に挿通されて該削孔の曲がりを測定する孔曲がり測定装置は、非磁性体材料で形成された円筒状容器内に、互いに直交するX,Y,Zの三軸方向の地磁気の強さを測定する三軸磁気センサと、同じくX,Y,Zの三軸方向の加速度を計測する三軸加速度センサと、上記三軸磁気センサと三軸加速度センサとからの信号を受けて削孔の方位角と傾斜角とを演算する信号処理回路部と、電源回路部と、信号伝送回路部とが内設されてなり、上記三軸磁気センサは、上記円筒状容器本体の内周部に密着嵌合する非磁性体材料でなるホルダーと、該ホルダーに互いに直交して形成された3つの保持孔内に各々嵌合固定された各方向の磁気センサの単体とを有し、各磁気センサの単体は、棒状の芯材にコイルが巻回されてその周囲をシリコン系材料にて囲繞固定されていることを特徴とする。   In order to achieve the above object, in the invention according to claim 1, the hole bending measuring device is configured as follows. That is, a hole bending measuring device that is inserted into a hole and measures the bending of the hole is provided in a cylindrical container formed of a non-magnetic material in the X, Y, and Z directions orthogonal to each other. It receives signals from a triaxial magnetic sensor that measures the strength of geomagnetism, a triaxial acceleration sensor that measures acceleration in the triaxial directions of X, Y, and Z, and the triaxial magnetic sensor and the triaxial acceleration sensor. And a signal processing circuit unit for calculating the azimuth angle and the inclination angle of the drilling hole, a power supply circuit unit, and a signal transmission circuit unit, and the three-axis magnetic sensor is provided inside the cylindrical container body. A holder made of a non-magnetic material that closely fits to the periphery, and a single unit of magnetic sensor in each direction fitted and fixed in three holding holes formed orthogonal to the holder, Each magnetic sensor is made up of a coil wound around a rod-shaped core material, Characterized in that it is surrounded fixed by the system material.

また、請求項2に係る発明では、薬液注入工法を次のように構成する。即ち、地盤を削孔してケーシングを所定深度まで挿入した後、ケーシングの中にシールグラウトを充填し、さらに注入外管を建込んでケーシングを引き抜き、次に注入外管の中へパッカー付注入内管を建込んで薬液の注入を行い地盤改良を行う薬液注入工法において、上記注入外管を建込んでケーシングを引き抜いた後、当該注入外管内に上記請求項1の孔曲がり測定装置を挿入して孔曲がりを計測し、爾後、注入外管の中へパッカー付注入内管を建込んで、計測した孔曲がり測定値に応じて薬液の注入調整を行うことを特徴とする。   Moreover, in the invention which concerns on Claim 2, a chemical | medical solution injection | pouring method is comprised as follows. That is, after drilling the ground and inserting the casing to a predetermined depth, the casing is filled with seal grout, and an outer injection pipe is installed, the casing is pulled out, and then injected into the outer injection pipe with a packer. In a chemical injection method for improving the ground by injecting a chemical solution by erection of an inner tube, the hole bending measuring device according to claim 1 is inserted into the outer injection tube after the outer injection tube is installed and the casing is pulled out. Then, the hole bending is measured, and after filling, the injection inner tube with a packer is installed in the outer injection tube, and the injection adjustment of the chemical solution is performed according to the measured hole bending measurement value.

本発明によれば、次のような優れた効果が得られる。
請求項1の発明に係る孔曲がり測定装置によれば、従来の方位計の代わりに、三軸磁気センサを設けている。そして、この三軸磁気センサの各方向を指向して設けられる磁気センサ単体の構造として、棒状の心材にコイルを巻回したものの外周をシリコン系材料にて囲繞して固定したので、例えば二重管ダブルパッカー工法における注入外管内に挿入して、孔曲がりを高精度に測定可能な小径のユニットツール装置を構成することができる。要するに、ボーリングの削孔装置によることなく計測を行うことができる。また斜め計測についても計測精度が上がり、上向きのボーリング孔でも計測可能となる。
さらにまた、振動によりX、Y、Z軸配置がずれないよう各磁気センサの単体をホルダの保持孔に入れてシリコン系材料で周囲を囲繞して固定したので、挿入時に大きな振動が伝わった場合にも、厳密なX、Y、Z軸配置を正しく維持することができるとともに、シリコン系材料によって振動の緩衝も行うことができる。
According to the present invention, the following excellent effects can be obtained.
According to the hole bending measuring apparatus according to the first aspect of the present invention, a triaxial magnetic sensor is provided instead of the conventional azimuth meter. And, as the structure of the magnetic sensor alone provided to be oriented in each direction of the three-axis magnetic sensor, the outer periphery of the coiled core rod is surrounded and fixed by the silicon-based material. A small-diameter unit tool device capable of measuring the hole bending with high accuracy can be configured by inserting the tube into the injection outer tube in the pipe double packer method. In short, measurement can be performed without using a boring hole drilling device. In addition, the measurement accuracy for oblique measurement is improved, and measurement is possible even with an upward bored hole.
Furthermore, since the X, Y, and Z axis arrangements are not shifted by vibration, each magnetic sensor is inserted into the holder's holding hole and surrounded by a silicon-based material, so that large vibrations are transmitted during insertion. In addition, the strict X, Y, and Z axis arrangement can be correctly maintained, and vibration can be buffered by the silicon-based material.

請求項2の発明に係る薬液注入工法によれば、注入外管を建込んでケーシングを引き抜いた後、当該注入外管内に上記請求項1の孔曲がり測定装置を挿入して孔曲がりを計測し、その後に注入外管の中へ、例えば先端にダブルパッカーを装着したパッカー付注入内管を建込んで薬液の注入を行う。すなわち、孔曲がりの計測作業は、既にケーシングが抜き取られた注入外管に対して行われるため、ケーシング及びボーリングマシン等を他の削孔のために用いることができる。従って、孔曲がりの計測作業中(40分〜60分)、掘削後のボーリングマシン等をそのまま待機させておく必要がなくなり、高効率で薬液注入工法を実施することができる。   According to the chemical injection method according to the invention of claim 2, after the injection outer pipe is installed and the casing is pulled out, the hole bending measuring device of claim 1 is inserted into the injection outer pipe to measure the hole bending. After that, the chemical solution is injected into the outer injection tube by, for example, installing a packer inner injection tube with a double packer attached to the tip. In other words, the hole bending measurement operation is performed on the injection outer tube from which the casing has already been extracted, and therefore the casing and the boring machine can be used for other drilling. Therefore, during the hole bending measurement operation (40 to 60 minutes), it is not necessary to wait for the boring machine after excavation as it is, and the chemical injection method can be implemented with high efficiency.

以下、本発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

図1に本実施形態に係る孔曲がり測定装置5の構成を示す。この孔曲がり測定装置5は、非磁性体の円筒状容器10内に、先端側から順に、三軸磁気センサ(方位計)11、磁気センサ及び加速度センサの信号処理回路部12、三軸加速度センサ(傾斜計)13、電源回路及び信号伝送回路部14を内設したユニットツール構造となっている。   FIG. 1 shows a configuration of a hole bending measuring device 5 according to this embodiment. This hole bending measuring device 5 includes a non-magnetic cylindrical container 10, in order from the tip side, a three-axis magnetic sensor (azimuth meter) 11, a magnetic sensor and acceleration sensor signal processing circuit unit 12, and a three-axis acceleration sensor. (Inclinometer) 13 has a unit tool structure in which a power supply circuit and a signal transmission circuit section 14 are provided.

非磁性体の円筒状容器10は、具体的には直径37mm、長さ700mmの合成樹脂の円筒容器からなる。この容器10の内部の下端側に設けられる三軸磁気センサ(方位計)11は、容器中心軸線に沿ったX軸とこれに直交するY軸、Z軸の三軸方向についての地磁気の強さを検知するものであり、単軸方向の指向特性に優れた磁気センサの単体11a、11b、11cが、各々X、Y、Z軸方向を指向されて三軸配置されている構造である。また容器10の内部の中程に設けられる三軸加速度センサ13は、同じように、X、Y、Zの三軸方向に指向させて加速度センサ13a、13b、13cを三軸配置した構造である。   Specifically, the non-magnetic cylindrical container 10 is a synthetic resin cylindrical container having a diameter of 37 mm and a length of 700 mm. The three-axis magnetic sensor (azimuth meter) 11 provided on the lower end side inside the container 10 has geomagnetic strength in the three-axis directions of the X-axis along the container center axis, the Y-axis perpendicular to it, and the Z-axis. The magnetic sensor units 11a, 11b, and 11c having excellent directivity characteristics in the uniaxial direction are arranged in three axes so as to be directed in the X, Y, and Z axis directions, respectively. Similarly, the triaxial acceleration sensor 13 provided in the middle of the container 10 has a structure in which the acceleration sensors 13a, 13b, and 13c are arranged triaxially so as to be directed in the triaxial directions of X, Y, and Z. .

三軸加速度センサ(傾斜計)13については、加速度センサ13a、13b、13cを三軸配置することにより、ツールが傾斜した場合、三軸それぞれの加速度センサ13a、13b、13cが重力を3成分ベクトルとして計測でき、このことから円筒状容器10の垂線からの傾斜角度が演算できることになる。   As for the triaxial acceleration sensor (tilt meter) 13, when the tool is tilted by arranging the triaxial acceleration sensors 13a, 13b, and 13c, the acceleration sensors 13a, 13b, and 13c of the three axes respectively convert gravity into a three-component vector. From this, the inclination angle from the perpendicular of the cylindrical container 10 can be calculated.

また三軸磁気センサ(方位計)11については、同様に磁気センサ11a、11b、11cを三軸配置した構成として、地磁気成分を計測することにより、同様に3成分ベクトルを計測することができる。三軸計測であるから0〜360度が計測できる。これら三軸磁気センサ11と上記の三軸加速度センサ13の両方のベクトル成分関係から、傾斜した円筒状容器10の方位(磁北からの角度)が計算できることになる。   As for the three-axis magnetic sensor (azimuth meter) 11, similarly, the three-component vector can be measured by measuring the geomagnetic component in the configuration in which the magnetic sensors 11 a, 11 b and 11 c are arranged in three axes. Since it is a triaxial measurement, 0 to 360 degrees can be measured. From the vector component relationship of both the triaxial magnetic sensor 11 and the triaxial acceleration sensor 13 described above, the orientation (angle from magnetic north) of the inclined cylindrical container 10 can be calculated.

ここで、加速度センサの各成分出力をg(x,y,z)、磁気センサの各成分出力をH(x,y,z)、基準水平面に投影された磁気センサ各成分出力をH(x,y,z)とすると、図2に示すような傾斜角θinclと方位角θazmとは次式のように表すことができる。
θincl=Atan(g +g 1/2 /g

θazm=Atan(−Hy1/Hx1
=Atan{(H・g−H・g)・g/H・(g +g )−H・g・y−H・g・g)}

また、
=g +g +g =1.0
であり、よって
=±(1−g −g 1/2
となる。
Here, each component output of the acceleration sensor is g (x, y, z), each component output of the magnetic sensor is H (x, y, z), and each component output of the magnetic sensor projected on the reference horizontal plane is H (x 1 , y 1 , z 1 ), the inclination angle θincl and the azimuth angle θazm as shown in FIG. 2 can be expressed by the following equations.
θincl = Atan (g y 2 + g z 2 ) 1/2 / g x

θazm = Atan (−H y1 / H x1 )
= Atan {(H z · g y −H y · g z ) · g / H · (g y 2 + g z 2 ) −H y · g x · y y −H z · g x · g z )}

Also,
g 2 = g x 2 + g y 2 + g z 2 = 1.0
And therefore g x = ± (1-g y 2 -g z 2 ) 1/2
It becomes.

即ち、本実施形態の孔曲がり測定装置においては、方位計が、従来のように電子磁気コンパスにより構成されず、三軸磁気センサ11及び三軸加速度センサ13と、その出力の演算処理回路(磁気センサ及び加速度センサの信号処理回路部12)により構成される点で、従来と大きく異なる。   That is, in the hole bending measuring device of the present embodiment, the compass is not constituted by an electronic magnetic compass as in the prior art, and the three-axis magnetic sensor 11 and the three-axis acceleration sensor 13 and the output arithmetic processing circuit (magnetic) It differs greatly from the conventional one in that it is constituted by a signal processing circuit unit 12) of the sensor and the acceleration sensor.

ところで、上記三軸磁気センサ11はその小型化とその感度の向上を図るため、図3(a),(b)に示すように、単体の各磁気センサ11a、11b、11cのコイル芯材111には、棒状のスーパーパーマロイ(透磁率がパーマロイの100倍)が使用され、これにコイル112を巻回してマグネットメータとした構成とされている。さらに、孔曲がり測定装置を孔内に挿入する際に振動が加わる恐れがあるので、その振動対策として、上記単体の各磁気センサ11a、11b、11cは、その外周囲をシリコン系材料のクッション材113で囲繞して円柱状に固め、これをアルミ製ホルダー114に収容して固定保持するようにしている。   By the way, in order to reduce the size and improve the sensitivity of the triaxial magnetic sensor 11, as shown in FIGS. 3A and 3B, the coil core material 111 of each single magnetic sensor 11a, 11b, 11c is used. For this, a rod-shaped super permalloy (permeability is 100 times that of permalloy) is used, and a coil 112 is wound around this to form a magnetometer. Further, since vibration may be applied when the hole bending measuring device is inserted into the hole, the individual magnetic sensors 11a, 11b, and 11c are provided with a cushioning material made of a silicon-based material as a countermeasure against the vibration. It is surrounded by 113 and hardened in a cylindrical shape, and is accommodated in an aluminum holder 114 and fixedly held.

アルミ製ホルダー114は円柱状をなし、3軸方向に沿って相互に直交する断面円形の保持孔115が3つ形成されており、当該各保持孔115にそれぞれ単体の各磁気センサ11a、11b、11cが嵌合装着されるようになっている。また、ホルダー114はその外径寸法が円筒状容器10の内径に合わせられていて、当該円筒状容器10内にガタつきなく嵌合装着されるようになっている。従って、小型で且つX、Y、Z軸の地磁気を鋭敏に捕らえ得る三軸磁気センサ11を可及的に小型化して構成できる。   The aluminum holder 114 has a cylindrical shape, and is formed with three holding holes 115 having a circular cross section perpendicular to each other along the three axial directions. Each of the holding holes 115 has a single magnetic sensor 11a, 11b, 11c is fitted and mounted. In addition, the outer diameter of the holder 114 is adjusted to the inner diameter of the cylindrical container 10, and the holder 114 is fitted and mounted in the cylindrical container 10 without rattling. Therefore, the three-axis magnetic sensor 11 that is small in size and capable of capturing the geomagnetism of the X, Y, and Z axes sensitively can be made as small as possible.

上記の如く小型に構成された三軸磁気センサ11の各マグネットメータ(磁気センサ11a、11b、11c)は、X、Y、Z軸の三軸に厳密に固定させておかねばならず、その固定誤差は1/100以下であることが要請される。15はZ軸アラインメントピンを示す。   The magnetometers (magnetic sensors 11a, 11b, 11c) of the three-axis magnetic sensor 11 configured in a small size as described above must be strictly fixed to the three axes of the X, Y, and Z axes. The error is required to be 1/100 or less. Reference numeral 15 denotes a Z-axis alignment pin.

本実施形態の孔曲がり測定装置5は、孔曲がりを計測するにあたりウインチ又はロッドで孔内を降下されて変位計測をする。外径37mmと小型で、最小計測径は40mmであり、口径が40mm以上の孔であれば挿入して孔曲がり計測が可能となっている。   The hole bending measuring device 5 of the present embodiment measures displacement by being lowered in the hole with a winch or a rod when measuring the hole bending. It has a small outer diameter of 37 mm and a minimum measurement diameter of 40 mm. If the hole has a diameter of 40 mm or more, it can be inserted to measure the bending of the hole.

ここで、従前の鉛直±5°以上の斜孔や水平孔の孔曲がりを測定可能な二軸計測による測定器にあっては、そのサイズは大きく、約10cm以上の孔でないと挿入することができず、よって口径が10cmを下回るような小径孔ではその孔曲がりを測定することができなかった。例えば、斜め〜水平施工による薬液注入孔の削孔精度を測定しようとした場合、孔曲がり測定器が大きいことから、直径φ10cm程度のケーシング削孔を行った直後に、当該ケーシングを介してでしか測定することができなかった。よって、孔曲がりの測定が終わるまでは、当該ケーシングを転用することができず、ケーシング削孔の進捗を遅らせていた。また、このケーシング削孔の遅滞に相乗して、当該従前の測定器ではジャイロを用いているため、その測定の際にはジャイロを保持している油の温度を上げてウォーミングアップしておく必要があり、もって測定に時間を要して一日の測定本数に制約が生じ、これ故ごく少ない本数しか測定ができなかった。   Here, in the measuring instrument by the biaxial measurement that can measure the bending of a slant hole or horizontal hole of vertical ± 5 ° or more, the size thereof is large, and it can be inserted unless it is a hole of about 10 cm or more. Therefore, it was not possible to measure the bending of a small-diameter hole whose diameter is less than 10 cm. For example, when trying to measure the drilling accuracy of a chemical injection hole by oblique to horizontal construction, since the hole bending measuring instrument is large, it is only through the casing immediately after the casing drilling of about φ10 cm in diameter is performed. It could not be measured. Therefore, until the measurement of the bending of the hole is completed, the casing cannot be diverted, and the progress of the casing drilling is delayed. In addition, synergistically with the delay in the casing drilling, the conventional measuring instrument uses a gyro, so it is necessary to warm up the oil holding the gyro at the time of measurement. Therefore, it took time to measure, and the number of measurements per day was limited, so that only a very small number could be measured.

しかし、上記した本実施形態の孔曲がり測定装置は外径が直径37mmであり、ダブルパッカー工法で使用する注入外管(内径40mm)内等、従来では不可能であった小径の孔に挿入して孔曲がりを測定することが可能となる。従って、注入外管を建て込んだ後、ケーシングを抜いても孔曲がりの測定には支障が生じることが無く、当該ケーシングを直ちに次の削孔予定箇所に転用してドリリングマシンによるケーシング削孔を行うことができる。また、本実施形態の孔曲がり測定装置は、測定を行うに際してウォーミングアップする必要がなく、測定時間の可及的な短縮化が図れて、多数本の削孔の孔曲がりを測定可能となる。   However, the above-described hole bending measuring apparatus according to the present embodiment has an outer diameter of 37 mm, and is inserted into a small-diameter hole that has been impossible in the past, such as in an injection outer pipe (inner diameter 40 mm) used in the double packer method. Thus, it becomes possible to measure the bending of the hole. Therefore, there is no hindrance to the measurement of the bending of the hole even after the outer pipe is installed and the casing is pulled out. It can be carried out. In addition, the hole bending measuring device of the present embodiment does not require warming up when performing the measurement, can reduce the measurement time as much as possible, and can measure the bending of a large number of holes.

以下、上記孔曲がり測定装置を利用した二重管ダブルパッカー工法の施行例について図4、図5及び図7を用いて説明する。   Hereinafter, the enforcement example of the double pipe double packer construction method using the said hole bending measuring apparatus is demonstrated using FIG.4, FIG.5 and FIG.7.

まず、図7(a)に示すように、ドリリングマシン(ロータリーボーリングマシンまたはロータリーパーカッション)4によって地盤を所定深度まで泥水削孔する。この削孔は孔壁保護と後述の注入外管の設置のために、ケーシング1(図4)による削孔とする(ケーシング削孔工程:図5(a)参照)。   First, as shown in FIG. 7A, the ground is drilled to a predetermined depth by a drilling machine (rotary boring machine or rotary percussion) 4. This hole is made by the casing 1 (FIG. 4) for the purpose of protecting the hole wall and installing an injection outer pipe to be described later (casing hole drilling process: see FIG. 5 (a)).

次いで、図7(c)に示すように、このケーシング1内にシールグラウト3(図4)を充填する。すなわち、泥水をシール液(CB液)に変えて孔内を充填する(泥水をシール液に置換工程:図5(c)参照)。このシールグラウト3はフレキシブルパイプを孔底まで挿入して充填する。   Next, as shown in FIG. 7C, the casing 1 is filled with a seal grout 3 (FIG. 4). That is, the muddy water is changed to the sealing liquid (CB liquid) to fill the hole (replacement process of muddy water with the sealing liquid: see FIG. 5C). The seal grout 3 is filled by inserting a flexible pipe to the bottom of the hole.

その後、図7(d)に示すように、ケーシング1内に、最先端をキャップで閉鎖した注入外管2(図4)の建て込みを行い、ケーシング1を引き抜く(注入外管建て込み後ケーシング引き抜き工程:図5(d)参照)。   After that, as shown in FIG. 7 (d), the outer injection pipe 2 (FIG. 4) whose end is closed with a cap is installed in the casing 1, and the casing 1 is pulled out (the casing after the injection outer pipe is installed). Drawing step: see FIG. 5 (d)).

上記工程(a)〜(d)を繰り返し、逐次に全孔の削孔を進めていく(図5(e)、図7(e)参照)。このとき上記工程(d)において引き抜いたケーシング1は別の箇所の開孔作業に転用していく。   The above steps (a) to (d) are repeated, and all the holes are sequentially drilled (see FIGS. 5 (e) and 7 (e)). At this time, the casing 1 pulled out in the step (d) is diverted to an opening operation at another location.

次いで、上述した図1の外径37mmの孔曲がり測定装置5をウインチ又はロッドで降下させて、図4の如く内径40mmの注入外管2内に挿入し、2mおきにウインチを止め、孔の曲がり(方位角及び傾斜角)を計測する(孔曲がり測定工程:図5(b−2)、図7(b−2)参照)。傾斜計の性能については、傾斜角精度±0.1、傾斜角測定範囲0〜90度以上であり、また方位計の性能については、方位角精度±0.25度、計測方向は全方位である。   Next, the above-mentioned hole bending measuring device 5 having a diameter of 37 mm in FIG. 1 is lowered with a winch or a rod and inserted into the injection outer tube 2 having an inner diameter of 40 mm as shown in FIG. 4, and the winch is stopped every 2 m. The bending (azimuth angle and inclination angle) is measured (hole bending measurement step: see FIGS. 5B-2 and 7B-2). Regarding the performance of the inclinometer, the tilt angle accuracy is ± 0.1, and the tilt angle measurement range is 0 to 90 degrees or more. Regarding the performance of the compass, the azimuth angle accuracy is ± 0.25 degrees, and the measurement direction is omnidirectional. is there.

次に、図5(f)に示すように、上記注入外管2の中に、先端部にダブルパッカーを装着したパッカー付注入内管(注入ホース)を建て込み、二重管とする。そして注入内管を軸方向に移動させて、注入内管の噴出孔を注入外管の最深の注入孔に一致させ、計測した孔曲がり測定値に応じて薬液の注入調整を行いつつ、地上から薬液を圧送し、注入孔から図2の如く薬液6を地盤中に注入する(注入実施工程:図5(f)参照)。   Next, as shown in FIG. 5 (f), an injection inner tube (injection hose) with a packer having a double packer attached to the tip is built into the injection outer tube 2 to form a double tube. Then, move the injection inner tube in the axial direction so that the injection hole of the injection inner tube coincides with the deepest injection hole of the injection outer tube, and adjust the injection of the chemical according to the measured hole bending measurement value. The chemical liquid is pumped and the chemical liquid 6 is injected into the ground from the injection hole as shown in FIG. 2 (injection implementation process: see FIG. 5 (f)).

次いで、注入内管を上方に移動させることにより噴出孔を直上の注入孔に合わせ、当該注入孔から薬液を地盤中に注入する(図7(g)参照)。 この工程を、最上部の注入孔まで順次行い、各注入孔から薬液を地盤中に注入する(図7(h)参照)。   Next, by moving the injection inner pipe upward, the injection hole is aligned with the injection hole directly above, and the chemical solution is injected from the injection hole into the ground (see FIG. 7G). This process is sequentially performed up to the uppermost injection hole, and a chemical solution is injected into the ground from each injection hole (see FIG. 7 (h)).

孔曲がり測定装置5の外径が37mmと小さくなり注入外管内に挿入可能になったことにより、大径のケーシング削孔時に測定せねばならないという制約がなくなり、注入外管(内径40m)建込み後に、当該注入外管を通じて孔曲がりを測定することが可能となる。したがって、薬液注入工の施工を途中で止める必要がなくなる。また、測定対象の孔毎にウォーミングアップを行う必要がなく、測定時間が可及的に短縮化されるので、注入外管建込み後にある程度本数をまとめて測定することが可能であり、一日に測定できる本数を大幅に増加することができる。さらに、ケーシング削孔の終了後、直ちに当該ケーシングを次の削孔予定場所に移して転用できるので、削孔工事を効率よく進めることができ工期の大幅な短縮化が図れる。   Since the outer diameter of the hole bending measuring device 5 is reduced to 37 mm and can be inserted into the outer injection pipe, there is no restriction that it must be measured when drilling a large diameter casing, and the outer injection pipe (inner diameter 40 m) is built. Later, it becomes possible to measure the hole bending through the injection outer tube. Therefore, it is not necessary to stop the construction of the chemical solution injection work on the way. In addition, it is not necessary to warm up each hole to be measured, and the measurement time is shortened as much as possible. The number that can be measured can be greatly increased. Furthermore, since the casing can be transferred to the next planned drilling location and diverted immediately after the casing drilling is completed, the drilling work can be carried out efficiently and the construction period can be greatly shortened.

本発明の孔曲がり測定装置の概略構成を示す図である。It is a figure which shows schematic structure of the hole bending measuring apparatus of this invention. 孔曲がり測定装置の傾斜角θinclと方位角θazmとを説明する図である。It is a figure explaining inclination-angle (theta) incl and azimuth-angle (theta) azm of a hole bending measuring apparatus. 図1中に示す三軸磁気センサの概略構成を示す斜視図であり、(a)は各軸方向に指向されて設けられる単体の磁気センサを示し、(b)はその単体の磁気センサを保持するホルダーを示す。It is a perspective view which shows schematic structure of the triaxial magnetic sensor shown in FIG. 1, (a) shows the single-piece | unit magnetic sensor provided oriented in each axial direction, (b) hold | maintains the single-piece | unit magnetic sensor. Indicates the holder to play. 本発明の孔曲がり測定装置を二重管ダブルパッカー工法に利用した形態を示す略図である。It is the schematic which shows the form which utilized the hole bending measuring apparatus of this invention for the double pipe double packer construction method. 本発明の二重管ダブルパッカー工法の施工手順を示した図である。It is the figure which showed the construction procedure of the double pipe double packer construction method of this invention. 従来の二重管ダブルパッカー工法の施工手順を示したものである。The construction procedure of the conventional double pipe double packer method is shown. 本発明の二重管ダブルパッカー工法の施工手順を、従来の二重管ダブルパッカー工法の施工手順と共に示した図である。It is the figure which showed the construction procedure of the double pipe double packer construction method of this invention with the construction procedure of the conventional double pipe double packer construction method.

符号の説明Explanation of symbols

1 ケーシング
2 注入外管
3 シールグラウト
4 ドリリングマシン
5 孔曲がり測定装置
6 薬液
10 非磁性体の円筒状容器
11 三軸磁気センサ
11a、11b、11c 磁気センサ(単体)
111 コイル心材
112 コイル
113 シリコン材料のクッション材
114 アルミ製ホルダー
115 保持孔
12 信号処理回路部
13 三軸加速度センサ
13a、13b、13c 加速度センサ(単体)
14 電源回路及び信号伝送回路部
15 Z軸アラインメントピン
DESCRIPTION OF SYMBOLS 1 Casing 2 Outer pipe | tube 3 Seal grout 4 Drilling machine 5 Hole bending measuring device 6 Chemical solution 10 Nonmagnetic cylindrical container 11 Triaxial magnetic sensor 11a, 11b, 11c Magnetic sensor (single unit)
111 Coil core material 112 Coil 113 Cushion material made of silicon 114 Aluminum holder 115 Holding hole 12 Signal processing circuit unit 13 Triaxial acceleration sensor 13a, 13b, 13c Acceleration sensor (single unit)
14 Power supply circuit and signal transmission circuit section 15 Z-axis alignment pin

Claims (2)

削孔内に挿通されて該削孔の曲がりを測定する孔曲がり測定装置であって、
非磁性体材料で形成された円筒状容器内に、互いに直交するX,Y,Zの三軸方向の地磁気の強さを測定する三軸磁気センサと、同じくX,Y,Zの三軸方向の加速度を計測する三軸加速度センサと、上記三軸磁気センサと三軸加速度センサとからの信号を受けて削孔の方位角と傾斜角とを演算する信号処理回路部と、電源回路部と、信号伝送回路部とが内設されてなり、
上記三軸磁気センサは、上記円筒状容器本体の内周部に密着嵌合する非磁性体材料でなるホルダーと、該ホルダーに互いに直交して形成された3つの保持孔内に各々嵌合装着された各方向の磁気センサの単体とを有し、
各磁気センサの単体は、棒状の芯材にコイルが巻回されてその周囲をシリコン系材料にて囲繞固定されていることを特徴とする孔曲がり測定装置。
A hole bending measuring device that is inserted into a hole and measures the bending of the hole,
A three-axis magnetic sensor that measures the geomagnetic strength in the three-axis directions of X, Y, and Z orthogonal to each other in a cylindrical container formed of a non-magnetic material, and the same three-axis directions of X, Y, and Z A three-axis acceleration sensor that measures the acceleration of the drill, a signal processing circuit unit that receives signals from the three-axis magnetic sensor and the three-axis acceleration sensor, and calculates an azimuth angle and an inclination angle of the drilling hole; The signal transmission circuit section is installed internally,
The three-axis magnetic sensor is fitted and mounted in a holder made of a non-magnetic material that fits closely to the inner periphery of the cylindrical container body, and in three holding holes formed orthogonal to the holder. And a single magnetic sensor in each direction,
A device for measuring a bending of a hole, characterized in that a single unit of each magnetic sensor has a coil wound around a rod-shaped core member and its periphery is surrounded and fixed with a silicon-based material.
地盤を削孔してケーシングを所定深度まで挿入した後、ケーシングの中にシールグラウトを充填し、さらに注入外管を建込んでケーシングを引き抜き、次に注入外管の中へパッカー付注入内管を建込んで薬液の注入を行い地盤改良を行う薬液注入工法において、
上記注入外管を建込んでケーシングを引き抜いた後、該注入外管内に上記請求項1の孔曲がり測定装置を挿入して孔曲がりを計測し、爾後、該注入外管の中へパッカー付注入内管を建込んで、計測した孔曲がり測定値に応じて薬液の注入調整を行うことを特徴とする薬液注入工法。
After drilling the ground and inserting the casing to the specified depth, the casing is filled with seal grout, the outer injection pipe is installed, the casing is pulled out, and then the inner injection pipe with packer is inserted into the outer injection pipe In the chemical solution injection method to improve the ground by injecting chemical solution by installing
After the outer injection pipe is installed and the casing is pulled out, the hole bending measuring device according to claim 1 is inserted into the injection outer pipe to measure the hole bending. A chemical injection method characterized in that an inner pipe is built and the injection adjustment of the chemical is performed according to the measured measured value of the bending of the hole.
JP2005025640A 2005-02-01 2005-02-01 Hole bending measuring device and chemical injection method using the device Expired - Fee Related JP4525371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025640A JP4525371B2 (en) 2005-02-01 2005-02-01 Hole bending measuring device and chemical injection method using the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005025640A JP4525371B2 (en) 2005-02-01 2005-02-01 Hole bending measuring device and chemical injection method using the device

Publications (2)

Publication Number Publication Date
JP2006214101A true JP2006214101A (en) 2006-08-17
JP4525371B2 JP4525371B2 (en) 2010-08-18

Family

ID=36977552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025640A Expired - Fee Related JP4525371B2 (en) 2005-02-01 2005-02-01 Hole bending measuring device and chemical injection method using the device

Country Status (1)

Country Link
JP (1) JP4525371B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102897A (en) * 2007-10-24 2009-05-14 Maeda Corp Method for estimating strength of soil improving body
JP2010285803A (en) * 2009-06-11 2010-12-24 Raito Kogyo Co Ltd Grouting method support processing device, grouting method support processing method, and grouting method
CN102080514A (en) * 2010-12-21 2011-06-01 中国石油天然气集团公司 Mechanical parameter measuring device of underground compression type packer and using method thereof
JP2016136121A (en) * 2015-01-23 2016-07-28 特許機器株式会社 Ground vibration measurement device
JP2016164331A (en) * 2015-03-06 2016-09-08 ケミカルグラウト株式会社 Ground improvement method
JP2017082498A (en) * 2015-10-29 2017-05-18 前田建設工業株式会社 Vertical accuracy measurement method of pile-shaped ground improvement body by mechanical agitation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132910A (en) * 1995-11-08 1997-05-20 Chichibu Onoda Cement Corp Liquefaction preventive construction method of ground
JPH10148084A (en) * 1996-11-18 1998-06-02 Sato Kogyo Co Ltd Boring-information measuring device and azimuth meter used therefor and boring control method
JP2004271481A (en) * 2003-03-12 2004-09-30 Citizen Watch Co Ltd Triaxial magnetic sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132910A (en) * 1995-11-08 1997-05-20 Chichibu Onoda Cement Corp Liquefaction preventive construction method of ground
JPH10148084A (en) * 1996-11-18 1998-06-02 Sato Kogyo Co Ltd Boring-information measuring device and azimuth meter used therefor and boring control method
JP2004271481A (en) * 2003-03-12 2004-09-30 Citizen Watch Co Ltd Triaxial magnetic sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102897A (en) * 2007-10-24 2009-05-14 Maeda Corp Method for estimating strength of soil improving body
JP2010285803A (en) * 2009-06-11 2010-12-24 Raito Kogyo Co Ltd Grouting method support processing device, grouting method support processing method, and grouting method
CN102080514A (en) * 2010-12-21 2011-06-01 中国石油天然气集团公司 Mechanical parameter measuring device of underground compression type packer and using method thereof
JP2016136121A (en) * 2015-01-23 2016-07-28 特許機器株式会社 Ground vibration measurement device
WO2016117136A1 (en) * 2015-01-23 2016-07-28 特許機器株式会社 Ground vibration measurement device
CN107110990A (en) * 2015-01-23 2017-08-29 特许机器株式会社 Ground vibration determines device
JP2016164331A (en) * 2015-03-06 2016-09-08 ケミカルグラウト株式会社 Ground improvement method
JP2017082498A (en) * 2015-10-29 2017-05-18 前田建設工業株式会社 Vertical accuracy measurement method of pile-shaped ground improvement body by mechanical agitation

Also Published As

Publication number Publication date
JP4525371B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
CA2356025C (en) Measurement-while-drilling assembly using gyroscopic devices and methods of bias removal
US6895678B2 (en) Borehole navigation system
CN102140913B (en) Small-diameter directional gyro inclinometer for drilling
CA2492623C (en) Gyroscopically-oriented survey tool
US7823661B2 (en) In-drilling alignment
US8061047B2 (en) Active positioning of downhole devices using spherical motors
KR102112889B1 (en) Method for surveying drill holes, drilling arrangement, and borehole survey assembly
GB2186378A (en) Surveying of boreholes using non-magnetic collars
JP4525371B2 (en) Hole bending measuring device and chemical injection method using the device
Ledroz et al. FOG-based navigation in downhole environment during horizontal drilling utilizing a complete inertial measurement unit: Directional measurement-while-drilling surveying
NO320060B1 (en) Procedure for borehole grinding using reverse inertial navigation
ES2718338T3 (en) Apparatus for aligning drilling machines
CN110043248A (en) A kind of measurement pipe nipple of full posture MWD inclination measurement device
US9976408B2 (en) Navigation device and method for surveying and directing a borehole under drilling conditions
JP2002318116A (en) Direction measuring device
CN105134171A (en) Realization method for dual-spindle optic-fiber gyro continuous inclination measuring system
US20200306909A1 (en) Orientation apparatus for drilling machinery and method for orienting a drilling element of drilling machinery
US6854192B2 (en) Surveying of boreholes
JP2010091504A (en) Hole passage measuring device
EP1431510B1 (en) Device for rotatably positioning and locking a drive shaft at one plurality of angular positions
WO2021170896A1 (en) Tool, system and method for orienting core samples during borehole drilling
JP7458968B2 (en) Solidification material injection confirmation method and high pressure injection stirring method
CN110130876B (en) Device and method for detecting orientation of underground fault casing head
RU2482270C1 (en) Method for determining orientation of downhole instrument in borehole
AU2012318276B8 (en) Navigation device and method for surveying and directing a borehole under drilling conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4525371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees